1
|
Gomaa S, Nassef M, Hafez A. Potentials of bone marrow cells-derived from naïve or diabetic mice in autoimmune type 1 diabetes: immunomodulatory, anti-inflammatory, anti hyperglycemic, and antioxidative. Endocrine 2024; 86:959-979. [PMID: 39014283 PMCID: PMC11554735 DOI: 10.1007/s12020-024-03929-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/07/2024] [Accepted: 06/11/2024] [Indexed: 07/18/2024]
Abstract
BACKGROUND The scarcity of transplanted human islet tissue and the requirement for immunosuppressive drugs to prevent the rejection of allogeneic grafts have hindered the treatment of autoimmune type 1 diabetes mellitus (T1DM) through islet transplantation. However, there is hope in adoptively transferred bone marrow cells (BMCs) therapy, which has emerged as a propitious pathway for forthcoming medications. BMCs have the potential to significantly impact both replacement and regenerative therapies for a range of disorders, including diabetes mellitus, and have demonstrated anti-diabetic effects. AIM The main goal of this study is to evaluate the effectiveness of adoptively transferred bone marrow cells derived from either naïve mice (nBMCs) or diabetic mice (dBMCs) in treating a T1DM mice model. METHODS Male Swiss albino mice were starved for 16 h and then injected with streptozotocin (STZ) at a dose of 40 mg/kg body weight for 5 consecutive days to induce T1DM. After 14 days, the diabetic mice were distributed into four groups. The first group served as a diabetic control treated with sodium citrate buffer, while the other three groups were treated for two weeks, respectively, with insulin (subcutaneously at a dose of 8 U/kg/day), nBMCs (intravenously at a dose of 1 × 106 cells/mouse/once), and dBMCs (intravenously at a dose of 1 × 106 cells/mouse/once). RESULTS It is worth noting that administering adoptively transferred nBMCs or adoptively transferred dBMCs to STZ-induced T1DM mice resulted in a significant amelioration in glycemic condition, accompanied by a considerable reduction in the level of blood glucose and glycosylated hemoglobin % (HbA1C %), ultimately restoring serum insulin levels to their initial state in control mice. Administering nBMCs or dBMCs to STZ-induced T1DM mice led to a remarkable decrease in levels of inflammatory cytokine markers in the serum, including interferon-γ (INF-γ), tumor necrosis factor- α (TNF-α), tumor growth factor-β (TGF-β), interleukin-1 β (L-1β), interlekin-4 (IL-4), interleukin-6 (IL-6), and interleukin-10 (IL-10). Additionally, STZ-induced T1DM mice, when treated with nBMCs or dBMCs, experienced a notable rise in total immunoglobulin (Ig) level. Furthermore, there was a significant reduction in the levels of islet cell autoantibodies (ICA) and insulin autoantibodies (IAA). Furthermore, the serum of STZ-induced T1DM mice showed a significant increase in Zinc transporter 8 antigen protein (ZnT8), islet antigen 2 protein (IA-2), and glutamic acid decarboxylase antigen protein (GAD) levels. Interestingly, the administration of nBMCs or dBMCs resulted in a heightened expression of IA-2 protein in STZ-induced T1DM mice treated with nBMCs or dBMCs. Furthermore, the level of malondialdehyde (MDA) was increased, while the levels of catalase (CAT) and superoxide dismutase (SOD) were decreased in non-treated STZ-induced T1DM mice. However, when nBMCs or dBMCs were administered to STZ-induced T1DM mice, it had a significant impact on reducing oxidative stress. This was accomplished by reducing the levels of MDA in the serum and enhancing the activities of enzymatic antioxidants like CAT and SOD. STZ-induced T1DM mice displayed a significant elevation in the levels of liver enzymes ALT and AST, as well as heightened levels of creatinine and urea. Considering the crucial roles of the liver and kidney in metabolism and excretion, this research further examined the effects of administering nBMCs or dBMCs to STZ-induced T1DM mice. Notably, the administration of these cells alleviated the observed effects. CONCLUSION The present study suggests that utilizing adoptively transferred nBMCs or adoptively transferred dBMCs in the treatment of T1DM led to noteworthy decreases in blood glucose levels, possibly attributed to their capacity to enhance insulin secretion and improve the performance of pancreatic islets. Additionally, BMCs may exert their beneficial effects on the pancreatic islets of diabetic mice through their immunomodulatory, antioxidant, anti-inflammatory, and anti-oxidative stress properties.
