1
|
Zuniga-Kennedy M, Wang OH, Fonseca LM, Cleveland MJ, Bulger JD, Grinspoon E, Hansen D, Hawks ZW, Jung L, Singh S, Sliwinski M, Verdejo A, Miller KM, Weinstock RS, Germine L, Chaytor N. Nocturnal hypoglycemia is associated with next day cognitive performance in adults with type 1 diabetes: Pilot data from the GluCog study. Clin Neuropsychol 2024; 38:1627-1646. [PMID: 38380810 PMCID: PMC11336034 DOI: 10.1080/13854046.2024.2315749] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/11/2023] [Accepted: 01/11/2024] [Indexed: 02/22/2024]
Abstract
OBJECTIVE Individuals with type 1 diabetes (T1D) have increased risk for cognitive dysfunction and high rates of sleep disturbance. Despite associations between glycemia and cognitive performance using cross-sectional and experimental methods few studies have evaluated this relationship in a naturalistic setting, or the impact of nocturnal versus daytime hypoglycemia. Ecological Momentary Assessment (EMA) may provide insight into the dynamic associations between cognition, affective, and physiological states. The current study couples EMA data with continuous glucose monitoring (CGM) to examine the within-person impact of nocturnal glycemia on next day cognitive performance in adults with T1D. Due to high rates of sleep disturbance and emotional distress in people with T1D, the potential impacts of sleep characteristics and negative affect were also evaluated. METHODS This pilot study utilized EMA in 18 adults with T1D to examine the impact of glycemic excursions, measured using CGM, on cognitive performance, measured via mobile cognitive assessment using the TestMyBrain platform. Multilevel modeling was used to test the within-person effects of nocturnal hypoglycemia and hyperglycemia on next day cognition. RESULTS Results indicated that increases in nocturnal hypoglycemia were associated with slower next day processing speed. This association was not significantly attenuated by negative affect, sleepiness, or sleep quality. CONCLUSIONS These results, while preliminary due to small sample size, showcase the power of intensive longitudinal designs using ambulatory cognitive assessment to uncover novel determinants of cognitive fluctuation in real world settings, an approach that may be utilized in other populations. Findings suggest reducing nocturnal hypoglycemia may improve cognition in adults with T1D.
Collapse
Affiliation(s)
| | - Olivia H Wang
- Elson S. Floyd College of Medicine, Washington State University, Spokane, WA, USA
| | - Luciana M. Fonseca
- Elson S. Floyd College of Medicine, Washington State University, Spokane, WA, USA
- Old Age Research Group (PROTER), Department and Institute of Psychiatry, University of Sao Paulo, Sao Paulo, Brazil
| | | | | | | | - Devon Hansen
- Elson S. Floyd College of Medicine, Washington State University, Spokane, WA, USA
| | | | | | - Shifali Singh
- McLean Hospital/Harvard Medical School, Belmont, MA, USA
| | | | | | | | | | | | - Naomi Chaytor
- Elson S. Floyd College of Medicine, Washington State University, Spokane, WA, USA
| |
Collapse
|
2
|
Song JW, Huang XY, Huang M, Cui SH, Zhou YJ, Liu XZ, Yan ZH, Ye XJ, Liu K. Abnormalities in spontaneous brain activity and functional connectivity are associated with cognitive impairments in children with type 1 diabetes mellitus. J Neuroradiol 2024; 51:101209. [PMID: 38821316 DOI: 10.1016/j.neurad.2024.101209] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/16/2024] [Revised: 05/21/2024] [Accepted: 05/26/2024] [Indexed: 06/02/2024]
Abstract
BACKGROUND It remains unclear whether alterations in brain function occur in the early stage of pediatric type 1 diabetes mellitus(T1DM). We aimed to examine changes in spontaneous brain activity and functional connectivity (FC) in children with T1DM using resting-state functional magnetic resonance imaging (rs-fMRI), and to pinpoint potential links between neural changes and cognitive performance. METHODS In this study, 22 T1DM children and 21 age-, sex-matched healthy controls underwent rs-fMRI. The amplitude of low frequency fluctuations (ALFF) and seed-based FC analysis were performed to examine changes in intrinsic brain activity and functional networks in T1DM children. Partial correlation analyses were utilized to explore the correlations between ALFF values and clinical parameters. RESULTS The ALFF values were significantly lower in the lingual gyrus (LG) and higher in the left medial superior frontal gyrus (MSFG) in T1DM children compared to controls. Subsequent FC analysis indicated that the LG had decreased FC with bilateral inferior occipital gyrus, and the left MSFG had decreased FC with right precentral gyrus, right inferior parietal gyrus and right postcentral gyrus in children with T1DM. The ALFF values of LG were positively correlated with full-scale intelligence quotient and age at disease onset in T1DM children, while the ALFF values of left MSFG were positively correlated with working memory scores. CONCLUSION Our findings revealed abnormal spontaneous activity and FC in brain regions related to visual, memory, default mode network, and sensorimotor network in the early stage of T1DM children, which may aid in further understanding the mechanisms underlying T1DM-associated cognitive dysfunction.
Collapse
Affiliation(s)
- Jia-Wen Song
- Department of Radiology, The Second Affiliated Hospital and Yuying Children's Hospital, Wenzhou Medical University, Wenzhou 325000, Zhejiang, China; Wenzhou Key Laboratory of Structural and Functional Imaging, Wenzhou 325000, China
| | - Xiao-Yan Huang
- Department of Radiology, The Second Affiliated Hospital and Yuying Children's Hospital, Wenzhou Medical University, Wenzhou 325000, Zhejiang, China; Wenzhou Key Laboratory of Structural and Functional Imaging, Wenzhou 325000, China
| | - Mei Huang
- Department of Radiology, The Second Affiliated Hospital and Yuying Children's Hospital, Wenzhou Medical University, Wenzhou 325000, Zhejiang, China; Wenzhou Key Laboratory of Structural and Functional Imaging, Wenzhou 325000, China
| | - Shi-Han Cui
- Department of Radiology, Ningbo No. 2 Hospital, Ningbo 315000, China
| | - Yong-Jin Zhou
- Department of Radiology, The Fifth Affiliated Hospital of Wenzhou Medical University, Lishui 323000, China
| | - Xiao-Zheng Liu
- Department of Radiology, The Second Affiliated Hospital and Yuying Children's Hospital, Wenzhou Medical University, Wenzhou 325000, Zhejiang, China; Wenzhou Key Laboratory of Structural and Functional Imaging, Wenzhou 325000, China
| | - Zhi-Han Yan
- Department of Radiology, The Second Affiliated Hospital and Yuying Children's Hospital, Wenzhou Medical University, Wenzhou 325000, Zhejiang, China; Wenzhou Key Laboratory of Structural and Functional Imaging, Wenzhou 325000, China
| | - Xin-Jian Ye
- Department of Radiology, The Second Affiliated Hospital and Yuying Children's Hospital, Wenzhou Medical University, Wenzhou 325000, Zhejiang, China; Wenzhou Key Laboratory of Structural and Functional Imaging, Wenzhou 325000, China.
| | - Kun Liu
- Department of Radiology, The Second Affiliated Hospital and Yuying Children's Hospital, Wenzhou Medical University, Wenzhou 325000, Zhejiang, China; Wenzhou Key Laboratory of Structural and Functional Imaging, Wenzhou 325000, China.
| |
Collapse
|
3
|
Nagasawa K, Matsumura K, Uchida T, Suzuki Y, Nishimura A, Okubo M, Igeta Y, Kobayashi T, Sakurai T, Mori Y. Global cognition and executive functions of older adults with type 1 diabetes mellitus without dementia. J Diabetes Investig 2024; 15:922-930. [PMID: 38525910 PMCID: PMC11215676 DOI: 10.1111/jdi.14191] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/25/2023] [Revised: 02/23/2024] [Accepted: 03/07/2024] [Indexed: 03/26/2024] Open
Abstract
AIMS/INTRODUCTION This study aimed to characterize the global cognition and executive functions of older adults with type 1 diabetes mellitus in comparison with type 2 diabetes mellitus. MATERIALS AND METHODS This study included 37 patients with type 1 diabetes mellitus aged ≥65 years and 37 age- and sex-matched patients with type 2 diabetes mellitus. Patients with dementia scoring <24 on the Mini-Mental State Examination were excluded. General cognition, memory, classic, and practical executive function were investigated. RESULTS Patients with type 1 diabetes mellitus demonstrated lower psychomotor speed scores on Trail Making Tests A and B (P < 0.001, P < 0.013) than those with type 2 diabetes mellitus. The dysexecutive syndrome behavioral assessment revealed similar results in patients with types 1 and 2 diabetes mellitus. The Wechsler Memory Scale-Revised verbal episodic memory and Montreal Cognitive Assessment Japanese version were similar in terms of general cognition, but worse delayed recall subset on the latter was associated with type 2 diabetes mellitus (P = 0.038). A worse Trail Making Test-A performance was associated with type 1 diabetes mellitus and age (P < 0.004, P < 0.029). CONCLUSIONS Executive function of psychomotor speed was worse in older outpatient adults without dementia with type 1 diabetes mellitus than in those with type 2 diabetes mellitus but with no significant differences in the comprehensive and practical behavioral assessment of dysexecutive syndrome. Patients with type 1 diabetes had more severely impaired executive function, whereas those with type 2 had greater impaired memory than executive function.
Collapse
Affiliation(s)
- Kaoru Nagasawa
- Department of Endocrinology and MetabolismToranomon HospitalTokyoJapan
| | - Kimio Matsumura
- Department of Endocrinology and MetabolismToranomon HospitalTokyoJapan
| | - Takayasu Uchida
- Department of Endocrinology and MetabolismToranomon HospitalTokyoJapan
| | - Yuya Suzuki
- Department of Endocrinology and MetabolismToranomon HospitalTokyoJapan
| | | | - Minoru Okubo
- Okinaka Memorial Institute for Medical ResearchTokyoJapan
| | | | | | - Takashi Sakurai
- Department of Prevention and Care Science, Research InstituteNational Center for Geriatrics and GerontologyObuJapan
| | - Yasumichi Mori
- Department of Endocrinology and MetabolismToranomon HospitalTokyoJapan
| |
Collapse
|
4
|
Fonseca LM, Kanapka L, Miller K, Pratley R, Rickels MR, Rizvi S, Kudva YC, Weinstock RS, Chaytor NS. Risk factors associated with cognitive performance and cognitive impairment in older adults with type 1 diabetes: Data from the Wireless Innovation for Seniors with Diabetes Mellitus (WISDM) study. J Diabetes Complications 2024; 38:108739. [PMID: 38564971 DOI: 10.1016/j.jdiacomp.2024.108739] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/23/2023] [Revised: 03/13/2024] [Accepted: 03/25/2024] [Indexed: 04/04/2024]
Abstract
BACKGROUND Adults with type 1 diabetes (T1D) are considered at increased risk for cognitive impairment and accelerated brain aging. However, longitudinal data on cognitive impairment and dementia in this population are scarce. OBJECTIVE To identify risk factors associated with cognitive performance and cognitive impairment in a longitudinal sample of older adults with T1D. METHODS We analyzed data collected as part of the Wireless Innovation for Seniors with Diabetes Mellitus (WISDM) Study, in which 22 endocrinology practices participated. Randomized participants with T1D ≥60 years of age who completed at least one cognitive assessment were included in this study (n = 203). Cognitive impairment was classified using published recommendations. RESULTS Older age, male sex, non-private health insurance, worse daily functioning, diagnosis of neuropathy, and longer duration of diabetes were associated with worse cognitive performance, but not cognitive impairment. 49 % and 39 % of the sample met criteria for cognitive impairment at baseline and 52 weeks respectively. Of the participants that had data at both time points, 10 % were normal at baseline and impaired at 52 weeks and 22 % of participants (44 % of those classified with cognitive impairment at baseline) reverted to normal over 52 weeks. CONCLUSION This study indicated that several demographic and clinical characteristics are associated with worse cognitive performance in older adults with T1D, but there were no associations between these characteristics and cognitive impairment defined by NIH Toolbox cognitive impairment criteria. Caution is warranted when assessing cognition in older adults with T1D, as a large percentage of those identified as having cognitive impairment at baseline reverted to normal after 52 weeks. There is need for future studies on the interrelationship of cognition and aging to better understand the effects of T1D on cognitive health, to improve clinical monitoring and help mitigate the risk of dementia in this population.
Collapse
Affiliation(s)
- Luciana Mascarenhas Fonseca
- Department of Community and Behavioral Health, Elson S Floyd College of Medicine, Washington State University, USA; Programa Terceira Idade (PROTER, Old Age Research Group), Department and Institute of Psychiatry, University of São Paulo School of Medicine, São Paulo, Brazil.
| | | | | | - Richard Pratley
- AdventHealth Translational Research Institute, Orlando, FL, USA
| | - Michael R Rickels
- Division of Endocrinology, Diabetes & Metabolism, Department of Medicine and Institute for Diabetes, Obesity & Metabolism, University of Pennsylvania Perelman School of Medicine, Philadelphia, PA, USA
| | - Shafaq Rizvi
- Division of Endocrinology, Diabetes & Nutrition, Department of Medicine, Mayo Clinic, Rochester, MN, USA
| | - Yogish C Kudva
- Division of Endocrinology, Diabetes & Nutrition, Department of Medicine, Mayo Clinic, Rochester, MN, USA
| | - Ruth S Weinstock
- Department of Medicine, SUNY Upstate Medical University, Syracuse, NY, USA
| | - Naomi S Chaytor
- Department of Community and Behavioral Health, Elson S Floyd College of Medicine, Washington State University, USA
| |
Collapse
|
5
|
Hawks ZW, Beck ED, Jung L, Fonseca LM, Sliwinski MJ, Weinstock RS, Grinspoon E, Xu I, Strong RW, Singh S, Van Dongen HPA, Frumkin MR, Bulger J, Cleveland MJ, Janess K, Kudva YC, Pratley R, Rickels MR, Rizvi SR, Chaytor NS, Germine LT. Dynamic associations between glucose and ecological momentary cognition in Type 1 Diabetes. NPJ Digit Med 2024; 7:59. [PMID: 38499605 PMCID: PMC10948782 DOI: 10.1038/s41746-024-01036-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/13/2023] [Accepted: 02/14/2024] [Indexed: 03/20/2024] Open
Abstract
Type 1 diabetes (T1D) is a chronic condition characterized by glucose fluctuations. Laboratory studies suggest that cognition is reduced when glucose is very low (hypoglycemia) and very high (hyperglycemia). Until recently, technological limitations prevented researchers from understanding how naturally-occurring glucose fluctuations impact cognitive fluctuations. This study leveraged advances in continuous glucose monitoring (CGM) and cognitive ecological momentary assessment (EMA) to characterize dynamic, within-person associations between glucose and cognition in naturalistic environments. Using CGM and EMA, we obtained intensive longitudinal measurements of glucose and cognition (processing speed, sustained attention) in 200 adults with T1D. First, we used hierarchical Bayesian modeling to estimate dynamic, within-person associations between glucose and cognition. Consistent with laboratory studies, we hypothesized that cognitive performance would be reduced at low and high glucose, reflecting cognitive vulnerability to glucose fluctuations. Second, we used data-driven lasso regression to identify clinical characteristics that predicted individual differences in cognitive vulnerability to glucose fluctuations. Large glucose fluctuations were associated with slower and less accurate processing speed, although slight glucose elevations (relative to person-level means) were associated with faster processing speed. Glucose fluctuations were not related to sustained attention. Seven clinical characteristics predicted individual differences in cognitive vulnerability to glucose fluctuations: age, time in hypoglycemia, lifetime severe hypoglycemic events, microvascular complications, glucose variability, fatigue, and neck circumference. Results establish the impact of glucose on processing speed in naturalistic environments, suggest that minimizing glucose fluctuations is important for optimizing processing speed, and identify several clinical characteristics that may exacerbate cognitive vulnerability to glucose fluctuations.
Collapse
Affiliation(s)
- Z W Hawks
- Institute for Technology in Psychiatry, McLean Hospital, Belmont, MA, USA.
