1
|
Tao M, Ye W, Wu Y, Chang W, Liu F, Zhu Y. Identification and validation of five novel protein targets for type 2 diabetes mellitus. Sci Rep 2025; 15:12127. [PMID: 40204939 PMCID: PMC11982283 DOI: 10.1038/s41598-025-97416-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/08/2024] [Accepted: 04/04/2025] [Indexed: 04/11/2025] Open
Abstract
Despite advances in type 2 diabetes mellitus (T2DM) therapy, challenges remain due to the lack of novel therapeutic targets. We used Mendelian randomization to integrate cis-expression quantitative trait loci data for circulating proteins from the eQTLGen Consortium (31,684 individuals) with T2DM summary statistics from the Integrative Epidemiology Unit Open Genome-Wide Association Studies Project (61,714 cases, 593,952 controls). 42 genes were significantly associated with T2DM. Colocalization analysis revealed that six genes (CLSTN1, KCNJ11, MLX, DLD, RELA, and ULK1) shared common causal variants with T2DM. Among them, CLSTN1 (OR = 0.80, 95% CI: 0.70-0.90), KCNJ11 (OR = 0.66, 95% CI: 0.60-0.73), and MLX (OR = 0.73, 95% CI: 0.65-0.82) were negatively associated with T2DM, while DLD (OR = 1.38, 95% CI: 1.15-1.65), RELA (OR = 1.90, 95% CI: 1.41-2.55), and ULK1 (OR = 1.42, 95% CI: 1.17-1.71) were positively associated with T2DM. A matched case-control study further validated these associations, except for DLD, showing significant downregulation of CLSTN1, KCNJ11, and MLX (P < 0.05) alongside upregulation of RELA and ULK1 (P < 0.05) in T2DM patients. These findings underscore the potential of these proteins as drug targets, warranting further clinical investigation to confirm their therapeutic relevance.
Collapse
Affiliation(s)
- Mengjun Tao
- Yijishan Hospital, Wannan Medical College, No. 2 Zheshan West Road, Wuhu, 241001, China
| | - Wufei Ye
- Yijishan Hospital, Wannan Medical College, No. 2 Zheshan West Road, Wuhu, 241001, China
| | - Yang Wu
- Yijishan Hospital, Wannan Medical College, No. 2 Zheshan West Road, Wuhu, 241001, China
| | - Weiwei Chang
- School of Public Health, Wannan Medical College, No. 22 West Wenchang Road, Wuhu, 241002, Anhui, China
| | - Fei Liu
- School of Laboratory Medicine, Wannan Medical College, No. 22 West Wenchang Road, Wuhu, 241002, Anhui, China.
| | - Yu Zhu
- School of Public Health, Wannan Medical College, No. 22 West Wenchang Road, Wuhu, 241002, Anhui, China.
| |
Collapse
|
2
|
ElSheikh A, Shyng SL. K ATP channel mutations in congenital hyperinsulinism: Progress and challenges towards mechanism-based therapies. Front Endocrinol (Lausanne) 2023; 14:1161117. [PMID: 37056678 PMCID: PMC10086357 DOI: 10.3389/fendo.2023.1161117] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/07/2023] [Accepted: 03/13/2023] [Indexed: 03/30/2023] Open
Abstract
Congenital hyperinsulinism (CHI) is the most common cause of persistent hypoglycemia in infancy/childhood and is a serious condition associated with severe recurrent attacks of hypoglycemia due to dysregulated insulin secretion. Timely diagnosis and effective treatment are crucial to prevent severe hypoglycemia that may lead to life-long neurological complications. In pancreatic β-cells, adenosine triphosphate (ATP)-sensitive K+ (KATP) channels are a central regulator of insulin secretion vital for glucose homeostasis. Genetic defects that lead to loss of expression or function of KATP channels are the most common cause of HI (KATP-HI). Much progress has been made in our understanding of the molecular genetics and pathophysiology of KATP-HI in the past decades; however, treatment remains challenging, in particular for patients with diffuse disease who do not respond to the KATP channel activator diazoxide. In this review, we discuss current approaches and limitations on the diagnosis and treatment of KATP-HI, and offer perspectives on alternative therapeutic strategies.
Collapse
Affiliation(s)
- Assmaa ElSheikh
- Department of Chemical Physiology and Biochemistry, Oregon Health & Science University, Portland, OR, United States
- Department of Medical Biochemistry, Tanta University, Tanta, Egypt
| | - Show-Ling Shyng
- Department of Chemical Physiology and Biochemistry, Oregon Health & Science University, Portland, OR, United States
| |
Collapse
|
3
|
Wei C, Zhang Z, Fu Q, He Y, Yang T, Sun M. The reversible effects of free fatty acids on sulfonylurea-stimulated insulin secretion are related to the expression and dynamin-mediated endocytosis of KATP channels in pancreatic β cells. Endocr Connect 2023; 12:e220221. [PMID: 36398885 PMCID: PMC9782416 DOI: 10.1530/ec-22-0221] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/15/2022] [Accepted: 11/18/2022] [Indexed: 11/19/2022]
Abstract
Objective Lipotoxicity-induced pancreatic β cell-dysfunction results in decreased insulin secretion in response to multiple stimulus. In this study, we investigated the reversible effects of palmitate (PA) or oleate (OA) on insulin secretion and the relationship with pancreatic β-cell ATP-sensitive potassium (KATP) channels. Methods MIN6 cells were treated with PA and OA for 48 h and then washed out for 24 h to determine the changes in expression and endocytosis of the KATP channels and glucose-stimulated insulin secretion (GSIS) and sulfonylurea-stimulated insulin secretion (SU-SIS). Results MIN6 cells exposed to PA or OA showed both impaired GSIS and SU-SIS; the former was not restorable, while the latter was reversible with washout of PA or OA. Decreased expressions of both total and surface Kir6.2 and SUR1 and endocytosis of KATP channels were observed, which were also recoverable after washout. When MIN6 cells exposed to free fatty acids (FFAs) were cotreated with 5-aminoimidazole-4-carboxamide ribonucleotide (AICAR) or dynasore, we found that endocytosis of KATP channels did not change significantly by AICAR but was almost completely blocked by dynasore. Meanwhile, the inhibition of endocytosis of KATP channels after washout could be activated by PIP2. The recovery of SU-SIS after washout was significantly weakened by PIP2, but the decrease of SU-SIS induced by FFAs was not alleviated by dynasore. Conclusions FFAs can cause reversible impairment of SU-SIS on pancreatic β cells. The reversibility of the effects is partial because of the changes of expression and endocytosis of Kir6.2 and SUR1 which was mediated by dynamin.
Collapse
Affiliation(s)
- Chenmin Wei
- Department of Endocrinology, The First Affiliated Hospital of Nanjing Medical University, Nanjing, Jiangsu, China
- Department of Endocrinology, The Affiliated Jiangning Hospital of Nanjing Medical University, Nanjing, Jiangsu, China
| | - Zichen Zhang
- Department of Endocrinology, The First Affiliated Hospital of Nanjing Medical University, Nanjing, Jiangsu, China
| | - Qi Fu
- Department of Endocrinology, The First Affiliated Hospital of Nanjing Medical University, Nanjing, Jiangsu, China
| | - Yunqiang He
- Department of Endocrinology, The First Affiliated Hospital of Nanjing Medical University, Nanjing, Jiangsu, China
| | - Tao Yang
- Department of Endocrinology, The First Affiliated Hospital of Nanjing Medical University, Nanjing, Jiangsu, China
| | - Min Sun
- Department of Endocrinology, The First Affiliated Hospital of Nanjing Medical University, Nanjing, Jiangsu, China
| |
Collapse
|
4
|
Yang HQ, Echeverry FA, ElSheikh A, Gando I, Anez Arredondo S, Samper N, Cardozo T, Delmar M, Shyng SL, Coetzee WA. Subcellular trafficking and endocytic recycling of K ATP channels. Am J Physiol Cell Physiol 2022; 322:C1230-C1247. [PMID: 35508187 PMCID: PMC9169827 DOI: 10.1152/ajpcell.00099.2022] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/04/2022] [Revised: 04/27/2022] [Accepted: 04/30/2022] [Indexed: 11/22/2022]
Abstract
Sarcolemmal/plasmalemmal ATP-sensitive K+ (KATP) channels have key roles in many cell types and tissues. Hundreds of studies have described how the KATP channel activity and ATP sensitivity can be regulated by changes in the cellular metabolic state, by receptor signaling pathways and by pharmacological interventions. These alterations in channel activity directly translate to alterations in cell or tissue function, that can range from modulating secretory responses, such as insulin release from pancreatic β-cells or neurotransmitters from neurons, to modulating contractile behavior of smooth muscle or cardiac cells to elicit alterations in blood flow or cardiac contractility. It is increasingly becoming apparent, however, that KATP channels are regulated beyond changes in their activity. Recent studies have highlighted that KATP channel surface expression is a tightly regulated process with similar implications in health and disease. The surface expression of KATP channels is finely balanced by several trafficking steps including synthesis, assembly, anterograde trafficking, membrane anchoring, endocytosis, endocytic recycling, and degradation. This review aims to summarize the physiological and pathophysiological implications of KATP channel trafficking and mechanisms that regulate KATP channel trafficking. A better understanding of this topic has potential to identify new approaches to develop therapeutically useful drugs to treat KATP channel-related diseases.