Collapse
Affiliation(s)
- Soha Gomaa
- Zoology Department, Faculty of Science, Tanta University, Tanta, Egypt.
| | - Mohamed Nassef
- Zoology Department, Faculty of Science, Tanta University, Tanta, Egypt
| | - Amira Hafez
- Zoology Department, Faculty of Science, Tanta University, Tanta, Egypt
| |
Collapse
|
2
|
Guerra LL, Faccinetti NI, Trabucchi A, Rovitto BD, Sabljic AV, Poskus E, Iacono RF, Valdez SN. Novel prokaryotic expression of thioredoxin-fused insulinoma associated protein tyrosine phosphatase 2 (IA-2), its characterization and immunodiagnostic application. BMC Biotechnol 2016; 16:84. [PMID: 27881117 PMCID: PMC5122161 DOI: 10.1186/s12896-016-0309-2] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/03/2016] [Accepted: 10/21/2016] [Indexed: 11/11/2022] Open
Abstract
Background The insulinoma associated protein tyrosine phosphatase 2 (IA-2) is one of the immunodominant autoantigens involved in the autoimmune attack to the beta-cell in Type 1 Diabetes Mellitus. In this work we have developed a complete and original process for the production and recovery of the properly folded intracellular domain of IA-2 fused to thioredoxin (TrxIA-2ic) in Escherichia coli GI698 and GI724 strains. We have also carried out the biochemical and immunochemical characterization of TrxIA-2icand design variants of non-radiometric immunoassays for the efficient detection of IA-2 autoantibodies (IA-2A). Results The main findings can be summarized in the following statements: i) TrxIA-2ic expression after 3 h of induction on GI724 strain yielded ≈ 10 mg of highly pure TrxIA-2ic/L of culture medium by a single step purification by affinity chromatography, ii) the molecular weight of TrxIA-2ic (55,358 Da) could be estimated by SDS-PAGE, size exclusion chromatography and mass spectrometry, iii) TrxIA-2ic was properly identified by western blot and mass spectrometric analysis of proteolytic digestions (63.25 % total coverage), iv) excellent immunochemical behavior of properly folded full TrxIA-2ic was legitimized by inhibition or displacement of [35S]IA-2 binding from IA-2A present in Argentinian Type 1 Diabetic patients, v) great stability over time was found under proper storage conditions and vi) low cost and environmentally harmless ELISA methods for IA-2A assessment were developed, with colorimetric or chemiluminescent detection. Conclusions E. coli GI724 strain emerged as a handy source of recombinant IA-2ic, achieving high levels of expression as a thioredoxin fusion protein, adequately validated and applicable to the development of innovative and cost-effective immunoassays for IA-2A detection in most laboratories. Electronic supplementary material The online version of this article (doi:10.1186/s12896-016-0309-2) contains supplementary material, which is available to authorized users.