- Department of Psychiatry, Harvard Medical School, Boston, MA, USA.
| | - E D Beck
- Department of Psychology, University of California Davis, Davis, CA, USA
| | - L Jung
- Institute for Technology in Psychiatry, McLean Hospital, Belmont, MA, USA
| | - L M Fonseca
- Elson S. Floyd College of Medicine, Washington State University, Spokane, WA, USA
- Programa Terceira Idade (PROTER, Old Age Research Group), Department and Institute of Psychiatry, University of São Paulo School of Medicine, São Paulo, Brazil
| | - M J Sliwinski
- Department of Human Development and Family Studies, Center for Healthy Aging, Pennsylvania State University, State College, PA, USA
| | | | - E Grinspoon
- Institute for Technology in Psychiatry, McLean Hospital, Belmont, MA, USA
| | - I Xu
- Department of Psychology, University of Notre Dame, Notre Dame, IN, USA
| | - R W Strong
- The Many Brains Project, Belmont, MA, USA
| | - S Singh
- Institute for Technology in Psychiatry, McLean Hospital, Belmont, MA, USA
- Department of Psychiatry, Harvard Medical School, Boston, MA, USA
| | - H P A Van Dongen
- Sleep and Performance Research Center & Department of Translational Medicine and Physiology, Washington State University, Spokane, WA, USA
| | - M R Frumkin
- Department of Psychiatry, Harvard Medical School, Boston, MA, USA
- Department of Psychological & Brain Sciences, Washington University in St. Louis, St. Louis, MO, USA
- Department of Psychiatry, Massachusetts General Hospital, Boston, MA, USA
| | - J Bulger
- SUNY Upstate Medical University, Syracuse, NY, USA
| | - M J Cleveland
- Department of Human Development, Washington State University, Pullman, WA, USA
| | - K Janess
- Jaeb Center for Health Research, Tampa, FL, USA
| | - Y C Kudva
- Division of Endocrinology, Diabetes and Nutrition, Mayo Clinic, Rochester, MN, USA
| | - R Pratley
- AdventHealth Translational Research Institute, Orlando, FL, USA
| | - M R Rickels
- University of Pennsylvania Perelman School of Medicine, Philadelphia, PA, USA
| | - S R Rizvi
- Division of Endocrinology, Diabetes and Nutrition, Mayo Clinic, Rochester, MN, USA
| | - N S Chaytor
- Elson S. Floyd College of Medicine, Washington State University, Spokane, WA, USA
| | - L T Germine
- Institute for Technology in Psychiatry, McLean Hospital, Belmont, MA, USA
- Department of Psychiatry, Harvard Medical School, Boston, MA, USA
| |
Collapse
|
6
|
Badji A, Cedres N, Muehlboeck JS, Khan W, Dhollander T, Barroso J, Ferreira D, Westman E. In vivo microstructural heterogeneity of white matter and cognitive correlates in aging using tissue compositional analysis of diffusion magnetic resonance imaging. Hum Brain Mapp 2024; 45:e26618. [PMID: 38414286 PMCID: PMC10899800 DOI: 10.1002/hbm.26618] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/09/2023] [Revised: 12/03/2023] [Accepted: 12/24/2023] [Indexed: 02/29/2024] Open
Abstract
BACKGROUND Age-related cognitive decline is linked to changes in the brain, particularly the deterioration of white matter (WM) microstructure that accelerates after the age of 60. WM deterioration is associated with mild cognitive impairment and dementia, but the origin and role of white matter signal abnormalities (WMSA) seen in standard MRI remain debated due to their heterogeneity. This study explores the potential of single-shell 3-tissue constrained spherical deconvolution (SS3T-CSD), a novel technique that models diffusion data in terms of gray matter (TG ), white matter (Tw ), and cerebrospinal fluid (TC ), to differentiate WMSA from normal-appearing white matter and better understand the interplay between changes in WM microstructure and decline in cognition. METHODS A total of 189 individuals from the GENIC cohort were included. MRI data, including T1-weighted and diffusion images, were obtained. Preprocessing steps were performed on the diffusion MRI data, followed by the SS3T-CSD. WMSA were segmented using FreeSurfer. Statistical analyses were conducted to assess the association between age, WMSA volume, 3-tissue signal fractions (Tw , TG , and TC ), and neuropsychological variables. RESULTS Participants above 60 years old showed worse cognitive performance and processing speed compared to those below 60 (p < .001). Age was negatively associated with Tw in normal-appearing white matter (p < .001) and positively associated with TG in both WMSA (p < .01) and normal-appearing white matter (p < .001). Age was also significantly associated with WMSA volume (p < .001). Higher processing speed was associated with lower Tw and higher TG , in normal-appearing white matter (p < .01 and p < .001, respectively), as well as increased WMSA volume (p < .001). Similarly, lower MMSE scores correlated with lower Tw and higher TG in normal-appearing white matter (p < .05). High cholesterol and hypertension were associated with higher WMSA volume (p < .05). CONCLUSION The microstructural heterogeneity within normal-appearing white matter and WMSA is associated with increasing age and cognitive variation, in cognitively unimpaired individuals. Furthermore, the 3-tissue signal fractions are more specific to potential white matter alterations than conventional MRI measures such as WMSA volume. These findings also support the view that the WMSA volumes may be more influenced by vascular risk factors than the 3-tissue metrics. Finally, the 3-tissue metrics were able to capture associations with cognitive tests and therefore capable of capturing subtle pathological changes in the brain in individuals who are still within the normal range of cognitive performance.
Collapse
Affiliation(s)
- Atef Badji
- Division of Clinical Geriatrics, Center for Alzheimer Research, Department of Neurobiology, Care Sciences and Society, Karolinska Institutet, Stockholm, Sweden
- Theme Inflammation and Aging, Karolinska University Hospital, Stockholm, Sweden
| | - Nira Cedres
- Division of Clinical Geriatrics, Center for Alzheimer Research, Department of Neurobiology, Care Sciences and Society, Karolinska Institutet, Stockholm, Sweden
- Facultad de Ciencias de la Salud, Universidad Fernando Pessoa Canarias, Las Palmas de Gran Canaria, España
| | - J-Sebastian Muehlboeck
- Division of Clinical Geriatrics, Center for Alzheimer Research, Department of Neurobiology, Care Sciences and Society, Karolinska Institutet, Stockholm, Sweden
| | - Wasim Khan
- Division of Clinical Geriatrics, Center for Alzheimer Research, Department of Neurobiology, Care Sciences and Society, Karolinska Institutet, Stockholm, Sweden
| | - Thijs Dhollander
- Murdoch Children's Research Institute, Melbourne, Victoria, Australia
| | - Jose Barroso
- Facultad de Ciencias de la Salud, Universidad Fernando Pessoa Canarias, Las Palmas de Gran Canaria, España
| | - Daniel Ferreira
- Division of Clinical Geriatrics, Center for Alzheimer Research, Department of Neurobiology, Care Sciences and Society, Karolinska Institutet, Stockholm, Sweden
- Facultad de Ciencias de la Salud, Universidad Fernando Pessoa Canarias, Las Palmas de Gran Canaria, España
| | - Eric Westman
- Division of Clinical Geriatrics, Center for Alzheimer Research, Department of Neurobiology, Care Sciences and Society, Karolinska Institutet, Stockholm, Sweden
- Department of Neuroimaging, Centre for Neuroimaging Sciences, Institute of Psychiatry, Psychology, and Neuroscience, King's College London, London, UK
| |
Collapse
|
7
|
Sadek J. Attention Deficit Hyperactivity Disorder Misdiagnosis: Why Medical Evaluation Should Be a Part of ADHD Assessment. Brain Sci 2023; 13:1522. [PMID: 38002482 PMCID: PMC10669410 DOI: 10.3390/brainsci13111522] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/15/2023] [Revised: 10/19/2023] [Accepted: 10/27/2023] [Indexed: 11/26/2023] Open
Abstract
INTRODUCTION Attention deficit hyperactivity disorder (ADHD) is a neurodevelopmental disorder that interferes with multiple aspects of daily functioning and is associated with impairments in several domains. It may affect academic, educational, vocational, social, emotional, interpersonal, and health domains, and worsen risks to health outcomes. OBJECTIVE To identify and discuss medical conditions that commonly present with symptoms resembling ADHD. METHOD This review is selective and not systematic. It is conducted through a focused literature search through PubMed, Google Scholar, and EMBASE. Search term included "ADHD misdiagnosis", "medical conditions with ADHD like symptoms", "ADHD AND medical problems". EXCLUSION giftedness, high IQ, and any article that does not list medical conditions. The limits applied were the following: the work must have been published in the past 20 years, be on humans, and be in the English language. RESULTS There are several medical conditions that can be misdiagnosed as ADHD and may show a similar presentation to ADHD, particularly with inattentive symptoms. Examples include, but are not limited to, absence seizure disorder, diabetes, thyroid dysfunction, sleep deprivation, post-concussion states, inflammatory bowel disease, iron deficiency states and anemia, and disordered breathing. CONCLUSIONS Our review suggests that a thorough medical evaluation should be conducted prior to the diagnosis of ADHD. Allied health professionals and psychologists who diagnose ADHD should seek medical clearance from a physician prior to making the ADHD diagnosis in order to reduce misdiagnosis rates and improve patient outcomes. ADHD diagnosis should follow guidelines and be carried out under a systematic standardized approach. A full medical evaluation should be conducted to assess for medical conditions that may look like ADHD or be associated with ADHD.
Collapse
Affiliation(s)
- Joseph Sadek
- Department of Psychiatry, Dalhousie University, Halifax, NS B3H4K3, Canada
| |
Collapse
|
8
|
Xiong M, Lin L, Jin Y, Kang W, Wu S, Sun S. Comparison of Machine Learning Models for Brain Age Prediction Using Six Imaging Modalities on Middle-Aged and Older Adults. SENSORS (BASEL, SWITZERLAND) 2023; 23:3622. [PMID: 37050682 PMCID: PMC10098634 DOI: 10.3390/s23073622] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 03/09/2023] [Revised: 03/24/2023] [Accepted: 03/28/2023] [Indexed: 06/19/2023]
Abstract
Machine learning (ML) has transformed neuroimaging research by enabling accurate predictions and feature extraction from large datasets. In this study, we investigate the application of six ML algorithms (Lasso, relevance vector regression, support vector regression, extreme gradient boosting, category boost, and multilayer perceptron) to predict brain age for middle-aged and older adults, which is a crucial area of research in neuroimaging. Despite the plethora of proposed ML models, there is no clear consensus on how to achieve better performance in brain age prediction for this population. Our study stands out by evaluating the impact of both ML algorithms and image modalities on brain age prediction performance using a large cohort of cognitively normal adults aged 44.6 to 82.3 years old (N = 27,842) with six image modalities. We found that the predictive performance of brain age is more reliant on the image modalities used than the ML algorithms employed. Specifically, our study highlights the superior performance of T1-weighted MRI and diffusion-weighted imaging and demonstrates that multi-modality-based brain age prediction significantly enhances performance compared to unimodality. Moreover, we identified Lasso as the most accurate ML algorithm for predicting brain age, achieving the lowest mean absolute error in both single-modality and multi-modality predictions. Additionally, Lasso also ranked highest in a comprehensive evaluation of the relationship between BrainAGE and the five frequently mentioned BrainAGE-related factors. Notably, our study also shows that ensemble learning outperforms Lasso when computational efficiency is not a concern. Overall, our study provides valuable insights into the development of accurate and reliable brain age prediction models for middle-aged and older adults, with significant implications for clinical practice and neuroimaging research. Our findings highlight the importance of image modality selection and emphasize Lasso as a promising ML algorithm for brain age prediction.
Collapse
Affiliation(s)
- Min Xiong
- Department of Biomedical Engineering, Faculty of Environment and Life, Beijing University of Technology, Beijing 100124, China; (M.X.); (Y.J.); (W.K.); (S.W.); (S.S.)
| | - Lan Lin
- Department of Biomedical Engineering, Faculty of Environment and Life, Beijing University of Technology, Beijing 100124, China; (M.X.); (Y.J.); (W.K.); (S.W.); (S.S.)
- Intelligent Physiological Measurement and Clinical Translation, Beijing International Base for Scientific and Technological Cooperation, Beijing University of Technology, Beijing 100124, China
| | - Yue Jin
- Department of Biomedical Engineering, Faculty of Environment and Life, Beijing University of Technology, Beijing 100124, China; (M.X.); (Y.J.); (W.K.); (S.W.); (S.S.)
| | - Wenjie Kang
- Department of Biomedical Engineering, Faculty of Environment and Life, Beijing University of Technology, Beijing 100124, China; (M.X.); (Y.J.); (W.K.); (S.W.); (S.S.)
| | - Shuicai Wu
- Department of Biomedical Engineering, Faculty of Environment and Life, Beijing University of Technology, Beijing 100124, China; (M.X.); (Y.J.); (W.K.); (S.W.); (S.S.)
- Intelligent Physiological Measurement and Clinical Translation, Beijing International Base for Scientific and Technological Cooperation, Beijing University of Technology, Beijing 100124, China
| | - Shen Sun
- Department of Biomedical Engineering, Faculty of Environment and Life, Beijing University of Technology, Beijing 100124, China; (M.X.); (Y.J.); (W.K.); (S.W.); (S.S.)
- Intelligent Physiological Measurement and Clinical Translation, Beijing International Base for Scientific and Technological Cooperation, Beijing University of Technology, Beijing 100124, China
| |
Collapse
|
9
|
Marissal-Arvy N, Moisan MP. Diabetes and associated cognitive disorders: Role of the Hypothalamic-Pituitary Adrenal axis. Metabol Open 2022; 15:100202. [PMID: 35958117 PMCID: PMC9357829 DOI: 10.1016/j.metop.2022.100202] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/07/2022] [Revised: 07/18/2022] [Accepted: 07/20/2022] [Indexed: 11/12/2022] Open
Abstract
Both diabetes types, types 1 and 2, are associated with cognitive impairments. Each period of life is concerned, and this is an increasing public health problem. Animal models have been developed to investigate the biological actors involved in such impairments. Many levels of the brain function (structure, volume, neurogenesis, neurotransmission, behavior) are involved. In this review, we detailed the part potentially played by the Hypothalamic-Pituitary Adrenal axis in these dysfunctions. Notably, regulating glucocorticoid levels, their receptors and their bioavailability appear to be relevant for future research studies, and treatment development.
Collapse
Affiliation(s)
- Nathalie Marissal-Arvy
- INRAE, Laboratoire de Nutrition et Neurobiologie Intégrée, UMR 1286, UFR de Pharmacie, 146 Rue Léo Saignat, 33076, Bordeaux Cedex, France
| | - Marie-Pierre Moisan
- University of Bordeaux, Nutrition et Neurobiologie Intégrée, UMR 1286, 33000, Bordeaux, France
| |
Collapse
|
10
|
Jacobson AM, Braffett BH, Erus G, Ryan CM, Biessels GJ, Luchsinger JA, Bebu I, Gubitosi-Klug RA, Desiderio L, Lorenzi GM, Trapani VR, Lachin JM, Bryan RN, Habes M, Nasrallah IM. Brain Structure Among Middle-aged and Older Adults With Long-standing Type 1 Diabetes in the DCCT/EDIC Study. Diabetes Care 2022; 45:1779-1787. [PMID: 35699949 PMCID: PMC9346989 DOI: 10.2337/dc21-2438] [Citation(s) in RCA: 18] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/23/2021] [Accepted: 04/17/2022] [Indexed: 02/03/2023]
Abstract
OBJECTIVE Individuals with type 1 diabetes mellitus (T1DM) are living to ages when neuropathological changes are increasingly evident. We hypothesized that middle-aged and older adults with long-standing T1DM will show abnormal brain structure in comparison with control subjects without diabetes. RESEARCH DESIGN AND METHODS MRI was used to compare brain structure among 416 T1DM participants in the Epidemiology of Diabetes Interventions and Complications (EDIC) study with that of 99 demographically similar control subjects without diabetes at 26 U.S. and Canadian sites. Assessments included total brain (TBV) (primary outcome), gray matter (GMV), white matter (WMV), ventricle, and white matter hyperintensity (WMH) volumes and total white matter mean fractional anisotropy (FA). Biomedical assessments included HbA1c and lipid levels, blood pressure, and cognitive assessments of memory and psychomotor and mental efficiency (PME). Among EDIC participants, HbA1c, severe hypoglycemia history, and vascular complications were measured longitudinally. RESULTS Mean age of EDIC participants and control subjects was 60 years. T1DM participants showed significantly smaller TBV (least squares mean ± SE 1,206 ± 1.7 vs. 1,229 ± 3.5 cm3, P < 0.0001), GMV, and WMV and greater ventricle and WMH volumes but no differences in total white matter mean FA versus control subjects. Structural MRI measures in T1DM were equivalent to those of control subjects who were 4-9 years older. Lower PME scores were associated with altered brain structure on all MRI measures in T1DM participants. CONCLUSIONS Middle-aged and older adults with T1DM showed brain volume loss and increased vascular injury in comparison with control subjects without diabetes, equivalent to 4-9 years of brain aging.
