1
|
Ismail H, Ibrahim D, El Sayed S, Wahdan A, El-Tarabili RM, Rizk El-Ghareeb W, Abdullah Alhawas B, Alahmad BAHY, Abdel-Raheem SM, El-Hamid MIA. Prospective Application of Nanoencapsulated Bacillus amyloliquefaciens on Broiler Chickens' Performance and Gut Health with Efficacy against Campylobacter jejuni Colonization. Animals (Basel) 2023; 13:ani13050775. [PMID: 36899631 PMCID: PMC10000182 DOI: 10.3390/ani13050775] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/21/2023] [Revised: 02/14/2023] [Accepted: 02/17/2023] [Indexed: 02/24/2023] Open
Abstract
Probiotics as novel antibiotics' substitutes are verified to provide barriers for hindering the colonization of enteric bacterial pathogens with nutritional benefits. For enhancement of the probiotics' effectiveness, their integration within nanomaterials is a paramount tool to support the progress of new compounds with functional features. Therefore, we addressed the impact of effective delivery of probiotics (Bacillus amyloliquefaciens) loaded nanoparticles (BNPs) on performance and Campylobacter jejuni (C. jejuni) shedding and colonization in poultry. Two hundred Ross broiler chickens were divided into four groups fed various BNP levels: BNPs I, BNPs II, BNPs III, and BNPs-free diets for 35 days. Nanoparticles delivery of probiotics within broiler diets improved growth performance as reflected by higher body weight gain and superior feed conversion ratio, especially in BNPs II- and BNPs III-fed groups. In parallel, the mRNA expression levels of digestive enzymes encoding genes (AMY2a, PNLIP, CELA1, and CCK) achieved their peaks in BNPs III-fed group (1.69, 1.49, 1.33, and 1.29-fold change, respectively) versus the control one. Notably, with increasing the levels of BNPs, the abundance of beneficial microbiota, such as Bifidobacterium and Lactobacillus species, was favored over harmful ones, including Clostridium species and Enterobacteriaceae. Birds fed higher levels of BNPs displayed significant improvement in the expression of barrier functions-linked genes including DEFB1, FABP-2, and MUC-2 alongside substantial reduction in cecal colonization and fecal shedding of C. jejuni. From the aforementioned positive effects of BNPs, we concluded their potential roles as growth promoters and effective preventive aids for C. jejuni infection in poultry.
Collapse
Affiliation(s)
- Hesham Ismail
- Department of Public Health, College of Veterinary Medicine, King Faisal University, P.O. Box 400, Hofuf 31982, Al-Ahsa, Saudi Arabia
- Food Hygiene Department, Faculty of Veterinary Medicine, Assiut University, Assiut 71526, Egypt
- Correspondence: (H.I.); (D.I.)
| | - Doaa Ibrahim
- Department of Nutrition and Clinical Nutrition, Faculty of Veterinary Medicine, Zagazig University, Zagazig 44511, Egypt
- Correspondence: (H.I.); (D.I.)
| | - Shorouk El Sayed
- Department of Microbiology, Faculty of Veterinary Medicine, Zagazig University, Zagazig 44511, Egypt
| | - Ali Wahdan
- Department of Bacteriology, Immunology and Mycology, Faculty of Veterinary Medicine, Suez Canal University, Ismailia 41522, Egypt
| | - Reham M. El-Tarabili
- Department of Bacteriology, Immunology and Mycology, Faculty of Veterinary Medicine, Suez Canal University, Ismailia 41522, Egypt
| | - Waleed Rizk El-Ghareeb
- Department of Public Health, College of Veterinary Medicine, King Faisal University, P.O. Box 400, Hofuf 31982, Al-Ahsa, Saudi Arabia
- Food Control Department, Faculty of Veterinary Medicine, Zagazig University, Zagazig 44519, Egypt
| | - Bassam Abdullah Alhawas
- Department of Public Health, College of Veterinary Medicine, King Faisal University, P.O. Box 400, Hofuf 31982, Al-Ahsa, Saudi Arabia
| | - Badr Abdul-Hakim Y. Alahmad
- Department of Public Health, College of Veterinary Medicine, King Faisal University, P.O. Box 400, Hofuf 31982, Al-Ahsa, Saudi Arabia
| | - Sherief M. Abdel-Raheem
- Department of Public Health, College of Veterinary Medicine, King Faisal University, P.O. Box 400, Hofuf 31982, Al-Ahsa, Saudi Arabia
- Department of Animal Nutrition and Clinical Nutrition, Faculty of Veterinary Medicine, Assiut University, Assiut 71526, Egypt
| | - Marwa I. Abd El-Hamid
- Department of Microbiology, Faculty of Veterinary Medicine, Zagazig University, Zagazig 44511, Egypt
| |
Collapse
|
2
|
Manjunatha L, Rajashekara H, Uppala LS, Ambika DS, Patil B, Shankarappa KS, Nath VS, Kavitha TR, Mishra AK. Mechanisms of Microbial Plant Protection and Control of Plant Viruses. PLANTS (BASEL, SWITZERLAND) 2022; 11:3449. [PMID: 36559558 PMCID: PMC9785281 DOI: 10.3390/plants11243449] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/30/2022] [Revised: 11/10/2022] [Accepted: 12/02/2022] [Indexed: 06/17/2023]
