1
|
Tyulenev A, Smirnova G, Ushakov V, Kalashnikova T, Sutormina L, Oktyabrsky O. Stress-Induced Sulfide Production by Bacillus subtilis and Bacillus megaterium. Microorganisms 2024; 12:1856. [PMID: 39338531 PMCID: PMC11433681 DOI: 10.3390/microorganisms12091856] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/07/2024] [Revised: 09/03/2024] [Accepted: 09/05/2024] [Indexed: 09/30/2024] Open
Abstract
It was previously discovered that, in the Gram-negative bacterium Escherichia coli growing on a minimal medium with sulfate, stress-induced growth arrest is accompanied by the release of hydrogen sulfide. The source of the sulfide is the desulfurization of intracellular cysteine as one of the ways of maintaining it at a safe level. The danger of excess cysteine is associated with its participation in the Fenton reaction, leading to the formation of highly toxic hydroxyl radicals. Using electrochemical sensors, we identified stress-induced sulfide production in the Gram-positive bacteria Bacillus subtilis and Bacillus megaterium, growing on a minimal medium with sulfate, and changes in physiological parameters such as Eh, pH, and oxygen and potassium consumption. Sulfide production was observed during growth arrest due to the depletion of glucose, ammonium or antibiotic action. The use of sensors allowed to continuously record, in growing cultures, even small changes in parameters. There were significant differences in the amount and kinetics of sulfide production between Bacillus and E. coli. These differences are thought to be due to the lack of glutathione in Bacillus. It is suggested that stress-induced sulfide production by Bacillus under the described conditions may be one of the previously unknown sources of hydrogen sulfide in nature.
Collapse
Affiliation(s)
- Alexey Tyulenev
- Institute of Ecology and Genetics of Microorganisms, Perm Federal Research Center, Russian Academy of Sciences, Goleva 13, Perm 614081, Russia
| | - Galina Smirnova
- Institute of Ecology and Genetics of Microorganisms, Perm Federal Research Center, Russian Academy of Sciences, Goleva 13, Perm 614081, Russia
| | - Vadim Ushakov
- Institute of Ecology and Genetics of Microorganisms, Perm Federal Research Center, Russian Academy of Sciences, Goleva 13, Perm 614081, Russia
| | - Tatyana Kalashnikova
- Institute of Ecology and Genetics of Microorganisms, Perm Federal Research Center, Russian Academy of Sciences, Goleva 13, Perm 614081, Russia
| | - Lyubov Sutormina
- Institute of Ecology and Genetics of Microorganisms, Perm Federal Research Center, Russian Academy of Sciences, Goleva 13, Perm 614081, Russia
| | - Oleg Oktyabrsky
- Institute of Ecology and Genetics of Microorganisms, Perm Federal Research Center, Russian Academy of Sciences, Goleva 13, Perm 614081, Russia
| |
Collapse
|
2
|
Caballero Cerbon DA, Gebhard L, Dokuyucu R, Ertl T, Härtl S, Mazhar A, Weuster-Botz D. Challenges and Advances in the Bioproduction of L-Cysteine. Molecules 2024; 29:486. [PMID: 38257399 PMCID: PMC10821248 DOI: 10.3390/molecules29020486] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/21/2023] [Revised: 01/15/2024] [Accepted: 01/17/2024] [Indexed: 01/24/2024] Open
Abstract
L-cysteine is a proteogenic amino acid with many applications in the pharmaceutical, food, animal feed, and cosmetic industries. Due to safety and environmental issues in extracting L-cysteine from animal hair and feathers, the fermentative production of L-cysteine offers an attractive alternative using renewable feedstocks. Strategies to improve microbial production hosts like Pantoea ananatis, Corynebacterium glutamicum, Pseudomonas sp., and Escherichia coli are summarized. Concerning the metabolic engineering strategies, the overexpression of feedback inhibition-insensitive L-serine O-acetyltransferase and weakening the degradation of L-cysteine through the removal of L-cysteine desulfhydrases are crucial adjustments. The overexpression of L-cysteine exporters is vital to overcome the toxicity caused by intracellular accumulating L-cysteine. In addition, we compiled the process engineering aspects for the bioproduction of L-cysteine. Utilizing the energy-efficient sulfur assimilation pathway via thiosulfate, fermenting cheap carbon sources, designing scalable, fed-batch processes with individual feedings of carbon and sulfur sources, and implementing efficient purification techniques are essential for the fermentative production of L-cysteine on an industrial scale.
