1
|
Zhang X, Yang Z, Zhang D, Bai M. The role of Semaphorin 3A in oral diseases. Oral Dis 2024; 30:1887-1896. [PMID: 37771213 DOI: 10.1111/odi.14748] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/12/2023] [Revised: 09/11/2023] [Accepted: 09/13/2023] [Indexed: 09/30/2023]
Abstract
Semaphorin 3A (SEMA3A), also referred to as H-Sema III, is a molecule with significant biological importance in regulating physiological and pathological processes. However, its role in oral diseases, particularly its association with inflammatory immunity and alveolar bone remodeling defects, remains poorly understood. This comprehensive review article aims to elucidate the recent advances in understanding SEMA3A in the oral system, encompassing nerve formation, periodontitis, pulpitis, apical periodontitis, and oral squamous cell carcinoma. Notably, we explore its novel function in inflammatory immunomodulation and alveolar bone formation during oral infectious diseases. By doing so, this review enhances our comprehension of SEMA3A's role in oral biology and opens up possibilities for modulatory approaches and potential treatments in oral diseases.
Collapse
Affiliation(s)
- Xinyue Zhang
- State Key Laboratory of Oral Diseases & National Clinical Research Center for Oral Diseases & Department of Cariology and Endodontics, West China Hospital of Stomatology, Sichuan University, Chengdu, Sichuan, China
| | - Zhenqi Yang
- State Key Laboratory of Oral Diseases & National Clinical Research Center for Oral Diseases & Department of Cariology and Endodontics, West China Hospital of Stomatology, Sichuan University, Chengdu, Sichuan, China
| | - Demao Zhang
- Institute of Biomedical Engineering, West China School of Basic Medical Sciences & Forensic Medicine, Sichuan University, Chengdu, China
| | - Mingru Bai
- State Key Laboratory of Oral Diseases & National Clinical Research Center for Oral Diseases & Department of Cariology and Endodontics, West China Hospital of Stomatology, Sichuan University, Chengdu, Sichuan, China
| |
Collapse
|
2
|
Musiol S, Alessandrini F, Jakwerth CA, Chaker AM, Schneider E, Guerth F, Schnautz B, Grosch J, Ghiordanescu I, Ullmann JT, Kau J, Plaschke M, Haak S, Buch T, Schmidt-Weber CB, Zissler UM. TGF-β1 Drives Inflammatory Th Cell But Not Treg Cell Compartment Upon Allergen Exposure. Front Immunol 2022; 12:763243. [PMID: 35069535 PMCID: PMC8777012 DOI: 10.3389/fimmu.2021.763243] [Citation(s) in RCA: 21] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/23/2021] [Accepted: 11/29/2021] [Indexed: 12/22/2022] Open
Abstract
TGF-β1 is known to have a pro-inflammatory impact by inducing Th9 and Th17 cells, while it also induces anti-inflammatory Treg cells (Tregs). In the context of allergic airway inflammation (AAI) its dual role can be of critical importance in influencing the outcome of the disease. Here we demonstrate that TGF-β is a major player in AAI by driving effector T cells, while Tregs differentiate independently. Induction of experimental AAI and airway hyperreactivity in a mouse model with inducible genetic ablation of the gene encoding for TGFβ-receptor 2 (Tgfbr2) on CD4+T cells significantly reduced the disease phenotype. Further, it blocked the induction of pro-inflammatory T cell frequencies (Th2, Th9, Th17), but increased Treg cells. To translate these findings into a human clinically relevant context, Th2, Th9 and Treg cells were quantified both locally in induced sputum and systemically in blood of allergic rhinitis and asthma patients with or without allergen-specific immunotherapy (AIT). Natural allergen exposure induced local and systemic Th2, Th9, and reduced Tregs cells, while therapeutic allergen exposure by AIT suppressed Th2 and Th9 cell frequencies along with TGF-β and IL-9 secretion. Altogether, these findings support that neutralization of TGF-β represents a viable therapeutic option in allergy and asthma, not posing the risk of immune dysregulation by impacting Tregs cells.
Collapse
Affiliation(s)
- Stephanie Musiol
- Center of Allergy & Environment (ZAUM), Technical University of Munich (TUM) and Helmholtz Center Munich, German Research Center for Environmental Health, Members of the German Center of Lung Research (DZL), Munich, Germany
| | - Francesca Alessandrini
- Center of Allergy & Environment (ZAUM), Technical University of Munich (TUM) and Helmholtz Center Munich, German Research Center for Environmental Health, Members of the German Center of Lung Research (DZL), Munich, Germany
| | - Constanze A Jakwerth
- Center of Allergy & Environment (ZAUM), Technical University of Munich (TUM) and Helmholtz Center Munich, German Research Center for Environmental Health, Members of the German Center of Lung Research (DZL), Munich, Germany
| | - Adam M Chaker
- Center of Allergy & Environment (ZAUM), Technical University of Munich (TUM) and Helmholtz Center Munich, German Research Center for Environmental Health, Members of the German Center of Lung Research (DZL), Munich, Germany.,Department of Otorhinolaryngology, Klinikum rechts der Isar, TUM School of Medicine, Technical University Munich, Munich, Germany
| | - Evelyn Schneider
- Center of Allergy & Environment (ZAUM), Technical University of Munich (TUM) and Helmholtz Center Munich, German Research Center for Environmental Health, Members of the German Center of Lung Research (DZL), Munich, Germany
| | - Ferdinand Guerth
- Center of Allergy & Environment (ZAUM), Technical University of Munich (TUM) and Helmholtz Center Munich, German Research Center for Environmental Health, Members of the German Center of Lung Research (DZL), Munich, Germany
| | - Benjamin Schnautz
- Center of Allergy & Environment (ZAUM), Technical University of Munich (TUM) and Helmholtz Center Munich, German Research Center for Environmental Health, Members of the German Center of Lung Research (DZL), Munich, Germany
| | - Johanna Grosch
- Center of Allergy & Environment (ZAUM), Technical University of Munich (TUM) and Helmholtz Center Munich, German Research Center for Environmental Health, Members of the German Center of Lung Research (DZL), Munich, Germany
| | - Ileana Ghiordanescu
- Center of Allergy & Environment (ZAUM), Technical University of Munich (TUM) and Helmholtz Center Munich, German Research Center for Environmental Health, Members of the German Center of Lung Research (DZL), Munich, Germany
| | - Julia T Ullmann
- Center of Allergy & Environment (ZAUM), Technical University of Munich (TUM) and Helmholtz Center Munich, German Research Center for Environmental Health, Members of the German Center of Lung Research (DZL), Munich, Germany
| | - Josephine Kau
- Center of Allergy & Environment (ZAUM), Technical University of Munich (TUM) and Helmholtz Center Munich, German Research Center for Environmental Health, Members of the German Center of Lung Research (DZL), Munich, Germany
| | - Mirjam Plaschke
- Center of Allergy & Environment (ZAUM), Technical University of Munich (TUM) and Helmholtz Center Munich, German Research Center for Environmental Health, Members of the German Center of Lung Research (DZL), Munich, Germany
| | - Stefan Haak
- Institute of Laboratory Animal Science, University of Zurich, Zurich, Switzerland
| | - Thorsten Buch
- Institute of Laboratory Animal Science, University of Zurich, Zurich, Switzerland
| | - Carsten B Schmidt-Weber
- Center of Allergy & Environment (ZAUM), Technical University of Munich (TUM) and Helmholtz Center Munich, German Research Center for Environmental Health, Members of the German Center of Lung Research (DZL), Munich, Germany
| | - Ulrich M Zissler
- Center of Allergy & Environment (ZAUM), Technical University of Munich (TUM) and Helmholtz Center Munich, German Research Center for Environmental Health, Members of the German Center of Lung Research (DZL), Munich, Germany
| |
Collapse
|
3
|
Birmingham JM, Chesnova B, Wisnivesky JP, Calatroni A, Federman J, Bunyavanich S, Busse PJ. The Effect of Age on T-Regulatory Cell Number and Function in Patients With Asthma. ALLERGY, ASTHMA & IMMUNOLOGY RESEARCH 2021; 13:646-654. [PMID: 34212550 PMCID: PMC8255355 DOI: 10.4168/aair.2021.13.4.646] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 09/01/2020] [Revised: 12/01/2020] [Accepted: 12/25/2020] [Indexed: 11/20/2022]
Abstract
T-regulatory cells (Tregs) play a key role in suppressing effector cells and maintaining self-tolerance. Studies of younger adults and children suggest that insufficient differentiation and functional defects of Tregs may contribute to the development of asthma; however, data from older patients with asthma are limited. To address the effects of aging on the relationship of Treg frequency and function with clinical outcomes, we collected induced sputum (differential cell count and Treg frequency) and peripheral blood (Treg function and frequency) from aged (> 60 years of age) and younger (20–40 years old) patients with asthma. In younger patients, low Treg suppression was associated with significantly higher mean numbers of emergency department (ED) (1.8 vs. 0.17, P = 0.02) and urgent care visits (2.3 vs. 0.17, P = 0.01) for asthma, and decreased asthma control (mean Asthma Control Test [ACT] score, 17 vs. 21.3, P = 0.01) compared to those with high Treg suppression. In older patients, however, a lower Treg function was not significantly associated with ACT scores (18.2 vs. 13.4, P = 0.10), or the number of ED (P = 0.9) or urgent care visits (P = 0.2). Our data suggest that Tregs have a weak relationship with asthma control and clinical asthma outcomes in older patients and differ from findings in younger patients, where Tregs are more likely to play a protective role.