Collapse
Affiliation(s)
- Luciano Lucas Guerra
- Universidad de Buenos Aires, Consejo Nacional de Investigaciones Científicas y Técnicas, Instituto de Estudios de la Inmunidad Humoral "Prof. Ricardo A. Margni" (IDEHU), Facultad de Farmacia y Bioquímica, Buenos Aires, Argentina
| | - Natalia Inés Faccinetti
- Universidad de Buenos Aires, Consejo Nacional de Investigaciones Científicas y Técnicas, Instituto de Estudios de la Inmunidad Humoral "Prof. Ricardo A. Margni" (IDEHU), Facultad de Farmacia y Bioquímica, Buenos Aires, Argentina
| | - Aldana Trabucchi
- Universidad de Buenos Aires, Consejo Nacional de Investigaciones Científicas y Técnicas, Instituto de Estudios de la Inmunidad Humoral "Prof. Ricardo A. Margni" (IDEHU), Facultad de Farmacia y Bioquímica, Buenos Aires, Argentina
| | - Bruno David Rovitto
- Universidad de Buenos Aires, Consejo Nacional de Investigaciones Científicas y Técnicas, Instituto de Estudios de la Inmunidad Humoral "Prof. Ricardo A. Margni" (IDEHU), Facultad de Farmacia y Bioquímica, Buenos Aires, Argentina
| | - Adriana Victoria Sabljic
- Universidad de Buenos Aires, Consejo Nacional de Investigaciones Científicas y Técnicas, Instituto de Estudios de la Inmunidad Humoral "Prof. Ricardo A. Margni" (IDEHU), Facultad de Farmacia y Bioquímica, Buenos Aires, Argentina
| | - Edgardo Poskus
- Universidad de Buenos Aires, Consejo Nacional de Investigaciones Científicas y Técnicas, Instituto de Estudios de la Inmunidad Humoral "Prof. Ricardo A. Margni" (IDEHU), Facultad de Farmacia y Bioquímica, Buenos Aires, Argentina
| | - Ruben Francisco Iacono
- Universidad de Buenos Aires, Consejo Nacional de Investigaciones Científicas y Técnicas, Instituto de Estudios de la Inmunidad Humoral "Prof. Ricardo A. Margni" (IDEHU), Facultad de Farmacia y Bioquímica, Buenos Aires, Argentina
| | - Silvina Noemí Valdez
- Universidad de Buenos Aires, Consejo Nacional de Investigaciones Científicas y Técnicas, Instituto de Estudios de la Inmunidad Humoral "Prof. Ricardo A. Margni" (IDEHU), Facultad de Farmacia y Bioquímica, Buenos Aires, Argentina.
| |
Collapse
|
3
|
Kharitidi D, Manteghi S, Pause A. Pseudophosphatases: methods of analysis and physiological functions. Methods 2013; 65:207-18. [PMID: 24064037 DOI: 10.1016/j.ymeth.2013.09.009] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/21/2013] [Revised: 08/20/2013] [Accepted: 09/11/2013] [Indexed: 01/27/2023] Open
Abstract
Protein tyrosine phosphatases (PTPs) are key enzymes in the regulation of cellular homeostasis and signaling pathways. Strikingly, not all PTPs bear enzymatic activity. A considerable fraction of PTPs are enzymatically inactive and are known as pseudophosphatases. Despite the lack of activity they execute pivotal roles in development, cell biology and human disease. The present review is focused on the methods used to identify pseudophosphatases, their targets, and physiological roles. We present a strategy for detailed enzymatic analysis of inactive PTPs, regulation of inactive PTP domains and identification of binding partners. Furthermore, we provide a detailed overview of human pseudophosphatases and discuss their regulation of cellular processes and functions in human pathologies.
Collapse
Affiliation(s)
- Dmitri Kharitidi
- Department of Biochemistry and Goodman Cancer Research Centre, McGill University, 3655, Promenade Sir William Osler, Montreal, QC H3G 1Y6, Canada.
| | - Sanaz Manteghi
- Department of Biochemistry and Goodman Cancer Research Centre, McGill University, 3655, Promenade Sir William Osler, Montreal, QC H3G 1Y6, Canada.
| | - Arnim Pause
- Department of Biochemistry and Goodman Cancer Research Centre, McGill University, 3655, Promenade Sir William Osler, Montreal, QC H3G 1Y6, Canada.