Abstract
Plant viral diseases are major constraints causing significant yield losses worldwide in agricultural and horticultural crops. The commonly used methods cannot eliminate viral load in infected plants. Many unconventional methods are presently being employed to prevent viral infection; however, every time, these methods are not found promising. As a result, it is critical to identify the most promising and sustainable management strategies for economically important plant viral diseases. The genetic makeup of 90 percent of viral diseases constitutes a single-stranded RNA; the most promising way for management of any RNA viruses is through use ribonucleases. The scope of involving beneficial microbial organisms in the integrated management of viral diseases is of the utmost importance and is highly imperative. This review highlights the importance of prokaryotic plant growth-promoting rhizobacteria/endophytic bacteria, actinomycetes, and fungal organisms, as well as their possible mechanisms for suppressing viral infection in plants via cross-protection, ISR, and the accumulation of defensive enzymes, phenolic compounds, lipopeptides, protease, and RNase activity against plant virus infection.
Collapse
Affiliation(s)
- Lakshmaiah Manjunatha
- Division of Crop Protection, ICAR-Indian Institute of Horticultural Research (IIHR), Bengaluru 560089, Karnataka, India
| | - Hosahatti Rajashekara
- Division of Crop Protection, ICAR-Directorate of Cashew Research (DCR), Dakshina Kannada 574202, Karnataka, India
| | - Leela Saisree Uppala
- Cranberry Station, East Wareham, University of Massachusetts, Amherst, MA 02538, USA
| | - Dasannanamalige Siddesh Ambika
- Department of Plant Pathology, College of Horticulture, University of Horticultural Sciences (Bagalkot), Bengaluru 560065, Karnataka, India
| | - Balanagouda Patil
- Department of Plant Pathology, University of Agricultural and Horticultural Sciences, Shivamogga 577255, Karnataka, India
| | - Kodegandlu Subbanna Shankarappa
- Department of Plant Pathology, College of Horticulture, University of Horticultural Sciences (Bagalkot), Bengaluru 560065, Karnataka, India
| | | | - Tiptur Rooplanaik Kavitha
- Department of Plant Pathology, University of Agricultural Sciences, GKVK, Bengaluru 560065, Karnataka, India
| | - Ajay Kumar Mishra
- Khalifa Centre for Genetic Engineering and Biotechnology, United Arab Emirates University, Al Ain P.O. Box 15551, United Arab Emirates
| |
Collapse
|
3
|
Veselova SV, Sorokan AV, Burkhanova GF, Rumyantsev SD, Cherepanova EA, Alekseev VY, Sarvarova ER, Kasimova AR, Maksimov IV. By Modulating the Hormonal Balance and Ribonuclease Activity of Tomato Plants Bacillus subtilis Induces Defense Response against Potato Virus X and Potato Virus Y. Biomolecules 2022; 12:biom12020288. [PMID: 35204789 PMCID: PMC8961569 DOI: 10.3390/biom12020288] [Citation(s) in RCA: 14] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/30/2021] [Revised: 02/04/2022] [Accepted: 02/07/2022] [Indexed: 02/01/2023] Open
Abstract
Endophytic plant-growth-promoting microorganisms can protect plants against pathogens, but they have rarely been investigated as potential biocontrol agents and triggers of induced systemic resistance (ISR), regulated by phytohormones, against viruses. We studied the role of endophytic strains Bacillus subtilis 26D and B. subtilis Ttl2, which secrete ribonucleases and phytohormones, in the induction of tomato plant resistance against potato virus X and potato virus Y in a greenhouse condition. The endophytes reduced the accumulation of viruses in plants, increased the activity of plant ribonucleases and recovered the fruit yield of infected tomato plants. Both the 26D and Ttl2 strains induced ISR by activating the transcription of genes related to salicylate- and jasmonate-dependent responses. The 26D and Ttl2 strains increased the content of cytokinins and decreased the level of indolacetic acid in plants infected with PVX or PVY. PVY led to an increase of the abscisic acid (ABA) content in tomato plants, and PVX had the opposite effect. Both strains reduced the ABA content in plants infected with PVY and induced ABA accumulation in plants infected with PVX, which led to an increase in the resistance of plants. This is the first report of the protection of tomato plants against viral diseases by foliar application of endophytes.