Collapse
Affiliation(s)
- Alan M. Jacobson
- NYU Long Island School of Medicine, NYU Langone Hospital–Long Island, Mineola
| | | | - Guray Erus
- Department of Radiology, University of Pennsylvania, Philadelphia, PA
| | | | - Geert J. Biessels
- Department of Neurology, UMC Utrecht Brain Center, University Medical Center Utrecht, Netherlands
| | | | - Ionut Bebu
- The Biostatistics Center, The George Washington University, Rockville, MD
| | - Rose A. Gubitosi-Klug
- Case Western Reserve University School of Medicine, Rainbow Babies & Children’s Hospital, Cleveland, OH
| | - Lisa Desiderio
- Department of Radiology, University of Pennsylvania, Philadelphia, PA
| | | | | | - John M. Lachin
- Department of Radiology, University of Pennsylvania, Philadelphia, PA
| | | | - Mohamad Habes
- Neuroimage Analytics Laboratory and Biggs Institute Neuroimaging Core, Glenn Biggs Institute for Neurodegenerative Disorders, University of Texas Health Science Center at San Antonio, San Antonio, TX
| | - Ilya M. Nasrallah
- Department of Radiology, University of Pennsylvania, Philadelphia, PA
| | | |
Collapse
|
11
|
Hammoud B, Greeley SAW. Growth and development in monogenic forms of neonatal diabetes. Curr Opin Endocrinol Diabetes Obes 2022; 29:65-77. [PMID: 34864759 PMCID: PMC11056188 DOI: 10.1097/med.0000000000000699] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
Abstract
PURPOSE OF REVIEW Neonatal diabetes mellitus (NDM) is a rare disorder in which 80-85% of infants diagnosed under 6 months of age will be found to have an underlying monogenic cause. This review will summarize what is known about growth and neurodevelopmental difficulties among individuals with various forms of NDM. RECENT FINDINGS Patients with NDM often have intrauterine growth restriction and/or low birth weight because of insulin deficiency in utero and the severity and likelihood of ongoing growth concerns after birth depends on the specific cause. A growing list of rare recessive causes of NDM are associated with neurodevelopmental and/or growth problems that can either be related to direct gene effects on brain development, or may be related to a variety of co-morbidities. The most common form of NDM results in spectrum of neurological disability due to expression of mutated KATP channels throughout the brain. SUMMARY Monogenic causes of neonatal diabetes are characterized by variable degree of restriction of growth in utero because of deficiency of insulin that depends on the specific gene cause. Many forms also include a spectrum of neurodevelopmental disability because of mutation-related effects on brain development. Longer term study is needed to clarify longitudinal effects on growth into adulthood.
Collapse
Affiliation(s)
- Batoul Hammoud
- Section of Adult and Pediatric Endocrinology, Diabetes, and Metabolism, and Kovler Diabetes Center, University of Chicago, Chicago, Illinois, USA
| | | |
Collapse
|
12
|
Zou W, He J, Liu Y, Zhu J, Liu F, Xie Y, Li C, Du H, Huang F, Zhou Z, Li X, Zhu X. Sustained Attention Deficits in Adults With Juvenile-Onset Type 1 Diabetes Mellitus. Psychosom Med 2021; 83:906-912. [PMID: 34334732 DOI: 10.1097/psy.0000000000000992] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/25/2022]
Abstract
OBJECTIVE This study aimed to investigate whether patients with juvenile-onset type 1 diabetes mellitus (T1DM) have poorer sustained attention than their counterparts with adult-onset T1DM, and whether there is a relationship between diabetes-related variables and sustained attention. METHODS This study included 76 participants with juvenile-onset T1DM, 68 participants with adult-onset T1DM, and 85 healthy controls (HCs). All participants completed the Sustained Attention to Response Task, Beck Depression Inventory-II, and the Chinese version of the Wechsler Adult Intelligence Scale. RESULTS The juvenile-onset group showed more omission errors (p = .007) than the adult-onset group and shorter reaction time (p = .005) than HCs, whereas the adult-onset group showed no significant differences compared with HCs. Hierarchical linear regression analysis revealed that the age of onset was associated with omission errors in T1DM participants (β = -0.275, t = -2.002, p = .047). In the juvenile-onset group, the omission error rate were associated with the history of severe hypoglycemia (β = 0.225, t = 1.996, p = .050), whereas reaction time was associated with the age of onset (β = -0.251, t = -2.271, p = .026). Fasting blood glucose levels were significantly associated with reaction time in both the juvenile-onset and adult-onset groups (β = -0.236, t = -2.117, p = .038, and β = 0.259, t = 2.041, p = .046, respectively). CONCLUSIONS Adults with juvenile-onset T1DM have sustained attention deficits in contrast to their adult-onset counterparts, suggesting that the disease adversely affects the developing brain. Both the history of severe hypoglycemia and fasting blood glucose levels are factors associated with sustained attention impairment. Early diagnosis and treatment in juvenile patients are required to prevent the detrimental effects of diabetes.
Collapse
Affiliation(s)
- Wenjing Zou
- From the Medical Psychological Center (Zou, Y. Liu, J. Zhu, C. Li, Du, X. Zhu), The Second Xiangya Hospital, Central South University; Medical Psychological Institute of Central South University (X. Zhu); National Clinical Research Center for Mental Disorders (X. Zhu), The Second Xiangya Hospital; Department of Psychology (He) and Hunan Key Laboratory of Children's Psychological Development and Brain Cognitive Science (He), Hunan First Normal University; National Clinical Research Center for Metabolic Diseases, Key Laboratory of Diabetes Immunology (Central South University), Ministry of Education, and Department of Metabolism and Endocrinology (Zou, Y. Liu, Xie, Zhou, X. Li), The Second Xiangya Hospital of Central South University; Xiangya School of Nursing (F. Liu), Central South University, Hunan Province; and Department of Nutrition (Huang), The Second Xiangya Hospital, Central South University, National Clinical Research Center for Metabolic Diseases, Changsha, Hunan Province, China
| | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
13
|
Taboada Gjorup AL, Snoek FJ, van Duinkerken E. Diabetes Self-Care in Older Adults With Type 1 Diabetes Mellitus: How Does Cognition Influence Self-Management. FRONTIERS IN CLINICAL DIABETES AND HEALTHCARE 2021; 2:727029. [PMID: 36994333 PMCID: PMC10012116 DOI: 10.3389/fcdhc.2021.727029] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/17/2021] [Accepted: 08/27/2021] [Indexed: 11/13/2022]
Abstract
With increasing knowledge and improvements in options for glycemic control, the life-expectancy of patients with type 1 diabetes mellitus (T1DM) has increased considerably over the past decades. Whereas this is undeniably positive for patients, aging is related to natural decline in cognitive functions. As patients with T1DM across the life-span are susceptible to cognitive deterioration, an interaction with aging may be expected and the risk of development of dementia might be increased. As achieving glycemic control depends on a set of diabetes self-management behaviors, it is imperative to understand how cognitive functions are involved in the upkeep of these behaviors and how cognitive impairment may affect them. In this narrative review, we set out to understand the relationship between cognition and T1DM self-care by first reviewing the glycemic targets in older adults, what treatment options are available, and what cognitive functions they draw upon. We will then review the cognitive literature in older adults that is available and then link both together. Lastly, we finish with clinical recommendations and suggestions for future research.
Collapse
Affiliation(s)
- Ana Lúcia Taboada Gjorup
- Post-Graduate Program in Neurology, Department of Neurology, University Hospital Gaffrée and Guinle, Federal University of the State of Rio de Janeiro, Rio de Janeiro, Brazil
- Department of Internal Medicine, University Hospital Gaffrée and Guinle, Federal University of the State of Rio de Janeiro, Rio de Janeiro, Brazil
| | - Frank J. Snoek
- Department of Medical Psychology, Amsterdam University Medical Centers, Vrije Universiteit Amsterdam, Amsterdam, Netherlands
| | - Eelco van Duinkerken
- Post-Graduate Program in Neurology, Department of Neurology, University Hospital Gaffrée and Guinle, Federal University of the State of Rio de Janeiro, Rio de Janeiro, Brazil
- Department of Medical Psychology, Amsterdam University Medical Centers, Vrije Universiteit Amsterdam, Amsterdam, Netherlands
- Center for Epilepsy, Instituto Estadual do Cérebro Paulo Niemeyer, Rio de Janeiro, Brazil
| |
Collapse
|
14
|
Yu KKK, Cheing GLY, Cheung C, Kranz GS, Cheung AKK. Gray Matter Abnormalities in Type 1 and Type 2 Diabetes: A Dual Disorder ALE Quantification. Front Neurosci 2021; 15:638861. [PMID: 34163319 PMCID: PMC8215122 DOI: 10.3389/fnins.2021.638861] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/07/2020] [Accepted: 05/07/2021] [Indexed: 12/06/2022] Open
Abstract
Aims/hypothesis: Diabetes mellitus (DM) is associated with comorbid brain disorders. Neuroimaging studies in DM revealed neuronal degeneration in several cortical and subcortical brain regions. Previous studies indicate more pronounced brain alterations in type 2 diabetes mellitus (T2DM) than in type 1 diabetes mellitus (T1DM). However, a comparison of both types of DM in a single analysis has not been done so far. The aim of this meta-analysis was to conduct an unbiased objective investigation of neuroanatomical differences in DM by combining voxel-based morphometry (VBM) studies of T1DM and T2DM using dual disorder anatomical likelihood estimation (ALE) quantification. Methods: PubMed, Web of Science and Medline were systematically searched for publications until June 15, 2020. VBM studies comparing gray matter volume (GMV) differences between DM patients and controls at the whole-brain level were included. Study coordinates were entered into the ALE meta-analysis to investigate the extent to which T1DM, T2DM, or both conditions contribute to gray matter volume differences compared to controls. Results: Twenty studies (comprising of 1,175 patients matched with 1,013 controls) were included, with seven studies on GMV alterations in T1DM and 13 studies on GMV alterations in T2DM. ALE analysis revealed seven clusters of significantly lower GMV in T1DM and T2DM patients relative to controls across studies. Both DM subtypes showed GMV reductions in the left caudate, right superior temporal lobe, and left cuneus. Conversely, GMV reductions associated exclusively with T2DM (>99% contribution) were found in the left cingulate, right posterior lobe, right caudate and left occipital lobe. Meta-regression revealed no significant influence of study size, disease duration, and HbA1c values. Conclusions/interpretation: Our findings suggest a more pronounced gray matter atrophy in T2DM compared to T1DM. The increased risk of microvascular or macrovascular complications, as well as the disease-specific pathology of T2DM may contribute to observed GMV reductions. Systematic Review Registration: [PROSPERO], identifier [CRD42020142525].
Collapse
Affiliation(s)
- Kevin K K Yu
- Department of Rehabilitation Sciences, The Hong Kong Polytechnic University, Kowloon, Hong Kong.,University Research Facility in Behavioral and Systems Neuroscience (UBSN), The Hong Kong Polytechnic University, Kowloon, Hong Kong
| | - Gladys L Y Cheing
- Department of Rehabilitation Sciences, The Hong Kong Polytechnic University, Kowloon, Hong Kong.,University Research Facility in Behavioral and Systems Neuroscience (UBSN), The Hong Kong Polytechnic University, Kowloon, Hong Kong
| | - Charlton Cheung
- Department of Psychiatry, The University of Hong Kong, Pokfulam, Hong Kong
| | - Georg S Kranz
- Department of Rehabilitation Sciences, The Hong Kong Polytechnic University, Kowloon, Hong Kong.,The State Key Laboratory for Brain and Cognitive Sciences, The University of Hong Kong, Pokfulam, Hong Kong.,Department of Psychiatry and Psychotherapy, Medical University of Vienna, Vienna, Austria
| | - Alex Kwok-Kuen Cheung
- Department of Rehabilitation Sciences, The Hong Kong Polytechnic University, Kowloon, Hong Kong
| |
Collapse
|
15
|
Thompson JL, Bucks RS, Weinborn M, Woods SP. The Location Learning Test-Revised is associated with informant-reported everyday functioning in a sample of community-dwelling older adults. Arch Clin Neuropsychol 2021; 36:527-536. [PMID: 32783065 DOI: 10.1093/arclin/acaa061] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/23/2020] [Revised: 06/18/2020] [Accepted: 07/14/2020] [Indexed: 11/14/2022] Open
Abstract
OBJECTIVE Object location learning and memory may be important for older adults to successfully complete some everyday activities. METHOD This cross-sectional, correlational study investigated the ecological relevance of the Location Learning Test-Revised (LLT-R) in 195 community-dwelling, older adults in Western Australia. The LLT-R assesses object location learning and memory for everyday objects over five learning trials and after a 30-min delay. Knowledgeable informants provided structured ratings of participants' activities of daily living and memory symptoms. RESULTS A greater number of errors on LLT-R total learning trials were associated with mild problems in activities of daily living (particularly in travel and household domains), but not with memory symptoms. The LLT-R's association with activities of daily living was accompanied by a small-to-medium effect size and was not better explained by demographics, global cognitive functioning, mood, or chronic medical conditions. CONCLUSIONS Findings provide some support for the ecological relevance of the LLT-R among older community-dwelling adults and suggest that object location learning may play a role in some everyday functioning problems that accompany typical aging.
Collapse
Affiliation(s)
| | - Romola S Bucks
- School of Psychological Science, University of Western Australia, Perth, WA, Australia
| | - Michael Weinborn
- School of Psychological Science, University of Western Australia, Perth, WA, Australia
| | - Steven Paul Woods
- Department of Psychology, University of Houston, Houston, TX, USA.,School of Psychological Science, University of Western Australia, Perth, WA, Australia
| |
Collapse
|
16
|
On the physiology of cognitive decline in type 1 diabetes. Neurophysiol Clin 2021; 51:259-265. [PMID: 33741257 DOI: 10.1016/j.neucli.2021.02.005] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/29/2020] [Revised: 02/25/2021] [Accepted: 02/25/2021] [Indexed: 11/23/2022] Open
Abstract
OBJECTIVES Type 1 diabetes mellitus (T1DM) may be associated with cognitive impairment and notably a decline in psychomotor speed, information processing speed and attention. The mechanism for this decline is uncertain. Previous studies by our group and others have demonstrated a decline in EEG-power and event-related potential amplitude in T1DM. The objectives of the present study were to explore whether 1) the association between event-related potential (N100) amplitude and psychomotor speed is different between T1DM and healthy subjects, and 2) the decline in N100 amplitude depends on duration of diabetes. METHODS Patients with T1DM (N = 204) and healthy control subjects (N = 358) were included in a cross-sectional study. Event-related brain potentials were recorded with auditory reaction tasks. Psychomotor speed was evaluated with the Grooved Pegboard test in a subset of the patients (N = 70) and the healthy control subjects (N = 89). RESULTS Patients with T1DM had a decrease in the N100 amplitude that correlated with a decline in psychomotor speed, longer duration of diabetes and increasing age. In healthy controls, the N100 amplitude did not decrease with age and the association between psychomotor speed and N100 amplitude was absent. CONCLUSION The association between psychomotor speed and N100 amplitude is likely to be a specific trait for T1DM since it was not found in healthy controls and was dependent on diabetes duration. Our findings indicate that the pathogenesis of cognitive decline in T1DM may involve a disease-related factor with a long-term influence on the N100 amplitude.
Collapse
|
17
|
van Duinkerken E, Snoek FJ, de Wit M. The cognitive and psychological effects of living with type 1 diabetes: a narrative review. Diabet Med 2020; 37:555-563. [PMID: 31850538 PMCID: PMC7154747 DOI: 10.1111/dme.14216] [Citation(s) in RCA: 63] [Impact Index Per Article: 12.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Accepted: 12/13/2019] [Indexed: 01/09/2023]
Abstract
Across the lifespan, type 1 diabetes mellitus has a profound (neuro)psychological impact. In young people, type 1 diabetes can interfere with psychosocial development and hamper school performance. In adulthood, it can interfere with work life, relationships and parenting. A substantial minority of adults with type 1 diabetes experience coping difficulties and high diabetes-related distress. In youth and adulthood, type 1 diabetes is related to mild cognitive decrements as well as affective disorders, such as depression and anxiety. There is limited literature available that explores the interaction between cognitive and psychological comorbidity and underlying mechanisms. The aims of the present narrative review were to summarize the current state of the literature regarding both cognitive and psychological comorbidities in type 1 diabetes across the lifespan, and to explore potential links between the two domains of interest to make suggestions for future research and clinical practice.