Collapse
Affiliation(s)
- Hua-Qian Yang
- Cyrus Tang Hematology Center, Soochow University, Suzhou, People's Republic of China
| | | | - Assmaa ElSheikh
- Department of Biochemistry and Molecular Biology, Oregon Health & Science University, Portland, Oregon
- Department of Medical Biochemistry, Tanta University, Tanta, Egypt
| | - Ivan Gando
- Department of Pathology, NYU School of Medicine, New York, New York
| | | | - Natalie Samper
- Department of Pathology, NYU School of Medicine, New York, New York
| | - Timothy Cardozo
- Department of Biochemistry and Molecular Pharmacology, NYU School of Medicine, New York, New York
| | - Mario Delmar
- Department of Biochemistry and Molecular Pharmacology, NYU School of Medicine, New York, New York
- Department of Medicine, NYU School of Medicine, New York, New York
| | - Show-Ling Shyng
- Department of Biochemistry and Molecular Biology, Oregon Health & Science University, Portland, Oregon
| | - William A Coetzee
- Department of Pathology, NYU School of Medicine, New York, New York
- Department of Neuroscience & Physiology, NYU School of Medicine, New York, New York
- Department of Biochemistry and Molecular Pharmacology, NYU School of Medicine, New York, New York
| |
Collapse
|
5
|
Coyote-Maestas W, Nedrud D, He Y, Schmidt D. Determinants of trafficking, conduction, and disease within a K + channel revealed through multiparametric deep mutational scanning. eLife 2022; 11:e76903. [PMID: 35639599 PMCID: PMC9273215 DOI: 10.7554/elife.76903] [Citation(s) in RCA: 24] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/08/2022] [Accepted: 05/27/2022] [Indexed: 01/04/2023] Open
Abstract
A long-standing goal in protein science and clinical genetics is to develop quantitative models of sequence, structure, and function relationships to understand how mutations cause disease. Deep mutational scanning (DMS) is a promising strategy to map how amino acids contribute to protein structure and function and to advance clinical variant interpretation. Here, we introduce 7429 single-residue missense mutations into the inward rectifier K+ channel Kir2.1 and determine how this affects folding, assembly, and trafficking, as well as regulation by allosteric ligands and ion conduction. Our data provide high-resolution information on a cotranslationally folded biogenic unit, trafficking and quality control signals, and segregated roles of different structural elements in fold stability and function. We show that Kir2.1 surface trafficking mutants are underrepresented in variant effect databases, which has implications for clinical practice. By comparing fitness scores with expert-reviewed variant effects, we can predict the pathogenicity of 'variants of unknown significance' and disease mechanisms of known pathogenic mutations. Our study in Kir2.1 provides a blueprint for how multiparametric DMS can help us understand the mechanistic basis of genetic disorders and the structure-function relationships of proteins.
Collapse
Affiliation(s)
- Willow Coyote-Maestas
- Department of Biochemistry, Molecular Biology and Biophysics, University of MinnesotaMinneapolisUnited States
| | - David Nedrud
- Department of Biochemistry, Molecular Biology and Biophysics, University of MinnesotaMinneapolisUnited States
| | - Yungui He
- Department of Genetics, Cell Biology and Development, University of MinnesotaMinneapolisUnited States
| | - Daniel Schmidt
- Department of Genetics, Cell Biology and Development, University of MinnesotaMinneapolisUnited States
| |
Collapse
|
6
|
Liu M, Liu C, Xiao X, Han S, Bi M, Jiao Q, Chen X, Yan C, Du X, Jiang H. Role of upregulation of the K ATP channel subunit SUR1 in dopaminergic neuron degeneration in Parkinson's disease. Aging Cell 2022; 21:e13618. [PMID: 35441806 PMCID: PMC9124303 DOI: 10.1111/acel.13618] [Citation(s) in RCA: 14] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/22/2021] [Revised: 02/07/2022] [Accepted: 04/04/2022] [Indexed: 12/02/2022] Open
Abstract
Accumulating evidence suggests that ATP‐sensitive potassium (KATP) channels play an important role in the selective degeneration of dopaminergic neurons in the substantia nigra (SN). Furthermore, the expression of the KATP channel subunit sulfonylurea receptor 1 (SUR1) is upregulated in the remaining nigral dopaminergic neurons in Parkinson's disease (PD). However, the mechanism underlying this selective upregulation of the SUR1 subunit and its subsequent roles in PD progression are largely unknown. In 3‐, 6‐, and 9‐month‐old A53T α‐synuclein transgenic (α‐SynA53T+/+) mice, only the SUR1 subunit and not SUR2B or Kir6.2 was upregulated, accompanied by neuronal damage. Moreover, the occurrence of burst firing in dopaminergic neurons was increased with the upregulation of the SUR1 subunit, whereas no changes in the firing rate were observed except in 9‐month‐old α‐SynA53T+/+ mice. After interference with SUR1 expression by injection of lentivirus into the SN, the progression of dopaminergic neuron degeneration was delayed. Further studies showed that elevated expression of the transcription factors FOXA1 and FOXA2 could cause the upregulation of the SUR1 subunit in α‐SynA53T+/+ mice. Our findings revealed the regulatory mechanism of the SUR1 subunit and the role of KATP channels in the progression of dopaminergic neuron degeneration, providing a new target for PD drug therapy.
Collapse
Affiliation(s)
- Min Liu
- Department of Physiology Shandong Provincial Key Laboratory of Pathogenesis and Prevention of Neurological Disorders and State Key Disciplines: Physiology School of Basic Medicine Qingdao University Qingdao China
| | - Cui Liu
- Department of Physiology Shandong Provincial Key Laboratory of Pathogenesis and Prevention of Neurological Disorders and State Key Disciplines: Physiology School of Basic Medicine Qingdao University Qingdao China
| | - Xue Xiao
- Department of Physiology Shandong Provincial Key Laboratory of Pathogenesis and Prevention of Neurological Disorders and State Key Disciplines: Physiology School of Basic Medicine Qingdao University Qingdao China
| | - Shuai‐Shuai Han
- Department of Physiology Shandong Provincial Key Laboratory of Pathogenesis and Prevention of Neurological Disorders and State Key Disciplines: Physiology School of Basic Medicine Qingdao University Qingdao China
| | - Ming‐Xia Bi
- Department of Physiology Shandong Provincial Key Laboratory of Pathogenesis and Prevention of Neurological Disorders and State Key Disciplines: Physiology School of Basic Medicine Qingdao University Qingdao China
| | - Qian Jiao
- Department of Physiology Shandong Provincial Key Laboratory of Pathogenesis and Prevention of Neurological Disorders and State Key Disciplines: Physiology School of Basic Medicine Qingdao University Qingdao China
| | - Xi Chen
- Department of Physiology Shandong Provincial Key Laboratory of Pathogenesis and Prevention of Neurological Disorders and State Key Disciplines: Physiology School of Basic Medicine Qingdao University Qingdao China
| | - Chun‐Ling Yan
- Department of Physiology Shandong Provincial Key Laboratory of Pathogenesis and Prevention of Neurological Disorders and State Key Disciplines: Physiology School of Basic Medicine Qingdao University Qingdao China
| | - Xi‐Xun Du
- Department of Physiology Shandong Provincial Key Laboratory of Pathogenesis and Prevention of Neurological Disorders and State Key Disciplines: Physiology School of Basic Medicine Qingdao University Qingdao China
| | - Hong Jiang
- Department of Physiology Shandong Provincial Key Laboratory of Pathogenesis and Prevention of Neurological Disorders and State Key Disciplines: Physiology School of Basic Medicine Qingdao University Qingdao China
| |
Collapse
|
7
|
Lin CH, Lin YC, Yang SB, Chen PC. Carbamazepine promotes surface expression of mutant Kir6.2-A28V ATP-sensitive potassium channels by modulating Golgi retention and autophagy. J Biol Chem 2022; 298:101904. [PMID: 35398096 PMCID: PMC9065613 DOI: 10.1016/j.jbc.2022.101904] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/10/2021] [Revised: 03/25/2022] [Accepted: 03/27/2022] [Indexed: 11/21/2022] Open
Abstract
Pancreatic β-cells express ATP-sensitive potassium (KATP) channels, consisting of octamer complexes containing four sulfonylurea receptor 1 (SUR1) and four Kir6.2 subunits. Loss of KATP channel function causes persistent hyperinsulinemic hypoglycemia of infancy (PHHI), a rare but debilitating condition if not treated. We previously showed that the sodium-channel blocker carbamazepine (Carb) corrects KATP channel surface expression defects induced by PHHI-causing mutations in SUR1. In this study, we show that Carb treatment can also ameliorate the trafficking deficits associated with a recently discovered PHHI-causing mutation in Kir6.2 (Kir6.2-A28V). In human embryonic kidney 293 or INS-1 cells expressing this mutant KATP channel (SUR1 and Kir6.2-A28V), biotinylation and immunostaining assays revealed that Carb can increase surface expression of the mutant KATP channels. We further examined the subcellular distributions of mutant KATP channels before and after Carb treatment; without Carb treatment, we found that mutant KATP channels were aberrantly accumulated in the Golgi apparatus. However, after Carb treatment, coimmunoprecipitation of mutant KATP channels and Golgi marker GM130 was diminished, and KATP staining was also reduced in lysosomes. Intriguingly, Carb treatment also simultaneously increased autophagic flux and p62 accumulation, suggesting that autophagy-dependent degradation of the mutant channel was not only stimulated but also interrupted. In summary, our data suggest that surface expression of Kir6.2-A28V KATP channels is rescued by Carb treatment via promotion of mutant KATP channel exit from the Golgi apparatus and reduction of autophagy-mediated protein degradation.
Collapse
|
8
|
Scala R, Maqoud F, Zizzo N, Mele A, Camerino GM, Zito FA, Ranieri G, McClenaghan C, Harter TM, Nichols CG, Tricarico D. Pathophysiological Consequences of KATP Channel Overactivity and Pharmacological Response to Glibenclamide in Skeletal Muscle of a Murine Model of Cantù Syndrome. Front Pharmacol 2020; 11:604885. [PMID: 33329006 PMCID: PMC7734337 DOI: 10.3389/fphar.2020.604885] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/10/2020] [Accepted: 11/03/2020] [Indexed: 12/11/2022] Open
Abstract
Cantù syndrome (CS) arises from mutations in ABCC9 and KCNJ8 genes that lead to gain of function (GOF) of ATP-sensitive potassium (KATP) channels containing SUR2A and Kir6.1 subunits, respectively, of KATP channels. Pathological consequences of CS have been reported for cardiac and smooth muscle cells but consequences in skeletal muscle are unknown. Children with CS show muscle hypotonia and adult manifest fatigability. We analyzed muscle properties of Kir6.1[V65M] CS mice, by measurements of forelimb strength and ultrasonography of hind-limb muscles, as well as assessing KATP channel properties in native Flexor digitorum brevis (FDB) and Soleus (SOL) fibers by the patch-clamp technique in parallel with histopathological, immunohistochemical and Polymerase Chain Reaction (PCR) analysis. Forelimb strength was lower in Kir6.1wt/VM mice than in WT mice. Also, a significant enhancement of echodensity was observed in hind-limb muscles of Kir6.1wt/VM mice relative to WT, suggesting the presence of fibrous tissue. There was a higher KATP channel current amplitude in Kir6.1wt/VM FDB fibers relative to WT and a reduced response to glibenclamide. The IC50 of glibenclamide to block KATP channels in FDB fibers was 1.3 ± 0.2 × 10−7 M in WT and 1.2 ± 0.1 × 10−6 M in Kir6.1wt/VM mice, respectively; and it was 1.2 ± 0.4 × 10−7 M in SOL WT fibers but not measurable in Kir6.1wt/VM fibers. The sensitivity of the KATP channel to MgATP was not modified in Kir6.1wt/VM fibers. Histopathological/immunohistochemical analysis of SOL revealed degeneration plus regressive-necrotic lesions with regeneration, and up-regulation of Atrogin-1, MuRF1, and BNIP3 mRNA/proteins in Kir6.1wt/VM mice. Kir6.1wt/VM mutation in skeletal muscle leads to changes of the KATP channel response to glibenclamide in FDB and SOL fibers, and it is associated with histopathological and gene expression changes in slow-twitch muscle, suggesting marked atrophy and autophagy.