Collapse
|
4
|
Maksimov IV, Sorokan AV, Shein MY, Khairullin RM. Biological Methods of Plant Protection against Viruses: Problems and Prospects. APPL BIOCHEM MICRO+ 2020. [DOI: 10.1134/s0003683820060101] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
|
5
|
Sorokan A, Cherepanova E, Burkhanova G, Veselova S, Rumyantsev S, Alekseev V, Mardanshin I, Sarvarova E, Khairullin R, Benkovskaya G, Maksimov I. Endophytic Bacillus spp. as a Prospective Biological Tool for Control of Viral Diseases and Non-vector Leptinotarsa decemlineata Say. in Solanum tuberosum L. Front Microbiol 2020; 11:569457. [PMID: 33178153 PMCID: PMC7593271 DOI: 10.3389/fmicb.2020.569457] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/04/2020] [Accepted: 09/10/2020] [Indexed: 12/19/2022] Open
Abstract
Viral diseases and their damage causing significant loss to economically important crops have increased by several folds during the last decade. All the conventional approaches are not able to eradicate the viral infection. Therefore, there is a need to look for efficient and eco-friendly viral disease-preventive measures. The genomic material of the majority of deleterious viruses of higher plants is RNA. One of the possible measures to control viruses is the use of ribonucleases (RNases), which can cleave RNA in the viral genome. Based on this, we investigated the RNase activity of endophytic Bacillus spp., which can enrich in 103–105 colony-forming units per gram of wet mass of aboveground part of potato plants. A high level of RNase activity was observed in the culture medium of Bacillus thuringiensis B-6066, Bacillus sp. STL-7, Bacillus sp. TS2, and Bacillus subtilis 26D. B. thuringiensis B-5351 had low RNase activity but high ability to colonize internal plant tissues, Bacillus sp. STL-7 with high RNase activity have relatively low number of cells in internal tissues of plants. B. thuringiensis B-6066, B. subtilis 26D, and Bacillus sp. TS stimulate RNase activity in potato plants for a long time after application. Strains with high ability to colonize internal plant tissues combined with high RNase activity reduced severity of viral diseases symptoms on plants and reduced the incidence of potato viruses M, S, and Y. It is worth noting that Bacillus spp. under investigation reduced the number of Leptinotarsa decemlineata Say. egg clusters and larvae on treated plants and showed antifeedant activity. This results in increase of potato productivity mainly in the fraction of major tubers. B. subtilis 26D and Bacillus sp. TS2 combining endophytic lifestyle, RNase, and antifeedant activity may become the basis for the development of biocontrol agents for plant protection.
Collapse
Affiliation(s)
- Antonina Sorokan
- Laboratory of Biochemistry of Plant Immunity, Institute of Biochemistry and Genetics, Ufa Federal Research Center, Russian Academy of Sciences, Ufa, Russia
| | - Ekaterina Cherepanova
- Laboratory of Biochemistry of Plant Immunity, Institute of Biochemistry and Genetics, Ufa Federal Research Center, Russian Academy of Sciences, Ufa, Russia
| | - Guzel Burkhanova
- Laboratory of Biochemistry of Plant Immunity, Institute of Biochemistry and Genetics, Ufa Federal Research Center, Russian Academy of Sciences, Ufa, Russia
| | - Svetlana Veselova
- Laboratory of Biochemistry of Plant Immunity, Institute of Biochemistry and Genetics, Ufa Federal Research Center, Russian Academy of Sciences, Ufa, Russia
| | - Sergey Rumyantsev
- Laboratory of Genomics of Plants, Ufa Federal Research Center, Institute of Biochemistry and Genetics, Russian Academy of Sciences, Ufa, Russia
| | - Valentin Alekseev
- Laboratory of Biochemistry of Plant Immunity, Institute of Biochemistry and Genetics, Ufa Federal Research Center, Russian Academy of Sciences, Ufa, Russia
| | - Ildar Mardanshin
- Laboratory of Selection and Seed Production of Potato, Bashkir Research Institute of Agriculture, Ufa Federal Research Center, Russian Academy of Sciences, Ufa, Russia
| | - Elena Sarvarova
- Laboratory of Genomics of Plants, Ufa Federal Research Center, Institute of Biochemistry and Genetics, Russian Academy of Sciences, Ufa, Russia
| | - Ramil Khairullin