Collapse
Affiliation(s)
- Janette M Birmingham
- Divisions of Allergy and Clinical Immunology, Icahn School of Medicine at Mount Sinai, New York, NY, USA
| | - Bogdana Chesnova
- Divisions of Allergy and Clinical Immunology, Icahn School of Medicine at Mount Sinai, New York, NY, USA
| | - Juan P Wisnivesky
- Divisions of General Internal Medicine, Icahn School of Medicine at Mount Sinai, New York, NY, USA.,Divisions of Pulmonary, Critical Care and Sleep Medicine, Icahn School of Medicine at Mount Sinai, New York, NY, USA
| | | | - Jessie Federman
- Divisions of Allergy and Clinical Immunology, Icahn School of Medicine at Mount Sinai, New York, NY, USA
| | - Supinda Bunyavanich
- Department of Genetics and Genomic Sciences, Icahn School of Medicine at Mount Sinai, New York, NY, USA.,Division of Allergy and Immunology, Department of Pediatrics, Icahn School of Medicine at Mount Sinai, New York, NY, USA
| | - Paula J Busse
- Divisions of Allergy and Clinical Immunology, Icahn School of Medicine at Mount Sinai, New York, NY, USA.
| |
Collapse
|
4
|
da Silva AL, de Oliveira GP, Kim N, Cruz FF, Kitoko JZ, Blanco NG, Martini SV, Hanes J, Rocco PRM, Suk JS, Morales MM. Nanoparticle-based thymulin gene therapy therapeutically reverses key pathology of experimental allergic asthma. SCIENCE ADVANCES 2020; 6:eaay7973. [PMID: 32577505 PMCID: PMC7286682 DOI: 10.1126/sciadv.aay7973] [Citation(s) in RCA: 25] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/20/2019] [Accepted: 04/15/2020] [Indexed: 05/05/2023]
Abstract
Despite long-standing efforts to enhance care for chronic asthma, symptomatic treatments remain the only option to manage this highly prevalent and debilitating disease. We demonstrate that key pathology of allergic asthma can be almost completely resolved in a therapeutic manner by inhaled gene therapy. After the disease was fully and stably established, we treated mice intratracheally with a single dose of thymulin-expressing plasmids delivered via nanoparticles engineered to have a unique ability to penetrate the airway mucus barrier. Twenty days after the treatment, we found that all key pathologic features found in the asthmatic lung, including chronic inflammation, pulmonary fibrosis, and mechanical dysregulation, were normalized. We conducted tissue- and cell-based analyses to confirm that the therapeutic intervention was mediated comprehensively by anti-inflammatory and antifibrotic effects of the therapy. We believe that our findings open a new avenue for clinical development of therapeutically effective gene therapy for chronic asthma.
Collapse
Affiliation(s)
- Adriana L. da Silva
- Laboratory of Pulmonary Investigation, Carlos Chagas Filho Institute of Biophysics, Federal University of Rio de Janeiro, Rio de Janeiro, RJ, Brazil
- Laboratory of Cellular and Molecular Physiology, Carlos Chagas Filho Institute of Biophysics, Federal University of Rio de Janeiro, Rio de Janeiro, RJ, Brazil
| | - Gisele P. de Oliveira
- Laboratory of Pulmonary Investigation, Carlos Chagas Filho Institute of Biophysics, Federal University of Rio de Janeiro, Rio de Janeiro, RJ, Brazil
| | - Namho Kim
- Center for Nanomedicine at the Wilmer Eye Institute, Johns Hopkins University School of Medicine, Baltimore, MD, USA
- Department of Chemical and Biomolecular Engineering, Johns Hopkins University, Baltimore, MD, USA
| | - Fernanda F. Cruz
- Laboratory of Pulmonary Investigation, Carlos Chagas Filho Institute of Biophysics, Federal University of Rio de Janeiro, Rio de Janeiro, RJ, Brazil
| | - Jamil Z. Kitoko
- Laboratory of Inflammation and Immunity, Paulo de Góes Institute of Microbiology, Federal University of Rio de Janeiro, Rio de Janeiro, RJ, Brazil
| | - Natalia G. Blanco
- Laboratory of Pulmonary Investigation, Carlos Chagas Filho Institute of Biophysics, Federal University of Rio de Janeiro, Rio de Janeiro, RJ, Brazil
| | - Sabrina V. Martini
- Laboratory of Cellular and Molecular Physiology, Carlos Chagas Filho Institute of Biophysics, Federal University of Rio de Janeiro, Rio de Janeiro, RJ, Brazil
| | - Justin Hanes
- Center for Nanomedicine at the Wilmer Eye Institute, Johns Hopkins University School of Medicine, Baltimore, MD, USA
- Department of Chemical and Biomolecular Engineering, Johns Hopkins University, Baltimore, MD, USA
- Department of Ophthalmology, Johns Hopkins University School of Medicine, Baltimore, MD, USA
| | - Patricia R. M. Rocco
- Laboratory of Pulmonary Investigation, Carlos Chagas Filho Institute of Biophysics, Federal University of Rio de Janeiro, Rio de Janeiro, RJ, Brazil
| | - Jung Soo Suk
- Center for Nanomedicine at the Wilmer Eye Institute, Johns Hopkins University School of Medicine, Baltimore, MD, USA
- Department of Chemical and Biomolecular Engineering, Johns Hopkins University, Baltimore, MD, USA
- Department of Ophthalmology, Johns Hopkins University School of Medicine, Baltimore, MD, USA
- Corresponding author. (J.S.S.); (M.M.M.)