Collapse
Affiliation(s)
- Rosa Scala
- Section of Pharmacology, Department of Pharmacy-Pharmaceutical Sciences, University of Bari "Aldo Moro", Bari, Italy
| | - Fatima Maqoud
- Section of Pharmacology, Department of Pharmacy-Pharmaceutical Sciences, University of Bari "Aldo Moro", Bari, Italy
| | - Nicola Zizzo
- Section of Veterinary Pathology and Comparative Oncology, Department of Veterinary Medicine, University of Bari "Aldo Moro", Valenzano, Italy
| | - Antonietta Mele
- Section of Pharmacology, Department of Pharmacy-Pharmaceutical Sciences, University of Bari "Aldo Moro", Bari, Italy
| | - Giulia Maria Camerino
- Section of Pharmacology, Department of Pharmacy-Pharmaceutical Sciences, University of Bari "Aldo Moro", Bari, Italy
| | - Francesco Alfredo Zito
- Interventional and Medical Oncology Unit, Department of Pathology National Cancer Research Centre, IRCCS Istituto Tumori Giovanni Paolo II, Bari, Italy
| | - Girolamo Ranieri
- Interventional and Medical Oncology Unit, Department of Pathology National Cancer Research Centre, IRCCS Istituto Tumori Giovanni Paolo II, Bari, Italy
| | - Conor McClenaghan
- Department of Cell Biology and Physiology, and Center for the Investigation of Membrane Excitability Diseases, Washington University School of Medicine, St. Louis, MO, United States
| | - Theresa M Harter
- Department of Cell Biology and Physiology, and Center for the Investigation of Membrane Excitability Diseases, Washington University School of Medicine, St. Louis, MO, United States
| | - Colin G Nichols
- Department of Cell Biology and Physiology, and Center for the Investigation of Membrane Excitability Diseases, Washington University School of Medicine, St. Louis, MO, United States
| | - Domenico Tricarico
- Section of Pharmacology, Department of Pharmacy-Pharmaceutical Sciences, University of Bari "Aldo Moro", Bari, Italy
| |
Collapse
|
9
|
Sohn JW, Ho WK. Cellular and systemic mechanisms for glucose sensing and homeostasis. Pflugers Arch 2020; 472:1547-1561. [PMID: 32960363 DOI: 10.1007/s00424-020-02466-2] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/30/2020] [Revised: 08/14/2020] [Accepted: 09/14/2020] [Indexed: 12/25/2022]
Abstract
Glucose is a major source of energy in animals. Maintaining blood glucose levels within a physiological range is important for facilitating glucose uptake by cells, as required for optimal functioning. Glucose homeostasis relies on multiple glucose-sensing cells in the body that constantly monitor blood glucose levels and respond accordingly to adjust its glycemia. These include not only pancreatic β-cells and α-cells that secrete insulin and glucagon, but also central and peripheral neurons regulating pancreatic endocrine function. Different types of cells respond distinctively to changes in blood glucose levels, and the mechanisms involved in glucose sensing are diverse. Notably, recent studies have challenged the currently held views regarding glucose-sensing mechanisms. Furthermore, peripheral and central glucose-sensing cells appear to work in concert to control blood glucose level and maintain glucose and energy homeostasis in organisms. In this review, we summarize the established concepts and recent advances in the understanding of cellular and systemic mechanisms that regulate glucose sensing and its homeostasis.
Collapse
Affiliation(s)
- Jong-Woo Sohn
- Department of Biological Sciences, Korea Advanced Institute of Science and Technology, 291 Daehak-ro, Yuseong-gu, Daejeon, 34141, South Korea.
| | - Won-Kyung Ho
- Department of Physiology, Seoul National University College of Medicine, 103 Daehak-ro, Jongro-gu, Seoul, 03080, South Korea.
- Department of Brain and Cognitive Sciences, Seoul National University College of Natural Sciences, 1 Gwanak-ro, Gwanak-gu, Seoul, 08826, South Korea.
| |
Collapse
|
10
|
Cao L, He Y, Huang Q, Zhang Y, Deng P, Du W, Hua Z, Zhu M, Wei H. Clinical features and partial proportional molecular genetics in neonatal diabetes mellitus: a retrospective analysis in southwestern China. Endocrine 2020; 69:53-62. [PMID: 32279225 DOI: 10.1007/s12020-020-02279-4] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/16/2019] [Accepted: 03/23/2020] [Indexed: 01/29/2023]
Abstract
PURPOSE To explore the relationship of phenotype and genotype of neonatal diabetes mellitus (NDM) in southwestern China. METHODS Sixteen cases of NDM admitted to Children's Hospital of Chongqing Medical University from May 2009 to May 2019 were included in this study. The clinical features of the included infants were retrospectively analyzed. Peripheral blood samples of the patients and their parents were collected for mutation detection. RESULTS Among the 16 cases of NDM, 8 cases were permanent neonatal diabetes mellitus (PNDM) (including 3 clinical syndromes), and 3 cases were transient neonatal diabetes mellitus (TNDM). Mutation detection was performed in six cases. The mutation genes and their loci were FOXP3 p.V408M, KCNJ11 p.C166Y, ABCC8 p.S830P, KCNJ11 p.I182T, KCNJ11 p.G334D, and ZFP57 p.R125X,412. ABCC8 p.S830P was the new found pathogenic site of gene mutation. According to the clinical features and follow-up results, one case was diagnosed as IPEX syndrome, two as DEND syndrome, two as simple PNDM, and one as TNDM. All the TNDM could spontaneously alleviate and then insulin was withdrawn. In PNDM, 75% of those with KATP channel gene mutation could be completely or partially converted to oral sulfonylureas treatment, however, the rest cases needed lifelong insulin replacement therapy. CONCLUSION The clinical manifestations and treatment regimens of patients with NDM vary according to the type of gene mutation. Even the same mutant genotype has differences in phenotype and response to treatment.
Collapse
Affiliation(s)
- Luying Cao
- Department of Neonatology, Children's Hospital of Chongqing Medical University, Chongqing, PR China
- Ministry of Education Key Laboratory of Child Development and Disorders; National Clinical Research Center for Child Health and Disorders; China International Science and Technology Cooperation base of Child development and Critical Disorders, Children's Hospital of Chongqing Medical University, Chongqing, PR China
- Chongqing Key Laboratory of Pediatrics, Children's Hospital of Chongqing Medical University, Chongqing, PR China
| | - Yi He
- Department of Neonatology, Children's Hospital of Chongqing Medical University, Chongqing, PR China
- Ministry of Education Key Laboratory of Child Development and Disorders; National Clinical Research Center for Child Health and Disorders; China International Science and Technology Cooperation base of Child development and Critical Disorders, Children's Hospital of Chongqing Medical University, Chongqing, PR China
- Chongqing Key Laboratory of Pediatrics, Children's Hospital of Chongqing Medical University, Chongqing, PR China
| | - Qinrong Huang
- Ministry of Education Key Laboratory of Child Development and Disorders; National Clinical Research Center for Child Health and Disorders; China International Science and Technology Cooperation base of Child development and Critical Disorders, Children's Hospital of Chongqing Medical University, Chongqing, PR China
- Chongqing Key Laboratory of Pediatrics, Children's Hospital of Chongqing Medical University, Chongqing, PR China
- Department of Rehabilitation, Children's Hospital of Chongqing Medical University, Chongqing, PR China
| | - Yu Zhang
- Department of Neonatology, Children's Hospital of Chongqing Medical University, Chongqing, PR China
- Ministry of Education Key Laboratory of Child Development and Disorders; National Clinical Research Center for Child Health and Disorders; China International Science and Technology Cooperation base of Child development and Critical Disorders, Children's Hospital of Chongqing Medical University, Chongqing, PR China
- Chongqing Key Laboratory of Pediatrics, Children's Hospital of Chongqing Medical University, Chongqing, PR China
| | - Pinglan Deng
- Department of Neonatology, Children's Hospital of Chongqing Medical University, Chongqing, PR China
- Ministry of Education Key Laboratory of Child Development and Disorders; National Clinical Research Center for Child Health and Disorders; China International Science and Technology Cooperation base of Child development and Critical Disorders, Children's Hospital of Chongqing Medical University, Chongqing, PR China
- Chongqing Key Laboratory of Pediatrics, Children's Hospital of Chongqing Medical University, Chongqing, PR China
| | - Weixia Du
- Department of Neonatology, Children's Hospital of Chongqing Medical University, Chongqing, PR China
- Ministry of Education Key Laboratory of Child Development and Disorders; National Clinical Research Center for Child Health and Disorders; China International Science and Technology Cooperation base of Child development and Critical Disorders, Children's Hospital of Chongqing Medical University, Chongqing, PR China
- Chongqing Key Laboratory of Pediatrics, Children's Hospital of Chongqing Medical University, Chongqing, PR China
| | - Ziyu Hua
- Department of Neonatology, Children's Hospital of Chongqing Medical University, Chongqing, PR China
- Ministry of Education Key Laboratory of Child Development and Disorders; National Clinical Research Center for Child Health and Disorders; China International Science and Technology Cooperation base of Child development and Critical Disorders, Children's Hospital of Chongqing Medical University, Chongqing, PR China
- Chongqing Key Laboratory of Pediatrics, Children's Hospital of Chongqing Medical University, Chongqing, PR China
| | - Min Zhu
- Ministry of Education Key Laboratory of Child Development and Disorders; National Clinical Research Center for Child Health and Disorders; China International Science and Technology Cooperation base of Child development and Critical Disorders, Children's Hospital of Chongqing Medical University, Chongqing, PR China
- Chongqing Key Laboratory of Pediatrics, Children's Hospital of Chongqing Medical University, Chongqing, PR China
- Department of Endocrinology, Children's Hospital of Chongqing Medical University, Chongqing, PR China
| | - Hong Wei
- Department of Neonatology, Children's Hospital of Chongqing Medical University, Chongqing, PR China.