- Laboratory of Biochemistry of Plant Immunity, Institute of Biochemistry and Genetics, Ufa Federal Research Center, Russian Academy of Sciences, Ufa, Russia
| | - Galina Benkovskaya
- Laboratory of Physiological Genetics, Institute of Biochemistry and Genetics, Ufa Federal Research Center, Russian Academy of Sciences, Ufa, Russia
| | - Igor Maksimov
- Laboratory of Biochemistry of Plant Immunity, Institute of Biochemistry and Genetics, Ufa Federal Research Center, Russian Academy of Sciences, Ufa, Russia
| |
Collapse
|
6
|
Dudkina EV, Ulyanova VV, Ilinskaya ON. Supramolecular Organization As a Factor of Ribonuclease Cytotoxicity. Acta Naturae 2020; 12:24-33. [PMID: 33173594 PMCID: PMC7604891 DOI: 10.32607/actanaturae.11000] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/11/2020] [Accepted: 06/29/2020] [Indexed: 11/28/2022] Open
Abstract
One of the approaches used to eliminate tumor cells is directed destruction/modification of their RNA molecules. In this regard, ribonucleases (RNases) possess a therapeutic potential that remains largely unexplored. It is believed that the biological effects of secreted RNases, namely their antitumor and antiviral properties, derive from their catalytic activity. However, a number of recent studies have challenged the notion that the activity of RNases in the manifestation of selective cytotoxicity towards cancer cells is exclusively an enzymatic one. In this review, we have analyzed available data on the cytotoxic effects of secreted RNases, which are not associated with their catalytic activity, and we have provided evidence that the most important factor in the selective apoptosis-inducing action of RNases is the structural organization of these enzymes, which determines how they interact with cell components. The new idea on the preponderant role of non-catalytic interactions between RNases and cancer cells in the manifestation of selective cytotoxicity will contribute to the development of antitumor RNase-based drugs.
Collapse
Affiliation(s)
- E. V. Dudkina
- Institute of Fundamental Medicine and Biology, Kazan (Volga Region) Federal University, Kazan, 420008 Russia
| | - V. V. Ulyanova
- Institute of Fundamental Medicine and Biology, Kazan (Volga Region) Federal University, Kazan, 420008 Russia
| | - O. N. Ilinskaya
- Institute of Fundamental Medicine and Biology, Kazan (Volga Region) Federal University, Kazan, 420008 Russia
| |
Collapse
|
7
|
Burkhanova GF, Sorokan AV, Cherepanova EA, Sarvarova ER, Khairullin RM, Maksimov IV. Endophytic Bacillus bacteria with RNase activity in the resistance of potato plants to viruses. Vavilovskii Zhurnal Genet Selektsii 2019. [DOI: 10.18699/vj19.561] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/19/2022] Open
Abstract
Viral diseases annually cause significant crop losses and significantly reduce the quality of products, including potatoes, some of the most important crops. Currently, viruses cannot be controlled with chemical pesticides, since known antiviral compounds are teratogenic and hazardous to people’s health. Biocontrol agents based on endophytic microorganisms may be an alternative to them. Many strains of Bacillus produce ribonucleases (RNases). Our laboratory possesses a collection of bacteria that produce various metabolites and have RNase activity. The results showed that the inoculation of potato with B. subtilis 26D and B. thuringiensis increased the grain yield by 32–43 %. In addition, the treatment of potato plants with Bacillus spp. significantly reduced the infection of potato plants with virus M. The prevalence of the disease in potato plants was significantly reduced from 60 % in the control to 18 % (B. subtillis 26D) and 25–33 % (B. thuringiensis) in the inoculated plants. Similarly, the infection index decreased from 14 in the control to 1 in the inoculated plants. The further study of molecular mechanisms related to bacterial induction of plant defense reactions in response to viral infections will lead to a better understanding of stress resistance problems. The endophytic microorganisms studied in this report may become the basis for the creation of biological agents for plant protection.