| | - Marcelo M. Morales
- Laboratory of Cellular and Molecular Physiology, Carlos Chagas Filho Institute of Biophysics, Federal University of Rio de Janeiro, Rio de Janeiro, RJ, Brazil
- Corresponding author. (J.S.S.); (M.M.M.)
| |
Collapse
|
5
|
Tang X, Tong X, An Y. BAFF gene silencing attenuates allergic airway inflammation by promoting the generation of Tregs via activating pro-Treg cytokines. Life Sci 2019; 241:117172. [PMID: 31843529 DOI: 10.1016/j.lfs.2019.117172] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/16/2019] [Revised: 12/03/2019] [Accepted: 12/11/2019] [Indexed: 10/25/2022]
Abstract
AIMS Allergic airway inflammation is one of the major pathological events involved in asthma, and dysregulation of regulatory T cells (Treg) plays a crucial role in the development of allergic airway inflammation. Here, we attempted to investigate the regulatory effects of B cell-activating factor (BAFF) on Tregs in allergic airway inflammation. MAIN METHODS BAFF expression was analyzed by ELISA, quantitative reverse transcription PCR (RT-PCR) and Western blot assays. The levels of IL-4, TGF-β, IL-2, and IL-10 were tested using ELISA kits. Flow cytometry was conducted to analyze the populations of CTLA4+ Foxp3+ Tregs. KEY FINDINGS BAFF was found to be aberrantly expressed in sputum and lungs in patients with asthma as well as OVA sensitized mice. BAFF silencing by lentiviral BAFF shRNA reduced the number of eosinophils and levels of IL-4 in the BAL fluid, as well as the Fizz1 expression in the lungs of OVA mice. Additionally, the population of CTLA4+ Foxp3+ Tregs were significantly decreased in OVA mice and had a negative correlation to BAFF levels in asthmatic patients and OVA mice. BAFF silencing in vivo increased levels of CTLA4+ Foxp3+ Tregs and the secretion of IL-10, and improved the regulatory phenotype and suppressor function of Tregs in vitro. Furthermore, BAFF can affect Tregs generation by regulating the production of the pro-Treg cytokines IL-2 and TGF-β. SIGNIFICANCE BAFF has an inhibitory effect on the generation and suppressor function of Tregs by affecting pro-Tregs cytokines, thereby contributing to the development of allergic airway inflammation.
Collapse
Affiliation(s)
- Xiaofang Tang
- Department of Pediatrics II Ward, Shangluo Central Hospital, Shangluo, Shaanxi 726000, China.
| | - Xiaoling Tong
- Department of Pediatrics I Ward, Shanyang People's Hospital, Shanyang, Shaanxi 726400, China
| | - Yangyang An
- Department of Pediatrics II Ward, Shangluo Central Hospital, Shangluo, Shaanxi 726000, China
| |
Collapse
|
6
|
Adi SD, Eiza N, Bejar J, Shefer H, Toledano S, Kessler O, Neufeld G, Toubi E, Vadasz Z. Semaphorin 3A Is Effective in Reducing Both Inflammation and Angiogenesis in a Mouse Model of Bronchial Asthma. Front Immunol 2019; 10:550. [PMID: 30967873 PMCID: PMC6439418 DOI: 10.3389/fimmu.2019.00550] [Citation(s) in RCA: 23] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/02/2018] [Accepted: 02/28/2019] [Indexed: 01/15/2023] Open
Abstract
Semaphorin 3A (sema3A) belongs to the sub-family of the immune semaphorins that function as regulators of immune-mediated inflammation. Sema3A is a membrane associated molecule on T regulatory cells and on B regulatory cells. Being transiently ligated to the cell surface of these cells it is suggested to be a useful marker for evaluating their functional status. In earlier studies, we found that reduced sema3A concentration in the serum of asthma patients as well as reduced expression by Treg cells correlates with asthma disease severity. Stimulation of Treg cells with recombinant sema3A induced a significant increase in FoxP3 and IL-10 expression. To find out if sema3A can be of benefit to asthma patients, we evaluated the effect of sema3A injection in a mouse model of asthma. BALB\c-mice were sensitized using ovalbumin (OVA) + adjuvant for 15 days followed by OVA aerosol inhalation over five consecutive days. Four hours following air ways sensitization on each of the above days- 15 of these mice were injected intraperitoneally with 50 μg per mouse of recombinant human sema3A-FR and the remaining 15 mice were injected with a similarly purified vehicle. Five days later the mice were sacrificed, broncheo-alveolar lavage (BAL) was collected and formalin-fixed lung biopsies taken and analyzed. In sema3A treated mice, only 20% of the bronchioles and arterioles were infiltrated by inflammatory cells as compared to 90% in the control group (p = 0.0079). In addition, eosinophil infiltration was also significantly increased in the control group as compared with the sema3A treated mice. In sema3A treated mice we noticed only a small number of mononuclear and neutrophil cells in the BAL while in the control mice, the BAL was enriched with mononuclear and neutrophil cells. Finally, in the control mice, angiogenesis was significantly increased in comparison with sema3A treated mice as evidenced by the reduced concentration of microvessels in the lungs of sema3A treated mice. To conclude, we find that in this asthma model, sema3A functions as a potent suppressor of asthma related inflammation that has the potential to be further developed as a new therapeutic for the treatment of asthma.
Collapse
Affiliation(s)
- Sabag D Adi
- Proteomic Unit, The Division of Clinical Immunology and Allergy, Bnai-Zion Medical Center, Haifa, Israel
| | - Nasren Eiza
- Proteomic Unit, The Division of Clinical Immunology and Allergy, Bnai-Zion Medical Center, Haifa, Israel
| | - Jacob Bejar
- The Department of Pathology, Faculty of Medicine, Bnai-Zion Medical Center, Haifa, Israel
| | - Hila Shefer
- The Department of Pathology, Faculty of Medicine, Bnai-Zion Medical Center, Haifa, Israel
| | - Shira Toledano
- The Ruth and Bruce Rappaport Faculty of Medicine, Technion Israel Institute of Technology, Haifa, Israel
| | - Ofra Kessler
- The Ruth and Bruce Rappaport Faculty of Medicine, Technion Israel Institute of Technology, Haifa, Israel
| | - Gera Neufeld
- The Ruth and Bruce Rappaport Faculty of Medicine, Technion Israel Institute of Technology, Haifa, Israel
| | - Elias Toubi
- Proteomic Unit, The Division of Clinical Immunology and Allergy, Bnai-Zion Medical Center, Haifa, Israel
| | - Zahava Vadasz
- Proteomic Unit, The Division of Clinical Immunology and Allergy, Bnai-Zion Medical Center, Haifa, Israel
| |
Collapse
|
7
|
Zheng Y, Wang H, Luo L, Liao L, You L, Wang J, Li Q. A meta-analysis of the association between CTLA-4 genetic polymorphism and susceptibility of asthma. Medicine (Baltimore) 2018; 97:e11380. [PMID: 29995780 PMCID: PMC6076096 DOI: 10.1097/md.0000000000011380] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/26/2022] Open
Abstract
BACKGROUND Numerous studies have reported an association between cytotoxic T-lymphocyte associated antigen 4 gene (CTLA4) polymorphism and susceptibility to asthma, in different populations, but the results have been inconsistent. We performed a meta-analysis of 19 published case-control studies to obtain a reasonably accurate estimation of the relationship between CTLA4 polymorphism and asthma. METHODS We searched the Pubmed, EMBASE, Chinese National Knowledge Infrastructure, and Wanfang databases and extracted data from 19 independent, eligible studies. Odds ratios (ORs) with 95% confidence intervals (CIs) and Egger test were separately used to assess the strength of associations and publication bias. RESULTS A total of 19 case-control studies involving 4831 cases and 4534 controls were identified. The combined results revealed that there was significant association between the +49A/G polymorphism and asthma (for GG + GA vs. AA: OR = 0.82, 95% CI = 0.70-0.97, P = .02). Stratification by race or age indicated a significant association between the CTLA-4 +49 GA+GG genotype and asthma in Asians (OR = 0.80, 95% CI = 0.68-0.95, P = .01) and children (OR = 0.75, 95% CI = 0.62-0.90, P = .002), but there was no association in whites (OR = 0.94, 95% CI = 0.80-1.10, P = .44) and adults (OR = 0.85, 95% CI = 0.68-1.06, P = .15). Additionally, there was a significant association with atopic asthma under the random-effects model (OR = 0.81, 95% CI = 0.67-0.98, P = .03). In addition, there was no significant association between the -318 C/T polymorphism and asthma risk. CONCLUSIONS Our meta-analysis results suggested that the +49A/G polymorphism in CTLA-4 was an important risk factor for asthma susceptibility, especially in Asian individuals, children, and atopic patients.