- Ministry of Education Key Laboratory of Child Development and Disorders; National Clinical Research Center for Child Health and Disorders; China International Science and Technology Cooperation base of Child development and Critical Disorders, Children's Hospital of Chongqing Medical University, Chongqing, PR China.
- Chongqing Key Laboratory of Pediatrics, Children's Hospital of Chongqing Medical University, Chongqing, PR China.
| |
Collapse
|
11
|
Balamurugan K, Kavitha B, Yang Z, Mohan V, Radha V, Shyng SL. Functional characterization of activating mutations in the sulfonylurea receptor 1 (ABCC8) causing neonatal diabetes mellitus in Asian Indian children. Pediatr Diabetes 2019; 20:397-407. [PMID: 30861254 PMCID: PMC11423867 DOI: 10.1111/pedi.12843] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/18/2018] [Revised: 01/28/2019] [Accepted: 02/24/2019] [Indexed: 11/26/2022] Open
Abstract
BACKGROUND Gain-of-function of ATP-sensitive K+ (KATP ) channels because of mutations in the genes encoding SUR1 (ABCC8) or Kir6.2 (KCNJ11) is a major cause of neonatal diabetes mellitus (NDM). Our aim is to determine molecular defects in KATP channels caused by ABCC8 mutations in Asian Indian children with NDM by in vitro functional studies. METHODS Wild-type (WT; NM_000352.4) or mutant sulfonylurea receptor 1 (SUR1) and Kir6.2 were co-expressed in COSm6 cells. Biogenesis efficiency and surface expression of mutant channels were assessed by immunoblotting and immunostaining. The response of mutant channels to cytoplasmic ATP and ADP was assessed by inside-out patch-clamp recordings. The response of mutant channels to known KATP inhibitors in intact cells were determined by 86 Rb efflux assays. RESULTS Five SUR1 missense mutations, D212Y, P254S, R653Q, R992C, and Q1224H, were studied and showed increased activity in MgATP/MgADP. Two of the mutants, D212Y and P254S, also showed reduced response to ATP4- inhibition, as well as markedly reduced surface expression. Moreover, all five mutants were inhibited by the KATP channel inhibitors glibenclamide and carbamazepine. CONCLUSIONS The study shows the mechanisms by which five SUR1 mutations identified in Asian Indian NDM patients affect KATP channel function to cause the disease. The reduced ATP4- sensitivity caused by the D212Y and P254S mutations in the L0 of SUR1 provides novel insight into the role of L0 in channel inhibition by ATP. The results also explain why sulfonylurea therapy is effective in two patients and inform how it should be effective for the other three patients.
Collapse
Affiliation(s)
- Kandasamy Balamurugan
- Department of Molecular Genetics, Madras Diabetes Research Foundation, ICMR Advanced Centre for Genomics of Type 2 Diabetes and Dr. Mohan's Diabetes Specialties Centre, WHO Collaborating Centre for Non-Communicable Diseases Prevention & Control, IDF Centre of Education, Chennai, India
- Department of Biochemistry and Molecular Biology, Oregon Health and Science University, Portland, Oregon
| | - Babu Kavitha
- Department of Molecular Genetics, Madras Diabetes Research Foundation, ICMR Advanced Centre for Genomics of Type 2 Diabetes and Dr. Mohan's Diabetes Specialties Centre, WHO Collaborating Centre for Non-Communicable Diseases Prevention & Control, IDF Centre of Education, Chennai, India
| | - Zhongying Yang
- Department of Biochemistry and Molecular Biology, Oregon Health and Science University, Portland, Oregon
| | - Viswanathan Mohan
- Department of Molecular Genetics, Madras Diabetes Research Foundation, ICMR Advanced Centre for Genomics of Type 2 Diabetes and Dr. Mohan's Diabetes Specialties Centre, WHO Collaborating Centre for Non-Communicable Diseases Prevention & Control, IDF Centre of Education, Chennai, India
| | - Venkatesan Radha
- Department of Molecular Genetics, Madras Diabetes Research Foundation, ICMR Advanced Centre for Genomics of Type 2 Diabetes and Dr. Mohan's Diabetes Specialties Centre, WHO Collaborating Centre for Non-Communicable Diseases Prevention & Control, IDF Centre of Education, Chennai, India
| | - Show-Ling Shyng
- Department of Biochemistry and Molecular Biology, Oregon Health and Science University, Portland, Oregon
| |
Collapse
|
12
|
Leptin-induced Trafficking of K ATP Channels: A Mechanism to Regulate Pancreatic β-cell Excitability and Insulin Secretion. Int J Mol Sci 2019; 20:ijms20112660. [PMID: 31151172 PMCID: PMC6600549 DOI: 10.3390/ijms20112660] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/04/2019] [Revised: 05/25/2019] [Accepted: 05/27/2019] [Indexed: 11/17/2022] Open
Abstract
The adipocyte hormone leptin was first recognized for its actions in the central nervous system to regulate energy homeostasis but has since been shown to have direct actions on peripheral tissues. In pancreatic β-cells leptin suppresses insulin secretion by increasing KATP channel conductance, which causes membrane hyperpolarization and renders β-cells electrically silent. However, the mechanism by which leptin increases KATP channel conductance had remained unresolved for many years following the initial observation. Recent studies have revealed that leptin increases surface abundance of KATP channels by promoting channel trafficking to the β-cell membrane. Thus, KATP channel trafficking regulation has emerged as a mechanism by which leptin increases KATP channel conductance to regulate β-cell electrical activity and insulin secretion. This review will discuss the leptin signaling pathway that underlies KATP channel trafficking regulation in β-cells.
Collapse
|
13
|
Martin GM, Kandasamy B, DiMaio F, Yoshioka C, Shyng SL. Anti-diabetic drug binding site in a mammalian K ATP channel revealed by Cryo-EM. eLife 2017; 6:31054. [PMID: 29035201 PMCID: PMC5655142 DOI: 10.7554/elife.31054] [Citation(s) in RCA: 107] [Impact Index Per Article: 13.4] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/05/2017] [Accepted: 10/11/2017] [Indexed: 12/25/2022] Open
Abstract
Sulfonylureas are anti-diabetic medications that act by inhibiting pancreatic KATP channels composed of SUR1 and Kir6.2. The mechanism by which these drugs interact with and inhibit the channel has been extensively investigated, yet it remains unclear where the drug binding pocket resides. Here, we present a cryo-EM structure of a hamster SUR1/rat Kir6.2 channel bound to a high-affinity sulfonylurea drug glibenclamide and ATP at 3.63 Å resolution, which reveals unprecedented details of the ATP and glibenclamide binding sites. Importantly, the structure shows for the first time that glibenclamide is lodged in the transmembrane bundle of the SUR1-ABC core connected to the first nucleotide binding domain near the inner leaflet of the lipid bilayer. Mutation of residues predicted to interact with glibenclamide in our model led to reduced sensitivity to glibenclamide. Our structure provides novel mechanistic insights of how sulfonylureas and ATP interact with the KATP channel complex to inhibit channel activity.
Collapse
Affiliation(s)
- Gregory M Martin
- Department of Biochemistry and Molecular Biology, Oregon Health and Science University, Portland, United States
| | - Balamurugan Kandasamy
- Department of Biochemistry and Molecular Biology, Oregon Health and Science University, Portland, United States
| | - Frank DiMaio
- Department of Biochemistry, University of Washington, Seattle, United States
| | - Craig Yoshioka
- Department of Biomedical Engineering, Oregon Health and Science University, Portland, United States
| | - Show-Ling Shyng
- Department of Biochemistry and Molecular Biology, Oregon Health and Science University, Portland, United States
| |
Collapse
|
14
|
Notary AM, Westacott MJ, Hraha TH, Pozzoli M, Benninger RKP. Decreases in Gap Junction Coupling Recovers Ca2+ and Insulin Secretion in Neonatal Diabetes Mellitus, Dependent on Beta Cell Heterogeneity and Noise. PLoS Comput Biol 2016; 12:e1005116. [PMID: 27681078 PMCID: PMC5040430 DOI: 10.1371/journal.pcbi.1005116] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/03/2016] [Accepted: 08/23/2016] [Indexed: 11/29/2022] Open
Abstract
Diabetes is caused by dysfunction to β-cells in the islets of Langerhans, disrupting insulin secretion and glucose homeostasis. Gap junction-mediated electrical coupling between β-cells in the islet plays a major role in coordinating a pulsatile secretory response at elevated glucose and suppressing insulin secretion at basal glucose. Previously, we demonstrated that a critical number of inexcitable cells can rapidly suppress the overall islet response, as a result of gap junction coupling. This was demonstrated in a murine model of Neonatal Diabetes Mellitus (NDM) involving expression of ATP-insensitive KATP channels, and by a multi-cellular computational model of islet electrical activity. Here we examined the mechanisms by which gap junction coupling contributes to islet dysfunction in NDM. We first verified the computational model against [Ca2+] and insulin secretion measurements in islets expressing ATP-insensitive KATP channels under different levels of gap junction coupling. We then applied this model to predict how different KATP channel mutations found in NDM suppress [Ca2+], and the role of gap junction coupling in this suppression. We further extended the model to account for stochastic noise and insulin secretion dynamics. We found experimentally and in the islet model that reductions in gap junction coupling allow progressively greater glucose-stimulated [Ca2+] and insulin secretion following expression of ATP-insensitive KATP channels. The model demonstrated good correspondence between suppression of [Ca2+] and clinical presentation of different NDM mutations. Significant recoveries in [Ca2+] and insulin secretion were predicted for many mutations upon reductions in gap junction coupling, where stochastic noise played a significant role in the recoveries. These findings provide new understanding how the islet functions as a multicellular system and for the role of gap junction channels in exacerbating the effects of decreased cellular excitability. They further suggest novel therapeutic options for NDM and other monogenic forms of diabetes. Diabetes is a disease reaching a global epidemic, which results from dysfunction to the islets of Langerhans in the pancreas and their ability to secrete the hormone insulin to regulate glucose homeostasis. Islets are multicellular structures that show extensive coupling between heterogeneous cellular units; and central to the causes of diabetes is a dysfunction to these cellular units and their interactions. Understanding the inter-relationship between structure and function is challenging in biological systems, but is crucial to the cause of disease and discovering therapeutic targets. With the goal of further characterizing the islet of Langerhans and its excitable behavior, we examined the role of important channels in the islet where dysfunction is linked to or causes diabetes. Advances in our ability to computationally model perturbations in physiological systems has allowed for the testing of hypothesis quickly, in systems that are not experimentally accessible. Using an experimentally validated model and modeling human mutations, we discover that monogenic forms of diabetes may be remedied by a reduction in electrical coupling between cells; either alone or in conjunction with pharmacological intervention. Knowledge of biological systems in general is also helped by these findings, in that small changes to cellular elements may lead to major disruptions in the overall system. This may then be overcome by allowing the system components to function independently in the presence of dysfunction to individual cells.