Collapse
Affiliation(s)
- E. van Duinkerken
- Epilepsy CentreInstituto Estadual do Cérebro Paulo NiemeyerRio de JaneiroRJBrazil
- Department of Medical PsychologyAmsterdam University Medical CentresVrije UniveristeitAmsterdamThe Netherlands
- Amsterdam Diabetes Centre/Department of Internal MedicineAmsterdam University Medical CentresVrije UniveristeitAmsterdamThe Netherlands
| | - F. J. Snoek
- Department of Medical PsychologyAmsterdam University Medical CentresVrije UniveristeitAmsterdamThe Netherlands
| | - M. de Wit
- Department of Medical PsychologyAmsterdam University Medical CentresVrije UniveristeitAmsterdamThe Netherlands
| |
Collapse
|
18
|
Nemy M, Cedres N, Grothe MJ, Muehlboeck JS, Lindberg O, Nedelska Z, Stepankova O, Vyslouzilova L, Eriksdotter M, Barroso J, Teipel S, Westman E, Ferreira D. Cholinergic white matter pathways make a stronger contribution to attention and memory in normal aging than cerebrovascular health and nucleus basalis of Meynert. Neuroimage 2020; 211:116607. [PMID: 32035186 DOI: 10.1016/j.neuroimage.2020.116607] [Citation(s) in RCA: 63] [Impact Index Per Article: 12.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/25/2019] [Revised: 01/23/2020] [Accepted: 02/03/2020] [Indexed: 12/20/2022] Open
Abstract
The integrity of the cholinergic system plays a central role in cognitive decline both in normal aging and neurological disorders including Alzheimer's disease and vascular cognitive impairment. Most of the previous neuroimaging research has focused on the integrity of the cholinergic basal forebrain, or its sub-region the nucleus basalis of Meynert (NBM). Tractography using diffusion tensor imaging data may enable modelling of the NBM white matter projections. We investigated the contribution of NBM volume, NBM white matter projections, small vessel disease (SVD), and age to performance in attention and memory in 262 cognitively normal individuals (39-77 years of age, 53% female). We developed a multimodal MRI pipeline for NBM segmentation and diffusion-based tracking of NBM white matter projections, and computed white matter hypointensities (WM-hypo) as a marker of SVD. We successfully tracked pathways that closely resemble the spatial layout of the cholinergic system as seen in previous post-mortem and DTI tractography studies. We found that high WM-hypo load was associated with older age, male sex, and lower performance in attention and memory. A high WM-hypo load was also associated with lower integrity of the cholinergic system above and beyond the effect of age. In a multivariate model, age and integrity of NBM white matter projections were stronger contributors than WM-hypo load and NBM volume to performance in attention and memory. We conclude that the integrity of NBM white matter projections plays a fundamental role in cognitive aging. This and other modern neuroimaging methods offer new opportunities to re-evaluate the cholinergic hypothesis of cognitive aging.
Collapse
Affiliation(s)
- Milan Nemy
- Department of Cybernetics, Faculty of Electrical Engineering, Czech Technical University, Prague, Czech Republic
| | - Nira Cedres
- Division of Clinical Geriatrics, Center for Alzheimer Research, Department of Neurobiology, Care Sciences and Society, Karolinska Institutet, Stockholm, Sweden; Faculty of Psychology, University of La Laguna, La Laguna, Tenerife, Spain
| | - Michel J Grothe
- Clinical Dementia Research Section, German Center for Neurodegenerative Diseases (DZNE), Rostock, Germany
| | - J-Sebastian Muehlboeck
- Division of Clinical Geriatrics, Center for Alzheimer Research, Department of Neurobiology, Care Sciences and Society, Karolinska Institutet, Stockholm, Sweden
| | - Olof Lindberg
- Division of Clinical Geriatrics, Center for Alzheimer Research, Department of Neurobiology, Care Sciences and Society, Karolinska Institutet, Stockholm, Sweden
| | - Zuzana Nedelska
- Memory Clinic, Department of Neurology, Charles University, 2nd Faculty of Medicine and Motol University Hospital, Prague, Czech Republic; Department of Radiology, Mayo Clinic, Rochester, MN, USA
| | - Olga Stepankova
- Czech Institute of Informatics, Robotics, and Cybernetics, Czech Technical University, Prague, Czech Republic
| | - Lenka Vyslouzilova
- Czech Institute of Informatics, Robotics, and Cybernetics, Czech Technical University, Prague, Czech Republic
| | - Maria Eriksdotter
- Division of Clinical Geriatrics, Center for Alzheimer Research, Department of Neurobiology, Care Sciences and Society, Karolinska Institutet, Stockholm, Sweden; Theme Aging, Karolinska University Hospital, Stockholm, Sweden
| | - José Barroso
- Faculty of Psychology, University of La Laguna, La Laguna, Tenerife, Spain
| | - Stefan Teipel
- Clinical Dementia Research Section, German Center for Neurodegenerative Diseases (DZNE), Rostock, Germany; Department of Psychosomatic Medicine, University Medicine Rostock, Rostock, Germany
| | - Eric Westman
- Division of Clinical Geriatrics, Center for Alzheimer Research, Department of Neurobiology, Care Sciences and Society, Karolinska Institutet, Stockholm, Sweden; Department of Neuroimaging, Centre for Neuroimaging Sciences, Institute of Psychiatry, Psychology, and Neuroscience, King's College London, London, UK
| | - Daniel Ferreira
- Division of Clinical Geriatrics, Center for Alzheimer Research, Department of Neurobiology, Care Sciences and Society, Karolinska Institutet, Stockholm, Sweden; Faculty of Psychology, University of La Laguna, La Laguna, Tenerife, Spain.
| |
Collapse
|
19
|
Diabetes mellitus in the young and the old: Effects on cognitive functioning across the life span. Neurobiol Dis 2020; 134:104608. [DOI: 10.1016/j.nbd.2019.104608] [Citation(s) in RCA: 28] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/28/2019] [Revised: 08/06/2019] [Accepted: 09/04/2019] [Indexed: 01/12/2023] Open
|
20
|
Parikh L, Seo D, Lacadie C, Belfort-Deaguiar R, Groskreutz D, Hamza M, Dai F, Scheinost D, Sinha R, Todd Constable R, Sherwin R, Hwang JJ. Differential Resting State Connectivity Responses to Glycemic State in Type 1 Diabetes. J Clin Endocrinol Metab 2020; 105:5568225. [PMID: 31511876 PMCID: PMC6936965 DOI: 10.1210/clinem/dgz004] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/08/2019] [Revised: 06/28/2019] [Accepted: 08/30/2019] [Indexed: 12/13/2022]
Abstract
CONTEXT Individuals with type 1 diabetes mellitus (T1DM) have alterations in brain activity that have been postulated to contribute to the adverse neurocognitive consequences of T1DM; however, the impact of T1DM and hypoglycemic unawareness on the brain's resting state activity remains unclear. OBJECTIVE To determine whether individuals with T1DM and hypoglycemia unawareness (T1DM-Unaware) had changes in the brain resting state functional connectivity compared to healthy controls (HC) and those with T1DM and hypoglycemia awareness (T1DM-Aware). DESIGN Observational study. SETTING Academic medical center. PARTICIPANTS 27 individuals with T1DM and 12 HC volunteers participated in the study. INTERVENTION All participants underwent blood oxygenation level dependent (BOLD) resting state functional magnetic brain imaging during a 2-step hyperinsulinemic euglycemic (90 mg/dL)-hypoglycemic (60 mg/dL) clamp. OUTCOME Changes in resting state functional connectivity. RESULTS Using 2 separate methods of functional connectivity analysis, we identified distinct differences in the resting state brain responses to mild hypoglycemia between HC, T1DM-Aware, and T1DM-Unaware participants, particularly in the angular gyrus, an integral component of the default mode network (DMN). Furthermore, changes in angular gyrus connectivity also correlated with greater symptoms of hypoglycemia (r = 0.461, P = 0.003) as well as higher scores of perceived stress (r = 0.531, P = 0.016). CONCLUSION These findings provide evidence that individuals with T1DM have changes in the brain's resting state connectivity patterns, which may be further associated with differences in awareness to hypoglycemia. These changes in connectivity may be associated with alterations in functional outcomes among individuals with T1DM.
Collapse
Affiliation(s)
- Lisa Parikh
- Section of Endocrinology, Yale School of Medicine, New Haven, CT, US
| | - Dongju Seo
- Department of Psychiatry, Yale School of Medicine, New Haven, CT, US
| | - Cheryl Lacadie
- Department of Radiology & Biomedical Imaging, Yale School of Medicine, New Haven, CT, US
| | | | - Derek Groskreutz
- Section of Endocrinology, Yale School of Medicine, New Haven, CT, US
| | - Muhammad Hamza
- Section of Endocrinology, Yale School of Medicine, New Haven, CT, US
| | - Feng Dai
- Yale Center for Analytical Sciences, Yale School of Public Health, New Haven, CT, US
| | - Dustin Scheinost
- Department of Radiology & Biomedical Imaging, Yale School of Medicine, New Haven, CT, US
| | - Rajita Sinha
- Department of Psychiatry, Yale School of Medicine, New Haven, CT, US
| | - R Todd Constable
- Department of Radiology & Biomedical Imaging, Yale School of Medicine, New Haven, CT, US
| | - Robert Sherwin
- Section of Endocrinology, Yale School of Medicine, New Haven, CT, US
| | - Janice Jin Hwang
- Section of Endocrinology, Yale School of Medicine, New Haven, CT, US
- Correspondence and Reprint Requests: Janice Hwang, The Anylan Center, TAC 119S, New Haven, CT 06520, USA. E-mail:
| |
Collapse
|
21
|
Surkova EV, Tanashyan MM, Bespalov AI, Naminov AV. [Diabetes mellitus and cognitive impairment]. TERAPEVT ARKH 2019; 91:112-118. [PMID: 32598641 DOI: 10.26442/00403660.2019.10.000362] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/16/2020] [Indexed: 11/22/2022]
Abstract
The review discusses literature data and the results of our own studies on the effect of diabetes on cognitive functions and cerebrovascular pathology, as well as possible ptogenetic mechanisms for the implementation of this effect. The results of studies on the effects of antidiabetic drugs on cognitive function are presented.
Collapse
|
22
|
Johnson L, Basilakos A, Yourganov G, Cai B, Bonilha L, Rorden C, Fridriksson J. Progression of Aphasia Severity in the Chronic Stages of Stroke. AMERICAN JOURNAL OF SPEECH-LANGUAGE PATHOLOGY 2019; 28:639-649. [PMID: 30958970 PMCID: PMC6802862 DOI: 10.1044/2018_ajslp-18-0123] [Citation(s) in RCA: 40] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/30/2018] [Revised: 09/21/2018] [Accepted: 11/02/2018] [Indexed: 05/21/2023]
Abstract
Background and Purpose The severity of aphasic impairment in chronic stroke survivors is typically thought to be stable by 6 months postonset. However, a recent study showed that stroke survivors with aphasia experience language improvement or decline in the chronic phase, years beyond onset. Little is known about why some individuals improve whereas others remain stable or decline. Additionally, no study has tracked changes in aphasia from assessments completed at multiple time points across many years. The current study offers a comprehensive analysis of potential predictive demographic and health information to determine which factors predict dynamic changes in aphasia severity in chronic stroke. Methods Individuals in the chronic stage of a single-event, left-hemisphere ischemic stroke were identified from an archival database and included for study ( N = 39). Participants were included if they had undergone 2 or more standardized language assessments acquired at time points at least 6 months apart, with the 1st assessment at least 6 months postinjury. A linear mixed-effects model was used to determine the impact of treatment and a variety of demographic and health factors on language change. Results Over time, half of the participants improved (51%), whereas approximately a quarter (26%) decreased, and a quarter (23%) remained stable. A greater number of aphasia treatment hours significantly predicted language improvement ( p = .03), whereas older stroke age was associated with long-term decline ( p = .04). Two interactions were found to be significant in predicting improvement in individuals with diabetes: Increased exercise and younger age at stroke were significant in predicting outcomes ( p < .05). Conclusions Factors that significantly influence language recovery in chronic aphasia include stroke age and receiving aphasia treatment. For those with diabetes, increased exercise was shown to improve outcomes. Results from this study offer clinicians greater insight into the influence of patient factors on long-term recovery from stroke aphasia while suggesting a potential adjunct to language therapy: exercise. Supplemental Material https://doi.org/10.23641/asha.7849304.
Collapse
Affiliation(s)
- Lisa Johnson
- Department of Communication Sciences and Disorders, University of South Carolina, Columbia
| | - Alexandra Basilakos
- Department of Communication Sciences and Disorders, University of South Carolina, Columbia
| | | | - Bo Cai
- Department of Biostatistics, University of South Carolina, Columbia
| | - Leonardo Bonilha
- Department of Neurology, Medical University of South Carolina, Charleston
| | - Chris Rorden
- Department of Psychology, University of South Carolina, Columbia
| | - Julius Fridriksson
- Department of Communication Sciences and Disorders, University of South Carolina, Columbia
| |
Collapse
|
23
|
González-Garrido AA, Gallardo-Moreno GB, Gómez-Velázquez FR. Type 1 diabetes and working memory processing of emotional faces. Behav Brain Res 2019; 363:173-181. [PMID: 30738100 DOI: 10.1016/j.bbr.2019.02.008] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/11/2018] [Revised: 01/22/2019] [Accepted: 02/04/2019] [Indexed: 02/07/2023]
Abstract
Several executive functions decline with the development of type-1 diabetes (T1D), particularly working memory (WM). In adults, WM ensures efficient cognitive processing by focusing on task-relevant information while suppressing distractors. It has been well documented that WM can be influenced by emotional stimuli, which may facilitate the retention of information, interfere with uptake, or even affect its capacity. We evaluated the effect of T1D on visual WM processing using emotional faces as stimuli, in young patients with satisfactory clinical evolution, and matched controls without T1D. All subjects performed a 2-back task detecting facial identity using neutral, happy or fearful faces in a block design for fMRI. Behavioral performance was similar with the exception that patients responded significantly slower. Most importantly, between-group differences were found in patterns of brain activation. In comparison, more widespread brain activation -predominantly prefrontal- was found in the participants with T1D when processing neutral faces, while a decrease was observed when processing happy and fearful ones. Statistical contrasts demonstrated significantly-different activation patterns between groups when processing emotional faces, as controls exhibited greater activation in the cuneus, posterior cortex and parahippocampal gyrus, while the patients showed greater activation in the prefrontal structures. Results may reflect compensatory efforts made to minimize the deleterious effects of disease development on attention allocation processes and the operational efficiency of WM. The results suggest that emotional parameters should be periodically assessed in individuals with T1D in order to anticipate the emergence of attention and WM impairment.
Collapse
Affiliation(s)
- Andrés A González-Garrido
- Instituto de Neurociencias, Universidad de Guadalajara, Mexico; Antiguo Hospital Civil de Guadalajara "Fray Antonio Alcalde", Mexico.
| | | | | |
Collapse
|
24
|
Thorn LM, Shams S, Gordin D, Liebkind R, Forsblom C, Summanen P, Hägg-Holmberg S, Tatlisumak T, Salonen O, Putaala J, Martola J, Groop PH. Clinical and MRI Features of Cerebral Small-Vessel Disease in Type 1 Diabetes. Diabetes Care 2019; 42:327-330. [PMID: 30552131 DOI: 10.2337/dc18-1302] [Citation(s) in RCA: 22] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/16/2018] [Accepted: 10/29/2018] [Indexed: 02/03/2023]
Abstract
OBJECTIVE To assess the prevalence of cerebral small-vessel disease (SVD) in subjects with type 1 diabetes compared with healthy control subjects and to characterize the diabetes-related factors associated with SVD. RESEARCH DESIGN AND METHODS This substudy was cross-sectional in design and included 191 participants with type 1 diabetes and median age 40.0 years (interquartile range 33.0-45.1) and 30 healthy age- and sex-matched control subjects. All participants underwent clinical investigation and brain MRIs, assessed for cerebral SVD. RESULTS Cerebral SVD was more common in participants with type 1 diabetes than in healthy control subjects: any marker 35% vs. 10% (P = 0.005), cerebral microbleeds (CMBs) 24% vs. 3.3% (P = 0.008), white matter hyperintensities 17% vs. 6.7% (P = 0.182), and lacunes 2.1% vs. 0% (P = 1.000). Presence of CMBs was independently associated with systolic blood pressure (odds ratio 1.03 [95% CI 1.00-1.05], P = 0.035). CONCLUSIONS Cerebral SVD, CMBs in particular, is more common in young people with type 1 diabetes compared with healthy control subjects.