Collapse
Affiliation(s)
- Yan Zheng
- Department of Respiratory Diseases, Jiangxi Province People's Hospital, Nanchang
| | - Hongluan Wang
- Department of Respiratory Diseases, Jiangxi Province People's Hospital, Nanchang
| | - Linlin Luo
- Department of Respiratory Diseases, Jiangxi Province People's Hospital, Nanchang
| | - Liyang Liao
- Department of Hepatobiliary Surgery, Shangrao People's Hospital, Shangrao, China
| | - Luxia You
- Department of Respiratory Diseases, Jiangxi Province People's Hospital, Nanchang
| | - Jun Wang
- Department of Respiratory Diseases, Jiangxi Province People's Hospital, Nanchang
| | - Qiugen Li
- Department of Respiratory Diseases, Jiangxi Province People's Hospital, Nanchang
| |
Collapse
|
8
|
Abstract
PURPOSE OF REVIEW Glucocorticosteroids (GCSs) remain the cornerstone of therapy for treating the inflammatory component of asthma. Clinical response to GCS is heterogeneous, varying both within asthma 'endotypes', as well as the same individual. Different factors and micro-environment can alter the canonical GCS-induced signalling pathways leading to reduced efficacy, collectively termed as GCS subsensitivity, which includes the entire spectrum of steroid insensitivity and steroid resistance. RECENT FINDINGS In the past, steroid subsensitivity has been associated with dysregulated expression of glucocorticoid-receptor isoforms, neutrophilic inflammation and Th17 cytokines, oxidative stress-inducing factors and their downstream effect on histone deacetylase activities and gene expression. The review highlights recent observations, such as GCS-induced dysregulation of key transcription factors involved in host defence, role of airway infections altering expression of critical regulatory elements like the noncoding microRNAs, and the importance of interleukin (IL)-10 in reinstating steroid response in key immune cells. Further, emerging concepts of autoimmunity triggered because of delayed resolution of eosinophilic inflammation (due to GCS subsensitivity) and observed lymphopenia (plausibly a side-effect of continued GCS use) are discussed. SUMMARY This review bridges concepts that have been known, and those under current investigation, providing both molecular and clinical insights to aid therapeutic strategies for optimal management of asthmatics with varying degree of steroid subsensitivity and disease severity, with particular emphasis on the PI3 kinase pathways.
Collapse
|
9
|
Kawayama T, Kinoshita T, Matsunaga K, Naito Y, Sasaki J, Tominaga Y, Hoshino T. Role of Regulatory T cells in Airway Inflammation in Asthma. Kurume Med J 2018; 64:45-55. [PMID: 29553094 DOI: 10.2739/kurumemedj.ms6430001] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/23/2022]
Abstract
Asthma is an allergic disease characterized by chronic airway inflammation, airway hyperresponsiveness (AHR), reversibility and remodeling. Inhaled corticosteroids (ICS) are effective in many patients with asthma. However, ICS are a controlling, but not but curative treatment, and there are still many patients with refractory and difficult-to-treat asthma. The evaluation of airway inflammation by induced sputum, non-specific AHR by methacholine, and asthmatic reactions by specific allergen challenge techniques are useful not only to investigate the pathogenesis of asthma but also to help develop new drugs for asthma management. Interactions between inflammation and regulation, such as between regulatory T cells (Tregs), and AHR were investigated using these techniques. The phenotypes are Tregs characterized by expression of the forkhead box P3 (Foxp3) and cytotoxic T-lymphocyte antigen 4 (CTLA4), which are potent mediators of dominant self-tolerance. Foxp3 and CTLA4 interact with each other. In patients with mild asthma, airway Tregs were decreased and airway eosinophilic inflammation was activated with accelerated AHR. Human asthmatic attack models by allergen challenge demonstrated that airway Tregs were decreased from the baseline with late asthmatic response (LAR) in patients with dual-responder asthma, and there was a significant correlation between change in airway Tregs and LAR. Airway Tregs were increased with escalation of interleukin-10 by ICS. The investigation of Tregs may lead to new strategies for management of asthma and other allergic diseases.
Collapse
Affiliation(s)
- Tomotaka Kawayama
- Division of Respirology, Neurology, and Rheumatology, Department of Medicine, Kurume University School of Medicine
| | - Takashi Kinoshita
- Division of Respirology, Neurology, and Rheumatology, Department of Medicine, Kurume University School of Medicine
| | - Kazuko Matsunaga
- Division of Respirology, Neurology, and Rheumatology, Department of Medicine, Kurume University School of Medicine.,Department of Respiratory Medicine, Fukuoka Sanno Hospital
| | - Yoshiko Naito
- Division of Respirology, Neurology, and Rheumatology, Department of Medicine, Kurume University School of Medicine
| | - Jun Sasaki
- Division of Respirology, Neurology, and Rheumatology, Department of Medicine, Kurume University School of Medicine
| | - Yoshikazu Tominaga
- Division of Respirology, Neurology, and Rheumatology, Department of Medicine, Kurume University School of Medicine.,Department of Respiratory Medicine, Asakura Medical Association Hospital
| | - Tomoaki Hoshino
- Division of Respirology, Neurology, and Rheumatology, Department of Medicine, Kurume University School of Medicine
| |
Collapse
|
10
|
Mukherjee M, Nair P. Autoimmune Responses in Severe Asthma. ALLERGY, ASTHMA & IMMUNOLOGY RESEARCH 2018; 10:428-447. [PMID: 30088364 PMCID: PMC6082822 DOI: 10.4168/aair.2018.10.5.428] [Citation(s) in RCA: 71] [Impact Index Per Article: 10.1] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 01/02/2018] [Revised: 01/29/2018] [Accepted: 02/13/2018] [Indexed: 12/11/2022]
Abstract
Asthma and autoimmune diseases both result from a dysregulated immune system, and have been conventionally considered to have mutually exclusive pathogenesis. Autoimmunity is believed to be an exaggerated Th1 response, while asthma with a Th2 underpinning is congruent with the well-accepted Th1/Th2 paradigm. The hypothesis of autoimmune involvement in asthma has received much recent interest, particularly in the adult late-onset non-atopic patients (the “intrinsic asthma”). Over the past decades, circulating autoantibodies against diverse self-targets (beta-2-adrenergic receptors, epithelial antigens, nuclear antigens, etc.) have been reported and subsequently dismissed to be epiphenomena resulting from a chronic inflammatory condition, primarily due to lack of evidence of causality/pathomechanism. Recent evidence of ‘granulomas’ in the lung biopsies of severe asthmatics, detection of pathogenic sputum autoantibodies against autologous eosinophil proteins (e.g., eosinophil peroxidase) and inadequate response to monoclonal antibody therapies (e.g., subcutaneous mepolizumab) in patients with evidence of airway autoantibodies suggest that the role of autoimmune mechanisms be revisited. In this review, we have gathered available reports of autoimmune responses in the lungs, reviewed the evidence in the context of immunogenic tissue-response and danger-associated molecular patterns, and constructed the possibility of an autoimmune-associated pathomechanism that may contribute to the severity of asthma.
