1
|
de Medeiros WRDB, de Paiva WKV, Diniz DS, Padilha CEDA, de Azevedo WM, de Assis CF, dos Santos ES, de Sousa Junior FC. Low-cost approaches to producing and concentrating stable lipases and the evaluation of inductors. BRAZILIAN JOURNAL OF CHEMICAL ENGINEERING 2022. [DOI: 10.1007/s43153-022-00223-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/25/2022]
|
2
|
Cai Y, Xing S, Zhang Q, Zhu R, Cheng K, Li C, Zeng X, He L. Expression, purification, properties, and substrate specificity analysis of Aspergillus niger GZUF36 lipase in Escherichia coli. Process Biochem 2021. [DOI: 10.1016/j.procbio.2021.09.002] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/25/2023]
|
3
|
Prevalence of lipase producer Aspergillus niger in nuts and anti-biofilm efficacy of its crude lipase against some human pathogenic bacteria. Sci Rep 2021; 11:7981. [PMID: 33846447 PMCID: PMC8041791 DOI: 10.1038/s41598-021-87079-0] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/28/2020] [Accepted: 03/15/2021] [Indexed: 12/16/2022] Open
Abstract
Nuts are the natural source of healthy lipids, proteins, and omega-3. They are susceptible to fungal and mycotoxins contamination because of their high nutritional value. Twenty-five species comprising 12 genera were isolated from 80 samples of dried fruits and nuts using the dilution plate method. Peanut recorded the highest level of contamination followed by coconut; almond and raisin were the lowest. Aspergillus was the most prevalent genus and A.niger, was the most dominant species. The morphological identification of the selected A.niger isolates as they were detected in high frequency of occurrence was confirmed by using 18SrRNA sequence. Ochratoxin biosynthesis gene Aopks was detected in the tested isolates. Lipase production by the selected A.niger isolates was determined with enzyme activity index (EAI) ranging from 2.02 to 3.28. A.niger-26 was the highest lipase producer with enzyme activity of 0.6 ± 0.1 U/ml by the trimetric method. Lip2 gene was also detected in the tested isolates. Finally, the antibacterial and antibiofilm efficiency of crude lipase against some human pathogens was monitored. Results exhibited great antibacterial efficacy with minimum bactericidal concentration (MBC) of 20 to 40 µl/100 µl against Escherichiacoli, Pseudomonasaeruginosa, Proteusmirabilis, and Methicillin-resistant Staphylococcusaureus (MRSA). Interestingly, significant anti-biofilm efficacy with inhibition percentages of 95.3, 74.9, 77.1 and 93.6% was observed against the tested pathogens, respectively.
Collapse
|
4
|
Paluzar H, Tuncay D, Aydogdu H. Production and characterization of lipase from Penicillium aurantiogriseum under solid-state fermentation using sunflower pulp. BIOCATAL BIOTRANSFOR 2021. [DOI: 10.1080/10242422.2021.1901888] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/21/2022]
Affiliation(s)
- Hatice Paluzar
- Arda Vocational School, Department of Chemistry and Chemical Processing Technology, Trakya University, Edirne, Turkey
| | - Didem Tuncay
- Vocational School of Technical Science, Department of Textile, Clothing, Shoe and Leather, Trakya University, Edirne, Turkey
| | - Halide Aydogdu
- Arda Vocational School, Department of Food Processing, Trakya University, Edirne, Turkey
| |
Collapse
|
5
|
Bioconversion of Sweet Sorghum Residues by Trichoderma citrinoviride C1 Enzymes Cocktail for Effective Bioethanol Production. Catalysts 2020. [DOI: 10.3390/catal10111292] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022] Open
Abstract
Improved cost-effective bioethanol production using inexpensive enzymes preparation was investigated. Three types of waste lignocellulosic materials were converted—for the production of enzyme preparation, a mixture of sugar beet pulp and wheat bran, while the source of sugars in hydrolysates was sweet sorghum biomass. A novel enzyme cocktail of Trichoderma citrinoviride C1 is presented. The one-step ultrafiltration process of crude enzyme extract resulted in a threefold increase of cellulolytic and xylanolytic activities. The effectiveness of enzyme preparation, compared to Cellic® CTec2, was tested in an optimized enzymatic hydrolysis process. Depending on the test conditions, hydrolysates with different glucose concentrations were obtained—from 6.3 g L−1 to 14.6 g L−1 (representing from 90% to 79% of the CTec2 enzyme yield, respectively). Furthermore, ethanol production by Saccharomyces cerevisiae SIHA Active Yeast 6 strain DF 639 in optimal conditions reached about 120 mL kg d.m.−1 (75% compared with the CTec2 process). The achieved yields suggested that the produced enzyme cocktail C1 could be potentially used to reduce the cost of bioethanol production from sweet sorghum biomass.