Collapse
Affiliation(s)
- Daniel Alejandro Caballero Cerbon
- Chair of Biochemical Engineering, TUM School of Engineering and Design, Technical University of Munich, Boltzmannstraße 15, D-85748 Garching, Germany;
| | - Leon Gebhard
- TUM School of Engineering and Design, Technical University of Munich, Boltzmannstraße 15, D-85748 Garching, Germany
| | - Ruveyda Dokuyucu
- TUM Campus Straubing for Biotechnology and Sustainability, Technical University of Munich, Petersgasse 5, D-94315 Straubing, Germany; (R.D.); (T.E.); (S.H.)
| | - Theresa Ertl
- TUM Campus Straubing for Biotechnology and Sustainability, Technical University of Munich, Petersgasse 5, D-94315 Straubing, Germany; (R.D.); (T.E.); (S.H.)
| | - Sophia Härtl
- TUM Campus Straubing for Biotechnology and Sustainability, Technical University of Munich, Petersgasse 5, D-94315 Straubing, Germany; (R.D.); (T.E.); (S.H.)
| | - Ayesha Mazhar
- TUM Campus Straubing for Biotechnology and Sustainability, Technical University of Munich, Petersgasse 5, D-94315 Straubing, Germany; (R.D.); (T.E.); (S.H.)
| | - Dirk Weuster-Botz
- Chair of Biochemical Engineering, TUM School of Engineering and Design, Technical University of Munich, Boltzmannstraße 15, D-85748 Garching, Germany;
| |
Collapse
|
3
|
Touge C, Nakatsu M, Sugimoto M, Takamura E, Sakamoto H. A Biochemical Corrosion Monitoring Sensor with a Silver/Carbon Comb Structure for the Detection of Living Escherichia coli. ACS OMEGA 2023; 8:43511-43520. [PMID: 38027348 PMCID: PMC10666268 DOI: 10.1021/acsomega.3c03632] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 05/24/2023] [Revised: 10/20/2023] [Accepted: 10/25/2023] [Indexed: 12/01/2023]
Abstract
For the detection and monitoring of live bacteria, we propose a biochemical corrosion monitoring (BCM) sensor that measures galvanic current by using a Ag/C sensor comprising silver and carbon comb electrodes. The deposition of an Escherichia coli suspension containing an LB liquid medium on the Ag/C sensor increased the galvanic current. The time required for the current to reach 20 nA is defined as T20. T20 tends to decrease as the initial number of E. coli in the E. coli solution increases. A linear relationship was obtained between the logarithm of the E. coli count and T20 in a bacterial count range of 1-108 cfu/mL under culture conditions in which the growth rate of the bacteria was constant. Hence, the number of live E. coli could be determined from T20. Ag2S precipitation was observed on the surface of the Ag electrode of the Ag/C sensor, where an increase in the current was observed. This generation of galvanic current was attributed to the reaction between a small amount of free H2S metabolized by E. coli in the bacterial solution during its growth process and Ag-the sensor anode. The Ag/C sensor can detect a free H2S concentration of 0.041 μM in the E. coli solution. This novel biochemical sensor can monitor the growth behavior of living organisms without damaging them.
Collapse
Affiliation(s)
- Chiyako Touge
- Industrial
Technology Center of Fukui Prefecture, 10-61, Kawaiwashizuka,Fukui 910-0102, Japan
| | - Michiyo Nakatsu
- Industrial
Technology Center of Fukui Prefecture, 10-61, Kawaiwashizuka,Fukui 910-0102, Japan
| | - Mai Sugimoto
- Department
of Frontier Fiber and Technology and Science, Graduate School of Engineering, University of Fukui, Bunkyo 3-9-1,Fukui 910-8507, Japan
| | - Eiichiro Takamura
- Department
of Frontier Fiber and Technology and Science, Graduate School of Engineering, University of Fukui, Bunkyo 3-9-1,Fukui 910-8507, Japan
| | - Hiroaki Sakamoto
- Department
of Frontier Fiber and Technology and Science, Graduate School of Engineering, University of Fukui, Bunkyo 3-9-1,Fukui 910-8507, Japan
| |
Collapse
|
4
|
Cao M, Zheng C, Yang D, Kalkreuter E, Adhikari A, Liu YC, Rateb ME, Shen B. Cryptic Sulfur Incorporation in Thioangucycline Biosynthesis. Angew Chem Int Ed Engl 2021; 60:7140-7147. [PMID: 33465268 PMCID: PMC7969429 DOI: 10.1002/anie.202015570] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/22/2020] [Revised: 12/30/2020] [Indexed: 12/16/2022]
Abstract
Sulfur incorporation into natural products is a critical area of biosynthetic studies. Recently, a subset of sulfur-containing angucyclines has been discovered, and yet, the sulfur incorporation step is poorly understood. In this work, a series of thioether-bridged angucyclines were discovered, and a cryptic epoxide Michael acceptor intermediate was revealed en route to thioangucyclines (TACs) A and B. However, systematic gene deletion of the biosynthetic gene cluster (BGC) by CRISPR/Cas9 could not identify any gene responsible for the conversion of the epoxide intermediate to TACs. Instead, a series of in vitro and in vivo experiments conclusively showed that the conversion is the result of two non-enzymatic steps, possibly mediated by endogenous hydrogen sulfide. Therefore, the TACs are proposed to derive from a detoxification process. These results are expected to contribute to the study of both angucyclines and the utilization of inorganic sulfur in natural product biosynthesis.