Collapse
Affiliation(s)
- Manali Mukherjee
- Division of Respirology, Department of Medicine, St. Joseph's Healthcare Hamilton, McMaster University, Hamilton, Canada
| | - Parameswaran Nair
- Division of Respirology, Department of Medicine, St. Joseph's Healthcare Hamilton, McMaster University, Hamilton, Canada.
| |
Collapse
|
11
|
Kitoko JZ, de Castro LL, Nascimento AP, Abreu SC, Cruz FF, Arantes AC, Xisto DG, Martins MA, Morales MM, Rocco PRM, Olsen PC. Therapeutic administration of bone marrow-derived mesenchymal stromal cells reduces airway inflammation without up-regulating Tregs in experimental asthma. Clin Exp Allergy 2017; 48:205-216. [PMID: 29068567 DOI: 10.1111/cea.13048] [Citation(s) in RCA: 24] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/22/2017] [Revised: 09/08/2017] [Accepted: 10/18/2017] [Indexed: 12/31/2022]
Abstract
BACKGROUND Prophylactic administration of mesenchymal stromal cells (MSCs) derived from adipose (AD-MSC) and bone marrow tissue (BM-MSC) in ovalbumin-induced asthma hinders inflammation in a Treg-dependent manner. It is uncertain whether MSCs act through Tregs when inflammation is already established in asthma induced by a clinically relevant allergen. OBJECTIVE Evaluate the effect of therapeutic administration of MSCs on inflammation and Treg cells in house dust mite (HDM)-induced asthma. METHODS BM-MSCs and AD-MSCs were administered intratracheally to C57BL/6 mice 1 day after the last HDM challenge. Lung function, remodelling and parenchymal inflammation were assayed 3 or 7 days after MSCs treatment, through invasive plethysmography and histology, respectively. Bronchoalveolar lavage fluid (BALF) and mediastinal lymph nodes (mLNs) were assessed regarding the inflammatory profile by flow cytometry, ELISA and qRT-PCR. MSCs were studied regarding their potential to induce Treg cells from primed and unprimed lymphocytes in vitro. RESULTS BM-MSCs, but not AD-MSCs, reduced lung influx of eosinophils and B cells and increased IL-10 levels in HDM-challenged mice. Neither BM-MSCs nor AD-MSCs reduced lung parenchymal inflammation, airway hyperresponsiveness or mucus hypersecretion. BM-MSCs and AD-MSCs did not up-regulate Treg cell counts within the airways and mLNs, but BM-MSCs decreased the pro-inflammatory profile of alveolar macrophages. Co-culture of BM-MSCs and AD-MSCs with allergen-stimulated lymphocytes reduced Treg cell counts in a cell-to-cell contact-independent manner, although co-culture of both MSCs with unprimed lymphocytes up-regulated Treg cell counts. CONCLUSIONS MSCs therapeutically administered exert anti-inflammatory effects in the airway of HDM-challenged mice, but do not ameliorate lung function or remodelling. Although MSC pre-treatment can increase Treg cell numbers, it is highly unlikely that the MSCs will induce Treg cell expansion when lymphocytes are allergenically primed in an established lung inflammation.
Collapse
Affiliation(s)
- J Z Kitoko
- Laboratory of Clinical Bacteriology and Immunology, Faculty of Pharmacy, Federal University of Rio de Janeiro, Rio de Janeiro, Brazil.,Laboratory of Pulmonary Investigation, Carlos Chagas Filho Biophysics Institute, Federal University of Rio de Janeiro, Rio de Janeiro, Brazil.,Laboratory of Cellular and Molecular Physiology, Carlos Chagas Filho Biophysics Institute, Federal University of Rio de Janeiro, Rio de Janeiro, Brazil
| | - L L de Castro
- Laboratory of Pulmonary Investigation, Carlos Chagas Filho Biophysics Institute, Federal University of Rio de Janeiro, Rio de Janeiro, Brazil.,Laboratory of Cellular and Molecular Physiology, Carlos Chagas Filho Biophysics Institute, Federal University of Rio de Janeiro, Rio de Janeiro, Brazil
| | - A P Nascimento
- Laboratory of Clinical Bacteriology and Immunology, Faculty of Pharmacy, Federal University of Rio de Janeiro, Rio de Janeiro, Brazil
| | - S C Abreu
- Laboratory of Pulmonary Investigation, Carlos Chagas Filho Biophysics Institute, Federal University of Rio de Janeiro, Rio de Janeiro, Brazil
| | - F F Cruz
- Laboratory of Pulmonary Investigation, Carlos Chagas Filho Biophysics Institute, Federal University of Rio de Janeiro, Rio de Janeiro, Brazil
| | - A C Arantes
- Laboratory of Inflammation, Oswaldo Cruz Foundation, Rio de Janeiro, Brazil
| | - D G Xisto
- Laboratory of Pulmonary Investigation, Carlos Chagas Filho Biophysics Institute, Federal University of Rio de Janeiro, Rio de Janeiro, Brazil.,Laboratory of Cellular and Molecular Physiology, Carlos Chagas Filho Biophysics Institute, Federal University of Rio de Janeiro, Rio de Janeiro, Brazil
| | - M A Martins
- Laboratory of Inflammation, Oswaldo Cruz Foundation, Rio de Janeiro, Brazil
| | - M M Morales
- Laboratory of Cellular and Molecular Physiology, Carlos Chagas Filho Biophysics Institute, Federal University of Rio de Janeiro, Rio de Janeiro, Brazil
| | - P R M Rocco
- Laboratory of Pulmonary Investigation, Carlos Chagas Filho Biophysics Institute, Federal University of Rio de Janeiro, Rio de Janeiro, Brazil
| | - P C Olsen
- Laboratory of Clinical Bacteriology and Immunology, Faculty of Pharmacy, Federal University of Rio de Janeiro, Rio de Janeiro, Brazil
| |
Collapse
|
12
|
Choi H, Tabashidze N, Rossner P, Dostal M, Pastorkova A, Kong SW, Gmuender H, Sram RJ. Altered vulnerability to asthma at various levels of ambient Benzo[a]Pyrene by CTLA4, STAT4 and CYP2E1 polymorphisms. ENVIRONMENTAL POLLUTION (BARKING, ESSEX : 1987) 2017; 231:1134-1144. [PMID: 28807506 DOI: 10.1016/j.envpol.2017.07.057] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/15/2017] [Revised: 07/17/2017] [Accepted: 07/18/2017] [Indexed: 06/07/2023]
Abstract
BACKGROUND Within fossil- and solid-fuel dependent geographic locations, mechanisms of air pollution-induced asthma remains unknown. In particular, sources of greater genetic susceptibility to airborne carcinogen, namely, benzo[a]pyrene (B[a]P) has never been investigated beyond that of a few well known genes. OBJECTIVES To deepen our understanding on how the genotypic variations within the candidate genes contribute to the variability in the children's susceptibility to ambient B[a]P on doctor-diagnosed asthma. METHODS Clinically confirmed asthmatic versus healthy control children (aged, 7-15) were enrolled from historically polluted and rural background regions in Czech Republic. Contemporaneous ambient B[a]P concentration was obtained from the routine monitoring network. The sputum DNA was genotyped for 95 genes. B[a]P interaction with SNPs was studied by two-stage, semi-agnostic screening of 621 SNPs. RESULTS The median B[a]P within the highly polluted urban center was 8-times higher than that in the background region (7.8 vs. 1.1 ng/m3) during the period of investigation. Within the baseline model, which considered B[a]P exposure-only, the second tertile range was associated with a significantly reduced odds (aOR = 0.28) of asthma (95% CI, 0.16 to 0.50) compared to those at the lowest range. However, the highest range of B[a]P was associated with 3.18-times greater odds of the outcome (95% CI, 1.77 to 5.71). Within the gene-environment interaction models, joint occurrence of a high B[a]P exposure range and having a high-risk genotype at CTLA4 gene (rs11571316) was associated with 9-times greater odds (95% CI, 4.56-18.36) of the asthma diagnosis. Similarly, rs11571319 at CTLA4 and a high B[a]P exposure range was associated with a 8-times greater odds (95% CI, 3.95-14.27) of asthma diagnosis. Furthermore, having TG + GG genotypes on rs1031509 near STAT4 was associated with 5-times (95% CI, 3.03-8.55) greater odds of asthma diagnosis at the highest B[a]P range, compared to the odds at the reference range. Also CYP2E1 AT + TT genotypes (rs2070673) was associated with 5-times (95% CI, 3.1-8.8) greater odds of asthma diagnosis at the highest B[a]P exposure. CONCLUSIONS The children, who jointly experience a high B[a]P exposure (6.3-8.5 ng/m3) as well as susceptible genotypes in CTLA4 (rs11571316 and rs11571319), STAT4 (rs1031509), and CYP2E1 (rs2070673), respectively, are associated with a significantly greater odds of having doctor-diagnosed asthma, compared to those with neither risk factors.