Collapse
|
6
|
Mehta A, Sharma R, Gupta R. Statistical Optimization by Response Surface Methodology to Enhance Lipase Production by Aspergillus fumigatus. Open Microbiol J 2019. [DOI: 10.2174/1874285801913010086] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022] Open
Abstract
Background:Lipases have various commercial applications and microorganisms serve as a potential source of production.Objective:The aim of this paper was to study the effect of interactions among different production parameters on lipase yield ofAspergillus fumigatus.Method:Plackett Burman and Central Composite Design (CCD) were established by using Design Expert software 10.0.Results:In the present study, interactions were studied for six different variables such as inoculum size, pH, temperature, galactose concentration, peptone concentration and incubation time. In Plackett-Burman design, galactose concentration, peptone concentration, pH and incubation time were found to be important factors. Using the statistical approach, the optimum factors were found to be as: galactose concentration (1.5%), peptone concentration (1.8%), pH (10.0) and incubation time (72 h) at 45°C under response surface curves. Upon statistical analysis, the coefficient of determination (R2) obtained was 0.9318 which showed that the model was significant.Conclusion:The statistical tools used predicted the optimal conditions for the production of the lipase. The optimized parameters were galactose concentration 1.5%, peptone concentration 1.4%, temperature 45°C, pH 10.0 and incubation time of 72 h for obtaining a maximum lipase activity of 6.22 U/ml.
Collapse
|
7
|
Geoffry K, Achur RN. Screening and production of lipase from fungal organisms. BIOCATALYSIS AND AGRICULTURAL BIOTECHNOLOGY 2018. [DOI: 10.1016/j.bcab.2018.03.009] [Citation(s) in RCA: 49] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
|
8
|
Oliveira AC, Amorim GM, Azevêdo JAG, Godoy MG, Freire DMG. Solid-state fermentation of co-products from palm oil processing: Production of lipase and xylanase and effects on chemical composition. BIOCATAL BIOTRANSFOR 2018. [DOI: 10.1080/10242422.2018.1425400] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/18/2022]
Affiliation(s)
- Ana C. Oliveira
- Universidade Federal do Rio de Janeiro, Instituto de Química, Departamento de Bioquímica, Rio de Janeiro, RJ, Brazil
| | - Graziella M. Amorim
- Universidade Federal do Rio de Janeiro, Instituto de Química, Departamento de Bioquímica, Rio de Janeiro, RJ, Brazil
| | | | - Mateus G. Godoy
- Universidade Federal do Rio de Janeiro, Instituto de Microbiologia Paulo de Góes, Rio de Janeiro, RJ, Brazil
| | - Denise M. G. Freire
- Universidade Federal do Rio de Janeiro, Instituto de Química, Departamento de Bioquímica, Rio de Janeiro, RJ, Brazil
| |
Collapse
|
9
|
Pitol LO, Finkler ATJ, Dias GS, Machado AS, Zanin GM, Mitchell DA, Krieger N. Optimization studies to develop a low-cost medium for production of the lipases of Rhizopus microsporus by solid-state fermentation and scale-up of the process to a pilot packed-bed bioreactor. Process Biochem 2017. [DOI: 10.1016/j.procbio.2017.07.019] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 10/19/2022]
|
10
|
Optimization of lipase production by solid-state fermentation of olive pomace: from flask to laboratory-scale packed-bed bioreactor. Bioprocess Biosyst Eng 2017; 40:1123-1132. [DOI: 10.1007/s00449-017-1774-2] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/02/2017] [Accepted: 04/26/2017] [Indexed: 10/19/2022]
|
11
|
Oliveira F, Souza CE, Peclat VR, Salgado JM, Ribeiro BD, Coelho MA, Venâncio A, Belo I. Optimization of lipase production by Aspergillus ibericus from oil cakes and its application in esterification reactions. FOOD AND BIOPRODUCTS PROCESSING 2017. [DOI: 10.1016/j.fbp.2017.01.007] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/20/2022]
|
12
|
Mukhtar H, Khursheed S, Ikram-ul-Haq, Mumtaz MW, Rashid U, Al-Resayes SI. Optimization of Lipase Biosynthesis fromRhizopus oryzaefor Biodiesel Production Using Multiple Oils. Chem Eng Technol 2016. [DOI: 10.1002/ceat.201500584] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/10/2022]
|
13
|
