1
|
Xu X, Bell TW, Le T, Zhao I, Walker E, Wang Y, Xu N, Soleimanpour SA, Russ HA, Qi L, Tsai B, Liu M, Arvan P. Role of Sec61α2 Translocon in Insulin Biosynthesis. Diabetes 2024; 73:2034-2044. [PMID: 39325584 PMCID: PMC11579409 DOI: 10.2337/db24-0115] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/09/2024] [Accepted: 09/17/2024] [Indexed: 09/28/2024]
Abstract
Translocational regulation of proinsulin biosynthesis in pancreatic β-cells is unknown, although several studies have reported an important accessory role for the Translocon-Associated Protein complex to assist preproinsulin delivery into the endoplasmic reticulum via the heterotrimeric Sec61 translocon (comprising α, β, and γ subunits). The actual protein-conducting channel is the α-subunit encoded either by Sec61A1 or its paralog Sec61A2. Although the underlying channel selectivity for preproinsulin translocation is unknown, almost all studies of Sec61α to date have focused on Sec61α1. There is currently no evidence to suggest that this gene product plays a major role in proinsulin production, whereas genome-wide association studies indicate linkage of Sec61A2 with diabetes. Here, we report that evolutionary differences in mouse preproinsulin signal peptides affect proinsulin biosynthesis. Moreover, we find that, although some preproinsulin translocation can proceed through Sec61α1, Sec61α2 has a greater impact on proinsulin biosynthesis in pancreatic β-cells. Remarkably, Sec61α2 translocon deficiency exerts a significant inhibitory effect on the biosynthesis of preproinsulin itself, including a disproportionate increase of full-length nascent chain unreleased from ribosomes. This study not only reveals novel translocational regulation of proinsulin biosynthesis but also provides a rationale for genetic evidence suggesting an important role of Sec61α2 in maintaining blood glucose homeostasis. ARTICLE HIGHLIGHTS
Collapse
Affiliation(s)
- Xiaoxi Xu
- Division of Metabolism, Endocrinology & Diabetes, University of Michigan Medical School, Ann Arbor, MI
- Department of Endocrinology and Metabolism, Tianjin Medical University General Hospital, Tianjin, China
| | | | - Truc Le
- Department of Chemistry, University of Nevada, Reno, NV
| | - Ivy Zhao
- Division of Metabolism, Endocrinology & Diabetes, University of Michigan Medical School, Ann Arbor, MI
| | - Emily Walker
- Division of Metabolism, Endocrinology & Diabetes, University of Michigan Medical School, Ann Arbor, MI
| | - Yiqing Wang
- Department of Endocrinology and Metabolism, Tianjin Medical University General Hospital, Tianjin, China
| | - Ning Xu
- Department of Endocrinology and Metabolism, Tianjin Medical University General Hospital, Tianjin, China
| | - Scott A. Soleimanpour
- Division of Metabolism, Endocrinology & Diabetes, University of Michigan Medical School, Ann Arbor, MI
| | - Holger A. Russ
- Diabetes Institute, University of Florida College of Medicine, Gainesville, FL
| | - Ling Qi
- Department of Molecular Physiology and Biological Physics, University of Virginia School of Medicine, Charlottesville, VA
| | - Billy Tsai
- Department of Cell and Developmental Biology, University of Michigan Medical School, Ann Arbor, MI
| | - Ming Liu
- Department of Endocrinology and Metabolism, Tianjin Medical University General Hospital, Tianjin, China
| | - Peter Arvan
- Division of Metabolism, Endocrinology & Diabetes, University of Michigan Medical School, Ann Arbor, MI
| |
Collapse
|
2
|
Makio T, Chen J, Simmen T. ER stress as a sentinel mechanism for ER Ca 2+ homeostasis. Cell Calcium 2024; 124:102961. [PMID: 39471738 DOI: 10.1016/j.ceca.2024.102961] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2024] [Revised: 10/09/2024] [Accepted: 10/10/2024] [Indexed: 11/01/2024]
Abstract
Endoplasmic reticulum (ER) stress is triggered upon the interference with oxidative protein folding that aims to produce fully folded, disulfide-bonded and glycosylated proteins, which are then competent to exit the ER. Many of the enzymes catalyzing this process require the binding of Ca2+ ions, including the chaperones BiP/GRP78, calnexin and calreticulin. The induction of ER stress with a variety of drugs interferes with chaperone Ca2+ binding, increases cytosolic Ca2+through the opening of ER Ca2+ channels, and activates store-operated Ca2+ entry (SOCE). Posttranslational modifications (PTMs) of the ER Ca2+ handling proteins through ER stress-dependent phosphorylation or oxidation control these mechanisms, as demonstrated in the case of the sarco/endoplasmic reticulum ATPase (SERCA), inositol 1,4,5 trisphosphate receptors (IP3Rs) or stromal interaction molecule 1 (STIM1). Their aim is to restore ER Ca2+ homeostasis but also to increase Ca2+ transfer from the ER to mitochondria during ER stress. This latter function boosts ER bioenergetics, but also triggers apoptosis if ER Ca2+ signaling persists. ER Ca2+ toolkit oxidative modifications upon ER stress can occur within the ER lumen or in the adjacent cytosol. Enzymes involved in this redox control include ER oxidoreductin 1 (ERO1) or the thioredoxin-family protein disulfide isomerases (PDI) and ERp57. A tight, but adaptive connection between ER Ca2+ content, ER stress and mitochondrial readouts allows for the proper functioning of many tissues, including skeletal muscle, the liver, and the pancreas, where ER stress either maintains or compromises their function, depending on its extent and context. Upon mutation of key regulators of ER Ca2+ signaling, diseases such as muscular defects (e.g., from mutated selenoprotein N, SEPN1/SELENON), or diabetes (e.g., from mutated PERK) are the result.