| |
Collapse
|
4
|
Won EY, Xie Y, Takemoto C, Chen L, Liu ZJ, Wang BC, Lee D, Woo EJ, Park SG, Shirouzu M, Yokoyama S, Kim SJ, Chi SW. High-resolution crystal structure of the catalytic domain of human dual-specificity phosphatase 26. ACTA CRYSTALLOGRAPHICA SECTION D: BIOLOGICAL CRYSTALLOGRAPHY 2013; 69:1160-70. [PMID: 23695260 DOI: 10.1107/s0907444913004770] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/11/2012] [Accepted: 02/19/2013] [Indexed: 02/03/2023]
Abstract
Dual-specificity phosphatases (DUSPs) play an important role in regulating cellular signalling pathways governing cell growth, differentiation and apoptosis. Human DUSP26 inhibits the apoptosis of cancer cells by dephosphorylating substrates such as p38 and p53. High-resolution crystal structures of the DUSP26 catalytic domain (DUSP26-C) and its C152S mutant [DUSP26-C (C152S)] have been determined at 1.67 and 2.20 Å resolution, respectively. The structure of DUSP26-C showed a novel type of domain-swapped dimer formed by extensive crossover of the C-terminal α7 helix. Taken together with the results of a phosphatase-activity assay, structural comparison with other DUSPs revealed that DUSP26-C adopts a catalytically inactive conformation of the protein tyrosine phosphate-binding loop which significantly deviates from that of canonical DUSP structures. In particular, a noticeable difference exists between DUSP26-C and the active forms of other DUSPs at the hinge region of a swapped C-terminal domain. Additionally, two significant gaps were identified between the catalytic core and its surrounding loops in DUSP26-C, which can be exploited as additional binding sites for allosteric enzyme regulation. The high-resolution structure of DUSP26-C may thus provide structural insights into the rational design of DUSP26-targeted anticancer drugs.
Collapse
Affiliation(s)
- Eun Young Won
- Department of Biological Sciences, Korea Advanced Institute of Science and Technology, Daejeon 305-701, Republic of Korea
| | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
5
|
Elvers KT, Geoghegan I, Shoemark DK, Lampasona V, Bingley PJ, Williams AJ. The core cysteines, (C909) of islet antigen-2 and (C945) of islet antigen-2β, are crucial to autoantibody binding in type 1 diabetes. Diabetes 2013; 62:214-22. [PMID: 22966073 PMCID: PMC3526053 DOI: 10.2337/db11-1590] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/14/2011] [Accepted: 07/08/2012] [Indexed: 11/30/2022]
Abstract
Cysteines are thought integral to conformational epitopes of islet antigen-2 (IA-2) autoantibodies (IA-2A), possibly through disulfide bond formation. We therefore investigated which cysteines are critical to IA-2A binding in patients with newly diagnosed type 1 diabetes. All 10 cysteines in the intracellular domain of IA-2 were modified to serine by site-directed mutagenesis, and the effects of these changes on autoantibody binding in comparison with wild-type control were investigated by radiobinding assay. Mutation of the protein tyrosine phosphatase (PTP) core cysteine (C909) in IA-2 caused large reductions in autoantibody binding. In contrast, little or no reduction in binding was seen following substitution of the other cysteines. Modification of the core cysteine (C945) in IA-2β also greatly reduced autoantibody binding. Lysine substitution of glutamate-836 in IA-2 or glutamate-872 in IA-2β resulted in modest reductions in binding and identified a second epitope region. Binding to IA-2 PTP and IA-2β PTP was almost abolished by mutation of both the core cysteine and these glutamates. The core cysteine is key to the major PTP conformational epitope, but disulfide bonding contributes little to IA-2A epitope integrity. In most patients, at disease onset, >90% of antibodies binding to the PTP domain of IA-2 recognize just two epitope regions.