Collapse
Affiliation(s)
- Hyunok Choi
- Departments of Environmental Health Sciences, Epidemiology, and Biostatistics University at Albany School of Public Health, One University Place, Room 153, Rensselaer, NY 12144-3456, USA.
| | - Nana Tabashidze
- Department of Genetic Ecotoxicology, Institute of Experimental Medicine, Academy of Sciences of the Czech Republic, v.v.i., Vídeňská 1083, 142 20, Prague 4, Czech Republic.
| | - Pavel Rossner
- Department of Genetic Ecotoxicology, Institute of Experimental Medicine, Academy of Sciences of the Czech Republic, v.v.i., Vídeňská 1083, 142 20, Prague 4, Czech Republic.
| | - Miroslav Dostal
- Department of Genetic Ecotoxicology, Institute of Experimental Medicine, Academy of Sciences of the Czech Republic, v.v.i., Vídeňská 1083, 142 20, Prague 4, Czech Republic.
| | - Anna Pastorkova
- Department of Genetic Ecotoxicology, Institute of Experimental Medicine, Academy of Sciences of the Czech Republic, v.v.i., Vídeňská 1083, 142 20, Prague 4, Czech Republic
| | - Sek Won Kong
- Boston Children's Hospital, 300 Longwood Ave, Boston, MA 02115, USA.
| | - Hans Gmuender
- Genedata AG, Margarethenstrasse 38, CH-4053, Basel, Switzerland.
| | - Radim J Sram
- Department of Genetic Ecotoxicology, Institute of Experimental Medicine, Academy of Sciences of the Czech Republic, v.v.i., Vídeňská 1083, 142 20, Prague 4, Czech Republic.
| |
Collapse
|
13
|
Cozacov R, Halasz K, Haj T, Vadasz Z. Semaphorin 3A: Is a key player in the pathogenesis of asthma. Clin Immunol 2017; 184:70-72. [PMID: 28502680 DOI: 10.1016/j.clim.2017.05.011] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/08/2016] [Revised: 04/18/2017] [Accepted: 05/10/2017] [Indexed: 12/21/2022]
Abstract
Immune semaphorins are key players in regulating immune mediated inflammation. Semaphorin3A (sema3A) a secreted and membrane bound member of this family, is well reported for its properties in maintaining self-tolerance. Semaphorin3A was recognized to be a marker for T-regulatory cells (Tregs), and as such is a useful tool for assessing the status of these cells in preventing immune mediated diseases. This study was designed aiming to evaluate how sema3A is possibly involved in bronchial asthma. Here, we found sema3A serum levels and the expression of sema3A on Tregs significantly lower in patients with moderate to severe asthma when compared to healthy individuals. Co-culture of condition medium with 2mcg/ml of recombinant human sema3A with CD4+ T cells, increased the expression of FoxP3 in Tregs, suggesting sema3A a potent immune-regulator of inflammation including that of asthma. Further in-vivo studies will better establish the beneficial effect of sema3A in regulating inflammation in asthma.
Collapse
Affiliation(s)
- Ronen Cozacov
- Division of Allergy and Clinical immunology, Bnai-Zion Medical Center, The Rappaport Faculty of Medicine, Technion, Haifa, Israel
| | - Katlin Halasz
- Division of Allergy and Clinical immunology, Bnai-Zion Medical Center, The Rappaport Faculty of Medicine, Technion, Haifa, Israel
| | - Tharwat Haj
- Division of Allergy and Clinical immunology, Bnai-Zion Medical Center, The Rappaport Faculty of Medicine, Technion, Haifa, Israel
| | - Zahava Vadasz
- Division of Allergy and Clinical immunology, Bnai-Zion Medical Center, The Rappaport Faculty of Medicine, Technion, Haifa, Israel.
| |
Collapse
|
14
|
Effect of inhaled and systemic glucocorticoid treatment on CD4 + regulatory and effector T cells in a mouse model of allergic asthma. Int Immunopharmacol 2017; 45:98-109. [PMID: 28189974 DOI: 10.1016/j.intimp.2017.02.005] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/10/2016] [Revised: 01/18/2017] [Accepted: 02/03/2017] [Indexed: 11/22/2022]
Abstract
To achieve a better understanding of mechanisms underlying the anti-asthmatic action of inhaled and systemic glucocorticoids (GCs) and to provide more data regarding the risk of a negative effect of inhaled GCs on CD4+ T cells, a study was conducted on the effect of ciclesonide and methylprednisolone on CD4+ effector (Teff), regulatory (Treg) and resting (Trest) T cells within respiratory and extra-respiratory tissues in a mouse model of allergic asthma. The study indicated that one, and possibly a key mechanism, underlying the anti-asthmatic action of inhaled and systemic GCs is the prevention of the activation and clonal expansion of CD4+ Teff cells in the mediastinal lymph nodes (MLNs), which consequently prevents infiltration of the lungs with CD4+ Teff cells. The beneficial effects of GCs in asthma treatment were not mediated through increased recruitment of Treg cells into the MLNs and lungs and/or local generation of Treg cells. The results demonstrated that inhaled and systemic GCs induced comparable depletion of normal CD4+ Teff, Trest and Treg cells in the MLNs, head and neck lymph nodes and peripheral blood. Furthermore, inhaled, but not systemic GC therapy, led to the loss of these cells in the lungs. Thus, the study suggests that inhaled GC therapy may not be safer at all than systemic one with respect to the adverse effect on CD4+ T cells present within and outside the respiratory tract. Moreover, administration of inhaled GCs can produce negative effects on lung-residing CD4+ T cells.