Collapse
Affiliation(s)
- G. F. Burkhanova
- Institute of Biochemistry and Genetics – Subdivision of the Ufa Federal Research Centre, RAS
| | - A. V. Sorokan
- Institute of Biochemistry and Genetics – Subdivision of the Ufa Federal Research Centre, RAS
| | - E. A. Cherepanova
- Institute of Biochemistry and Genetics – Subdivision of the Ufa Federal Research Centre, RAS
| | - E. R. Sarvarova
- Institute of Biochemistry and Genetics – Subdivision of the Ufa Federal Research Centre, RAS
| | - R. M. Khairullin
- Institute of Biochemistry and Genetics – Subdivision of the Ufa Federal Research Centre, RAS
| | - I. V. Maksimov
- Institute of Biochemistry and Genetics – Subdivision of the Ufa Federal Research Centre, RAS
| |
Collapse
|
8
|
Ilinskaya O, Ulyanova V, Lisevich I, Dudkina E, Zakharchenko N, Kusova A, Faizullin D, Zuev Y. The Native Monomer of Bacillus Pumilus Ribonuclease Does Not Exist Extracellularly. BIOMED RESEARCH INTERNATIONAL 2018; 2018:4837623. [PMID: 30402481 PMCID: PMC6196983 DOI: 10.1155/2018/4837623] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 07/18/2018] [Accepted: 09/18/2018] [Indexed: 01/06/2023]
Abstract
Supported by crystallography studies, secreted ribonuclease of Bacillus pumilus (binase) has long been considered to be monomeric in form. Recent evidence obtained using native polyacrylamide gel electrophoresis and size-exclusion chromatography suggests that binase is in fact dimeric. To eliminate ambiguity and contradictions in the data we have measured conformational changes, hypochromic effect, and hydrodynamic radius of binase. The immutability of binase secondary structure upon transition from low to high protein concentration was registered, suggesting the binase dimerization immediately after translocation through the cell membrane and leading to detection of binase dimers only in the culture fluid regardless of ribonuclease concentration. Our results made it necessary to take a fresh look at the binase stability and cytotoxicity towards virus-infected or tumor cells.
Collapse
Affiliation(s)
- Olga Ilinskaya
- Department of Microbiology, Institute of Fundamental Medicine and Biology, Kazan (Volga Region) Federal University, Kazan 420008, Russia
| | - Vera Ulyanova
- Department of Microbiology, Institute of Fundamental Medicine and Biology, Kazan (Volga Region) Federal University, Kazan 420008, Russia
| | - Irina Lisevich
- Department of Microbiology, Institute of Fundamental Medicine and Biology, Kazan (Volga Region) Federal University, Kazan 420008, Russia
| | - Elena Dudkina
- Department of Microbiology, Institute of Fundamental Medicine and Biology, Kazan (Volga Region) Federal University, Kazan 420008, Russia
| | - Nataliya Zakharchenko
- Kazan Institute of Biochemistry and Biophysics of FRC Kazan Scientific Center of RAS, Kazan 420008, Russia
| | - Alexandra Kusova
- Kazan Institute of Biochemistry and Biophysics of FRC Kazan Scientific Center of RAS, Kazan 420008, Russia
| | - Dzhigangir Faizullin
- Kazan Institute of Biochemistry and Biophysics of FRC Kazan Scientific Center of RAS, Kazan 420008, Russia
| | - Yuriy Zuev
- Kazan Institute of Biochemistry and Biophysics of FRC Kazan Scientific Center of RAS, Kazan 420008, Russia
- Kazan State Power Engineering University, Kazan 420066, Russia
| |
Collapse
|
9
|
Maksimov IV, Maksimova TI, Sarvarova ER, Blagova DK, Popov VO. Endophytic Bacteria as Effective Agents of New-Generation Biopesticides (Review). APPL BIOCHEM MICRO+ 2018. [DOI: 10.1134/s0003683818020072] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/23/2022]
|
10
|
Shah Mahmud R, Mostafa A, Müller C, Kanrai P, Ulyanova V, Sokurenko Y, Dzieciolowski J, Kuznetsova I, Ilinskaya O, Pleschka S. Bacterial ribonuclease binase exerts an intra-cellular anti-viral mode of action targeting viral RNAs in influenza a virus-infected MDCK-II cells. Virol J 2018; 15:5. [PMID: 29304825 PMCID: PMC5756404 DOI: 10.1186/s12985-017-0915-1] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/20/2017] [Accepted: 12/19/2017] [Indexed: 01/08/2023] Open
Abstract
BACKGROUND Influenza is a severe contagious disease especially in children, elderly and immunocompromised patients. Beside vaccination, the discovery of new anti-viral agents represents an important strategy to encounter seasonal and pandemic influenza A virus (IAV) strains. The bacterial extra-cellular ribonuclease binase is a well-studied RNase from Bacillus pumilus. Treatment with binase was shown to improve survival of laboratory animals infected with different RNA viruses. Although binase reduced IAV titer in vitro and in vivo, the mode of action (MOA) of binase against IAV at the molecular level has yet not been studied in depth and remains elusive. METHODS To analyze whether binase impairs virus replication by direct interaction with the viral particle we applied a hemagglutination inhibition assay and monitored the integrity of the viral RNA within the virus particle by RT-PCR. Furthermore, we used Western blot and confocal microscopy analysis to study whether binase can internalize into MDCK-II cells. By primer extension we examined the effect of binase on the integrity of viral RNAs within the cells and using a mini-genome system we explored the effect of binase on the viral expression. RESULTS We show that (i) binase does not to attack IAV particle-protected viral RNA, (ii) internalized binase could be detected within the cytosol of MDCK-II cells and that (iii) binase impairs IAV replication by specifically degrading viral RNA species within the infected MDCK-II cells without obvious effect on cellular mRNAs. CONCLUSION Our data provide novel evidence suggesting that binase is a potential anti-viral agent with specific intra-cellular MOA.