Collapse
Affiliation(s)
- Lena M Thorn
- Folkhälsan Institute of Genetics, Folkhälsan Research Center, Helsinki, Finland.,Research Programs Unit, Diabetes and Obesity, University of Helsinki, Helsinki, Finland
| | - Sara Shams
- Department of Radiology, Karolinska University Hospital, and Department of Clinical Neuroscience, Karolinska Institute, Stockholm, Sweden
| | - Daniel Gordin
- Folkhälsan Institute of Genetics, Folkhälsan Research Center, Helsinki, Finland.,Research Programs Unit, Diabetes and Obesity, University of Helsinki, Helsinki, Finland.,Joslin Diabetes Center, Harvard Medical School, Boston, MA
| | - Ron Liebkind
- Department of Neurology, Helsinki University Hospital, Helsinki, Finland
| | - Carol Forsblom
- Folkhälsan Institute of Genetics, Folkhälsan Research Center, Helsinki, Finland.,Research Programs Unit, Diabetes and Obesity, University of Helsinki, Helsinki, Finland
| | - Paula Summanen
- Folkhälsan Institute of Genetics, Folkhälsan Research Center, Helsinki, Finland.,Research Programs Unit, Diabetes and Obesity, University of Helsinki, Helsinki, Finland.,Department of Ophthalmology, Helsinki University Hospital, Helsinki, Finland
| | - Stefanie Hägg-Holmberg
- Folkhälsan Institute of Genetics, Folkhälsan Research Center, Helsinki, Finland.,Research Programs Unit, Diabetes and Obesity, University of Helsinki, Helsinki, Finland
| | - Turgut Tatlisumak
- Department of Neurology, Helsinki University Hospital, Helsinki, Finland.,Department of Clinical Neuroscience/Neurology, Institute of Neuroscience and Physiology, Sahlgrenska Academy, University of Gothenburg, Gothenburg, Sweden.,Department of Neurology, Sahlgrenska University Hospital, Gothenburg, Sweden
| | - Oili Salonen
- Department of Radiology, Helsinki University Hospital, Helsinki, Finland
| | - Jukka Putaala
- Department of Neurology, Helsinki University Hospital, Helsinki, Finland
| | - Juha Martola
- Department of Radiology, Karolinska University Hospital, and Department of Clinical Neuroscience, Karolinska Institute, Stockholm, Sweden.,Department of Radiology, Helsinki University Hospital, Helsinki, Finland
| | | | | |
Collapse
|
25
|
Karssemeijer EGA, Aaronson JA, Bossers WJR, Donders R, Olde Rikkert MGM, Kessels RPC. The quest for synergy between physical exercise and cognitive stimulation via exergaming in people with dementia: a randomized controlled trial. ALZHEIMERS RESEARCH & THERAPY 2019; 11:3. [PMID: 30611286 PMCID: PMC6320611 DOI: 10.1186/s13195-018-0454-z] [Citation(s) in RCA: 76] [Impact Index Per Article: 12.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 07/13/2018] [Accepted: 11/27/2018] [Indexed: 12/19/2022]
Abstract
Background Exercise is often proposed as a non-pharmacological intervention to delay cognitive decline in people with dementia, but evidence remains inconclusive. Previous studies suggest that combining physical exercise with cognitive stimulation may be more successful in this respect. Exergaming is a promising intervention in which physical exercise is combined with cognitively challenging tasks in a single session. The aim of this study was to investigate the effect of exergame training and aerobic training on cognitive functioning in older adults with dementia. Methods A three-armed randomized controlled trial (RCT) compared exergame training, aerobic training and an active control intervention consisting of relaxation and flexibility exercises. Individuals with dementia were randomized and individually trained three times a week during 12 weeks. Cognitive functioning was measured at baseline, after the 12-week intervention period and at 24-week follow-up by neuropsychological assessment. The domains of executive function, episodic memory, working memory and psychomotor speed were evaluated. Test scores were converted into standardized z-scores that were averaged per domain. Between-group differences were analysed with analysis of covariance. Results Data from 115 people with dementia (mean (SD) age = 79.2 (6.9) years; mean (SD) MMSE score = 22.9 (3.4)) were analysed. There was a significant improvement in psychomotor speed in the aerobic and exergame groups compared to the active control group (mean difference domain score (95% CI) aerobic versus control 0.370 (0.103–0.637), p = 0.007; exergame versus control 0.326 (0.081–0.571), p = 0.009). The effect size was moderate (partial η2 = 0.102). No significant differences between the intervention and control groups were found for executive functioning, episodic memory and working memory. Conclusions To our knowledge, this is the first RCT evaluating the effects of exergame training and aerobic training on cognitive functioning in people with dementia. We found that both exergame training and aerobic training improve psychomotor speed, compared to an active control group. This finding may be clinically relevant as psychomotor speed is an important predictor for functional decline. No effects were found on executive function, episodic memory and working memory. Trial registration Netherlands Trial Register, NTR5581. Registered on 7 October 2015. Electronic supplementary material The online version of this article (10.1186/s13195-018-0454-z) contains supplementary material, which is available to authorized users.
Collapse
Affiliation(s)
- Esther G A Karssemeijer
- Radboud University Medical Center, Donders Institute for Brain Cognition and Behaviour, Department of Geriatric Medicine, Nijmegen, the Netherlands.,Radboud University Medical Center, Radboudumc Alzheimer Center, Nijmegen, the Netherlands
| | - Justine A Aaronson
- Radboud University Medical Center, Donders Institute for Brain Cognition and Behaviour, Department of Medical Psychology, Nijmegen, the Netherlands
| | - Willem J R Bossers
- BeweegStrateeg, Groningen, the Netherlands.,Center for Human Movement Sciences, University Medical Center Groningen, University of Groningen, Groningen, the Netherlands
| | - Rogier Donders
- Radboud University Medical Center, Department for Health Evidence, Nijmegen, the Netherlands
| | - Marcel G M Olde Rikkert
- Radboud University Medical Center, Donders Institute for Brain Cognition and Behaviour, Department of Geriatric Medicine, Nijmegen, the Netherlands.,Radboud University Medical Center, Radboudumc Alzheimer Center, Nijmegen, the Netherlands
| | - Roy P C Kessels
- Radboud University Medical Center, Radboudumc Alzheimer Center, Nijmegen, the Netherlands. .,Radboud University Medical Center, Donders Institute for Brain Cognition and Behaviour, Department of Medical Psychology, Nijmegen, the Netherlands. .,Center for Cognition, Donders Institute for Brain Cognition and Behaviour, Radboud University, Nijmegen, the Netherlands.
| |
Collapse
|
26
|
van Duinkerken E, Snoek FJ. Cognition in elderly with type 1 diabetes: Is there an interaction between glycemia and aging? J Diabetes Complications 2019; 33:4-5. [PMID: 30366826 DOI: 10.1016/j.jdiacomp.2018.04.013] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/17/2018] [Accepted: 04/20/2018] [Indexed: 01/20/2023]
Affiliation(s)
- Eelco van Duinkerken
- Epilepsy Center, Instituto Estadual do Cérebro Paulo Niemeyer, Rio de Janeiro, RJ, Brazil; Department of Medical Psychology, Amsterdam University Medical Centers, Free Universtiy, Amsterdam, the Netherlands; Amsterdam Diabetes Center/Department of Internal Medicine, Amsterdam University Medical Centers, Free University, Amsterdam, the Netherlands.
| | - Frank J Snoek
- Department of Medical Psychology, Amsterdam University Medical Centers, Free University, Amsterdam, the Netherlands; Department of Medical Psychology, Amsterdam University Medical Centers, University of Amsterdam, Amsterdam, the Netherlands
| |
Collapse
|
27
|
Musen G, Tinsley LJ, Marcinkowski KA, Pober D, Sun JK, Khatri M, Huynh R, Lu A, King GL, Keenan HA. Cognitive Function Deficits Associated With Long-Duration Type 1 Diabetes and Vascular Complications. Diabetes Care 2018; 41:1749-1756. [PMID: 29871904 PMCID: PMC6054500 DOI: 10.2337/dc17-1955] [Citation(s) in RCA: 46] [Impact Index Per Article: 6.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/19/2017] [Accepted: 05/06/2018] [Indexed: 02/03/2023]
Abstract
OBJECTIVE Patients with type 1 diabetes now live long enough to experience cognitive decline. During middle age, they show mild cognitive deficits, but it is unknown whether severity increases with aging or whether cognitive profiles are similar to those of age-matched peers with and without diabetes. RESEARCH DESIGN AND METHODS We tested and compared cognition in 82 individuals with 50 or more years of type 1 diabetes (Medalists), 31 age-matched individuals with type 2 diabetes, and 30 age-matched control subjects without diabetes. Medical histories and biospecimens were collected. We also evaluated the association of complications with cognition in Medalists only. RESULTS Compared with control subjects, both individuals with type 1 diabetes and individuals with type 2 diabetes performed worse on immediate and delayed recall (P ≤ 0.002) and psychomotor speed in both hands (P ≤ 0.01) and showed a trend toward worse executive function (P = 0.05). In Medalists, cardiovascular disease was associated with decreased executive function and proliferative diabetic retinopathy with slower psychomotor speed. CONCLUSIONS Both patients with type 1 and patients with type 2 diabetes showed overall worse cognition than control subjects. Further, in Medalists, a relationship between complications and cognition was seen. Although both groups with diabetes showed similar deficit patterns, the underlying mechanisms may be different. Now that patients with type 1 diabetes are living longer, efforts should be made to evaluate cognition and to identify modifying behaviors to slow decline.
Collapse
Affiliation(s)
- Gail Musen
- Research Division, Joslin Diabetes Center, Boston, MA
- Harvard Medical School, Boston, MA
| | | | | | - David Pober
- Research Division, Joslin Diabetes Center, Boston, MA
- Harvard Medical School, Boston, MA
| | - Jennifer K Sun
- Research Division, Joslin Diabetes Center, Boston, MA
- Harvard Medical School, Boston, MA
| | - Maya Khatri
- Research Division, Joslin Diabetes Center, Boston, MA
| | - Richie Huynh
- Research Division, Joslin Diabetes Center, Boston, MA
| | - Annie Lu
- Research Division, Joslin Diabetes Center, Boston, MA
| | - George L King
- Research Division, Joslin Diabetes Center, Boston, MA
- Harvard Medical School, Boston, MA
| | - Hillary A Keenan
- Research Division, Joslin Diabetes Center, Boston, MA
- Harvard Medical School, Boston, MA
- Sanofi Genzyme, Cambridge, MA
| |
Collapse
|
28
|
Nunley KA, Metti AL, Klein R, Klein BE, Saxton JA, Orchard TJ, Costacou T, Aizenstein HJ, Rosano C. Long-term changes in retinal vascular diameter and cognitive impairment in type 1 diabetes. Diab Vasc Dis Res 2018; 15:223-232. [PMID: 29488397 DOI: 10.1177/1479164118758581] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/13/2022] Open
Abstract
OBJECTIVE To assess associations between cognitive impairment and longitudinal changes in retinal microvasculature, over 18 years, in adults with type 1 diabetes. RESEARCH DESIGN AND METHODS Participants of the Pittsburgh Epidemiology of Diabetes Complications Study received ≥3 fundus photographs between baseline (1986-1988) and time of cognitive assessment (2010-2015: N = 119; 52% male; mean age and type 1 diabetes duration 43 and 34 years, respectively). Central retinal arteriolar equivalent and central retinal venular equivalent were estimated via computer-based methods; overall magnitude and speed of narrowing were quantified as cumulative average and slope, respectively. Median regression models estimated associations of central retinal arteriolar equivalent and central retinal venular equivalent measures with cognitive impairment status, adjusted for type 1 diabetes duration. Interactions with HbA1c, proliferative retinopathy and white matter hyperintensities were assessed. RESULTS Compared with participants without cognitive impairment, those with clinically relevant cognitive impairment experienced 1.8% greater and 31.1% faster central retinal arteriolar equivalent narrowing during prior years (t = -2.93, p = 0.004 and t = -3.97, p < 0.0001, respectively). Interactions with HbA1c, proliferative retinopathy and white matter hyperintensities were not significant. No associations were found between central retinal arteriolar equivalent at baseline, at time of cognitive testing, or any central retinal venular equivalent measures, and cognitive impairment. CONCLUSION Long-term arterial retinal changes could indicate type 1 diabetes-related cognitive impairment. Studies examining longitudinal central retinal arteriolar equivalent changes as early biomarkers of cognitive impairment risk are warranted.
Collapse
Affiliation(s)
- Karen A Nunley
- 1 Department of Epidemiology, Graduate School of Public Health, University of Pittsburgh, Pittsburgh, PA, USA
| | - Andrea L Metti
- 1 Department of Epidemiology, Graduate School of Public Health, University of Pittsburgh, Pittsburgh, PA, USA
| | - Ronald Klein
- 2 Department of Ophthalmology and Visual Sciences, University of Wisconsin-Madison, Madison, WI, USA
| | - Barbara E Klein
- 2 Department of Ophthalmology and Visual Sciences, University of Wisconsin-Madison, Madison, WI, USA
| | - Judith A Saxton
- 3 Department of Neurology, University of Pittsburgh, Pittsburgh, PA, USA
| | - Trevor J Orchard
- 1 Department of Epidemiology, Graduate School of Public Health, University of Pittsburgh, Pittsburgh, PA, USA
| | - Tina Costacou
- 1 Department of Epidemiology, Graduate School of Public Health, University of Pittsburgh, Pittsburgh, PA, USA
| | - Howard J Aizenstein
- 4 Department of Psychiatry, School of Medicine, University of Pittsburgh, Pittsburgh, PA, USA
| | - Caterina Rosano
- 1 Department of Epidemiology, Graduate School of Public Health, University of Pittsburgh, Pittsburgh, PA, USA
| |
Collapse
|
29
|
Hwang JJ, Parikh L, Lacadie C, Seo D, Lam W, Hamza M, Schmidt C, Dai F, Sejling AS, Belfort-DeAguiar R, Constable RT, Sinha R, Sherwin R. Hypoglycemia unawareness in type 1 diabetes suppresses brain responses to hypoglycemia. J Clin Invest 2018; 128:1485-1495. [PMID: 29381484 DOI: 10.1172/jci97696] [Citation(s) in RCA: 26] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/26/2017] [Accepted: 01/23/2018] [Indexed: 12/18/2022] Open
Abstract
BACKGROUND Among nondiabetic individuals, mild glucose decrements alter brain activity in regions linked to reward, motivation, and executive control. Whether these effects differ in type 1 diabetes mellitus (T1DM) patients with and without hypoglycemia awareness remains unclear. METHODS Forty-two individuals (13 healthy control [HC] subjects, 16 T1DM individuals with hypoglycemia awareness [T1DM-Aware], and 13 T1DM individuals with hypoglycemia unawareness [T1DM-Unaware]) underwent blood oxygen level-dependent functional MRI brain imaging during a 2-step hyperinsulinemic euglycemic (90 mg/dl)-hypoglycemic (60 mg/dl) clamp for assessment of neural responses to mild hypoglycemia. RESULTS Mild hypoglycemia in HC subjects altered activity in the caudate, insula, prefrontal cortex, and angular gyrus, whereas T1DM-Aware subjects showed no caudate and insula changes, but showed altered activation patterns in the prefrontal cortex and angular gyrus. Most strikingly, in direct contrast to HC and T1DM-Aware subjects, T1DM-Unaware subjects failed to show any hypoglycemia-induced changes in brain activity. These findings were also associated with blunted hormonal counterregulatory responses and hypoglycemia symptom scores during mild hypoglycemia. CONCLUSION In T1DM, and in particular T1DM-Unaware patients, there is a progressive blunting of brain responses in cortico-striatal and fronto-parietal neurocircuits in response to mild-moderate hypoglycemia. These findings have implications for understanding why individuals with impaired hypoglycemia awareness fail to respond appropriately to falling blood glucose levels. FUNDING This study was supported in part by NIH grants R01DK020495, P30 DK045735, K23DK109284, K08AA023545. The Yale Center for Clinical Investigation is supported by an NIH Clinical Translational Science Award (UL1 RR024139).
Collapse
Affiliation(s)
| | | | | | - Dongju Seo
- Department of Psychiatry, Yale School of Medicine, New Haven, Connecticut, USA
| | | | | | | | - Feng Dai
- Yale Center for Analytical Sciences, Yale School of Public Health, New Haven, Connecticut, USA
| | - Anne-Sophie Sejling
- Department of Cardiology, Nephrology and Endocrinology, Nordsjællands Hospital, Hillerød, Denmark
| | | | | | - Rajita Sinha
- Department of Psychiatry, Yale School of Medicine, New Haven, Connecticut, USA
| | | |
Collapse
|
30
|
Li W, Huang E, Gao S. Type 1 Diabetes Mellitus and Cognitive Impairments: A Systematic Review. J Alzheimers Dis 2018; 57:29-36. [PMID: 28222533 DOI: 10.3233/jad-161250] [Citation(s) in RCA: 114] [Impact Index Per Article: 16.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Abstract
Type 1 diabetes mellitus (T1DM) is a major subtype of diabetes and is usually diagnosed at a young age with insulin deficiency. The life expectancy of T1DM patients has increased substantially in comparison with that three decades ago due to the availability of exogenous insulin, though it is still shorter than that of healthy people. However, the relation remains unclear between T1DM and dementia as an aging-related disease. We conducted a systematic review of existing literature on T1DM and cognition impairments by carrying out searches in electronic databases Medline, EMBASE, and Google Scholar. We restricted our review to studies involving only human subjects and excluded studies on type 2 diabetes mellitus or non-classified diabetes. A meta-analysis was first performed on the relationship between T1DM and cognitive changes in youths and adults respectively. Then the review focused on the cognitive complications of T1DM and their relation with the characteristics of T1DM, glycemic control, diabetic complications, comorbidities, and others. First, age at onset, disease duration, and glycemic dysregulation were delineated for their association with cognitive changes. Then diabetic ketoacidosis, angiopathy, and neuropathy were examined as diabetic complications for their involvement in cognitive impairments. Lastly, body mass index and blood pressure were discussed for their relations with the cognitive changes. Future studies are needed to elucidate the pathogenesis of T1DM-related cognitive impairments or dementia.