Collapse
Affiliation(s)
| | | | - Dong Yang
- Department of Chemistry, Department of Molecular Medicine, Natural Products Discovery Center at Scripps Research, The Scripps Research Institute, Jupiter, Florida 33458, United States
| | - Edward Kalkreuter
- Department of Chemistry, Department of Molecular Medicine, Natural Products Discovery Center at Scripps Research, The Scripps Research Institute, Jupiter, Florida 33458, United States
| | - Ajeeth Adhikari
- Department of Chemistry, Department of Molecular Medicine, Natural Products Discovery Center at Scripps Research, The Scripps Research Institute, Jupiter, Florida 33458, United States
| | - Yu-Chen Liu
- Department of Chemistry, Department of Molecular Medicine, Natural Products Discovery Center at Scripps Research, The Scripps Research Institute, Jupiter, Florida 33458, United States
| | - Mostafa E. Rateb
- Department of Chemistry, Department of Molecular Medicine, Natural Products Discovery Center at Scripps Research, The Scripps Research Institute, Jupiter, Florida 33458, United States
| | - Ben Shen
- Department of Chemistry, Department of Molecular Medicine, Natural Products Discovery Center at Scripps Research, The Scripps Research Institute, Jupiter, Florida 33458, United States
| |
Collapse
|
5
|
Cao M, Zheng C, Yang D, Kalkreuter E, Adhikari A, Liu Y, Rateb ME, Shen B. Cryptic Sulfur Incorporation in Thioangucycline Biosynthesis. Angew Chem Int Ed Engl 2021. [DOI: 10.1002/ange.202015570] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022]
Affiliation(s)
- Mingming Cao
- Department of Chemistry Department of Molecular Medicine Natural Products Discovery Center at Scripps Research The Scripps Research Institute Jupiter FL 33458 USA
| | - Chengjian Zheng
- Department of Chemistry Department of Molecular Medicine Natural Products Discovery Center at Scripps Research The Scripps Research Institute Jupiter FL 33458 USA
| | - Dong Yang
- Department of Chemistry Department of Molecular Medicine Natural Products Discovery Center at Scripps Research The Scripps Research Institute Jupiter FL 33458 USA
| | - Edward Kalkreuter
- Department of Chemistry Department of Molecular Medicine Natural Products Discovery Center at Scripps Research The Scripps Research Institute Jupiter FL 33458 USA
| | - Ajeeth Adhikari
- Department of Chemistry Department of Molecular Medicine Natural Products Discovery Center at Scripps Research The Scripps Research Institute Jupiter FL 33458 USA
| | - Yu‐Chen Liu
- Department of Chemistry Department of Molecular Medicine Natural Products Discovery Center at Scripps Research The Scripps Research Institute Jupiter FL 33458 USA
| | - Mostafa E. Rateb
- Department of Chemistry Department of Molecular Medicine Natural Products Discovery Center at Scripps Research The Scripps Research Institute Jupiter FL 33458 USA
| | - Ben Shen
- Department of Chemistry Department of Molecular Medicine Natural Products Discovery Center at Scripps Research The Scripps Research Institute Jupiter FL 33458 USA
| |
Collapse
|
6
|
Liu H, Wang Y, Hou Y, Li Z. Fitness of Chassis Cells and Metabolic Pathways for l-Cysteine Overproduction in Escherichia coli. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2020; 68:14928-14937. [PMID: 33264003 DOI: 10.1021/acs.jafc.0c06134] [Citation(s) in RCA: 24] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/12/2023]
Abstract
l-Cysteine is a ubiquitous and unique sulfur-containing amino acid with numerous applications in agricultural and food industries. The efficient production of l-cysteine via microbial fermentation has received a great deal of attention. In this study, the fitness of different Escherichia coli K-12 strains harboring plasmid pLH03 was investigated. The enhancement of the precursor synthetic pathway and thiosulfate assimilation pathway resulted in the good performance of the E. coli BW25113 strain. The expression levels of synthetic pathway genes were optimized by two constitutive promoters to assess their effects on cysteine production. In conjunction, the main degradation pathway genes were also deleted for more efficient production of cysteine. l-Cysteine production was further increased through the manipulation of the sulfur transcription regulator cysB and sulfur supplementation. After process optimization in a 1.5 L bioreactor, LH2A1M0BΔYTS-pLH03 [BW25113 Ptrc2-serA Ptrc1-cysMPtrc-cysBΔyhaMΔtnaAΔsdaA-(pLH03)] accumulated 8.34 g/L cysteine, laying a foundation for application in the cysteine fermentation industry.