Sethi BK, Nanda PK, Sahoo S. Characterization of biotechnologically relevant extracellular lipase produced by Aspergillus terreus NCFT 4269.10. Braz J Microbiol 2016; 47:143-9. [PMID: 26887237 PMCID: PMC4822761 DOI: 10.1016/j.bjm.2015.11.026] [Citation(s) in RCA: 41] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/25/2015] [Accepted: 04/16/2015] [Indexed: 11/26/2022] Open
Abstract
Enzyme production by Aspergillus terreus NCFT 4269.10 was studied under liquid static surface and solid-state fermentation using mustard oil cake as a substrate. The maximum lipase biosynthesis was observed after incubation at 30 °C for 96 h. Among the domestic oils tested, the maximum lipase biosynthesis was achieved using palm oil. The crude lipase was purified 2.56-fold to electrophoretic homogeneity, with a yield of 8.44%, and the protein had a molecular weight of 46.3 kDa as determined by SDS-PAGE. Enzyme characterization confirmed that the purified lipase was most active at pH 6.0, temperature of 50 °C, and substrate concentration of 1.5%. The enzyme was thermostable at 60 °C for 1 h, and the optimum enzyme–substrate reaction time was 30 min. Sodium dodecyl sulfate and commercial detergents did not significantly affect lipase activity during 30-min incubation at 30 °C. Among the metal ions tested, the maximum lipase activity was attained in the presence of Zn2+, followed by Mg2+ and Fe2+. Lipase activity was not significantly affected in the presence of ethylenediaminetetraacetic acid, sodium lauryl sulfate and Triton X-100. Phenylmethylsulfonyl fluoride (1 mM) and the reducing, β-mercaptoethanol significantly inhibited lipase activity. The remarkable stability in the presence of detergents, additives, inhibitors and metal ions makes this lipase unique and a potential candidate for significant biotechnological exploitation.
Collapse
Affiliation(s)
- Bijay Kumar Sethi
- Microbiology Research Laboratory, P.G. Department of Botany, Utkal University, Vani Vihar, Bhubaneswar 751004, Odisha, India; MITS School of Biotechnology, 2 (P), Infocity, Patia, Chandaka Industrial Estate, Bhubaneswar 751024, Odisha, India.
| | | | - Santilata Sahoo
- Microbiology Research Laboratory, P.G. Department of Botany, Utkal University, Vani Vihar, Bhubaneswar 751004, Odisha, India
| |
Collapse
|
14
|
Pavithra S, Ramesh R, Aarthy M, Ayyadurai N, Gowthaman MK, Kamini NR. Starchy substrates for production and characterization ofBacillus subtilisamylase and its efficacy in detergent and breadmaking formulations. STARCH-STARKE 2014. [DOI: 10.1002/star.201400066] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/07/2022]
Affiliation(s)
- Sundaresan Pavithra
- Department of Biotechnology; Central Leather Research Institute; Chennai India
| | - Rajendran Ramesh
- Department of Biotechnology; Central Leather Research Institute; Chennai India
| | - Mayilvahanan Aarthy
- Department of Biotechnology; Central Leather Research Institute; Chennai India
| | | | | | - Numbi Ramudu Kamini
- Department of Biotechnology; Central Leather Research Institute; Chennai India
| |
Collapse
|
15
|
Toscano L, Montero G, Stoytcheva M, Gochev V, Cervantes L, Campbell H, Zlatev R, Valdez B, Pérez C, Gil-Samaniego M. Lipase Production Through Solid-State Fermentation using Agro-Industrial Residues as Substrates and Newly Isolated Fungal Strains. BIOTECHNOL BIOTEC EQ 2014. [DOI: 10.5504/bbeq.2012.0145] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/27/2022] Open
|
16
|
Solid-state fermentation of coconut kernel-cake as substrate for the production of lipases by the coconut kernel-associated fungus Lasiodiplodia theobromae VBE-1. ANN MICROBIOL 2014. [DOI: 10.1007/s13213-014-0844-9] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022] Open
|
17
|
Sadaf A, Khare SK. Production of Sporotrichum thermophile xylanase by solid state fermentation utilizing deoiled Jatropha curcas seed cake and its application in xylooligosachharide synthesis. BIORESOURCE TECHNOLOGY 2014; 153:126-130. [PMID: 24362246 DOI: 10.1016/j.biortech.2013.11.058] [Citation(s) in RCA: 35] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/23/2013] [Revised: 11/19/2013] [Accepted: 11/21/2013] [Indexed: 06/03/2023]
Abstract