Collapse
Affiliation(s)
- Tadashi Makio
- Department of Cell Biology, Faculty of Medicine and Dentistry, University of Alberta, Edmonton T6G2H7, Alberta, Canada
| | - Junsheng Chen
- Department of Cell Biology, Faculty of Medicine and Dentistry, University of Alberta, Edmonton T6G2H7, Alberta, Canada
| | - Thomas Simmen
- Department of Cell Biology, Faculty of Medicine and Dentistry, University of Alberta, Edmonton T6G2H7, Alberta, Canada.
| |
Collapse
|
3
|
Dobson JR, Jacobson DA. Disrupted Endoplasmic Reticulum Ca 2+ Handling: A Harβinger of β-Cell Failure. BIOLOGY 2024; 13:379. [PMID: 38927260 PMCID: PMC11200644 DOI: 10.3390/biology13060379] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/03/2024] [Revised: 05/17/2024] [Accepted: 05/17/2024] [Indexed: 06/28/2024]
Abstract
The β-cell workload increases in the setting of insulin resistance and reduced β-cell mass, which occurs in type 2 and type 1 diabetes, respectively. The prolonged elevation of insulin production and secretion during the pathogenesis of diabetes results in β-cell ER stress. The depletion of β-cell Ca2+ER during ER stress activates the unfolded protein response, leading to β-cell dysfunction. Ca2+ER is involved in many pathways that are critical to β-cell function, such as protein processing, tuning organelle and cytosolic Ca2+ handling, and modulating lipid homeostasis. Mutations that promote β-cell ER stress and deplete Ca2+ER stores are associated with or cause diabetes (e.g., mutations in ryanodine receptors and insulin). Thus, improving β-cell Ca2+ER handling and reducing ER stress under diabetogenic conditions could preserve β-cell function and delay or prevent the onset of diabetes. This review focuses on how mechanisms that control β-cell Ca2+ER are perturbed during the pathogenesis of diabetes and contribute to β-cell failure.
Collapse
Affiliation(s)
| | - David A. Jacobson
- Department of Molecular Physiology and Biophysics, Vanderbilt University, Nashville, TN 37232, USA;
| |
Collapse
|
4
|
Ji G, Yang X, Li J. High SEC61A1 expression predicts poor outcome of acute myeloid leukemia. Open Med (Wars) 2024; 19:20240944. [PMID: 38584833 PMCID: PMC10997032 DOI: 10.1515/med-2024-0944] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/10/2023] [Revised: 03/04/2024] [Accepted: 03/08/2024] [Indexed: 04/09/2024] Open
Abstract
The malfunction of SEC61A1 has been linked to several types of cancers, but its role in acute myeloid leukemia (AML) remains poorly understood. In this study, we used a series of bioinformatics analysis techniques, including gene expression profiling and proteomic analysis. Our findings were subsequently validated through a series of in vitro experiments, such as SEC61A1 knockdown in cell lines and RT-qPCR. We discovered a significant up-regulation of SEC61A1 in AML patients compared to healthy controls. AML patients with elevated SEC61A1 expression exhibited reduced overall survival compared to those with lower expression. Moreover, SEC61A1 expression emerged as an independent risk factor for predicting the survival of AML patients undergoing allo-HSCT. Our analysis also revealed an association between high SEC61A1 expression and increased signaling pathways related to cell growth. Our study underscores the importance of SEC61A1 expression as a novel prognostic indicator for predicting survival among AML patients, while also identifying it as a promising therapeutic target.