Collapse
Affiliation(s)
- Raihan Shah Mahmud
- Institute of Fundamental Medicine and Biology, Kazan Federal University, Kremlyovskaya Street 18, 420008, Kazan, Russia
| | - Ahmed Mostafa
- Institute of Medical Virology, Justus Liebig University, Schubertstrasse 81, 35392, Giessen, Germany
- Center of Scientific Excellence for Influenza Viruses, National Research Center (NRC), El-Buhouth Street 87, 12311 Dokki, Cairo, Egypt
| | - Christin Müller
- Institute of Medical Virology, Justus Liebig University, Schubertstrasse 81, 35392, Giessen, Germany
| | - Pumaree Kanrai
- Institute of Medical Virology, Justus Liebig University, Schubertstrasse 81, 35392, Giessen, Germany
- Present address: Department I - Cardiac Development and Remodelling, Max Planck Institute for Heart and Lung Research, Ludwigstrasse 43, 61231, Bad Nauheim, Germany
| | - Vera Ulyanova
- Institute of Fundamental Medicine and Biology, Kazan Federal University, Kremlyovskaya Street 18, 420008, Kazan, Russia
| | - Yulia Sokurenko
- Institute of Fundamental Medicine and Biology, Kazan Federal University, Kremlyovskaya Street 18, 420008, Kazan, Russia
| | - Julia Dzieciolowski
- Institute of Medical Virology, Justus Liebig University, Schubertstrasse 81, 35392, Giessen, Germany
- Present address: Department of Biochemistry and Molecular Biology, Institute of Nutritional Science, Justus Liebig University, Heinrich-Buff-Ring 26-32, 35392, Giessen, Germany
| | - Irina Kuznetsova
- Institute of Medical Virology, Justus Liebig University, Schubertstrasse 81, 35392, Giessen, Germany
| | - Olga Ilinskaya
- Institute of Fundamental Medicine and Biology, Kazan Federal University, Kremlyovskaya Street 18, 420008, Kazan, Russia
| | - Stephan Pleschka
- Institute of Medical Virology, Justus Liebig University, Schubertstrasse 81, 35392, Giessen, Germany.
| |
Collapse
|
11
|
Khodzhaeva V, Makeeva A, Ulyanova V, Zelenikhin P, Evtugyn V, Hardt M, Rozhina E, Lvov Y, Fakhrullin R, Ilinskaya O. Binase Immobilized on Halloysite Nanotubes Exerts Enhanced Cytotoxicity toward Human Colon Adenocarcinoma Cells. Front Pharmacol 2017; 8:631. [PMID: 28955235 PMCID: PMC5600959 DOI: 10.3389/fphar.2017.00631] [Citation(s) in RCA: 25] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/29/2017] [Accepted: 08/28/2017] [Indexed: 01/02/2023] Open
Abstract
Many ribonucleases (RNases) are considered as promising tools for antitumor therapy because of their selective cytotoxicity toward cancer cells. Binase, the RNase from Bacillus pumilus, triggers apoptotic response in cancer cells expressing RAS oncogene which is mutated in a large percentage of prevalent and deadly malignancies including colorectal cancer. The specific antitumor effect of binase toward RAS-transformed cells is due to its direct binding of RAS protein and inhibition of downstream signaling. However, the delivery of proteins to the intestine is complicated by their degradation in the digestive tract and subsequent loss of therapeutic activity. Therefore, the search of new systems for effective delivery of therapeutic proteins is an actual task. This study is aimed to the investigation of antitumor effect of binase immobilized on natural halloysite nanotubes (HNTs). Here, we have developed the method of binase immobilization on HNTs and optimized the conditions for the enzyme loading and release (i); we have found the non-toxic concentration of pure HNTs which allows to distinguish HNTs- and binase-induced cytotoxic effects (ii); using dark-field and fluorescent microscopy we have proved the absorption of binase-loaded HNTs on the cell surface (iii) and demonstrated that binase-halloysite nanoformulations possessed twice enhanced cytotoxicity toward tumor colon cells as compared to the cytotoxicity of binase itself (iv). The enhanced antitumor activity of biocompatible binase-HNTs complex confirms the advisability of its future development for clinical practice.