Collapse
Affiliation(s)
- Karen T. Elvers
- School of Clinical Sciences, Learning and Research, University of Bristol, Southmead Hospital, Bristol, U.K
| | - Ivey Geoghegan
- School of Clinical Sciences, Learning and Research, University of Bristol, Southmead Hospital, Bristol, U.K
| | | | - Vito Lampasona
- Genomic Unit for the Diagnosis of Human Pathologies, Center for Translational Genomics and Bioinformatics, San Raffaele Scientific Institute, Milan, Italy
| | - Polly J. Bingley
- School of Clinical Sciences, Learning and Research, University of Bristol, Southmead Hospital, Bristol, U.K
| | - Alistair J.K. Williams
- School of Clinical Sciences, Learning and Research, University of Bristol, Southmead Hospital, Bristol, U.K
| |
Collapse
|
6
|
Abstract
MK-STYX [MAPK (mitogen-activated protein kinase) phospho-serine/threonine/tyrosine-binding protein] is a pseudophosphatase member of the dual-specificity phosphatase subfamily of the PTPs (protein tyrosine phosphatases). MK-STYX is catalytically inactive due to the absence of two amino acids from the signature motif that are essential for phosphatase activity. The nucleophilic cysteine residue and the adjacent histidine residue, which are conserved in all active dual-specificity phosphatases, are replaced by serine and phenylalanine residues respectively in MK-STYX. Mutations to introduce histidine and cysteine residues into the active site of MK-STYX generated an active phosphatase. Using MS, we identified G3BP1 [Ras-GAP (GTPase-activating protein) SH3 (Src homology 3) domain-binding protein-1], a regulator of Ras signalling, as a binding partner of MK-STYX. We observed that G3BP1 bound to native MK-STYX; however, binding to the mutant catalytically active form of MK-STYX was dramatically reduced. G3BP1 is also an RNA-binding protein with endoribonuclease activity that is recruited to 'stress granules' after stress stimuli. Stress granules are large subcellular structures that serve as sites of mRNA sorting, in which untranslated mRNAs accumulate. We have shown that expression of MK-STYX inhibited stress granule formation induced either by aresenite or expression of G3BP itself; however, the catalytically active mutant MK-STYX was impaired in its ability to inhibit G3BP-induced stress granule assembly. These results reveal a novel facet of the function of a member of the PTP family, illustrating a role for MK-STYX in regulating the ability of G3BP1 to integrate changes in growth-factor stimulation and environmental stress with the regulation of protein synthesis.
Collapse
|
7
|
Raha O, Chowdhury S, Dasgupta S, Raychaudhuri P, Sarkar BN, Raju PV, Rao VR. Approaches in type 1 diabetes research: A status report. Int J Diabetes Dev Ctries 2010; 29:85-101. [PMID: 20142874 PMCID: PMC2812756 DOI: 10.4103/0973-3930.53126] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/20/2008] [Accepted: 05/29/2009] [Indexed: 12/18/2022] Open
Abstract
Type 1 diabetes is a multifactorial disease with an early age of onset, in which the insulin producing beta cell of the pancreas are destroyed because of autoimmunity. It is the second most common chronic disease in children and account for 5% to 10% of all diagnosed cases of diabetes. India is having an incidence of 10.6 cases/year/100,000, and recent studies indicate that the prevalence of type 1 diabetes in India is increasing. However in view of poor health care network, there is no monitoring system in the country. Of the 18 genomic intervals implicated for the risk to develop type 1 diabetes, the major histocompatibility complex (MHC) region on chromosome 6p21.31 has been the major contributor estimated to account for 40-50%, followed by 10% frequency of INS-VNTR at 5' flanking region of the insulin gene on chromosome 11p15.5. However, population studies suggest that > 95% of type 1 diabetes have HLA-DR3 or DR4, or both, and in family studies, sibling pairs affected with type 1 diabetes have a non-random distribution of shared HLA haplotypes. As predisposing genetic factors such as HLA alleles are known, immunological interventions to prevent type 1 diabetes are of great interest. In the present study we have reviewed the status of molecular genetics of the disease and the approaches that need to be adopted in terms of developing patient and suitable control cohorts in the country.