Collapse
Affiliation(s)
- Guo Ji
- Department of Hematology, Taixing People’s Hospital, Taixing, 225400, Jiangsu, China
| | - Xiaofei Yang
- National Clinical Research Center for Hematologic Diseases, Jiangsu Institute of Hematology, The First Affiliated Hospital of Soochow University, Suzhou, China
| | - Jun Li
- School of Medicine, Southeast University, Institute of Hematology Southeast University, Nanjing, China
- Department of Hematology, Taixing People’s Hospital, Changzheng Road No. 1, South Jichuan Road, Taixing, 225400, Jiangsu, China
| |
Collapse
|
5
|
Schlevogt B, Schlieper V, Krader J, Schröter R, Wagner T, Weiand M, Zibert A, Schmidt HH, Bergmann C, Nedvetsky PI, Krahn MP. A SEC61A1 variant is associated with autosomal dominant polycystic liver disease. Liver Int 2023; 43:401-412. [PMID: 36478640 DOI: 10.1111/liv.15493] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/21/2022] [Revised: 10/28/2022] [Accepted: 11/12/2022] [Indexed: 01/22/2023]
Abstract
BACKGROUND AND AIMS Autosomal dominant polycystic liver and kidney disease is a spectrum of hereditary diseases, which display disturbed function of primary cilia leading to cyst formation. In autosomal dominant polycystic kidney disease a genetic cause can be determined in almost all cases. However, in isolated polycystic liver disease (PLD) about half of all cases remain genetically unsolved, suggesting more, so far unidentified genes to be implicated in this disease. METHODS Customized next-generation sequencing was used to identify the underlying pathogenesis in two related patients with PLD. A variant identified in SEC61A1 was further analysed in immortalized patients' urine sediment cells and in an epithelial cell model. RESULTS In both patients, a heterozygous missense change (c.706C>T/p.Arg236Cys) was found in SEC61A1, which encodes for a subunit of the translocation machinery of protein biosynthesis at the endoplasmic reticulum (ER). While kidney disease is absent in the proposita, her mother displays an atypical polycystic kidney phenotype with severe renal failure. In immortalized urine sediment cells, mutant SEC61A1 is expressed at reduced levels, resulting in decreased levels of polycystin-2 (PC2). In an epithelial cell culture model, we found the proteasomal degradation of mutant SEC61A1 to be increased, whereas its localization to the ER is not affected. CONCLUSIONS Our data expand the allelic and clinical spectrum for SEC61A1, adding PLD as a new and the major phenotypic trait in the family described. We further demonstrate that mutant SEC61A1 results in enhanced proteasomal degradation and impaired biosynthesis of PC2.
Collapse
Affiliation(s)
- Bernhard Schlevogt
- Department of Medicine B, University Hospital Muenster, Muenster, Germany
| | - Vincent Schlieper
- Department of Medicine D, University Hospital Muenster, Muenster, Germany
| | - Jana Krader
- Department of Medicine D, University Hospital Muenster, Muenster, Germany
| | - Rita Schröter
- Department of Medicine D, University Hospital Muenster, Muenster, Germany
| | - Thomas Wagner
- Department of Medicine D, University Hospital Muenster, Muenster, Germany
| | - Matthias Weiand
- Department of Medicine B, University Hospital Muenster, Muenster, Germany
| | - Andree Zibert
- Department of Medicine B, University Hospital Muenster, Muenster, Germany
| | - Hartmut H Schmidt
- Department of Medicine B, University Hospital Muenster, Muenster, Germany.,Department of Gastroenterology and Hepatology, University Hospital Essen, Essen, Germany
| | - Carsten Bergmann
- Department of Medicine IV, Faculty of Medicine, Medical Center-University of Freiburg, Freiburg, Germany.,Medizinische Genetik Mainz, Limbach Genetics, Mainz, Germany
| | - Pavel I Nedvetsky
- Department of Medicine D, University Hospital Muenster, Muenster, Germany
| | - Michael P Krahn
- Department of Medicine D, University Hospital Muenster, Muenster, Germany
| |
Collapse
|
6
|
Melnyk A, Lang S, Sicking M, Zimmermann R, Jung M. Co-chaperones of the Human Endoplasmic Reticulum: An Update. Subcell Biochem 2023; 101:247-291. [PMID: 36520310 DOI: 10.1007/978-3-031-14740-1_9] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/17/2023]
Abstract
In mammalian cells, the rough endoplasmic reticulum (ER) plays central roles in the biogenesis of extracellular plus organellar proteins and in various signal transduction pathways. For these reasons, the ER comprises molecular chaperones, which are involved in import, folding, assembly, export, plus degradation of polypeptides, and signal transduction components, such as calcium channels, calcium pumps, and UPR transducers plus adenine nucleotide carriers/exchangers in the ER membrane. The calcium- and ATP-dependent ER lumenal Hsp70, termed immunoglobulin heavy-chain-binding protein or BiP, is the central player in all these activities and involves up to nine different Hsp40-type co-chaperones, i.e., ER membrane integrated as well as ER lumenal J-domain proteins, termed ERj or ERdj proteins, two nucleotide exchange factors or NEFs (Grp170 and Sil1), and NEF-antagonists, such as MANF. Here we summarize the current knowledge on the ER-resident BiP/ERj chaperone network and focus on the interaction of BiP with the polypeptide-conducting and calcium-permeable Sec61 channel of the ER membrane as an example for BiP action and how its functional cycle is linked to ER protein import and various calcium-dependent signal transduction pathways.