Collapse
Affiliation(s)
- Aleena M. Notary
- Department of Bioengineering, University of Colorado, Anschutz Medical campus, Aurora, Colorado, United States of America
| | - Matthew J. Westacott
- Department of Bioengineering, University of Colorado, Anschutz Medical campus, Aurora, Colorado, United States of America
| | - Thomas H. Hraha
- Department of Bioengineering, University of Colorado, Anschutz Medical campus, Aurora, Colorado, United States of America
| | - Marina Pozzoli
- Department of Bioengineering, University of Colorado, Anschutz Medical campus, Aurora, Colorado, United States of America
| | - Richard K. P. Benninger
- Department of Bioengineering, University of Colorado, Anschutz Medical campus, Aurora, Colorado, United States of America
- Barbara Davis Center for Diabetes, University of Colorado, Anschutz Medical campus, Aurora, Colorado, United States of America
- * E-mail:
| |
Collapse
|
15
|
Devaraneni PK, Martin GM, Olson EM, Zhou Q, Shyng SL. Structurally distinct ligands rescue biogenesis defects of the KATP channel complex via a converging mechanism. J Biol Chem 2015; 290:7980-91. [PMID: 25637631 DOI: 10.1074/jbc.m114.634576] [Citation(s) in RCA: 28] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
Small molecules that correct protein misfolding and misprocessing defects offer a potential therapy for numerous human diseases. However, mechanisms underlying pharmacological correction of such defects, especially in heteromeric complexes with structurally diverse constituent proteins, are not well understood. Here we investigate how two chemically distinct compounds, glibenclamide and carbamazepine, correct biogenesis defects in ATP-sensitive potassium (KATP) channels composed of sulfonylurea receptor 1 (SUR1) and Kir6.2. We present evidence that despite structural differences, carbamazepine and glibenclamide compete for binding to KATP channels, and both drugs share a binding pocket in SUR1 to exert their effects. Moreover, both compounds engage Kir6.2, in particular the distal N terminus of Kir6.2, which is involved in normal channel biogenesis, for their chaperoning effects on SUR1 mutants. Conversely, both drugs can correct channel biogenesis defects caused by Kir6.2 mutations in a SUR1-dependent manner. Using an unnatural, photocross-linkable amino acid, azidophenylalanine, genetically encoded in Kir6.2, we demonstrate in living cells that both drugs promote interactions between the distal N terminus of Kir6.2 and SUR1. These findings reveal a converging pharmacological chaperoning mechanism wherein glibenclamide and carbamazepine stabilize the heteromeric subunit interface critical for channel biogenesis to overcome defective biogenesis caused by mutations in individual subunits.
Collapse
Affiliation(s)
- Prasanna K Devaraneni
- From the Department of Biochemistry and Molecular Biology, Oregon Health and Science University, Portland, Oregon 97239
| | - Gregory M Martin
- From the Department of Biochemistry and Molecular Biology, Oregon Health and Science University, Portland, Oregon 97239
| | - Erik M Olson
- From the Department of Biochemistry and Molecular Biology, Oregon Health and Science University, Portland, Oregon 97239
| | - Qing Zhou
- From the Department of Biochemistry and Molecular Biology, Oregon Health and Science University, Portland, Oregon 97239
| | - Show-Ling Shyng
- From the Department of Biochemistry and Molecular Biology, Oregon Health and Science University, Portland, Oregon 97239
| |
Collapse
|
16
|
Bonfanti DH, Alcazar LP, Arakaki PA, Martins LT, Agustini BC, de Moraes Rego FG, Frigeri HR. ATP-dependent potassium channels and type 2 diabetes mellitus. Clin Biochem 2015; 48:476-82. [PMID: 25583094 DOI: 10.1016/j.clinbiochem.2014.12.026] [Citation(s) in RCA: 33] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/11/2014] [Revised: 12/29/2014] [Accepted: 12/30/2014] [Indexed: 12/24/2022]
Abstract
Diabetes mellitus is a public health problem, which affects a millions worldwide. Most diabetes cases are classified as type 2 diabetes mellitus, which is highly associated with obesity. Type 2 diabetes is considered a multifactorial disorder, with both environmental and genetic factors contributing to its development. An important issue linked with diabetes development is the failure of the insulin releasing mechanism involving abnormal activity of the ATP-dependent potassium channel, KATP. This channel is a transmembrane protein encoded by the KCNJ11 and ABCC8 genes. Furthermore, polymorphisms in these genes have been linked to type 2 diabetes because of the role of KATP in insulin release. While several genetic variations have been reported to be associated with this disease, the E23K polymorphism is most commonly associated with this pathology, as well as to obesity. Here, we review the molecular genetics of the potassium channel and discusses its most described polymorphisms and their associations with type 2 diabetes mellitus.
Collapse
Affiliation(s)
- Dianne Heloisa Bonfanti
- Health and Biosciences School, Pontifical Catholic University of Parana, Curitiba, Parana, Brazil
| | - Larissa Pontes Alcazar
- Health and Biosciences School, Pontifical Catholic University of Parana, Curitiba, Parana, Brazil
| | - Priscila Akemi Arakaki
- Health and Biosciences School, Pontifical Catholic University of Parana, Curitiba, Parana, Brazil
| | - Laysa Toschi Martins
- Health and Biosciences School, Pontifical Catholic University of Parana, Curitiba, Parana, Brazil
| | - Bruna Carla Agustini
- Health and Biosciences School, Pontifical Catholic University of Parana, Curitiba, Parana, Brazil
| | | | | |
Collapse
|
17
|
Martin GM, Chen PC, Devaraneni P, Shyng SL. Pharmacological rescue of trafficking-impaired ATP-sensitive potassium channels. Front Physiol 2013; 4:386. [PMID: 24399968 PMCID: PMC3870925 DOI: 10.3389/fphys.2013.00386] [Citation(s) in RCA: 43] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/01/2013] [Accepted: 12/09/2013] [Indexed: 12/25/2022] Open
Abstract
ATP-sensitive potassium (KATP) channels link cell metabolism to membrane excitability and are involved in a wide range of physiological processes including hormone secretion, control of vascular tone, and protection of cardiac and neuronal cells against ischemic injuries. In pancreatic β-cells, KATP channels play a key role in glucose-stimulated insulin secretion, and gain or loss of channel function results in neonatal diabetes or congenital hyperinsulinism, respectively. The β-cell KATP channel is formed by co-assembly of four Kir6.2 inwardly rectifying potassium channel subunits encoded by KCNJ11 and four sulfonylurea receptor 1 subunits encoded by ABCC8. Many mutations in ABCC8 or KCNJ11 cause loss of channel function, thus, congenital hyperinsulinism by hampering channel biogenesis and hence trafficking to the cell surface. The trafficking defects caused by a subset of these mutations can be corrected by sulfonylureas, KATP channel antagonists that have long been used to treat type 2 diabetes. More recently, carbamazepine, an anticonvulsant that is thought to target primarily voltage-gated sodium channels has been shown to correct KATP channel trafficking defects. This article reviews studies to date aimed at understanding the mechanisms by which mutations impair channel biogenesis and trafficking and the mechanisms by which pharmacological ligands overcome channel trafficking defects. Insight into channel structure-function relationships and therapeutic implications from these studies are discussed.
Collapse
Affiliation(s)
- Gregory M Martin
- Department of Biochemistry and Molecular Biology, Oregon Health & Science University Portland, OR, USA
| | - Pei-Chun Chen
- Department of Biochemistry and Molecular Biology, Oregon Health & Science University Portland, OR, USA
| | - Prasanna Devaraneni
- Department of Biochemistry and Molecular Biology, Oregon Health & Science University Portland, OR, USA
| | - Show-Ling Shyng
- Department of Biochemistry and Molecular Biology, Oregon Health & Science University Portland, OR, USA
| |
Collapse
|
18
|
Chen PC, Kryukova YN, Shyng SL. Leptin regulates KATP channel trafficking in pancreatic β-cells by a signaling mechanism involving AMP-activated protein kinase (AMPK) and cAMP-dependent protein kinase (PKA). J Biol Chem 2013; 288:34098-34109. [PMID: 24100028 DOI: 10.1074/jbc.m113.516880] [Citation(s) in RCA: 59] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
Pancreatic β-cells secrete insulin in response to metabolic and hormonal signals to maintain glucose homeostasis. Insulin secretion is under the control of ATP-sensitive potassium (KATP) channels that play key roles in setting β-cell membrane potential. Leptin, a hormone secreted by adipocytes, inhibits insulin secretion by increasing KATP channel conductance in β-cells. We investigated the mechanism by which leptin increases KATP channel conductance. We show that leptin causes a transient increase in surface expression of KATP channels without affecting channel gating properties. This increase results primarily from increased channel trafficking to the plasma membrane rather than reduced endocytosis of surface channels. The effect of leptin on KATP channels is dependent on the protein kinases AMP-activated protein kinase (AMPK) and PKA. Activation of AMPK or PKA mimics and inhibition of AMPK or PKA abrogates the effect of leptin. Leptin activates AMPK directly by increasing AMPK phosphorylation at threonine 172. Activation of PKA leads to increased channel surface expression even in the presence of AMPK inhibitors, suggesting AMPK lies upstream of PKA in the leptin signaling pathway. Leptin signaling also leads to F-actin depolymerization. Stabilization of F-actin pharmacologically occludes, whereas destabilization of F-actin simulates, the effect of leptin on KATP channel trafficking, indicating that leptin-induced actin reorganization underlies enhanced channel trafficking to the plasma membrane. Our study uncovers the signaling and cellular mechanism by which leptin regulates KATP channel trafficking to modulate β-cell function and insulin secretion.