Collapse
Affiliation(s)
- Oindrila Raha
- Anthropological Survey of India, 27-Jawaharlal Nehru Road, Kolkata, West-Bengal - 700 016, India
| | | | | | | | | | | | | |
Collapse
|
8
|
Autoantibodies and associated T-cell responses to determinants within the 831-860 region of the autoantigen IA-2 in Type 1 diabetes. J Autoimmun 2009; 33:147-54. [PMID: 19447008 DOI: 10.1016/j.jaut.2009.04.002] [Citation(s) in RCA: 24] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/06/2009] [Revised: 04/15/2009] [Accepted: 04/19/2009] [Indexed: 11/20/2022]
Abstract
B-cells influence T-cell reactivity by facilitating antigen presentation, but the role of autoantibody-secreting B-cells in regulating T-cell responses in Type 1 diabetes is poorly defined. The aims of this study were to characterise epitopes on the IA-2 autoantigen for three monoclonal antibodies from diabetic patients by amino acid substitutions of selected residues of IA-2, establish contributions of these epitopes to binding of serum antibodies in Type 1 diabetes and relate B- and T-cell responses to overlapping determinants on IA-2. The monoclonal antibodies recognised overlapping epitopes, with residues within the 831-860 region of IA-2 contributing to binding; substitution of Glu836 inhibited binding of all three antibodies. Monoclonal antibody Fab fragments and substitution of residues within the 831-836 region blocked serum antibody binding to an IA-2 643-937 construct. IL-10-secreting T-cells responding to peptides within the 831-860 region were detected by cytokine-specific ELISPOT in diabetic patients and responses to 841-860 peptide were associated with antibodies to the region of IA-2 recognised by the monoclonal antibodies. The study identifies a region of IA-2 frequently recognised by antibodies in Type 1 diabetes and demonstrates that these responses are associated with T-cells secreting IL-10 in response to a neighbouring determinant.
Collapse
|
9
|
Torii S. Expression and function of IA-2 family proteins, unique neuroendocrine-specific protein-tyrosine phosphatases. Endocr J 2009; 56:639-48. [PMID: 19550073 DOI: 10.1507/endocrj.k09e-157] [Citation(s) in RCA: 30] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/23/2022] Open
Abstract
IA-2 (also known as islet cell antigen ICA-512) and IA-2 beta (also known as phogrin, phosphatase homologue in granules of insulinoma) are major autoantigens in insulin-dependent diabetes mellitus (IDDM). Autoantibodies against both proteins are expressed years before clinical onset, and they become predictive markers for high-risk subjects. However, the role of these genes in the IDDM pathogenesis has been reported fairly negative by recent studies. IA-2 and IA-2 beta are type I transmembrane proteins that possess one inactive protein-tyrosine phosphatase (PTP) domain in the cytoplasmic region, and act as one of the constituents of regulated secretory pathways in various neuroendocrine cell types including pancreatic beta-cells. Existence of IA-2 homologues in different species suggests a fundamental role in neuroendocrine function. Studies of knockout animals have shown their involvement in maintaining hormone content, however, their specific steps in the secretory pathway IA-2 functions as well as their molecular mechanisms in the hormone content regulation are still unknown. More recent studies have suggested a novel function showing that they contribute to pancreatic beta-cell growth. This review attempts to show the possible biological functions of IA-2 family, focusing on their expression and localization in the neuroendocrine cells.
Collapse
Affiliation(s)
- Seiji Torii
- Department of Molecular Medicine, Institute for Molecular and Cellular Regulation, Gunma University, Maebashi, Japan.