Collapse
Affiliation(s)
- Wei Li
- Master of Physician Assistant Studies, School of Health and Rehabilitation Sciences, Indiana University-Purdue University Indianapolis, Indianapolis, IN, USA
| | - Edgar Huang
- School of Informatics and Computing, Indiana University-Purdue University Indianapolis, Indianapolis, IN, USA
| | - Sujuan Gao
- Department of Biostatistics, School of Medicine, Indiana University, Indianapolis, IN, USA
| |
Collapse
|
31
|
The diabetic brain and cognition. J Neural Transm (Vienna) 2017; 124:1431-1454. [PMID: 28766040 DOI: 10.1007/s00702-017-1763-2] [Citation(s) in RCA: 68] [Impact Index Per Article: 8.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/01/2017] [Accepted: 07/13/2017] [Indexed: 12/20/2022]
Abstract
The prevalence of both Alzheimer's disease (AD) and vascular dementia (VaD) is increasing with the aging of the population. Studies from the last several years have shown that people with diabetes have an increased risk for dementia and cognitive impairment. Therefore, the authors of this consensus review tried to elaborate on the role of diabetes, especially diabetes type 2 (T2DM) in both AD and VaD. Based on the clinical and experimental work of scientists from 18 countries participating in the International Congress on Vascular Disorders and on literature search using PUBMED, it can be concluded that T2DM is a risk factor for both, AD and VaD, based on a pathology of glucose utilization. This pathology is the consequence of a disturbance of insulin-related mechanisms leading to brain insulin resistance. Although the underlying pathological mechanisms for AD and VaD are different in many aspects, the contribution of T2DM and insulin resistant brain state (IRBS) to cerebrovascular disturbances in both disorders cannot be neglected. Therefore, early diagnosis of metabolic parameters including those relevant for T2DM is required. Moreover, it is possible that therapeutic options utilized today for diabetes treatment may also have an effect on the risk for dementia. T2DM/IRBS contribute to pathological processes in AD and VaD.
Collapse
|
32
|
Awad A, Lundqvist R, Rolandsson O, Sundström A, Eliasson M. Lower cognitive performance among long-term type 1 diabetes survivors: A case-control study. J Diabetes Complications 2017; 31:1328-1331. [PMID: 28579311 DOI: 10.1016/j.jdiacomp.2017.04.023] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/09/2017] [Revised: 04/28/2017] [Accepted: 04/29/2017] [Indexed: 12/25/2022]
Abstract
OBJECTIVE Patients with type 1 diabetes (T1D) have an increased risk of cognitive dysfunction. The cognitive decrement is believed to depend on macro- and microvascular complications and long disease duration. Some patients do not develop these complications, but still report cognitive symptoms. We examined if long-standing T1D without complications is associated with lower cognitive performance. METHODS A group of patients (n=43) with long-standing T1D (>30years) without micro- or macro vascular complications was compared with a non-diabetic control group (n=86) on six cognitive tests which probed episodic memory, semantic memory, episodic short-term memory, visual attention and psychomotor speed. Each patient was matched with two controls regarding age, gender and education. A linear mixed effect model was used to analyze the data. RESULTS The mean age was 57years and mean duration was 41years. Patients with diabetes had lower diastolic blood pressure but BMI, waist circumference, systolic blood pressure and smoking did not differ between groups. Patients had lower results than non-diabetic controls in episodic short-term memory (p<0.001) and also lower values on a test that mirrors visual attention and psychomotor speed (p=0.019). CONCLUSIONS Long-standing T1D was associated with lower cognitive performance, regardless of other diabetes-related complications.
Collapse
Affiliation(s)
- Anna Awad
- Department of Public Health and Clinical Medicine, Sunderby Research Unit, Umeå University, Sweden.
| | - Robert Lundqvist
- Research and Innovation Unit, Norrbotten County Council, Luleå, Sweden.
| | - Olov Rolandsson
- Department of Public Health and Clinical Medicine, Family Medicine, Umeå University, Sweden.
| | - Anna Sundström
- Department of Psychology, Umeå University, Sweden; Centre of Demographic and Ageing Research (CEDAR), Umeå University, Sweden.
| | - Mats Eliasson
- Department of Public Health and Clinical Medicine, Sunderby Research Unit, Umeå University, Sweden.
| |
Collapse
|
33
|
Moran C, Beare R, Phan T, Starkstein S, Bruce D, Romina M, Srikanth V. Neuroimaging and its Relevance to Understanding Pathways Linking Diabetes and Cognitive Dysfunction. J Alzheimers Dis 2017; 59:405-419. [DOI: 10.3233/jad-161166] [Citation(s) in RCA: 30] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Affiliation(s)
- Chris Moran
- Department of Medicine, Peninsula Health, Peninsula Clinical School, Monash University, Melbourne, VIC, Australia
- Aged Care Services, Caulfield Hospital, Alfred Health, Melbourne, VIC, Australia
- Stroke and Ageing Research Group, Vascular Brain Ageing Division, Department of Medicine, School of Clinical Sciences, Monash University, Melbourne, VIC, Australia
- Neurosciences, Monash Medical Centre, Monash Health, Melbourne, VIC, Australia
| | - Richard Beare
- Department of Medicine, Peninsula Health, Peninsula Clinical School, Monash University, Melbourne, VIC, Australia
- Stroke and Ageing Research Group, Vascular Brain Ageing Division, Department of Medicine, School of Clinical Sciences, Monash University, Melbourne, VIC, Australia
- Neurosciences, Monash Medical Centre, Monash Health, Melbourne, VIC, Australia
| | - Thanh Phan
- Stroke and Ageing Research Group, Vascular Brain Ageing Division, Department of Medicine, School of Clinical Sciences, Monash University, Melbourne, VIC, Australia
- Neurosciences, Monash Medical Centre, Monash Health, Melbourne, VIC, Australia
| | - Sergio Starkstein
- Fremantle Hospital, WA, Australia
- University of Western Australia, WA, Australia
| | - David Bruce
- Fremantle Hospital, WA, Australia
- University of Western Australia, WA, Australia
| | - Mizrahi Romina
- Research Imaging Centre, Centre for Addiction and Mental Health, University of Toronto, Toronto, ON, Canada
| | - Velandai Srikanth
- Department of Medicine, Peninsula Health, Peninsula Clinical School, Monash University, Melbourne, VIC, Australia
- Stroke and Ageing Research Group, Vascular Brain Ageing Division, Department of Medicine, School of Clinical Sciences, Monash University, Melbourne, VIC, Australia
- Neurosciences, Monash Medical Centre, Monash Health, Melbourne, VIC, Australia
| |
Collapse
|
34
|
Rooijackers HM, Wiegers EC, van der Graaf M, Thijssen DH, Kessels RPC, Tack CJ, de Galan BE. A Single Bout of High-Intensity Interval Training Reduces Awareness of Subsequent Hypoglycemia in Patients With Type 1 Diabetes. Diabetes 2017; 66:1990-1998. [PMID: 28420673 DOI: 10.2337/db16-1535] [Citation(s) in RCA: 27] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/12/2016] [Accepted: 04/11/2017] [Indexed: 11/13/2022]
Abstract
High-intensity interval training (HIIT) has gained increasing popularity in patients with diabetes. HIIT acutely increases plasma lactate levels. This may be important, since the administration of lactate during hypoglycemia suppresses symptoms and counterregulation while preserving cognitive function. We tested the hypothesis that, in the short term, HIIT reduces awareness of hypoglycemia and attenuates hypoglycemia-induced cognitive dysfunction. In a randomized crossover trial, patients with type 1 diabetes and normal awareness of hypoglycemia (NAH), patients with impaired awareness of hypoglycemia (IAH), and healthy participants (n = 10 per group) underwent a hyperinsulinemic-hypoglycemic (2.6 mmol/L) clamp, either after a HIIT session or after seated rest. Compared with rest, HIIT reduced symptoms of hypoglycemia in patients with NAH but not in healthy participants or patients with IAH. HIIT attenuated hypoglycemia-induced cognitive dysfunction, which was mainly driven by changes in the NAH subgroup. HIIT suppressed cortisol and growth hormone responses, but not catecholamine responses to hypoglycemia. The present findings demonstrate that a single HIIT session rapidly reduces awareness of subsequent hypoglycemia in patients with type 1 diabetes and NAH, but does not in patients with IAH, and attenuates hypoglycemia-induced cognitive dysfunction. The role of exercise-induced lactate in mediating these effects, potentially serving as an alternative fuel for the brain, should be further explored.
Collapse
Affiliation(s)
- Hanne M Rooijackers
- Department of Internal Medicine, Radboud University Medical Center, Nijmegen, the Netherlands
| | - Evita C Wiegers
- Department of Radiology and Nuclear Medicine, Radboud University Medical Center, Nijmegen, the Netherlands
| | - Marinette van der Graaf
- Department of Radiology and Nuclear Medicine, Radboud University Medical Center, Nijmegen, the Netherlands
- Department of Pediatrics, Radboud University Medical Center, Nijmegen, the Netherlands
| | - Dick H Thijssen
- Department of Physiology, Radboud University Medical Center, Nijmegen, the Netherlands
- Research Institute for Sport and Exercise Sciences, Liverpool John Moores University, Liverpool, U.K
| | - Roy P C Kessels
- Department of Medical Psychology, Radboud University Medical Center, Nijmegen, the Netherlands
- Donders Institute for Brain, Cognition and Behaviour, Radboud University, Nijmegen, the Netherlands
| | - Cees J Tack
- Department of Internal Medicine, Radboud University Medical Center, Nijmegen, the Netherlands
| | - Bastiaan E de Galan
- Department of Internal Medicine, Radboud University Medical Center, Nijmegen, the Netherlands
| |
Collapse
|
35
|
Abstract
OBJECTIVE Psychomotor slowing is a common cognitive complication in type 1 diabetes (T1D), but its neuroanatomical correlates and risk factors are unclear. In nondiabetic adults, smaller gray matter volume (GMV) and presence of white matter hyperintensities are associated with psychomotor slowing. We hypothesize that smaller GMV in prefronto-parietal regions explains T1D-related psychomotor slowing. We also inspect the contribution of microvascular disease and hyperglycemia. METHODS GMV, white matter hyperintensities (WMH), and glucose levels were measured concurrently with a test of psychomotor speed (Digit Symbol Substitution Test [DSST]) in 95 adults with childhood-onset T1D (mean age/duration = 49/41 years) and 135 similarly aged non-T1D adults. Linear regression models tested associations between DSST and regional GMV, controlling for T1D, sex, and education; a bootstrapping method tested whether regional GMV explained between-group differences in DSST. For the T1D cohort, voxel-based and a priori regions-of-interest methods further tested associations between GMV and DSST, adjusting for WMH, hyperglycemia, and age. RESULTS Bilateral putamen, but no other regions examined, significantly attenuated DSST differences between the cohorts (bootstrapped unstandardized indirect effects: -3.49, -3.26; 95% confidence interval = -5.49 to -1.80, -5.29 to -1.44, left and right putamen, respectively). Among T1D, DSST was positively associated with GMV of bilateral putamen and left thalamus. Neither WMH, hyperglycemia, age, nor other factors substantially modified these relationships. CONCLUSIONS For middle-aged adults with T1D and cerebral microvascular disease, GMV of basal ganglia may play a critical role in regulating psychomotor speed, as measured via DSST. Studies to quantify the impact of basal ganglia atrophy concurrent with WMH progression on psychomotor slowing are warranted.
Collapse
|
36
|
Munshi MN. Cognitive Dysfunction in Older Adults With Diabetes: What a Clinician Needs to Know. Diabetes Care 2017; 40:461-467. [PMID: 28325796 DOI: 10.2337/dc16-1229] [Citation(s) in RCA: 149] [Impact Index Per Article: 18.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/08/2016] [Accepted: 08/31/2016] [Indexed: 02/06/2023]
Abstract
One of the challenges of managing older adults with diabetes is the individualization of care in people with multiple comorbid conditions. Although macrovascular and microvascular complications of diabetes are well recognized, there is a lack of awareness regarding other conditions such as cognitive dysfunction, depression, and physical disabilities. Cognitive dysfunction is of particular importance because of its impact on self-care and quality of life. In this Perspective, I discuss common and practical questions faced by clinicians managing diabetes in older adults who also have cognitive dysfunction.
Collapse
Affiliation(s)
- Medha N Munshi
- Beth Israel Deaconess Medical Center, Joslin Diabetes Center, Harvard Medical School, Boston, MA
| |
Collapse
|
37
|
Hamed SA. Brain injury with diabetes mellitus: evidence, mechanisms and treatment implications. Expert Rev Clin Pharmacol 2017; 10:409-428. [PMID: 28276776 DOI: 10.1080/17512433.2017.1293521] [Citation(s) in RCA: 121] [Impact Index Per Article: 15.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/20/2016] [Accepted: 02/07/2017] [Indexed: 02/06/2023]
Abstract
Diabetes mellitus is a risk for brain injury. Brain injury is associated with acute and chronic hyperglycaemia, insulin resistance, hyperinsulinemia, diabetic ketoacidosis (DKA) and hypoglycaemic events in diabetic patients. Hyperglycemia is a cause of cognitive deterioration, low intelligent quotient, neurodegeneration, brain aging, brain atrophy and dementia. Areas covered: The current review highlights the experimental, clinical, neuroimaging and neuropathological evidence of brain injury induced by diabetes and its associated metabolic derangements. It also highlights the mechanisms of diabetes-induced brain injury. It seems that the pathogenesis of hyperglycemia-induced brain injury is complex and includes combination of vascular disease, oxidative stress, neuroinflammation, mitochondrial dysfunction, apoptosis, reduction of neurotrophic factors, acetylcholinesterase (AChE) activation, neurotransmitters' changes, impairment of brain repair processes, impairment of brain glymphatic system, accumulation of amyloid β and tau phosphorylation and neurodegeneration. The potentials for prevention and treatment are also discussed. Expert commentary: We summarize the risks and the possible mechanisms of DM-induced brain injury and recommend strategies for neuroprotection and neurorestoration. Recently, a number of drugs and substances [in addition to insulin and its mimics] have shown promising potentials against diabetes-induced brain injury. These include: antioxidants, neuroinflammation inhibitors, anti-apoptotics, neurotrophic factors, AChE inhibitors, mitochondrial function modifiers and cell based therapies.
Collapse
Affiliation(s)
- Sherifa A Hamed
- a Department of Neurology and Psychiatry , Assiut University Hospital , Assiut , Egypt
| |
Collapse
|
38
|
Administration of Zinc plus Cyclo-(His-Pro) Increases Hippocampal Neurogenesis in Rats during the Early Phase of Streptozotocin-Induced Diabetes. Int J Mol Sci 2017; 18:ijms18010073. [PMID: 28045430 PMCID: PMC5297708 DOI: 10.3390/ijms18010073] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/24/2016] [Revised: 12/22/2016] [Accepted: 12/26/2016] [Indexed: 12/21/2022] Open
Abstract
The effects of zinc supplementation on hippocampal neurogenesis in diabetes mellitus have not been studied. Herein, we investigated the effects of zinc plus cyclo-(His-Pro) (ZC) on neurogenesis occurring in the subgranular zone of dentate gyrus after streptozotocin (STZ)-induced diabetes. ZC (27 mg/kg) was administered by gavage once daily for one or six weeks from the third day after the STZ injection, and histological evaluation was performed at 10 (early phase) or 45 (late phase) days after STZ injection. We found that the proliferation of progenitor cells in STZ-induced diabetic rats showed an increase in the early phase. Additionally, ZC treatment remarkably increased the number of neural progenitor cells (NPCs) and immature neurons in the early phase of STZ-induced diabetic rats. Furthermore, ZC treatment showed increased survival rate of newly generated cells but no difference in the level of neurogenesis in the late phase of STZ-induced diabetic rats. The present study demonstrates that zinc supplementation by ZC increases both NPCs proliferation and neuroblast production at the early phase of diabetes. Thus, this study suggests that zinc supplemented with a histidine/proline complex may have beneficial effects on neurogenesis in patients experiencing the early phase of Type 1 diabetes.