Collapse
Affiliation(s)
- Pei-Chun Chen
- Department of Biochemistry and Molecular Biology, Oregon Health and Science University, Portland, Oregon 97239
| | - Yelena N Kryukova
- Department of Biochemistry and Molecular Biology, Oregon Health and Science University, Portland, Oregon 97239
| | - Show-Ling Shyng
- Department of Biochemistry and Molecular Biology, Oregon Health and Science University, Portland, Oregon 97239.
| |
Collapse
|
19
|
Pratt EB, Zhou Q, Gay JW, Shyng SL. Engineered interaction between SUR1 and Kir6.2 that enhances ATP sensitivity in KATP channels. ACTA ACUST UNITED AC 2012; 140:175-87. [PMID: 22802363 PMCID: PMC3409095 DOI: 10.1085/jgp.201210803] [Citation(s) in RCA: 27] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
Abstract
The ATP-sensitive potassium (KATP) channel consisting of the inward rectifier Kir6.2 and SUR1 (sulfonylurea receptor 1) couples cell metabolism to membrane excitability and regulates insulin secretion. Inhibition by intracellular ATP is a hallmark feature of the channel. ATP sensitivity is conferred by Kir6.2 but enhanced by SUR1. The mechanism by which SUR1 increases channel ATP sensitivity is not understood. In this study, we report molecular interactions between SUR1 and Kir6.2 that markedly alter channel ATP sensitivity. Channels bearing an E203K mutation in SUR1 and a Q52E in Kir6.2 exhibit ATP sensitivity ∼100-fold higher than wild-type channels. Cross-linking of E203C in SUR1 and Q52C in Kir6.2 locks the channel in a closed state and is reversible by reducing agents, demonstrating close proximity of the two residues. Our results reveal that ATP sensitivity in KATP channels is a dynamic parameter dictated by interactions between SUR1 and Kir6.2.
Collapse
Affiliation(s)
- Emily B Pratt
- Department of Biochemistry and Molecular Biology, Oregon Health and Science University, Portland, OR 97239, USA.
| | | | | | | |
Collapse
|
20
|
Bruederle CE, Gay J, Shyng SL. A role of the sulfonylurea receptor 1 in endocytic trafficking of ATP-sensitive potassium channels. Traffic 2011; 12:1242-56. [PMID: 21649805 DOI: 10.1111/j.1600-0854.2011.01227.x] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
The ATP-sensitive potassium (K(ATP) ) channel consisting of sulfonylurea receptor 1 (SUR1) and inward-rectifier potassium channel 6.2 (Kir6.2) has a well-established role in insulin secretion. Mutations in either subunit can lead to disease due to aberrant channel gating, altered channel density at the cell surface or a combination of both. Endocytic trafficking of channels at the plasma membrane is one way to influence surface channel numbers. It has been previously reported that channel endocytosis is dependent on a tyrosine-based motif in Kir6.2, while SUR1 alone is unable to internalize. In this study, we followed endocytic trafficking of surface channels in real time by live-cell imaging of channel subunits tagged with an extracellular minimal α-bungarotoxin-binding peptide labeled with a fluorescent dye. We show that SUR1 undergoes endocytosis independent of Kir6.2. Moreover, mutations in the putative endocytosis motif of Kir6.2, Y330C, Y330A and F333I are unable to prevent channel endocytosis. These findings challenge the notion that Kir6.2 bears the sole endocytic signal for K(ATP) channels and support a role of SUR1 in this trafficking process.
Collapse
Affiliation(s)
- Cathrin E Bruederle
- Department of Biochemistry and Molecular Biology, Oregon Health & Science University, Portland, OR 97239, USA.
| | | | | |
Collapse
|
21
|
Zhou Q, Garin I, Castaño L, Argente J, Muñoz-Calvo MT, Perez de Nanclares G, Shyng SL. Neonatal diabetes caused by mutations in sulfonylurea receptor 1: interplay between expression and Mg-nucleotide gating defects of ATP-sensitive potassium channels. J Clin Endocrinol Metab 2010; 95:E473-8. [PMID: 20810569 PMCID: PMC2999977 DOI: 10.1210/jc.2010-1231] [Citation(s) in RCA: 26] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/19/2022]
Abstract
CONTEXT ATP-sensitive potassium (KATP) channels regulate insulin secretion by coupling glucose metabolism to β-cell membrane potential. Gain-of-function mutations in the sulfonylurea receptor 1 (SUR1) or Kir6.2 channel subunit underlie neonatal diabetes. OBJECTIVE The objective of the study was to determine the mechanisms by which two SUR1 mutations, E208K and V324M, associated with transient neonatal diabetes affect KATP channel function. DESIGN E208K or V324M mutant SUR1 was coexpressed with Kir6.2 in COS cells, and expression and gating properties of the resulting channels were assessed biochemically and electrophysiologically. RESULTS Both E208K and V324M augment channel response to MgADP stimulation without altering sensitivity to ATP4- or sulfonylureas. Surprisingly, whereas E208K causes only a small increase in MgADP response consistent with the mild transient diabetes phenotype, V324M causes a severe activating gating defect. Unlike E208K, V324M also impairs channel expression at the cell surface, which is expected to dampen its functional impact on β-cells. When either mutation was combined with a mutation in the second nucleotide binding domain of SUR1 previously shown to abolish Mg-nucleotide response, the activating effect of E208K and V324M was also abolished. Moreover, combination of E208K and V324M results in channels with Mg-nucleotide sensitivity greater than that seen in individual mutations alone. CONCLUSION The results demonstrate that E208K and V324M, located in distinct domains of SUR1, enhance transduction of Mg-nucleotide stimulation from the SUR1 nucleotide binding folds to Kir6.2. Furthermore, they suggest that diabetes severity is determined by interplay between effects of a mutation on channel expression and channel gating.
Collapse
Affiliation(s)
- Qing Zhou
- Department of Biochemistry and Molecular Biology, Oregon Health & Science University, 3181 S.W. Sam Jackson Park Road, Portland, Oregon 97239, USA
| | | | | | | | | | | | | |
Collapse
|
22
|
Hund TJ, Mohler PJ. Differential roles for SUR subunits in KATP channel membrane targeting and regulation. Am J Physiol Heart Circ Physiol 2010; 300:H33-5. [PMID: 21057044 DOI: 10.1152/ajpheart.01088.2010] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
|
23
|
Yan FF, Pratt EB, Chen PC, Wang F, Skach WR, David LL, Shyng SL. Role of Hsp90 in biogenesis of the beta-cell ATP-sensitive potassium channel complex. Mol Biol Cell 2010; 21:1945-54. [PMID: 20427569 PMCID: PMC2883939 DOI: 10.1091/mbc.e10-02-0116] [Citation(s) in RCA: 35] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022] Open
Abstract
The study identifies Hsp90 as a molecular chaperone for KATP channels. Inhibition of Hsp90 function reduces, whereas overexpression of Hsp90 enhances, channel expression at the cell surface. Hsp90 facilitates channel biogenesis by targeting the SUR1 subunit. Up-regulation of Hsp90 also enhances expression of some SUR1 mutants with folding defects. The pancreatic β-cell ATP-sensitive potassium (KATP) channel is a multimeric protein complex composed of four inwardly rectifying potassium channel (Kir6.2) and four sulfonylurea receptor 1 (SUR1) subunits. KATP channels play a key role in glucose-stimulated insulin secretion by linking glucose metabolism to membrane excitability. Many SUR1 and Kir6.2 mutations reduce channel function by disrupting channel biogenesis and processing, resulting in insulin secretion disease. To better understand the mechanisms governing KATP channel biogenesis, a proteomics approach was used to identify chaperone proteins associated with KATP channels. We report that chaperone proteins heat-shock protein (Hsp)90, heat-shock cognate protein (Hsc)70, and Hsp40 are associated with β-cell KATP channels. Pharmacologic inhibition of Hsp90 function by geldanamycin reduces, whereas overexpression of Hsp90 increases surface expression of wild-type KATP channels. Coimmunoprecipitation data indicate that channel association with the Hsp90 complex is mediated through SUR1. Accordingly, manipulation of Hsp90 protein expression or function has significant effects on the biogenesis efficiency of SUR1, but not Kir6.2, expressed alone. Interestingly, overexpression of Hsp90 selectively improved surface expression of mutant channels harboring a subset of disease-causing SUR1 processing mutations. Our study demonstrates that Hsp90 regulates biogenesis efficiency of heteromeric KATP channels via SUR1, thereby affecting functional expression of the channel in β-cell membrane.
Collapse
Affiliation(s)
- Fei-Fei Yan
- Department of Biochemistry and Molecular Biology, Oregon Health & Science University, Portland, OR 97239, USA
| | | | | | | | | | | | | |
Collapse
|
24
|
Kline CF, Hund TJ, Mohler PJ. Ankyrin regulates KATP channel membrane trafficking and gating in excitable cells. Channels (Austin) 2010; 4:55-7. [PMID: 19901534 DOI: 10.4161/chan.4.1.10362] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/19/2022] Open
Abstract
K(ATP) channels play critical roles in many cellular functions by coupling cell metabolic status to electrical activity. First discovered in cardiomyocytes,(1) K(ATP) channels (comprised of Kir6.x and SUR subunits) have since been found in many other tissues, including pancreatic beta cells, skeletal muscle, smooth muscle, brain, pituitary and kidney. By linking cellular metabolic state with membrane potential, K(ATP) channels are able to regulate a number of cellular functions such as hormone secretion, vascular tone and excitability. Specifically, a reduction in metabolism causes a decrease in the ATP:ADP ratio, opening of K(ATP) channels, K(+) efflux, membrane hyperpolarization, and suppression of electrical activity. Conversely, increased cellular metabolism causes an increase in the ATP:ADP ratio that leads to closure of the K(ATP) channel, membrane depolarization, and stimulation of cell electrical activity.