| |
Collapse
|
10
|
Trajkovski M, Mziaut H, Schubert S, Kalaidzidis Y, Altkrüger A, Solimena M. Regulation of insulin granule turnover in pancreatic beta-cells by cleaved ICA512. J Biol Chem 2008; 283:33719-29. [PMID: 18824546 DOI: 10.1074/jbc.m804928200] [Citation(s) in RCA: 30] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022] Open
Abstract
Insulin maintains homeostasis of glucose by promoting its uptake into cells from the blood. Hyperglycemia triggers secretion of insulin from pancreatic beta-cells. This process is mediated by secretory granule exocytosis. However, how beta-cells keep granule stores relatively constant is still unknown. ICA512 is an intrinsic granule membrane protein, whose cytosolic domain binds beta2-syntrophin, an F-actin-associated protein, and is cleaved upon granule exocytosis. The resulting cleaved cytosolic fragment, ICA512-CCF, reaches the nucleus and up-regulates the transcription of granule genes, including insulin and ICA512. Here, we show that ICA512-CCF also dimerizes with intact ICA512 on granules, thereby displacing it from beta2-syntrophin. This leads to increased granule mobility and insulin release. Based on these findings, we propose a model whereby the generation of ICA512-CCF first amplifies insulin secretion. The ensuing reduction of granule stores would then increase the probability of newly generated ICA512-CCF to reach the nucleus and enhance granule biogenesis, thus allowing beta-cells to constantly adjust production of granules to their storage size and consumption. Pharmacological modulation of these feedback loops may alleviate deficient insulin release in diabetes.
Collapse
Affiliation(s)
- Mirko Trajkovski
- Laboratory of Experimental Diabetology, School of Medicine, Dresden University of Technology, Dresden 01307, Germany
| | | | | | | | | | | |
Collapse
|
11
|
Radiobinding assay for detecting autoantibodies to single epitopes. J Immunol Methods 2008; 336:127-34. [DOI: 10.1016/j.jim.2008.04.005] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/14/2007] [Revised: 04/02/2008] [Accepted: 04/04/2008] [Indexed: 11/19/2022]
|
12
|
Fenalti G, Hampe CS, Arafat Y, Law RHP, Banga JP, Mackay IR, Whisstock JC, Buckle AM, Rowley MJ. COOH-terminal clustering of autoantibody and T-cell determinants on the structure of GAD65 provide insights into the molecular basis of autoreactivity. Diabetes 2008; 57:1293-301. [PMID: 18184926 DOI: 10.2337/db07-1461] [Citation(s) in RCA: 39] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/13/2022]
Abstract
OBJECTIVE To gain structural insights into the autoantigenic properties of GAD65 in type 1 diabetes, we analyzed experimental epitope mapping data in the context of the recently determined crystal structures of GAD65 and GAD67, to allow "molecular positioning" of epitope sites for B- and T-cell reactivity. RESEARCH DESIGN AND METHODS Data were assembled from analysis of reported effects of mutagenesis of GAD65 on its reactivity with a panel of 11 human monoclonal antibodies (mAbs), supplemented by use of recombinant Fab to cross-inhibit reactivity with GAD65 by radioimmunoprecipitation of the same mAbs. RESULTS The COOH-terminal region on GAD65 was the major autoantigenic site. B-cell epitopes were distributed within two separate clusters around different faces of the COOH-terminal domain. Inclusion of epitope sites in the pyridoxal phosphate-and NH(2)-terminal domains was attributed to the juxtaposition of all three domains in the crystal structure. Epitope preferences of different mAbs to GAD65 aligned with different clinical expressions of type 1 diabetes. Epitopes for four of five known reactive T-cell sequences restricted by HLA DRB1*0401 were aligned to solvent-exposed regions of the GAD65 structure and colocalized within the two B-cell epitope clusters. The continuous COOH-terminal epitope region of GAD65 was structurally highly flexible and therefore differed markedly from the equivalent region of GAD67. CONCLUSIONS Structural features could explain the differing antigenicity, and perhaps immunogenicity, of GAD65 versus GAD67. The proximity of B- and T-cell epitopes within the GAD65 structure suggests that antigen-antibody complexes may influence antigen processing by accessory cells and thereby T-cell reactivity.
Collapse
Affiliation(s)
- Gustavo Fenalti
- Department of Biochemistry and Molecular Biology, Monash University, Clayton, Victoria 3800, Australia
| | | | | | | | | | | | | | | | | |
Collapse
|