De-oiled Jatropha curcas seed cake, a plentiful by-product of biodiesel industry was used as substrate for the production of a useful xylanase from Sporotrichum thermophile in solid state fermentation. Under the optimized conditions, 1025U xylanase/g (deoiled seed cake) was produced. The xylanase exhibited half life of 4h at 45°C and 71.44min at 50°C respectively. It was stable in a broad pH range of 7.0-11.0. Km and Vmax were 12.54mg/ml and 454.5U/ml/min respectively. S. thermophile xylanase is an endoxylanase free of exoxylanase activity, hence advantageous for xylan hydrolysis to produce xylooligosachharides. Hydrolysis of oat spelt xylan by S. thermophile xylanase yielded 73% xylotetraose, 15.4% xylotriose and 10% xylobiose. The S. thermophile endoxylanase thus seem potentially useful in the food industries.
Collapse
Affiliation(s)
- Ayesha Sadaf
- Department of Chemistry, Indian Institute of Technology, New Delhi 110016, India
| | - S K Khare
- Department of Chemistry, Indian Institute of Technology, New Delhi 110016, India.
| |
Collapse
|
18
|
Unraveling the lipolytic activity of thermophilic bacteria isolated from a volcanic environment. BIOMED RESEARCH INTERNATIONAL 2013; 2013:703130. [PMID: 23738330 PMCID: PMC3662197 DOI: 10.1155/2013/703130] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 02/09/2013] [Accepted: 03/25/2013] [Indexed: 11/17/2022]
Abstract
In a bioprospecting effort towards novel thermostable lipases, we assessed the lipolytic profile of 101 bacterial strains isolated from the volcanic area of Santorini, Aegean Sea, Greece. Screening of lipase activity was performed both in agar plates and liquid cultures using olive oil as carbon source. Significant differences were observed between the two screening methods with no clear correlation between them. While the percentage of lipase producing strains identified in agar plates was only 17%, lipolytic activity in liquid culture supernatants was detected for 74% of them. Nine strains exhibiting elevated extracellular lipase activities were selected for lipase production and biochemical characterization. The majority of lipase producers revealed high phylogenetic similarity with Geobacillus species and related genera, whilst one of them was identified as Aneurinibacillus sp. Lipase biosynthesis strongly depended on the carbon source that supplemented the culture medium. Olive oil induced lipase production in all strains, but maximum enzyme yields for some of the strains were also obtained with Tween-80, mineral oil, and glycerol. Partially purified lipases revealed optimal activity at 70–80°C and pH 8-9. Extensive thermal stability studies revealed marked thermostability for the majority of the lipases as well as a two-step thermal deactivation pattern.
Collapse
|
19
|
Joshi C, Khare S. Purification and characterization of Pseudomonas aeruginosa lipase produced by SSF of deoiled Jatropha seed cake. BIOCATALYSIS AND AGRICULTURAL BIOTECHNOLOGY 2013. [DOI: 10.1016/j.bcab.2012.08.006] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/01/2022]
|
20
|
New tools for exploring "old friends-microbial lipases". Appl Biochem Biotechnol 2012; 168:1163-96. [PMID: 22956276 DOI: 10.1007/s12010-012-9849-7] [Citation(s) in RCA: 49] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/07/2012] [Accepted: 08/20/2012] [Indexed: 10/27/2022]
Abstract
Fat-splitting enzymes (lipases), due to their natural, industrial, and medical relevance, attract enough attention as fats do in our lives. Starting from the paper that we write, cheese and oil that we consume, detergent that we use to remove oil stains, biodiesel that we use as transportation fuel, to the enantiopure drugs that we use in therapeutics, all these applications are facilitated directly or indirectly by lipases. Due to their uniqueness, versatility, and dexterity, decades of research work have been carried out on microbial lipases. The hunt for novel lipases and strategies to improve them continues unabated as evidenced by new families of microbial lipases that are still being discovered mostly by metagenomic approaches. A separate database for true lipases termed LIPABASE has been created recently which provides taxonomic, structural, biochemical information about true lipases from various species. The present review attempts to summarize new approaches that are employed in various aspects of microbial lipase research, viz., screening, isolation, production, purification, improvement by protein engineering, and surface display. Finally, novel applications facilitated by microbial lipases are also presented.