Collapse
|
39
|
Song J, Jung C, Kim OY. The Novel Implication of Androgen in Diabetes-induced Alzheimer's Disease. J Lipid Atheroscler 2017. [DOI: 10.12997/jla.2017.6.2.66] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022] Open
Affiliation(s)
- Juhyun Song
- Department of Anatomy, Chonnam National University Medical School, Gwangju, Korea
| | - Chaeyong Jung
- Department of Anatomy, Chonnam National University Medical School, Gwangju, Korea
| | - Oh Yoen Kim
- Department of Food Science and Nutrition, Dong-A University, Busan, Korea
| |
Collapse
|
40
|
de Assis AM, da Silva JS, Rech A, Longoni A, Nonose Y, Repond C, de Bittencourt Pasquali MA, Moreira JCF, Souza DO, Pellerin L. Cerebral Ketone Body Oxidation Is Facilitated by a High Fat Diet Enriched with Advanced Glycation End Products in Normal and Diabetic Rats. Front Neurosci 2016; 10:509. [PMID: 27877108 PMCID: PMC5099525 DOI: 10.3389/fnins.2016.00509] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/13/2016] [Accepted: 10/24/2016] [Indexed: 12/30/2022] Open
Abstract
Diabetes mellitus (DM) causes important modifications in the availability and use of different energy substrates in various organs and tissues. Similarly, dietary manipulations such as high fat diets also affect systemic energy metabolism. However, how the brain adapts to these situations remains unclear. To investigate these issues, control and alloxan-induced type I diabetic rats were fed either a standard or a high fat diet enriched with advanced glycation end products (AGEs) (HAGE diet). The HAGE diet increased their levels of blood ketone bodies, and this effect was exacerbated by DM induction. To determine the effects of diet and/or DM induction on key cerebral bioenergetic parameters, both ketone bodies (β-hydroxybutyric acid) and lactate oxidation were measured. In parallel, the expression of Monocarboxylate Transporter 1 (MCT1) and 2 (MCT2) isoforms in hippocampal and cortical slices from rats submitted to these diets was assessed. Ketone body oxidation increased while lactate oxidation decreased in hippocampal and cortical slices in both control and diabetic rats fed a HAGE diet. In parallel, the expression of both MCT1 and MCT2 increased only in the cerebral cortex in diabetic rats fed a HAGE diet. These results suggest a shift in the preferential cerebral energy substrate utilization in favor of ketone bodies in animals fed a HAGE diet, an effect that, in DM animals, is accompanied by the enhanced expression of the related transporters.
Collapse
Affiliation(s)
- Adriano M de Assis
- Postgraduate Program in Biological Sciences: Biochemistry, Institute of Basic Health Science (ICBS), Federal University of Rio Grande do Sul Porto Alegre, Brazil
| | - Jussemara S da Silva
- Postgraduate Program in Biological Sciences: Biochemistry, Institute of Basic Health Science (ICBS), Federal University of Rio Grande do Sul Porto Alegre, Brazil
| | - Anderson Rech
- Postgraduate Program in Biological Sciences: Biochemistry, Institute of Basic Health Science (ICBS), Federal University of Rio Grande do Sul Porto Alegre, Brazil
| | - Aline Longoni
- Postgraduate Program in Biological Sciences: Biochemistry, Institute of Basic Health Science (ICBS), Federal University of Rio Grande do Sul Porto Alegre, Brazil
| | - Yasmine Nonose
- Postgraduate Program in Biological Sciences: Biochemistry, Institute of Basic Health Science (ICBS), Federal University of Rio Grande do Sul Porto Alegre, Brazil
| | - Cendrine Repond
- Department of Physiology, University of Lausanne Lausanne, Switzerland
| | - Matheus A de Bittencourt Pasquali
- Postgraduate Program in Biological Sciences: Biochemistry, Institute of Basic Health Science (ICBS), Federal University of Rio Grande do SulPorto Alegre, Brazil; Department of Biochemistry, Institute of Tropical Medicine, Federal University of Rio Grande do NorteNatal, Brazil
| | - José C F Moreira
- Postgraduate Program in Biological Sciences: Biochemistry, Institute of Basic Health Science (ICBS), Federal University of Rio Grande do SulPorto Alegre, Brazil; Department of Biochemistry, Federal University of Rio Grande do SulPorto Alegre, Brazil
| | - Diogo O Souza
- Postgraduate Program in Biological Sciences: Biochemistry, Institute of Basic Health Science (ICBS), Federal University of Rio Grande do SulPorto Alegre, Brazil; Department of Biochemistry, Federal University of Rio Grande do SulPorto Alegre, Brazil
| | - Luc Pellerin
- Department of Physiology, University of Lausanne Lausanne, Switzerland
| |
Collapse
|
41
|
Ryan CM, Klein BEK, Lee KE, Cruickshanks KJ, Klein R. Associations between recent severe hypoglycemia, retinal vessel diameters, and cognition in adults with type 1 diabetes. J Diabetes Complications 2016; 30:1513-1518. [PMID: 27601058 PMCID: PMC5050129 DOI: 10.1016/j.jdiacomp.2016.08.010] [Citation(s) in RCA: 31] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/10/2016] [Accepted: 08/09/2016] [Indexed: 01/21/2023]
Abstract
AIMS Mild cognitive dysfunction has been identified in children and adults with type 1 diabetes, but most studies have failed to find a relationship between severe hypoglycemia and cognition, despite reports of such associations in older adults with type 2 diabetes. Focusing on older adults with type 1 diabetes, we examined the associations between cognitive performance and recent episodes of severe hypoglycemia, retinal vessel diameters and the presence of micro- and macrovascular complications. METHODS Cognitive functioning was assessed in 244 participants enrolled in the Wisconsin Epidemiologic Study of Diabetic Retinopathy. The mean (SD; range) age at assessment in 2012-14 was 55.2 (8.3; 37-82) years and the mean (SD) duration of diabetes was 41.1 (5.6) years. Three cognitive domains were assessed in this cross-sectional study: mental efficiency and executive function, nonverbal memory, and verbal memory. RESULTS Multivariate modeling demonstrated that although age and/or education are most strongly associated with performance on measures of mental efficiency, three diabetes-related variables were also associated with poorer test scores: an episode of severe hypoglycemia in the past year (β=-0.360 [95% CI, -0.672, -0.047]), retinal arteriolar and venular diameters (β=0.140 [95% CI, 0.062, 0.219]; β=-0.127 [95% CI -0.207, -0.047]), and carotid artery plaque (β=-0.372 [95% CI -0.741, -0.003]). In addition, recent severe hypoglycemia was associated with poorer nonverbal memory (β=-0.522 [95% CI, -0.849, -0.194]). CONCLUSIONS For middle-aged and older adults with long-duration type 1 diabetes, poorer cognition was associated with a recent episode of severe hypoglycemia as well as with the presence of micro- and/or macrovascular conditions. Given the increasing numbers of aging adults with type 1 diabetes, future longitudinal studies are needed to identify causality and to determine whether diabetes management techniques that reduce the onset or severity of vascular complications and hypoglycemia can also reduce the risk of cognitive dysfunction in this population.
Collapse
Affiliation(s)
- Christopher M Ryan
- Department of Psychiatry, University of Pittsburgh School of Medicine, Pittsburgh, PA, United States.
| | - Barbara E K Klein
- Department of Ophthalmology and Visual Sciences, University of Wisconsin-Madison School of Medicine and Public Health, Madison, WI, United States
| | - Kristine E Lee
- Department of Ophthalmology and Visual Sciences, University of Wisconsin-Madison School of Medicine and Public Health, Madison, WI, United States
| | - Karen J Cruickshanks
- Department of Ophthalmology and Visual Sciences, University of Wisconsin-Madison School of Medicine and Public Health, Madison, WI, United States; Department of Population Health Sciences, University of Wisconsin-Madison School of Medicine and Public Health, Madison, WI, United States
| | - Ronald Klein
- Department of Ophthalmology and Visual Sciences, University of Wisconsin-Madison School of Medicine and Public Health, Madison, WI, United States
| |
Collapse
|
42
|
Imam-Fulani AO, Bamikole OK, Owoyele BV. Effects of Caffeine Administration on Brain Sodium-Potassium ATPase Activity in Healthy and Streptozotocin-Induced Diabetic Female Wistar Rats. JOURNAL OF CAFFEINE RESEARCH 2016. [DOI: 10.1089/jcr.2015.0030] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/26/2023]
|
43
|
Abstract
This chapter gives an overview of the literature on cognitive dysfunction in adults with type 1 or type 2 diabetes. First, methods to evaluate cognitive functioning and the pattern and severity of cognitive dysfunction in relation to diabetes will be discussed. The reader will note that diabetes is associated with worse cognitive functioning and an increased dementia risk. Next, diabetes-associated abnormalities on brain MRI, including reductions in brain volume - i.e., cerebral atrophy - and vascular lesions, will be addressed. At the group level there are clear relations between these imaging abnormalities and cognitive dysfunction, but at the level of the individual patient these relations are often less clear. Subsequently, risk factors for cognitive performance will be discussed. Evidently, these risk factors are related to diabetes type and the age of the patients involved. For type 1 diabetes, an early age at diabetes onset is the most consistent risk factor, whereas in type 2 diabetes, vascular risk factors and vascular comorbidities are consistent indicators of increased risk. The final section of the chapter addresses possible preventive and treatment measures and implications for daily care.
Collapse
|
44
|
Toprak H, Yetis H, Alkan A, Filiz M, Kurtcan S, Aralasmak A, Aksu MŞ, Cesur Y. Relationships of DTI findings with neurocognitive dysfunction in children with Type 1 diabetes mellitus. Br J Radiol 2016; 89:20150680. [PMID: 26728951 DOI: 10.1259/bjr.20150680] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022] Open
Abstract
OBJECTIVE To determine whether there were diffusion tensor imaging (DTI) changes in the brain among children with Type 1 diabetes mellitus (DM) and investigate the correlation between the fractional anisotropy (FA) and apparent diffusion coefficient (ADC) values and neurocognitive functions. METHODS 35 children with Type 1 DM and 21 age-matched healthy control subjects were included. Neurocognitive functions of subjects with Type 1 DM were evaluated. In both groups, FA and ADC values were calculated in 20 different locations. The association between neurocognitive function tests and FA and ADC values was investigated. RESULTS Subjects with diabetes had significant changes in FA and ADC values in widespread brain regions compared with the healthy control group. ADC values in the caudate nucleus were negatively associated with verbal point. Increased ADC values in the genu of the corpus callosum were positively associated with Stroop test. There was a negative correlation between the ADC values of the parietal white matter and the judgment of line orientation test. FA values of the inferior longitudinal fasciculus were positively correlated with performance point. However, a negative correlation was noted between FA values of mid-brain and intelligence quotient level as well as another negative correlation between FA values of the posterior crus of the internal capsule and thalamus with verbal point. CONCLUSION Subjects with diabetes demonstrated significant changes in FA and ADC values in widespread brain regions, and such changes could be early features of injury to myelinated fibres or axonal degeneration. Our findings suggest that brain damage may have begun at the cellular level in the initial stage of Type 1 diabetes and neurocognitive impairments may be inevitable. ADVANCES IN KNOWLEDGE DTI can demonstrate ADC and FA changes which are well correlated with neurocognitive dysfunction in the brains of children with Type 1 DM. This may help us in guiding preventive measures in early period of the disease before deterioration of neurocognitive functions.
Collapse
Affiliation(s)
- Huseyin Toprak
- 1 Department of Radiology, Faculty of Medicine, Bezmialem Vakif University, Istanbul, Turkey
| | - Huseyin Yetis
- 1 Department of Radiology, Faculty of Medicine, Bezmialem Vakif University, Istanbul, Turkey
| | - Alpay Alkan
- 1 Department of Radiology, Faculty of Medicine, Bezmialem Vakif University, Istanbul, Turkey
| | - Mekiya Filiz
- 2 Department of Child Psychology, Faculty of Medicine, Bezmialem Vakif University, Istanbul, Turkey
| | - Serpil Kurtcan
- 1 Department of Radiology, Faculty of Medicine, Bezmialem Vakif University, Istanbul, Turkey
| | - Ayşe Aralasmak
- 1 Department of Radiology, Faculty of Medicine, Bezmialem Vakif University, Istanbul, Turkey
| | - Mehmet Ş Aksu
- 3 Department of Pediatric Endocrinology, Faculty of Medicine, Bezmialem Vakif University, Istanbul, Turkey
| | - Yaşar Cesur
- 3 Department of Pediatric Endocrinology, Faculty of Medicine, Bezmialem Vakif University, Istanbul, Turkey
| |
Collapse
|
45
|
Hwang M, Tudorascu DL, Nunley K, Karim H, Aizenstein HJ, Orchard TJ, Rosano C. Brain Activation and Psychomotor Speed in Middle-Aged Patients with Type 1 Diabetes: Relationships with Hyperglycemia and Brain Small Vessel Disease. J Diabetes Res 2016; 2016:9571464. [PMID: 26998494 PMCID: PMC4779538 DOI: 10.1155/2016/9571464] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/29/2015] [Revised: 12/17/2015] [Accepted: 12/22/2015] [Indexed: 01/26/2023] Open
Abstract
Slower psychomotor speed is very common in patients with type 1 diabetes mellitus (T1D), but the underlying mechanisms are not clear. We propose that hyperglycemia is associated with slower psychomotor speed via disruption of brain activation. Eighty-five adults (48% women, mean age: 49.0 years, mean duration: 40.8) with childhood onset T1D were recruited for this cross-sectional study. Median response time in seconds (longer = worse performance) and brain activation were measured while performing a psychomotor speed task. Exposure to hyperglycemia, measured as glycosylated hemoglobin A1c, was associated with longer response time and with higher activation in the inferior frontal gyrus and primary sensorimotor and dorsal cingulate cortex. Higher activation in inferior frontal gyrus, primary sensorimotor cortex, thalamus, and cuneus was related to longer response times; in contrast, higher activation in the superior parietal lobe was associated with shorter response times. Associations were independent of small vessel disease in the brain or other organs. In this group of middle-aged adults with T1D, the pathway linking chronic hyperglycemia with slower processing speed appears to include increased brain activation, but not small vessel disease. Activation in the superior parietal lobe may compensate for dysregulation in brain activation in the presence of hyperglycemia.
Collapse
Affiliation(s)
- Misun Hwang
- Department of Radiology, University of Pittsburgh, 3600 Forbes Avenue, Plaza Level, Pittsburgh, PA 15213, USA
| | - Dana L. Tudorascu
- Department of Internal Medicine, Department of Psychiatry, and Department of Biostatistics, University of Pittsburgh, 200 Meyran Avenue, Suite 326, Pittsburgh, PA 15213, USA
| | - Karen Nunley
- Department of Epidemiology, University of Pittsburgh, 130 N. Bellefield Avenue, Suite 443, Pittsburgh, PA 15213, USA
| | - Helmet Karim
- Department of Bioengineering, University of Pittsburgh, 253 Sterling Plaza, Pittsburgh, PA 15213, USA
| | - Howard J. Aizenstein
- Department of Psychiatry, University of Pittsburgh, 3811 O'Hara Street, Pittsburgh, PA 15213, USA
| | - Trevor J. Orchard
- Department of Epidemiology, University of Pittsburgh, 3512 Fifth Avenue, Pittsburgh, PA 15213, USA
| | - Caterina Rosano
- Department of Epidemiology, University of Pittsburgh, 130 N. Bellefield Avenue, Suite 467, Pittsburgh, PA 15213, USA
- *Caterina Rosano:
| |
Collapse
|
46
|
van Duinkerken E, Ijzerman RG, Klein M, Moll AC, Snoek FJ, Scheltens P, Pouwels PJW, Barkhof F, Diamant M, Tijms BM. Disrupted subject-specific gray matter network properties and cognitive dysfunction in type 1 diabetes patients with and without proliferative retinopathy. Hum Brain Mapp 2015; 37:1194-208. [PMID: 26700243 DOI: 10.1002/hbm.23096] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/12/2015] [Revised: 11/24/2015] [Accepted: 12/11/2015] [Indexed: 01/26/2023] Open
Abstract
INTRODUCTION Type 1 diabetes mellitus (T1DM) patients, especially with concomitant microvascular disease, such as proliferative retinopathy, have an increased risk of cognitive deficits. Local cortical gray matter volume reductions only partially explain these cognitive dysfunctions, possibly because volume reductions do not take into account the complex connectivity structure of the brain. This study aimed to identify gray matter network alterations in relation to cognition in T1DM. METHODS We investigated if subject-specific structural gray matter network properties, constructed from T1-weighted MRI scans, were different between T1DM patients with (n = 51) and without (n = 53) proliferative retinopathy versus controls (n = 49), and were associated to cognitive decrements and fractional anisotropy, as measured by voxel-based TBSS. Global normalized and local (45 bilateral anatomical regions) clustering coefficient and path length were assessed. These network properties measure how the organization of connections in a network differs from that of randomly connected networks. RESULTS Global gray matter network topology was more randomly organized in both T1DM patient groups versus controls, with the largest effects seen in patients with proliferative retinopathy. Lower local path length values were widely distributed throughout the brain. Lower local clustering was observed in the middle frontal, postcentral, and occipital areas. Complex network topology explained up to 20% of the variance of cognitive decrements, beyond other predictors. Exploratory analyses showed that lower fractional anisotropy was associated with a more random gray matter network organization. CONCLUSION T1DM and proliferative retinopathy affect cortical network organization that may consequently contribute to clinically relevant changes in cognitive functioning in these patients.