Collapse
Affiliation(s)
- Vera Khodzhaeva
- Institute of Fundamental Medicine and Biology, Kazan Federal UniversityKazan, Russia
| | - Anna Makeeva
- Institute of Fundamental Medicine and Biology, Kazan Federal UniversityKazan, Russia
| | - Vera Ulyanova
- Institute of Fundamental Medicine and Biology, Kazan Federal UniversityKazan, Russia
| | - Pavel Zelenikhin
- Institute of Fundamental Medicine and Biology, Kazan Federal UniversityKazan, Russia
| | - Vladimir Evtugyn
- Institute of Fundamental Medicine and Biology, Kazan Federal UniversityKazan, Russia
| | - Martin Hardt
- Imaging Unit, Biomedical Research Center Seltersberg, Justus Liebig University GiessenGiessen, Germany
| | - Elvira Rozhina
- Institute of Fundamental Medicine and Biology, Kazan Federal UniversityKazan, Russia
| | - Yuri Lvov
- Institute of Fundamental Medicine and Biology, Kazan Federal UniversityKazan, Russia
- Institute for Micromanufacturing, Louisiana Tech University, RustonLA, United States
| | - Rawil Fakhrullin
- Institute of Fundamental Medicine and Biology, Kazan Federal UniversityKazan, Russia
- Institute for Micromanufacturing, Louisiana Tech University, RustonLA, United States
| | - Olga Ilinskaya
- Institute of Fundamental Medicine and Biology, Kazan Federal UniversityKazan, Russia
| |
Collapse
|
12
|
Ilinskaya ON, Ulyanova VV, Yarullina DR, Gataullin IG. Secretome of Intestinal Bacilli: A Natural Guard against Pathologies. Front Microbiol 2017; 8:1666. [PMID: 28919884 PMCID: PMC5586196 DOI: 10.3389/fmicb.2017.01666] [Citation(s) in RCA: 92] [Impact Index Per Article: 11.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/25/2017] [Accepted: 08/17/2017] [Indexed: 12/12/2022] Open
Abstract
Current studies of human gut microbiome usually do not consider the special functional role of transient microbiota, although some of its members remain in the host for a long time and produce broad spectrum of biologically active substances. Getting into the gastrointestinal tract (GIT) with food, water and probiotic preparations, two representatives of Bacilli class, genera Bacillus and Lactobacillus, colonize epithelium blurring the boundaries between resident and transient microbiota. Despite their minor proportion in the microbiome composition, these bacteria can significantly affect both the intestinal microbiota and the entire body thanks to a wide range of secreted compounds. Recently, insufficiency and limitations of pure genome-based analysis of gut microbiota became known. Thus, the need for intense functional studies is evident. This review aims to characterize the Bacillus and Lactobacillus in GIT, as well as the functional roles of the components released by these members of microbial intestinal community. Complex of their secreted compounds is referred by us as the "bacillary secretome." The composition of the bacillary secretome, its biological effects in GIT and role in counteraction to infectious diseases and oncological pathologies in human organism is the subject of the review.
Collapse
Affiliation(s)
| | - Vera V. Ulyanova
- Department of Microbiology, Kazan Federal UniversityKazan, Russia
| | | | - Ilgiz G. Gataullin
- Department of Surgery and Oncology, Regional Clinical Cancer CenterKazan, Russia
| |
Collapse
|
13
|
Shah Mahmud R, Müller C, Romanova Y, Mostafa A, Ulyanova V, Pleschka S, Ilinskaya O. Ribonuclease from Bacillus Acts as an Antiviral Agent against Negative- and Positive-Sense Single Stranded Human Respiratory RNA Viruses. BIOMED RESEARCH INTERNATIONAL 2017; 2017:5279065. [PMID: 28546965 PMCID: PMC5435908 DOI: 10.1155/2017/5279065] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 01/06/2017] [Accepted: 04/04/2017] [Indexed: 01/17/2023]
Abstract
Bacillus pumilus ribonuclease (binase) was shown to be a promising antiviral agent in animal models and cell cultures. However, the mode of its antiviral action remains unknown. To assess the binase effect on intracellular viral RNA we have selected single stranded negative- and positive-sense RNA viruses, influenza virus, and rhinovirus, respectively, which annually cause respiratory illnesses and are characterized by high contagious nature, mutation rate, and antigen variability. We have shown that binase exerts an antiviral effect on both viruses at the same concentration, which does not alter the spectrum of A549 cellular proteins and expression of housekeeping genes. The titers of influenza A (H1N1pdm) virus and human rhinovirus serotype 1A were reduced by 40% and 65%, respectively. A preincubation of influenza virus with binase before infection significantly reduced viral titer after single-cycle replication of the virus. Using influenza A virus mini genome system we showed that binase reduced GFP reporter signaling indicating a binase action on the expression of viral mRNA. Binase reduced the level of H1N1pdm viral NP mRNA accumulation in A549 cells by 20%. Since the viral mRNA is a possible target for binase this agent could be potentially applied in the antiviral therapy against both negative- and positive-sense RNA viruses.