Collapse
Affiliation(s)
- Han Liu
- State Key Laboratory of Bioreactor Engineering, East China University of Science and Technology, 130 Meilong Road, Shanghai 200237, China
| | - Yu Wang
- State Key Laboratory of Bioreactor Engineering, East China University of Science and Technology, 130 Meilong Road, Shanghai 200237, China
| | - Yehua Hou
- State Key Laboratory of Bioreactor Engineering, East China University of Science and Technology, 130 Meilong Road, Shanghai 200237, China
| | - Zhimin Li
- State Key Laboratory of Bioreactor Engineering, East China University of Science and Technology, 130 Meilong Road, Shanghai 200237, China
- Shanghai Collaborative Innovation Center for Biomanufacturing Technology, 130 Meilong Road, Shanghai 200237, China
| |
Collapse
|
7
|
Dilek N, Papapetropoulos A, Toliver-Kinsky T, Szabo C. Hydrogen sulfide: An endogenous regulator of the immune system. Pharmacol Res 2020; 161:105119. [PMID: 32781284 DOI: 10.1016/j.phrs.2020.105119] [Citation(s) in RCA: 161] [Impact Index Per Article: 32.2] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/29/2020] [Revised: 07/30/2020] [Accepted: 07/30/2020] [Indexed: 12/12/2022]
Abstract
Hydrogen sulfide (H2S) is now recognized as an endogenous signaling gasotransmitter in mammals. It is produced by mammalian cells and tissues by various enzymes - predominantly cystathionine β-synthase (CBS), cystathionine γ-lyase (CSE) and 3-mercaptopyruvate sulfurtransferase (3-MST) - but part of the H2S is produced by the intestinal microbiota (colonic H2S-producing bacteria). Here we summarize the available information on the production and functional role of H2S in the various cell types typically associated with innate immunity (neutrophils, macrophages, dendritic cells, natural killer cells, mast cells, basophils, eosinophils) and adaptive immunity (T and B lymphocytes) under normal conditions and as it relates to the development of various inflammatory and immune diseases. Special attention is paid to the physiological and the pathophysiological aspects of the oral cavity and the colon, where the immune cells and the parenchymal cells are exposed to a special "H2S environment" due to bacterial H2S production. H2S has many cellular and molecular targets. Immune cells are "surrounded" by a "cloud" of H2S, as a result of endogenous H2S production and exogenous production from the surrounding parenchymal cells, which, in turn, importantly regulates their viability and function. Downregulation of endogenous H2S producing enzymes in various diseases, or genetic defects in H2S biosynthetic enzyme systems either lead to the development of spontaneous autoimmune disease or accelerate the onset and worsen the severity of various immune-mediated diseases (e.g. autoimmune rheumatoid arthritis or asthma). Low, regulated amounts of H2S, when therapeutically delivered by small molecule donors, improve the function of various immune cells, and protect them against dysfunction induced by various noxious stimuli (e.g. reactive oxygen species or oxidized LDL). These effects of H2S contribute to the maintenance of immune functions, can stimulate antimicrobial defenses and can exert anti-inflammatory therapeutic effects in various diseases.
Collapse
Affiliation(s)
- Nahzli Dilek
- Chair of Pharmacology, Section of Medicine, University of Fribourg, Switzerland
| | - Andreas Papapetropoulos
- Laboratory of Pharmacology, Faculty of Pharmacy, National and Kapodistrian University of Athens, Greece
| | - Tracy Toliver-Kinsky
- Department of Anesthesiology, University of Texas Medical Branch, Galveston, TX, USA
| | - Csaba Szabo
- Chair of Pharmacology, Section of Medicine, University of Fribourg, Switzerland; Department of Anesthesiology, University of Texas Medical Branch, Galveston, TX, USA.
| |
Collapse
|