Collapse
Affiliation(s)
- Crystal F Kline
- Department of Internal Medicine, Division of Cardiovascular Medicine, University of Iowa Carver College of Medicine, Iowa City, IA, USA
| | | | | |
Collapse
|
25
|
Bushman JD, Gay JW, Tewson P, Stanley CA, Shyng SL. Characterization and functional restoration of a potassium channel Kir6.2 pore mutation identified in congenital hyperinsulinism. J Biol Chem 2009; 285:6012-23. [PMID: 20032456 DOI: 10.1074/jbc.m109.085860] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
The inwardly rectifying potassium channel Kir6.2 assembles with sulfonylurea receptor 1 to form the ATP-sensitive potassium (K(ATP)) channels that regulate insulin secretion in pancreatic beta-cells. Mutations in K(ATP) channels underlie insulin secretion disease. Here, we report the characterization of a heterozygous missense Kir6.2 mutation, G156R, identified in congenital hyperinsulinism. Homomeric mutant channels reconstituted in COS cells show similar surface expression as wild-type channels but fail to conduct potassium currents. The mutated glycine is in the pore-lining transmembrane helix of Kir6.2; an equivalent glycine in other potassium channels has been proposed to serve as a hinge to allow helix bending during gating. We found that mutation of an adjacent asparagine, Asn-160, to aspartate, which converts the channel from a weak to a strong inward rectifier, on the G156R background restored ion conduction in the mutant channel. Unlike N160D channels, however, G156R/N160D channels are not blocked by intracellular polyamines at positive membrane potential and exhibit wild-type-like nucleotide sensitivities, suggesting the aspartate introduced at position 160 interacts with arginine at 156 to restore ion conduction and gating. Using tandem Kir6.2 tetramers containing G156R and/or N160D in designated positions, we show that one mutant subunit in the tetramer is insufficient to abolish conductance and that G156R and N160D can interact in the same or adjacent subunits to restore conduction. We conclude that the glycine at 156 is not essential for K(ATP) channel gating and that the Kir6.2 gating defect caused by the G156R mutation could be rescued by manipulating chemical interactions between pore residues.
Collapse
Affiliation(s)
- Jeremy D Bushman
- Center for Research on Occupational and Environmental Toxicology, Oregon Health and Science University, Portland, Oregon 97239, USA
| | | | | | | | | |
Collapse
|
26
|
Dual role of K ATP channel C-terminal motif in membrane targeting and metabolic regulation. Proc Natl Acad Sci U S A 2009; 106:16669-74. [PMID: 19805355 DOI: 10.1073/pnas.0907138106] [Citation(s) in RCA: 49] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/03/2023] Open
Abstract
The coordinated sorting of ion channels to specific plasma membrane domains is necessary for excitable cell physiology. K(ATP) channels, assembled from pore-forming (Kir6.x) and regulatory sulfonylurea receptor subunits, are critical electrical transducers of the metabolic state of excitable tissues, including skeletal and smooth muscle, heart, brain, kidney, and pancreas. Here we show that the C-terminal domain of Kir6.2 contains a motif conferring membrane targeting in primary excitable cells. Kir6.2 lacking this motif displays aberrant channel targeting due to loss of association with the membrane adapter ankyrin-B (AnkB). Moreover, we demonstrate that this Kir6.2 C-terminal AnkB-binding motif (ABM) serves a dual role in K(ATP) channel trafficking and membrane metabolic regulation and dysfunction in these pathways results in human excitable cell disease. Thus, the K(ATP) channel ABM serves as a previously unrecognized bifunctional touch-point for grading K(ATP) channel gating and membrane targeting and may play a fundamental role in controlling excitable cell metabolic regulation.
Collapse
|
27
|
Flanagan SE, Clauin S, Bellanné-Chantelot C, de Lonlay P, Harries LW, Gloyn AL, Ellard S. Update of mutations in the genes encoding the pancreatic beta-cell K(ATP) channel subunits Kir6.2 (KCNJ11) and sulfonylurea receptor 1 (ABCC8) in diabetes mellitus and hyperinsulinism. Hum Mutat 2009; 30:170-80. [PMID: 18767144 DOI: 10.1002/humu.20838] [Citation(s) in RCA: 181] [Impact Index Per Article: 11.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2022]
Abstract
The beta-cell ATP-sensitive potassium (K(ATP)) channel is a key component of stimulus-secretion coupling in the pancreatic beta-cell. The channel couples metabolism to membrane electrical events bringing about insulin secretion. Given the critical role of this channel in glucose homeostasis it is therefore not surprising that mutations in the genes encoding for the two essential subunits of the channel can result in both hypo- and hyperglycemia. The channel consists of four subunits of the inwardly rectifying potassium channel Kir6.2 and four subunits of the sulfonylurea receptor 1 (SUR1). It has been known for some time that loss of function mutations in KCNJ11, which encodes for Kir6.2, and ABCC8, which encodes for SUR1, can cause oversecretion of insulin and result in hyperinsulinism of infancy, while activating mutations in KCNJ11 and ABCC8 have recently been described that result in the opposite phenotype of diabetes. This review focuses on reported mutations in both genes, the spectrum of phenotypes, and the implications for treatment on diagnosing patients with mutations in these genes.
Collapse
Affiliation(s)
- Sarah E Flanagan
- Institute of Biomedical and Clinical Science, Peninsula Medical School, Exeter, United Kingdom
| | | | | | | | | | | | | |
Collapse
|
28
|
Winkler M, Lutz R, Russ U, Quast U, Bryan J. Analysis of two KCNJ11 neonatal diabetes mutations, V59G and V59A, and the analogous KCNJ8 I60G substitution: differences between the channel subtypes formed with SUR1. J Biol Chem 2009; 284:6752-62. [PMID: 19139106 PMCID: PMC2652280 DOI: 10.1074/jbc.m805435200] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/16/2008] [Revised: 12/09/2008] [Indexed: 11/06/2022] Open
Abstract
beta-Cell-type K(ATP) channels are octamers assembled from Kir6.2/KCNJ11 and SUR1/ABCC8. Adenine nucleotides play a major role in their regulation. Nucleotide binding to Kir6.2 inhibits channel activity, whereas ATP binding/hydrolysis on sulfonylurea receptor 1 (SUR1) opposes inhibition. Segments of the Kir6.2 N terminus are important for open-to-closed transitions, form part of the Kir ATP, sulfonylurea, and phosphoinositide binding sites, and interact with L0, an SUR cytoplasmic loop. Inputs from these elements link to the pore via the interfacial helix, which forms an elbow with the outer pore helix. Mutations that destabilize the interfacial helix increase channel activity, reduce sensitivity to inhibitory ATP and channel inhibitors, glibenclamide and repaglinide, and cause neonatal diabetes. We compared Kir6.x/SUR1 channels carrying the V59G substitution, a cause of the developmental delay, epilepsy, and neonatal diabetes syndrome, with a V59A substitution and the equivalent I60G mutation in the related Kir6.1 subunit from vascular smooth muscle. The substituted channels have increased P(O) values, decreased sensitivity to inhibitors, and impaired stimulation by phosphoinositides but retain sensitivity to Ba(2+)-block. The V59G and V59A channels are either not, or poorly, stimulated by phosphoinositides, respectively. Inhibition by sequestrating phosphatidylinositol 4,5-bisphosphate with neomycin and polylysine is reduced in V59A, and abolished in V59G channels. Stimulation by SUR1 is intact, and increasing the concentration of inhibitory ATP restores the sensitivity of Val-59-substituted channels to glibenclamide. The I60G channels, strongly dependent on SUR stimulation, remain sensitive to sulfonylureas. The results suggest the interfacial helix dynamically links inhibitory inputs from the Kir N terminus to the gate and that sulfonylureas stabilize an inhibitory configuration.
Collapse
MESH Headings
- ATP-Binding Cassette Transporters/genetics
- ATP-Binding Cassette Transporters/metabolism
- Amino Acid Substitution
- Cell Line
- Developmental Disabilities/genetics
- Developmental Disabilities/metabolism
- Diabetes Mellitus/genetics
- Diabetes Mellitus/metabolism
- Epilepsy/genetics
- Epilepsy/metabolism
- Genetic Diseases, Inborn/genetics
- Genetic Diseases, Inborn/metabolism
- Humans
- Infant, Newborn
- Ion Channel Gating/drug effects
- Ion Channel Gating/genetics
- KATP Channels
- Muscle, Smooth, Vascular/metabolism
- Mutation, Missense
- Myocytes, Smooth Muscle/metabolism
- Potassium Channel Blockers/pharmacology
- Potassium Channels, Inwardly Rectifying/genetics
- Potassium Channels, Inwardly Rectifying/metabolism
- Receptors, Drug/genetics
- Receptors, Drug/metabolism
- Sulfonylurea Receptors
- Syndrome
Collapse
Affiliation(s)
- Marcus Winkler
- Department of Pharmacology and Toxicology, Medical Faculty, University of Tübingen, Wilhelmstrasse 56, Tübingen D-72074, Germany
| | | | | | | | | |
Collapse
|
29
|
Pratt EB, Yan FF, Gay JW, Stanley CA, Shyng SL. Sulfonylurea receptor 1 mutations that cause opposite insulin secretion defects with chemical chaperone exposure. J Biol Chem 2009; 284:7951-9. [PMID: 19151370 DOI: 10.1074/jbc.m807012200] [Citation(s) in RCA: 28] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
The beta-cell ATP-sensitive potassium (K(ATP)) channel composed of sulfonylurea receptor SUR1 and potassium channel Kir6.2 serves a key role in insulin secretion regulation by linking glucose metabolism to cell excitability. Mutations in SUR1 or Kir6.2 that decrease channel function are typically associated with congenital hyperinsulinism, whereas those that increase channel function are associated with neonatal diabetes. Here we report that two hyperinsulinism-associated SUR1 missense mutations, R74W and E128K, surprisingly reduce channel inhibition by intracellular ATP, a gating defect expected to yield the opposite disease phenotype neonatal diabetes. Under normal conditions, both mutant channels showed poor surface expression due to retention in the endoplasmic reticulum, accounting for the loss of channel function phenotype in the congenital hyperinsulinism patients. This trafficking defect, however, could be corrected by treating cells with the oral hypoglycemic drugs sulfonylureas, which we have shown previously to act as small molecule chemical chaperones for K(ATP) channels. The R74W and E128K mutants thus rescued to the cell surface paradoxically exhibited ATP sensitivity 6- and 12-fold lower than wild-type channels, respectively. Further analyses revealed a nucleotide-independent decrease in mutant channel intrinsic open probability, suggesting the mutations may reduce ATP sensitivity by causing functional uncoupling between SUR1 and Kir6.2. In insulin-secreting cells, rescue of both mutant channels to the cell surface led to hyperpolarized membrane potentials and reduced insulin secretion upon glucose stimulation. Our results show that sulfonylureas, as chemical chaperones, can dictate manifestation of the two opposite insulin secretion defects by altering the expression levels of the disease mutants.