Collapse
|
21
|
Lipase production by Aspergillus terreus using mustard seed oil cake as a carbon source. ANN MICROBIOL 2012. [DOI: 10.1007/s13213-012-0467-y] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/28/2022] Open
|
22
|
Nakajima-Kambe T, Edwinoliver N, Maeda H, Thirunavukarasu K, Gowthaman M, Masaki K, Mahalingam S, Kamini N. Purification, cloning and expression of an Aspergillus niger lipase for degradation of poly(lactic acid) and poly(ε-caprolactone). Polym Degrad Stab 2012. [DOI: 10.1016/j.polymdegradstab.2011.11.009] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022]
|
23
|
Velasco-Lozano S, Volke-Sepulveda T, Favela-Torres E. Lipases production by solid-state fermentation: the case of Rhizopus homothallicus in perlite. Methods Mol Biol 2012; 861:227-237. [PMID: 22426722 DOI: 10.1007/978-1-61779-600-5_14] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/31/2023]
Abstract
Lipases are widely used in the industry for different purposes. Although these enzymes are mainly produced by submerged fermentation, lipase production by solid-state fermentation (SSF) has been gaining interest due to the advantages of this type of culture. Major advantages are higher production titers and productivity, less catabolite repression, and use of the dried fermented material as biocatalyst. This chapter describes a traditional methodology to produce fungal (Rhizopus homothallicus) lipases by SSF using perlite as inert support. The use of different devices (glass columns or Erlenmeyer flasks) and type of inoculum (spores or growing mycelium) is considered so that lipase production by SSF could be easily performed in any laboratory.
Collapse
Affiliation(s)
- Susana Velasco-Lozano
- Departamento de Biotecnología, Universidad Autónoma Metropolitana-Iztapalapa, D.F. Mexico, Mexico
| | | | | |
Collapse
|
24
|
Overview of fungal lipase: a review. Appl Biochem Biotechnol 2011; 166:486-520. [PMID: 22072143 DOI: 10.1007/s12010-011-9444-3] [Citation(s) in RCA: 226] [Impact Index Per Article: 16.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/07/2011] [Accepted: 10/26/2011] [Indexed: 10/15/2022]
Abstract
Lipases (triacylglycerolacyl hydrolases, EC3.1.1.3) are class of enzymes which catalyze the hydrolysis of long-chain triglycerides. In this review paper, an overview regarding the fungal lipase production, purification, and application is discussed. The review describes various industrial applications of lipase in pulp and paper, food, detergent, and textile industries. Some important lipase-producing fungal genera include Aspergillus, Penicillium, Rhizopus, Candida, etc. Current fermentation process techniques such as batch, fed-batch, and continuous mode of lipase production in submerged and solid-state fermentations are discussed in details. The purification of lipase by hydrophobic interaction chromatography is also discussed. The development of mathematical models applied to lipase production is discussed with special emphasis on lipase engineering.
Collapse
|
25
|
Santis-Navarro A, Gea T, Barrena R, Sánchez A. Production of lipases by solid state fermentation using vegetable oil-refining wastes. BIORESOURCE TECHNOLOGY 2011; 102:10080-10084. [PMID: 21903382 DOI: 10.1016/j.biortech.2011.08.062] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/06/2011] [Revised: 08/08/2011] [Accepted: 08/12/2011] [Indexed: 05/31/2023]
Abstract
Lipases were produced by a microbial consortium derived from a mixture of wastewater sludges in a medium containing solid industrial wastes rich in fats, under thermophilic conditions (temperature higher than 45°C for 20 days) in 4.5-L reactors. The lipases were extracted from the solid medium using 100mM Tris-HCl, pH 8.0 and a cationic surfactant agent (cetyltrimethylammonium chloride). Different doses of surfactant and buffer were tested according to a full factorial experimental design. The extracted lipases were most active at 61-65°C and at pH 7.7-9. For the solid samples, the lipolytic activity reached up to 120,000 UA/g of dry matter. These values are considerably higher than those previously reported in literature for solid-state fermentation and highlight the possibility to work with the solid wastes as effective biocatalysts.