Collapse
|
15
|
Busse PJ, Birmingham JM, Calatroni A, Manzi J, Goryachokovsky A, Fontela G, Federman AD, Wisnivesky JP. Effect of aging on sputum inflammation and asthma control. J Allergy Clin Immunol 2016; 139:1808-1818.e6. [PMID: 27725186 DOI: 10.1016/j.jaci.2016.09.015] [Citation(s) in RCA: 44] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/14/2016] [Revised: 08/30/2016] [Accepted: 09/14/2016] [Indexed: 12/22/2022]
Abstract
BACKGROUND Aged asthmatic patients experience increased morbidity and mortality. Knowledge of the aging effect on airway inflammation and asthma control is limited. OBJECTIVE We sought to compare airway inflammation and its relationship to asthma control in aged versus younger patients and determine whether differences are asthma specific or caused by "inflamm-aging." METHODS We performed a prospective study of aged (>60 years) and younger (21-40 years) inner-city patients with asthma. After a run-in period to control for inhaled corticosteroid use, induced sputum was collected. Age-matched nonasthmatic control subjects were included to measure age-related inflammatory changes. RESULTS Aged (mean age, 67.9 ± 5.1 years; n = 35) compared with younger (mean age, 30.8 ± 5.9 years; n = 37) asthmatic patients had significantly worse asthma control and lower FEV1. Aged asthmatic patients had higher sputum neutrophil (30.5 × 104/mL and 23.1%) and eosinophil (7.0 × 104/mL and 3.8%) numbers and percentages compared with younger patients (neutrophils, 13.0 × 104/mL [P < .01] and 6.9% [P < .01]; eosinophils, 2.0 × 104/mL [P < .01] and 1.2% [P < .01]). Aged asthmatic patients had higher sputum IL-6 (P < .01) and IL-8 (P = .01) levels. No significant inflammatory differences between aged and younger control subjects were observed. In aged asthmatic patients increased sputum IL-6 and macrophage inflammatory protein 3α/CCL20 levels were significantly associated with decreased asthma control and increased sputum neutrophil numbers and IL-1β, IL-6, and macrophage inflammatory protein 3α/CCL20 levels were associated with hospitalization. CONCLUSIONS The inflammatory patterns of aged versus younger asthmatic patients are associated with increased sputum neutrophil and eosinophil values and cytokine levels related to neutrophil recruitment. Differences in airway inflammation can contribute to diminished asthma control in the aged. Further understanding of asthma pathophysiology in aged patients is needed to improve management of this vulnerable population.
Collapse
Affiliation(s)
- Paula J Busse
- Division of Clinical Immunology, Icahn School of Medicine at Mount Sinai, New York, NY.
| | - Janette M Birmingham
- Division of Clinical Immunology, Icahn School of Medicine at Mount Sinai, New York, NY
| | | | - Joseph Manzi
- Division of Clinical Immunology, Icahn School of Medicine at Mount Sinai, New York, NY
| | - Anna Goryachokovsky
- Division of Clinical Immunology, Icahn School of Medicine at Mount Sinai, New York, NY
| | - Giselle Fontela
- Division of Clinical Immunology, Icahn School of Medicine at Mount Sinai, New York, NY
| | - Alex D Federman
- Division of General Internal Medicine, Icahn School of Medicine at Mount Sinai, New York, NY
| | - Juan P Wisnivesky
- Division of General Internal Medicine, Icahn School of Medicine at Mount Sinai, New York, NY; Division of Pulmonary, Critical Care and Sleep Medicine, Icahn School of Medicine at Mount Sinai, New York, NY
| |
Collapse
|
16
|
S-adenosylmethionine reduces airway inflammation and fibrosis in a murine model of chronic severe asthma via suppression of oxidative stress. Exp Mol Med 2016; 48:e236. [PMID: 27256110 PMCID: PMC4929690 DOI: 10.1038/emm.2016.35] [Citation(s) in RCA: 31] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/05/2015] [Revised: 01/14/2016] [Accepted: 01/18/2016] [Indexed: 01/03/2023] Open
Abstract
Increased oxidative stress has an important role in asthmatic airway inflammation and remodeling. A potent methyl donor, S-adenosylmethionine (SAMe), is known to protect against tissue injury and fibrosis through modulation of oxidative stress. The aim of this study was to evaluate the effect of SAMe on airway inflammation and remodeling in a murine model of chronic asthma. A mouse model was generated by repeated intranasal challenge with ovalbumin and Aspergillus fungal protease twice a week for 8 weeks. SAMe was orally administered every 24 h for 8 weeks. We performed bronchoalveolar lavage (BAL) fluid analysis and histopathological examination. The levels of various cytokines and 4-hydroxy-2-nonenal (HNE) were measured in the lung tissue. Cultured macrophages and fibroblasts were employed to evaluate the underlying anti-inflammatory and antifibrotic mechanisms of SAMe. The magnitude of airway inflammation and fibrosis, as well as the total BAL cell counts, were significantly suppressed in the SAMe-treated groups. A reduction in T helper type 2 pro-inflammatory cytokines and HNE levels was observed in mouse lung tissue after SAMe administration. Macrophages cultured with SAMe also showed reduced cellular oxidative stress and pro-inflammatory cytokine production. Moreover, SAMe treatment attenuated transforming growth factor-β (TGF-β)-induced fibronectin expression in cultured fibroblasts. SAMe had a suppressive effect on airway inflammation and fibrosis in a mouse model of chronic asthma, at least partially through the attenuation of oxidative stress and TGF-β-induced fibronectin expression. The results of this study suggest a potential role for SAMe as a novel therapeutic agent in chronic asthma.
Collapse
|
17
|
Melnik BC. The potential mechanistic link between allergy and obesity development and infant formula feeding. Allergy Asthma Clin Immunol 2014; 10:37. [PMID: 25071855 PMCID: PMC4112849 DOI: 10.1186/1710-1492-10-37] [Citation(s) in RCA: 25] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/19/2014] [Accepted: 07/15/2014] [Indexed: 12/14/2022] Open
Abstract
This article provides a new view of the cellular mechanisms that have been proposed to explain the links between infant formula feeding and the development of atopy and obesity. Epidemiological evidence points to an allergy- and obesity-preventive effect of breastfeeding. Both allergy and obesity development have been traced back to accelerated growth early in life. The nutrient-sensitive kinase mTORC1 is the master regulator of cell growth, which is predominantly activated by amino acids. In contrast to breastfeeding, artificial infant formula feeding bears the risk of uncontrolled excessive protein intake overactivating the infant's mTORC1 signalling pathways. Overactivated mTORC1 enhances S6K1-mediated adipocyte differentiation, but negatively regulates growth and differentiation of FoxP3(+) regulatory T-cells (Tregs), which are deficient in atopic individuals. Thus, the "early protein hypothesis" not only explains increased mTORC1-mediated infant growth but also the development of mTORC1-driven diseases such as allergy and obesity due to a postnatal deviation from the appropriate axis of mTORC1-driven metabolic and immunologic programming. Remarkably, intake of fresh unpasteurized cow's milk exhibits an allergy-preventive effect in farm children associated with increased FoxP3(+) Treg numbers. In contrast to unprocessed cow's milk, formula lacks bioactive immune-regulatory microRNAs, such as microRNA-155, which plays a major role in FoxP3 expression. Uncontrolled excessive protein supply by formula feeding associated with the absence of bioactive microRNAs and bifidobacteria in formula apparently in a synergistic way result in insufficient Treg maturation. Treg deficiency allows Th2-cell differentiation promoting the development of allergic diseases. Formula-induced mTORC1 overactivation is thus the critical mechanism that explains accelerated postnatal growth, allergy and obesity development on one aberrant pathway.