Collapse
Affiliation(s)
- Emily B Pratt
- Center for Research on Occupational and Environmental Toxicology, Oregon Health & Science University, Portland, Oregon 97239, USA
| | | | | | | | | |
Collapse
|
30
|
Abstract
An explosion of work over the last decade has produced insight into the multiple hereditary causes of a nonimmunological form of diabetes diagnosed most frequently within the first 6 months of life. These studies are providing increased understanding of genes involved in the entire chain of steps that control glucose homeostasis. Neonatal diabetes is now understood to arise from mutations in genes that play critical roles in the development of the pancreas, of beta-cell apoptosis and insulin processing, as well as the regulation of insulin release. For the basic researcher, this work is providing novel tools to explore fundamental molecular and cellular processes. For the clinician, these studies underscore the need to identify the genetic cause underlying each case. It is increasingly clear that the prognosis, therapeutic approach, and genetic counseling a physician provides must be tailored to a specific gene in order to provide the best medical care.
Collapse
Affiliation(s)
- Lydia Aguilar-Bryan
- Pacific Northwest Diabetes Research Institute, 720 Broadway, Seattle, Washington 98122, USA.
| | | |
Collapse
|
31
|
Sebastián Ochoa A, Fernández-García D, Rozas Moreno P, Reyes-García R, López-Ibarra Lozano PJ, Fernández García JM. Neonatal diabetes: genetic implications in treatment. ACTA ACUST UNITED AC 2008; 55:142-5. [PMID: 22967881 DOI: 10.1016/s1575-0922(08)70651-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/31/2006] [Accepted: 10/15/2007] [Indexed: 11/18/2022]
Abstract
A 2-month-old newborn was diagnosed with diabetes mellitus presenting with ketoacidosis and negative islet antibodies. Genetic study revealed the R201C mutation of the KCNJ11 gene. In the last few years, the heterozygous activating mutation in KCNJ11 encoding the Kir6.2 subunit of the ATP-sensitive potassium (K(ATP)) channel has been shown to cause permanent neonatal diabetes. Diabetes results from impaired insulin secretion caused by failure of the beta cell-K(ATP) channel to close in response to increased intracellular ATP. Recent studies have demonstrated the effectiveness of oral sulfonylurea in the treatment of this disease. Sulfonylurea closes the K(ATP) channel by an ATP-independent route. Treatment with sulfonylurea in permanent neonatal diabetes has not yet been approved due to the lack of long-term studies in infants. However, the present case illustrates the importance of genetics to identify patients who may benefit from treatment.
Collapse
|
32
|
Lin YW, Bushman JD, Yan FF, Haidar S, MacMullen C, Ganguly A, Stanley CA, Shyng SL. Destabilization of ATP-sensitive potassium channel activity by novel KCNJ11 mutations identified in congenital hyperinsulinism. J Biol Chem 2008; 283:9146-56. [PMID: 18250167 DOI: 10.1074/jbc.m708798200] [Citation(s) in RCA: 41] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
The inwardly rectifying potassium channel Kir6.2 is the pore-forming subunit of the ATP-sensitive potassium (K(ATP)) channel, which controls insulin secretion by coupling glucose metabolism to membrane potential in beta-cells. Loss of channel function because of mutations in Kir6.2 or its associated regulatory subunit, sulfonylurea receptor 1, causes congenital hyperinsulinism (CHI), a neonatal disease characterized by persistent insulin secretion despite severe hypoglycemia. Here, we report a novel K(ATP) channel gating defect caused by CHI-associated Kir6.2 mutations at arginine 301 (to cysteine, glycine, histidine, or proline). These mutations in addition to reducing channel expression at the cell surface also cause rapid, spontaneous current decay, a gating defect we refer to as inactivation. Based on the crystal structures of Kir3.1 and KirBac1.1, Arg-301 interacts with several residues in the neighboring Kir6.2 subunit. Mutation of a subset of these residues also induces channel inactivation, suggesting that the disease mutations may cause inactivation by disrupting subunit-subunit interactions. To evaluate the effect of channel inactivation on beta-cell function, we expressed an alternative inactivation mutant R301A, which has equivalent surface expression efficiency as wild type channels, in the insulin-secreting cell line INS-1. Mutant expression resulted in more depolarized membrane potential and elevated insulin secretion at basal glucose concentration (3 mm) compared with cells expressing wild type channels, demonstrating that the inactivation gating defect itself is sufficient to cause loss of channel function and hyperinsulinism. Our studies suggest the importance of Kir6.2 subunit-subunit interactions in K(ATP) channel gating and function and reveal a novel gating defect underlying CHI.
Collapse
Affiliation(s)
- Yu-Wen Lin
- Center for Research on Occupational and Environmental Toxicology, Oregon Health and Science University, 3181 S.W. Sam Jackson Park Road, Portland, OR 97239, USA
| | | | | | | | | | | | | | | |
Collapse
|
33
|
Yan FF, Lin YW, MacMullen C, Ganguly A, Stanley CA, Shyng SL. Congenital hyperinsulinism associated ABCC8 mutations that cause defective trafficking of ATP-sensitive K+ channels: identification and rescue. Diabetes 2007; 56:2339-48. [PMID: 17575084 PMCID: PMC2225993 DOI: 10.2337/db07-0150] [Citation(s) in RCA: 79] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/13/2022]
Abstract
Congenital hyperinsulinism (CHI) is a disease characterized by persistent insulin secretion despite severe hypoglycemia. Mutations in the pancreatic ATP-sensitive K(+) (K(ATP)) channel proteins sulfonylurea receptor 1 (SUR1) and Kir6.2, encoded by ABCC8 and KCNJ11, respectively, is the most common cause of the disease. Many mutations in SUR1 render the channel unable to traffic to the cell surface, thereby reducing channel function. Previous studies have shown that for some SUR1 trafficking mutants, the defects could be corrected by treating cells with sulfonylureas or diazoxide. The purpose of this study is to identify additional mutations that cause channel biogenesis/trafficking defects and those that are amenable to rescue by pharmacological chaperones. Fifteen previously uncharacterized CHI-associated missense SUR1 mutations were examined for their biogenesis/trafficking defects and responses to pharmacological chaperones, using a combination of immunological and functional assays. Twelve of the 15 mutations analyzed cause reduction in cell surface expression of K(ATP) channels by >50%. Sulfonylureas rescued a subset of the trafficking mutants. By contrast, diazoxide failed to rescue any of the mutants. Strikingly, the mutations rescued by sulfonylureas are all located in the first transmembrane domain of SUR1, designated as TMD0. All TMD0 mutants rescued to the cell surface by the sulfonylurea tolbutamide could be subsequently activated by metabolic inhibition on tolbutamide removal. Our study identifies a group of CHI-causing SUR1 mutations for which the resulting K(ATP) channel trafficking and expression defects may be corrected pharmacologically to restore channel function.
Collapse
Affiliation(s)
- Fei-Fei Yan
- Center for Research on Occupational and Environmental Toxicology, Oregon Health and Science University, Portland, Oregon
| | - Yu-Wen Lin
- Center for Research on Occupational and Environmental Toxicology, Oregon Health and Science University, Portland, Oregon
| | - Courtney MacMullen
- Division of Endocrinology/Diabetes, The Children’s Hospital of Philadelphia, Philadelphia, Pennsylvania
| | - Arupa Ganguly
- Department of Genetics, University of Pennsylvania School of Medicine, Philadelphia, Pennsylvania
| | - Charles A. Stanley
- Division of Endocrinology/Diabetes, The Children’s Hospital of Philadelphia, Philadelphia, Pennsylvania
| | - Show-Ling Shyng
- Center for Research on Occupational and Environmental Toxicology, Oregon Health and Science University, Portland, Oregon
| |
Collapse
|
34
|
Gach A, Wyka K, Malecki MT, Noczynska A, Skupien J, Nazim J, Szalecki M, Bodalski J, Sieradzki J, Mlynarski W. Islet-specific antibody seroconversion in patients with long duration of permanent neonatal diabetes caused by mutations in the KCNJ11 gene. Diabetes Care 2007; 30:2080-2. [PMID: 17475937 DOI: 10.2337/dc06-2440] [Citation(s) in RCA: 15] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 02/03/2023]
Affiliation(s)
- Agnieszka Gach
- Department of Pediatrics, Medical University of Lodz, 38/50 Sporna St., 91-738 Lodz, Poland
| | | | | | | | | | | | | | | | | | | |
Collapse
|
35
|
Bibliography. Current world literature. Diabetes and the endocrine pancreas II. Curr Opin Endocrinol Diabetes Obes 2007; 14:329-57. [PMID: 17940461 DOI: 10.1097/med.0b013e3282c3a898] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/25/2022]
|
36
|
Yan FF, Casey J, Shyng SL. Sulfonylureas correct trafficking defects of disease-causing ATP-sensitive potassium channels by binding to the channel complex. J Biol Chem 2006; 281:33403-13. [PMID: 16956886 DOI: 10.1074/jbc.m605195200] [Citation(s) in RCA: 52] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022] Open
Abstract
ATP-sensitive potassium (K(ATP)) channels mediate glucose-induced insulin secretion by coupling metabolic signals to beta-cell membrane potential and the secretory machinery. Reduced K(ATP) channel expression caused by mutations in the channel proteins: sulfonylurea receptor 1 (SUR1) and Kir6.2, results in loss of channel function as seen in congenital hyperinsulinism. Previously, we reported that sulfonylureas, oral hypoglycemic drugs widely used to treat type II diabetes, correct the endoplasmic reticulum to the plasma membrane trafficking defect caused by two SUR1 mutations, A116P and V187D. In this study, we investigated the mechanism by which sulfonylureas rescue these mutants. We found that glinides, another class of SUR-binding hypoglycemic drugs, also markedly increased surface expression of the trafficking mutants. Attenuating or abolishing the ability of mutant SUR1 to bind sulfonylureas or glinides by the following mutations: Y230A, S1238Y, or both, accordingly diminished the rescuing effects of the drugs. Interestingly, rescue of the trafficking defects requires mutant SUR1 to be co-expressed with Kir6.2, suggesting that the channel complex, rather than SUR1 alone, is the drug target. Observations that sulfonylureas also reverse trafficking defects caused by neonatal diabetes-associated Kir6.2 mutations in a way that is dependent on intact sulfonylurea binding sites in SUR1 further support this notion. Our results provide insight into the mechanistic and structural basis on which sulfonylureas rescue K(ATP) channel surface expression defects caused by channel mutations.
Collapse
Affiliation(s)
- Fei-Fei Yan
- Center for Research on Occupational and Environmental Toxicology, Oregon Health and Science University, Portland, Oregon 97239, USA
| | | | | |
Collapse
|