Collapse
Affiliation(s)
- Angélica Santis-Navarro
- Composting Research Group, Department of Chemical Engineering, Escola d'Enginyeria, Universitat Autònoma de Barcelona, Bellaterra, Cerdanyola del Vallès, 08193 Barcelona, Spain
| | | | | | | |
Collapse
|
26
|
Joshi C, Khare SK. Utilization of deoiled Jatropha curcas seed cake for production of xylanase from thermophilic Scytalidium thermophilum. BIORESOURCE TECHNOLOGY 2011; 102:1722-1726. [PMID: 20855195 DOI: 10.1016/j.biortech.2010.08.070] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/25/2010] [Revised: 08/17/2010] [Accepted: 08/19/2010] [Indexed: 05/29/2023]
Abstract
Jatropha curcas is a major biodiesel crop. Large amount of deoiled cake is generated as by-product during biodiesel production from its seeds. Deoiled J. curcas seed cake was assessed as substrate for the production of xylanase from thermophilic fungus Scytalidium thermophilum by solid-state fermentation. The seed cake was efficiently utilized by S. thermophilum for its growth during which it produced good amount of heat stable extracellular xylanase. The solid-state fermentation conditions were optimized for maximum xylanase production. Under the optimized conditions viz. deoiled seed cake supplemented with 1% oat-spelt xylan, adjusted to pH 9.0, moisture content 1:3 w/v, inoculated with 1×10(6) spores per 5 g cake and incubated at 45 °C, 1455 U xylanase/g deoiled seed cake was obtained. The xylanase was useful in biobleaching of paper pulp. Solid-state fermentation of deoiled cake appears a potentially viable approach for its effective utilization.
Collapse
Affiliation(s)
- Chetna Joshi
- Enzyme and Microbial Biochemistry Lab, Department of Chemistry, Indian Institute of Technology, Hauz Khas, New Delhi 110 016, India
| | | |
Collapse
|
27
|
Rigo E, Ninow JL, Tsai SM, Durrer A, Foltran LL, Remonatto D, Sychoski M, Vardanega R, de Oliveira D, Treichel H, Di Luccio M. Preliminary Characterization of Novel Extra-cellular Lipase from Penicillium crustosum Under Solid-State Fermentation and its Potential Application for Triglycerides Hydrolysis. FOOD BIOPROCESS TECH 2010. [DOI: 10.1007/s11947-010-0436-z] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
|
28
|
Edwinoliver NG, Thirunavukarasu K, Naidu RB, Gowthaman MK, Kambe TN, Kamini NR. Scale up of a novel tri-substrate fermentation for enhanced production of Aspergillus niger lipase for tallow hydrolysis. BIORESOURCE TECHNOLOGY 2010; 101:6791-6796. [PMID: 20400303 DOI: 10.1016/j.biortech.2010.03.091] [Citation(s) in RCA: 33] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/18/2010] [Revised: 03/17/2010] [Accepted: 03/19/2010] [Indexed: 05/29/2023]
Abstract
A novel tri-substrate fermentation (TSF) process was developed for the production of lipase from Aspergillus niger MTCC 2594 using agro-industrial residues, wheat bran (WB), coconut oil cake (COC) and an agro-product, wheat rawa (WR). The lipase activity was 628.7+/-13 U/g dry substrate (U/gds) at 30 degrees C and 96 h and growth studies indicated that addition of WR significantly augmented the biomass and lipase production. Scale up of lipase production at 100g and 3 kg (3 x 1 kg) tray-level batch fermentation resulted in 96% and 83.0% of enzyme activities, respectively, at 72 h. Maximum activity of 745.7+/-11U/gds was obtained, when fermented substrate was extracted in buffer containing 1% (w/v) sodium chloride and 0.5% (w/v) Triton X-100. Furthermore, the direct application of fermented substrate for tallow hydrolysis makes the process economical for industrial production of biofuel.