Collapse
Affiliation(s)
- Raihan Shah Mahmud
- Institute of Fundamental Medicine and Biology, Kazan Federal University, Kremlevskaya Street 18, Kazan 420008, Russia
| | - Christin Müller
- Institute of Medical Virology, Justus Liebig University, Schubert Street 81, 35392 Giessen, Germany
| | - Yulia Romanova
- Institute of Fundamental Medicine and Biology, Kazan Federal University, Kremlevskaya Street 18, Kazan 420008, Russia
| | - Ahmed Mostafa
- Institute of Medical Virology, Justus Liebig University, Schubert Street 81, 35392 Giessen, Germany
- Center of Scientific Excellence for Influenza Viruses, National Research Centre (NRC), El-Buhouth Street 87, Dokki, Cairo 12311, Egypt
| | - Vera Ulyanova
- Institute of Fundamental Medicine and Biology, Kazan Federal University, Kremlevskaya Street 18, Kazan 420008, Russia
| | - Stephan Pleschka
- Institute of Medical Virology, Justus Liebig University, Schubert Street 81, 35392 Giessen, Germany
| | - Olga Ilinskaya
- Institute of Fundamental Medicine and Biology, Kazan Federal University, Kremlevskaya Street 18, Kazan 420008, Russia
| |
Collapse
|
14
|
Müller C, Ulyanova V, Ilinskaya O, Pleschka S, Shah Mahmud R. A Novel Antiviral Strategy against MERS-CoV and HCoV-229E Using Binase to Target Viral Genome Replication. BIONANOSCIENCE 2016; 7:294-299. [PMID: 32219056 PMCID: PMC7090624 DOI: 10.1007/s12668-016-0341-7] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/02/2023]
Abstract
RNA viruses cause most of the dangerous communicable diseases. Due to their high mutation rates, RNA viruses quickly evade selective pressures and can adapt to a new host. Therefore, new antiviral approaches are urgently needed, which target more than one specific virus variant and which would optimally prevent development of viral resistance. Among the family of coronaviruses (CoV), several human pathogenic strains (HCoV) are known to cause respiratory diseases and are implied in enteric diseases. While most strains contribute to common cold-like illnesses, others lead to severe infections. One of these viruses is the newly emerged (2012), highly pathogenic Middle East respiratory syndrome coronavirus (MERS-CoV) of zoonotic origin. MERS-CoV causes a severe respiratory infection with a high mortality rate of 35 %. There is no specific treatment or infection prevention available. Here, we show that the bacterial ribonuclease Binase is able to inhibit the replication of MERS-CoV and of the low-pathogenic human coronavirus 229E (HCoV-229E) in cell culture. We demonstrate that at non-toxic concentrations, Binase decreased the titers of MERS-CoV and HCoV-229E. On a molecular level, Binase treatment reduced (i) the viral subgenomic RNAs and (ii) the viral nucleocapsidprotein (N) and non-structural protein 13 (nsp13) accumulation. Furthermore, we show that the quantity of the replication/transcription complexes within the infected cells is diminished. Thus, the data obtained might allow further development of new anti-coronaviral approaches affecting viral replication, independent of the specific virus strain.
Collapse
Affiliation(s)
- Christin Müller
- Institute of Medical Virology, Justus Liebig University, Schubertstrasse 81, 35392 Giessen, Germany
| | - Vera Ulyanova
- Institute of Fundamental Medicine and Biology, Kazan (Volga Region) Federal University, 18 Kremlyovskaya Str, Kazan, 420008 Russia
| | - Olga Ilinskaya
- Institute of Fundamental Medicine and Biology, Kazan (Volga Region) Federal University, 18 Kremlyovskaya Str, Kazan, 420008 Russia
| | - Stephan Pleschka
- Institute of Medical Virology, Justus Liebig University, Schubertstrasse 81, 35392 Giessen, Germany
| | - Raihan Shah Mahmud
- Institute of Fundamental Medicine and Biology, Kazan (Volga Region) Federal University, 18 Kremlyovskaya Str, Kazan, 420008 Russia
| |
Collapse
|