Collapse
Affiliation(s)
- Bodo C Melnik
- Department of Dermatology, Environmental Medicine and Health Theory, University of Osnabrück, Sedanstrasse 115, DE-49090 Osnabrück, Germany
| |
Collapse
|
18
|
Key mediators in the immunopathogenesis of allergic asthma. Int Immunopharmacol 2014; 23:316-29. [PMID: 24933589 DOI: 10.1016/j.intimp.2014.05.034] [Citation(s) in RCA: 70] [Impact Index Per Article: 6.4] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/10/2014] [Revised: 05/22/2014] [Accepted: 05/23/2014] [Indexed: 12/20/2022]
Abstract
Asthma is described as a chronic inflammatory disorder of the conducting airways. It is characterized by reversible airway obstruction, eosinophil and Th2 infiltration, airway hyper-responsiveness and airway remodeling. Our findings to date have largely been dependent on work done using animal models, which have been instrumental in broadening our understanding of the mechanism of the disease. However, using animals to model a uniquely human disease is not without its drawbacks. This review aims to examine some of the key mediators and cells of allergic asthma learned from animal models and shed some light on emerging mediators in the pathogenesis allergic airway inflammation in acute and chronic asthma.
Collapse
|
19
|
Melnik BC, John SM, Schmitz G. Milk: an exosomal microRNA transmitter promoting thymic regulatory T cell maturation preventing the development of atopy? J Transl Med 2014; 12:43. [PMID: 24521175 PMCID: PMC3930015 DOI: 10.1186/1479-5876-12-43] [Citation(s) in RCA: 123] [Impact Index Per Article: 11.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/07/2013] [Accepted: 02/11/2014] [Indexed: 12/21/2022] Open
Abstract
Epidemiological evidence confirmed that raw cow's milk consumption in the first year of life protects against the development of atopic diseases and increases the number of regulatory T-cells (Tregs). However, milk's atopy-protective mode of action remains elusive.This review supported by translational research proposes that milk-derived microRNAs (miRs) may represent the missing candidates that promote long-term lineage commitment of Tregs downregulating IL-4/Th2-mediated atopic sensitization and effector immune responses. Milk transfers exosomal miRs including the ancient miR-155, which is important for the development of the immune system and controls pivotal target genes involved in the regulation of FoxP3 expression, IL-4 signaling, immunoglobulin class switching to IgE and FcϵRI expression. Boiling of milk abolishes milk's exosomal miR-mediated bioactivity. Infant formula in comparison to human breast- or cow's milk is deficient in bioactive exosomal miRs that may impair FoxP3 expression. The boost of milk-mediated miR may induce pivotal immunoregulatory and epigenetic modifications required for long-term thymic Treg lineage commitment explaining the atopy-protective effect of raw cow's milk consumption.The presented concept offers a new option for the prevention of atopic diseases by the addition of physiological amounts of miR-155-enriched exosomes to infant formula for mothers incapable of breastfeeding.
Collapse
Affiliation(s)
- Bodo C Melnik
- Department of Dermatology, Environmental Medicine and Health Theory, University of Osnabrück, Sedanstrasse 115, D-49090 Osnabrück, Germany
| | - Swen Malte John
- Department of Dermatology, Environmental Medicine and Health Theory, University of Osnabrück, Sedanstrasse 115, D-49090 Osnabrück, Germany
| | - Gerd Schmitz
- Institute for Clinical Chemistry and Laboratory Medicine, University Hospital Regensburg, University of Regensburg, Josef-Strauss-Allee 11, D-93053 Regensburg, Germany
| |
Collapse
|
20
|
An imbalance between frequency of CD4+CD25+FOXP3+ regulatory T cells and CCR4+ and CCR9+ circulating helper T cells is associated with active perennial allergic conjunctivitis. Clin Dev Immunol 2013; 2013:919742. [PMID: 24368924 PMCID: PMC3867854 DOI: 10.1155/2013/919742] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/27/2013] [Revised: 10/15/2013] [Accepted: 10/22/2013] [Indexed: 01/12/2023]
Abstract
Allergic conjunctivitis (AC) is one of the most common eye disorders in ophthalmology. In mice models, it has been suggested that control of allergic conjunctivitis is a delicate balance between Tregs and inflammatory migrating effector cells. Our aim was to evaluate the frequency of Tregs and the frequency of homing receptors expressing cells in peripheral blood mononuclear cells (PBMC) from patients with perennial allergic conjunctivitis (PAC). The analyses of phenotypic markers on CD4+ T cells and both soluble or intracellular cytokines were performed by flow cytometry. CD4+CD25+ cells were 15 times more frequent in PBMC from patients than HC; the vast majority of these CD4+CD25+ cells were FOXP3-, and most of CD4+ T cells were CCR4+ and CCR9+ cells. Upon allergen-stimulation, no significant changes were observed in frequency of Treg; however, an increased frequency of CD4+CCR4+CCR9+ cells, CD4+CD103+ cells and CD4+CD108+ cells with increased IL-5, IL-6, and IL-8 production was observed. These findings suggest an immune dysregulation in PAC, characterized by diminished frequency of Tregs and increased frequency of circulating activated CD4+ T cells; upon allergen-stimulation, these cells were expressing cell-surface molecules related to mucosa homing and were able to trigger an inflammatory microenvironment.
Collapse
|
21
|
Anderson SE, Beezhold K, Lukomska E, Richardson J, Long C, Anderson K, Franko J, Meade BJ, Beezhold DH. Expression kinetics of miRNA involved in dermal toluene 2,4-diisocyanate sensitization. J Immunotoxicol 2013; 11:250-9. [PMID: 24063594 DOI: 10.3109/1547691x.2013.835891] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023] Open
Abstract
Allergic disease is an important occupational health concern, with work-related asthma and allergic contact dermatitis being the most frequently diagnosed occupational illnesses. Diisocyanates, particularly toluene 2,4-diisocyanate (TDI), have been the leading cause of occupational asthma for many years. Understanding the mechanisms behind allergic disease is critical for treatment and prevention. Recently, the study of post-transcriptional regulation by microRNAs (miRNA) has shed light on mechanisms of allergic disease. The present studies report the expression of miRNA during the sensitization phase of an allergic response to TDI in a murine model. Female BALB/c mice were dermally exposed to TDI (0.1-15% [v/v]) or vehicle. RNA was isolated from superficial parotid lymph nodes at timepoints between 1 h and 15 days post-exposure and then miRNA expression was analyzed using array and real-time quantitative PCR analysis. Consistent changes in miRNA expression were identified for miR-21, miR-22, miR-27b, miR-31, miR-126, miR-155, miR-210, and miR-301a. Following TDI exposure, peak expression was observed by Day 4 for the majority of miRNA evaluated with trends in expression correlated to exposure concentration. Confirmed and predicted targets were identified using Diana-microT, miRanda, miRwalk, and Targetscan algorithms. Evaluation of mRNA expression of cytokine and transcription factor targets suggests that miRNA may have a central role early in TDI sensitization. Understanding the role of these miRNA and their specific mechanism of action in sensitization to TDI may provide pertinent information for the identification of other chemical sensitizers while also contributing to the treatment and prevention of allergic disease.
Collapse
Affiliation(s)
- Stacey E Anderson
- National Institute for Occupational Safety and Health (NIOSH) , Morgantown, WV , USA and
| | | | | | | | | | | | | | | | | |
Collapse
|