Collapse
Affiliation(s)
- Eelco van Duinkerken
- Diabetes Center/Department of Internal Medicine, VU University Medical Center, Amsterdam, The Netherlands.,Department of Medical Psychology, VU University Medical Center, Amsterdam, The Netherlands.,Department of Psychology, Pontifícia Universidade Católica, Rio De Janeiro, Brasil
| | - Richard G Ijzerman
- Diabetes Center/Department of Internal Medicine, VU University Medical Center, Amsterdam, The Netherlands
| | - Martin Klein
- Department of Medical Psychology, VU University Medical Center, Amsterdam, The Netherlands
| | - Annette C Moll
- Department of Ophthalmology, VU University Medical Center, Amsterdam, The Netherlands
| | - Frank J Snoek
- Department of Medical Psychology, VU University Medical Center, Amsterdam, The Netherlands.,Department of Medical Psychology, Academic Medical Center, Amsterdam, The Netherlands
| | - Philip Scheltens
- Alzheimer Center/Department of Neurology, VU University Medical Center, Amsterdam, The Netherlands
| | - Petra J W Pouwels
- Department of Physics and Medical Technology, VU University Medical Center, Amsterdam, The Netherlands
| | - Frederik Barkhof
- Department of Radiology and Nuclear Medicine, VU University Medical Center, Amsterdam, The Netherlands
| | - Michaela Diamant
- Diabetes Center/Department of Internal Medicine, VU University Medical Center, Amsterdam, The Netherlands
| | - Betty M Tijms
- Alzheimer Center/Department of Neurology, VU University Medical Center, Amsterdam, The Netherlands
| |
Collapse
|
47
|
Nunley KA, Rosano C, Ryan CM, Jennings JR, Aizenstein HJ, Zgibor JC, Costacou T, Boudreau RM, Miller R, Orchard TJ, Saxton JA. Clinically Relevant Cognitive Impairment in Middle-Aged Adults With Childhood-Onset Type 1 Diabetes. Diabetes Care 2015; 38:1768-76. [PMID: 26153270 PMCID: PMC4542271 DOI: 10.2337/dc15-0041] [Citation(s) in RCA: 92] [Impact Index Per Article: 9.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/08/2015] [Accepted: 06/10/2015] [Indexed: 02/03/2023]
Abstract
OBJECTIVE The aim of this study was to investigate the presence and correlates of clinically relevant cognitive impairment in middle-aged adults with childhood-onset type 1 diabetes (T1D). RESEARCH DESIGN AND METHODS During 2010-2013, 97 adults diagnosed with T1D and aged <18 years (age and duration 49 ± 7 and 41 ± 6 years, respectively; 51% female) and 138 similarly aged adults without T1D (age 49 ± 7 years; 55% female) completed extensive neuropsychological testing. Biomedical data on participants with T1D were collected periodically since 1986-1988. Cognitive impairment status was based on the number of test scores ≥1.5 SD worse than demographically appropriate published norms: none, mild (only one test), or clinically relevant (two or more tests). RESULTS The prevalence of clinically relevant cognitive impairment was five times higher among participants with than without T1D (28% vs. 5%; P < 0.0001), independent of education, age, or blood pressure. Effect sizes were large (Cohen d 0.6-0.9; P < 0.0001) for psychomotor speed and visuoconstruction tasks and were modest (d 0.3-0.6; P < 0.05) for measures of executive function. Among participants with T1D, prevalent cognitive impairment was related to 14-year average A1c >7.5% (58 mmol/mol) (odds ratio [OR] 3.0; P = 0.009), proliferative retinopathy (OR 2.8; P = 0.01), and distal symmetric polyneuropathy (OR 2.6; P = 0.03) measured 5 years earlier; higher BMI (OR 1.1; P = 0.03); and ankle-brachial index ≥1.3 (OR 4.2; P = 0.01) measured 20 years earlier, independent of education. CONCLUSIONS Clinically relevant cognitive impairment is highly prevalent among these middle-aged adults with childhood-onset T1D. In this aging cohort, chronic hyperglycemia and prevalent microvascular disease were associated with cognitive impairment, relationships shown previously in younger populations with T1D. Two additional potentially modifiable risk factors for T1D-related cognitive impairment, vascular health and BMI, deserve further study.
Collapse
Affiliation(s)
- Karen A Nunley
- Department of Epidemiology, Graduate School of Public Health, University of Pittsburgh, Pittsburgh, PA
| | - Caterina Rosano
- Department of Epidemiology, Graduate School of Public Health, University of Pittsburgh, Pittsburgh, PA
| | - Christopher M Ryan
- Department of Psychiatry, School of Medicine, University of Pittsburgh, Pittsburgh, PA
| | - J Richard Jennings
- Department of Psychiatry, School of Medicine, University of Pittsburgh, Pittsburgh, PA
| | - Howard J Aizenstein
- Department of Psychiatry, School of Medicine, University of Pittsburgh, Pittsburgh, PA
| | - Janice C Zgibor
- Department of Epidemiology, Graduate School of Public Health, University of Pittsburgh, Pittsburgh, PA
| | - Tina Costacou
- Department of Epidemiology, Graduate School of Public Health, University of Pittsburgh, Pittsburgh, PA
| | - Robert M Boudreau
- Department of Epidemiology, Graduate School of Public Health, University of Pittsburgh, Pittsburgh, PA
| | - Rachel Miller
- Department of Epidemiology, Graduate School of Public Health, University of Pittsburgh, Pittsburgh, PA
| | - Trevor J Orchard
- Department of Epidemiology, Graduate School of Public Health, University of Pittsburgh, Pittsburgh, PA
| | - Judith A Saxton
- Department of Neurology, University of Pittsburgh, Pittsburgh, PA
| |
Collapse
|
48
|
Nunley KA, Ryan CM, Orchard TJ, Aizenstein HJ, Jennings JR, Ryan J, Zgibor JC, Boudreau RM, Costacou T, Maynard JD, Miller RG, Rosano C. White matter hyperintensities in middle-aged adults with childhood-onset type 1 diabetes. Neurology 2015; 84:2062-9. [PMID: 25904692 PMCID: PMC4442104 DOI: 10.1212/wnl.0000000000001582] [Citation(s) in RCA: 49] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2014] [Accepted: 02/06/2015] [Indexed: 01/12/2023] Open
Abstract
OBJECTIVE Although microvascular complications are common in type 1 diabetes mellitus (T1DM), few studies have quantified the severity, risk factors, and implications of cerebral microvascular damage in these patients. As life expectancy in patients with T1DM increases, patients are exposed to age- and disease-related factors that may contribute to cerebral microvascular disease. METHODS Severity and volume of white matter hyperintensities (WMH) and infarcts were quantified in 97 middle-aged patients with childhood-onset T1DM (mean age and duration: 50 and 41 years, respectively) and 81 non-T1DM adults (mean age: 48 years), concurrent with cognitive and health-related measures. RESULTS Compared with non-T1DM participants, patients had more severe WMH (Fazekas scores 2 and 3 compared with Fazekas score 1, p < 0.0001) and slower information processing (digit symbol substitution, number correct: 65.7 ± 10.9 and 54.9 ± 13.6; pegboard, seconds: 66.0 ± 9.9 and 88.5 ± 34.2; both p < 0.0001) independent of age, education, or other factors. WMH were associated with slower information processing; adjusting for WMH attenuated the group differences in processing speed (13% for digit symbol, 11% for pegboard, both p ≤ 0.05). Among patients, prevalent neuropathies and smoking tripled the odds of high WMH burden, independent of age or disease duration. Associations between measures of blood pressure or hyperglycemia and WMH were not significant. CONCLUSIONS Clinically relevant WMH are evident earlier among middle-aged patients with childhood-onset T1DM and are related to the slower information processing frequently observed in T1DM. Brain imaging in patients with T1DM who have cognitive difficulties, especially those with neuropathies, may help uncover cerebral microvascular damage. Longitudinal studies are warranted to fully characterize WMH development, risk factors, and long-term effects on cognition.
Collapse
Affiliation(s)
- Karen A Nunley
- From the Department of Epidemiology, Graduate School of Public Health (K.A.N., T.J.O., J.C.Z., R.M.B., T.C., R.G.M., C.R.) and Department of Psychiatry, School of Medicine (C.M.R., H.J.A., J.R.J., J.R.), University of Pittsburgh, Pittsburgh, PA; and VeraLight Inc. (J.D.M.), Albuquerque, NM
| | - Christopher M Ryan
- From the Department of Epidemiology, Graduate School of Public Health (K.A.N., T.J.O., J.C.Z., R.M.B., T.C., R.G.M., C.R.) and Department of Psychiatry, School of Medicine (C.M.R., H.J.A., J.R.J., J.R.), University of Pittsburgh, Pittsburgh, PA; and VeraLight Inc. (J.D.M.), Albuquerque, NM
| | - Trevor J Orchard
- From the Department of Epidemiology, Graduate School of Public Health (K.A.N., T.J.O., J.C.Z., R.M.B., T.C., R.G.M., C.R.) and Department of Psychiatry, School of Medicine (C.M.R., H.J.A., J.R.J., J.R.), University of Pittsburgh, Pittsburgh, PA; and VeraLight Inc. (J.D.M.), Albuquerque, NM
| | - Howard J Aizenstein
- From the Department of Epidemiology, Graduate School of Public Health (K.A.N., T.J.O., J.C.Z., R.M.B., T.C., R.G.M., C.R.) and Department of Psychiatry, School of Medicine (C.M.R., H.J.A., J.R.J., J.R.), University of Pittsburgh, Pittsburgh, PA; and VeraLight Inc. (J.D.M.), Albuquerque, NM
| | - J Richard Jennings
- From the Department of Epidemiology, Graduate School of Public Health (K.A.N., T.J.O., J.C.Z., R.M.B., T.C., R.G.M., C.R.) and Department of Psychiatry, School of Medicine (C.M.R., H.J.A., J.R.J., J.R.), University of Pittsburgh, Pittsburgh, PA; and VeraLight Inc. (J.D.M.), Albuquerque, NM
| | - John Ryan
- From the Department of Epidemiology, Graduate School of Public Health (K.A.N., T.J.O., J.C.Z., R.M.B., T.C., R.G.M., C.R.) and Department of Psychiatry, School of Medicine (C.M.R., H.J.A., J.R.J., J.R.), University of Pittsburgh, Pittsburgh, PA; and VeraLight Inc. (J.D.M.), Albuquerque, NM
| | - Janice C Zgibor
- From the Department of Epidemiology, Graduate School of Public Health (K.A.N., T.J.O., J.C.Z., R.M.B., T.C., R.G.M., C.R.) and Department of Psychiatry, School of Medicine (C.M.R., H.J.A., J.R.J., J.R.), University of Pittsburgh, Pittsburgh, PA; and VeraLight Inc. (J.D.M.), Albuquerque, NM
| | - Robert M Boudreau
- From the Department of Epidemiology, Graduate School of Public Health (K.A.N., T.J.O., J.C.Z., R.M.B., T.C., R.G.M., C.R.) and Department of Psychiatry, School of Medicine (C.M.R., H.J.A., J.R.J., J.R.), University of Pittsburgh, Pittsburgh, PA; and VeraLight Inc. (J.D.M.), Albuquerque, NM
| | - Tina Costacou
- From the Department of Epidemiology, Graduate School of Public Health (K.A.N., T.J.O., J.C.Z., R.M.B., T.C., R.G.M., C.R.) and Department of Psychiatry, School of Medicine (C.M.R., H.J.A., J.R.J., J.R.), University of Pittsburgh, Pittsburgh, PA; and VeraLight Inc. (J.D.M.), Albuquerque, NM
| | - John D Maynard
- From the Department of Epidemiology, Graduate School of Public Health (K.A.N., T.J.O., J.C.Z., R.M.B., T.C., R.G.M., C.R.) and Department of Psychiatry, School of Medicine (C.M.R., H.J.A., J.R.J., J.R.), University of Pittsburgh, Pittsburgh, PA; and VeraLight Inc. (J.D.M.), Albuquerque, NM
| | - Rachel G Miller
- From the Department of Epidemiology, Graduate School of Public Health (K.A.N., T.J.O., J.C.Z., R.M.B., T.C., R.G.M., C.R.) and Department of Psychiatry, School of Medicine (C.M.R., H.J.A., J.R.J., J.R.), University of Pittsburgh, Pittsburgh, PA; and VeraLight Inc. (J.D.M.), Albuquerque, NM
| | - Caterina Rosano
- From the Department of Epidemiology, Graduate School of Public Health (K.A.N., T.J.O., J.C.Z., R.M.B., T.C., R.G.M., C.R.) and Department of Psychiatry, School of Medicine (C.M.R., H.J.A., J.R.J., J.R.), University of Pittsburgh, Pittsburgh, PA; and VeraLight Inc. (J.D.M.), Albuquerque, NM.
| |
Collapse
|
49
|
Yang J, Song Y, Wang H, Liu C, Li Z, Liu Y, Kong Y. Insulin treatment prevents the increase in D-serine in hippocampal CA1 area of diabetic rats. Am J Alzheimers Dis Other Demen 2015; 30:201-8. [PMID: 25118332 PMCID: PMC10852815 DOI: 10.1177/1533317514545379] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/03/2024]
Abstract
PURPOSE Diabetes is a high risk factor for dementia. Employing a diabetic rat model, the present study was designed to determine whether the content of D-serine (D-Ser) in hippocampus is associated with the impairment of spatial learning and memory ability. METHODS Diabetes was induced by a single intravenous injection of streptozotocin (STZ). The insulin treatment began 3 days after STZ injection. RESULTS We found that both water maze learning and hippocampal CA1 long-term potentiation (LTP) were impaired in diabetic rats. The contents of glutamate, D-Ser, and serine racemase in the hippocampus of diabetic rats were significantly higher than those in the control group. Insulin treatment prevented the STZ-induced impairment in water maze learning and hippocampal CA1-LTP in diabetic rats and also maintained the contents of glutamate, D-Ser, and serine racemase at the normal range in hippocampus. CONCLUSIONS These results suggest that insulin treatment has a potent protection effect on CA1-LTP, spatial learning and memory ability of the diabetic rats in vivo. Furthermore, insulin may take effect by inhibiting the overactivation of N-methyl-d-aspartate receptors, which play a critical role in neurotoxicity.
Collapse
Affiliation(s)
- Jing Yang
- Provincial Key Laboratory of Cardiovascular and Cerebrovascular Drug Basic Research, Liaoning Medical University, Jinzhou, China
| | - Yang Song
- Provincial Key Laboratory of Cardiovascular and Cerebrovascular Drug Basic Research, Liaoning Medical University, Jinzhou, China
| | - Hongxin Wang
- Provincial Key Laboratory of Cardiovascular and Cerebrovascular Drug Basic Research, Liaoning Medical University, Jinzhou, China
| | - Chunna Liu
- Provincial Key Laboratory of Cardiovascular and Cerebrovascular Drug Basic Research, Liaoning Medical University, Jinzhou, China
| | - Zhongzhe Li
- Provincial Key Laboratory of Cardiovascular and Cerebrovascular Drug Basic Research, Liaoning Medical University, Jinzhou, China
| | - Ying Liu
- Provincial Key Laboratory of Cardiovascular and Cerebrovascular Drug Basic Research, Liaoning Medical University, Jinzhou, China
| | - Yawei Kong
- Division of Plastic and Reconstructive Surgery, Center for Regenerative Medicine, Massachusetts General Hospital, Harvard Medical School, Boston, MA, USA
| |
Collapse
|
50
|
Koekkoek PS, Kappelle LJ, van den Berg E, Rutten GEHM, Biessels GJ. Cognitive function in patients with diabetes mellitus: guidance for daily care. Lancet Neurol 2015; 14:329-40. [PMID: 25728442 DOI: 10.1016/s1474-4422(14)70249-2] [Citation(s) in RCA: 255] [Impact Index Per Article: 25.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Abstract
Diabetes mellitus is associated with an increase in the risk of dementia and the proportion of patients who convert from mild cognitive impairment (MCI) to dementia. In addition to MCI and dementia, the stages of diabetes-associated cognitive dysfunction include subtle cognitive changes that are unlikely to affect activities of daily life or diabetes self-management. These diabetes-associated cognitive decrements have structural brain correlates detectable with brain MRI, but usually show little progression over time. Although cognitive decrements do not generally represent a pre-dementia stage in patients below the age of 60-65 years, in older individuals these subtle cognitive changes might represent the earliest stages of a dementia process. Acknowledgment of diabetes-associated cognitive decrements can help to improve understanding of patients' symptoms and guide management. Future challenges are to establish the importance of screening for cognitive impairment in people with diabetes, to identify those at increased risk of accelerated cognitive decline at an early stage, and to develop effective treatments.
Collapse
Affiliation(s)
- Paula S Koekkoek
- Julius Center for Health Sciences and Primary Care, University Medical Centre Utrecht, Netherlands
| | - L Jaap Kappelle
- Department of Neurology, Brain Center Rudolf Magnus, University Medical Centre Utrecht, Netherlands.
| | - Esther van den Berg
- Department of Neurology, Brain Center Rudolf Magnus, University Medical Centre Utrecht, Netherlands; Experimental Psychology, Helmholtz Institute, Utrecht University, Utrecht, Netherlands
| | - Guy E H M Rutten
- Julius Center for Health Sciences and Primary Care, University Medical Centre Utrecht, Netherlands
| | - Geert Jan Biessels
- Department of Neurology, Brain Center Rudolf Magnus, University Medical Centre Utrecht, Netherlands
| |
Collapse
|