Collapse
Affiliation(s)
- N G Edwinoliver
- Department of Biotechnology, Central Leather Research Institute, Adyar, Chennai 600020, India
| | | | | | | | | | | |
Collapse
|
29
|
Edwinoliver NG, Thirunavukarasu K, Purushothaman S, Rose C, Gowthaman MK, Kamini NR. Corn steep liquor as a nutrition adjunct for the production of Aspergillus niger lipase and hydrolysis of oils thereof. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2009; 57:10658-10663. [PMID: 19860451 DOI: 10.1021/jf902726p] [Citation(s) in RCA: 29] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/28/2023]
Abstract
Corn steep liquor (CSL) has been used as a nutrition adjunct for the production of an extracellular lipase from Aspergillus niger, which has immense importance as an additive in laundry detergent formulations. A five-level four-factorial central composite design was chosen to determine the optimal medium components with four critical variables, namely, CSL, NH4H2PO4, Na2HPO4, and sesame oil, that were found to be influential for lipase production by the classical one-factor-at-a-time method. The model suggested that all of the factors chosen had a significant impact on lipase production, and the optimum values of the influential parameters were CSL, 2.0%, w/v; NH4H2PO4, 0.05%, w/v; Na2HPO4, 0.75%, w/v; and sesame oil, 2.0%, w/v, with an activity of 26.7 U/mL at 48 h and 30 degrees C, which was 2.16-fold higher than the initial activity (12 U/mL) obtained by the conventional one-factor-at-a-time method. Furthermore, the enzyme has good potential for the hydrolysis of vegetable oils and fish oils, and a hydrolytic ratio of 88.73% was obtained with palm oil at 48 h. The utilization of CSL and sesame oil for lipase production from A. niger makes the process green, because both are renewable substrates and economically viable at an industrial scale.
Collapse
Affiliation(s)
- N G Edwinoliver
- Department of Biotechnology, Central Leather Research Institute, Adyar, Chennai 600 020, India
| | | | | | | | | | | |
Collapse
|
30
|
Contesini FJ, da Silva VCF, Maciel RF, de Lima RJ, Barros FFC, de Oliveira Carvalho P. Response surface analysis for the production of an enantioselective lipase from Aspergillus niger by solid-state fermentation. J Microbiol 2009; 47:563-71. [PMID: 19851729 DOI: 10.1007/s12275-008-0279-8] [Citation(s) in RCA: 15] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/19/2008] [Accepted: 06/21/2009] [Indexed: 10/20/2022]
Abstract
The lipase produced by the Aspergillus niger strain AC-54 has been widely studied due to its enantioselectivity for racemic mixtures. This study aimed to optimize the production of this enzyme using statistical methodology. Initially a Plackett-Burman (PB) design was used to evaluate the effects of the culture medium components and the culture conditions. Twelve factors were screened: water content, glucose, yeast extract, peptone, olive oil, temperature, NaH(2)P0(4), KH(2)P0(4), MgS0(4)-7H(2)0, CaCl(2), NaCI, and MnS0(4). The screening showed that the significant factors were water content, glucose, yeast extract, peptone, NaH(2)P0(4), and KH(2)P0(4), which were optimized using response surface methodology (RSM) and a mathematical model obtained to explain the behavioral process. The best lipase activity was attained using the following conditions: water content (20%), glucose (4.8%), yeast extract (4.0%), and NaH2P04 (4.0%). The predicted lipase activity was 33.03 U/ml and the experimental data confirmed the validity of the model. The enzymatic activity was expressed as micromoles of oleic acid released per minute of reaction (micromol/min).
Collapse
Affiliation(s)
- Fabiano Jares Contesini
- Laboratório de Bioquímica de Alimentos, Faculdade de Engenharia de Alimentos, Universidade Estadual de Campinas (UNICAMP), São Paulo, Brazil.
| | | | | | | | | | | |
Collapse
|
31
|
Treichel H, de Oliveira D, Mazutti MA, Di Luccio M, Oliveira JV. A Review on Microbial Lipases Production. FOOD BIOPROCESS TECH 2009. [DOI: 10.1007/s11947-009-0202-2] [Citation(s) in RCA: 207] [Impact Index Per Article: 12.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/21/2022]
|
32
|
|