Collapse
Affiliation(s)
- Armin Melnyk
- Medical Biochemistry & Molecular Biology, Saarland University, Homburg, Germany
| | - Sven Lang
- Medical Biochemistry & Molecular Biology, Saarland University, Homburg, Germany
| | - Mark Sicking
- Medical Biochemistry & Molecular Biology, Saarland University, Homburg, Germany
| | - Richard Zimmermann
- Medical Biochemistry & Molecular Biology, Saarland University, Homburg, Germany.
| | - Martin Jung
- Medical Biochemistry & Molecular Biology, Saarland University, Homburg, Germany
| |
Collapse
|
7
|
Krieg L, Didt K, Karkossa I, Bernhart SH, Kehr S, Subramanian N, Lindhorst A, Schaudinn A, Tabei S, Keller M, Stumvoll M, Dietrich A, von Bergen M, Stadler PF, Laurencikiene J, Krüger M, Blüher M, Gericke M, Schubert K, Kovacs P, Chakaroun R, Massier L. Multiomics reveal unique signatures of human epiploic adipose tissue related to systemic insulin resistance. Gut 2022; 71:2179-2193. [PMID: 34598978 PMCID: PMC9554031 DOI: 10.1136/gutjnl-2021-324603] [Citation(s) in RCA: 17] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/09/2021] [Accepted: 09/06/2021] [Indexed: 12/14/2022]
Abstract
OBJECTIVE Human white adipose tissue (AT) is a metabolically active organ with distinct depot-specific functions. Despite their locations close to the gastrointestinal tract, mesenteric AT and epiploic AT (epiAT) have only scarcely been investigated. Here, we aim to characterise these ATs in-depth and estimate their contribution to alterations in whole-body metabolism. DESIGN Mesenteric, epiploic, omental and abdominal subcutaneous ATs were collected from 70 patients with obesity undergoing Roux-en-Y gastric bypass surgery. The metabolically well-characterised cohort included nine subjects with insulin sensitive (IS) obesity, whose AT samples were analysed in a multiomics approach, including methylome, transcriptome and proteome along with samples from subjects with insulin resistance (IR) matched for age, sex and body mass index (n=9). Findings implying differences between AT depots in these subgroups were validated in the entire cohort (n=70) by quantitative real-time PCR. RESULTS While mesenteric AT exhibited signatures similar to those found in the omental depot, epiAT was distinct from all other studied fat depots. Multiomics allowed clear discrimination between the IS and IR states in all tissues. The highest discriminatory power between IS and IR was seen in epiAT, where profound differences in the regulation of developmental, metabolic and inflammatory pathways were observed. Gene expression levels of key molecules involved in AT function, metabolic homeostasis and inflammation revealed significant depot-specific differences with epiAT showing the highest expression levels. CONCLUSION Multi-omics epiAT signatures reflect systemic IR and obesity subphenotypes distinct from other fat depots. Our data suggest a previously unrecognised role of human epiploic fat in the context of obesity, impaired insulin sensitivity and related diseases.
Collapse
Affiliation(s)
- Laura Krieg
- Department of Molecular Systems Biology, Helmholtz Centre for Environmental Research (UFZ), Leipzig, Germany
| | - Konrad Didt
- Department for Internal Medicine, Neurology and Dermatology, University Hospital Leipzig, Leipzig, Germany
| | - Isabel Karkossa
- Department of Molecular Systems Biology, Helmholtz Centre for Environmental Research (UFZ), Leipzig, Germany
| | - Stephan H Bernhart
- Faculty of Mathematics and Computer Science, Department of Computer Science and Interdisciplinary Center for Bioinformatics, University of Leipzig, Leipzig, Germany
| | - Stephanie Kehr
- Faculty of Mathematics and Computer Science, Department of Computer Science and Interdisciplinary Center for Bioinformatics, University of Leipzig, Leipzig, Germany
| | | | - Andreas Lindhorst
- Faculty of Medicine, Institute of Anatomy, University of Leipzig, Leipzig, Germany
| | - Alexander Schaudinn
- Department of Diagnostic and Interventional Radiology, University Hospital Leipzig, Leipzig, Germany
| | - Shirin Tabei
- Institute of Endocrinology and Diabetes, University of Lübeck, Lübeck, Germany
| | - Maria Keller
- Helmholtz Institute for Metabolic Obesity and Vascular Research (HI-MAG), Helmholtz Zentrum München, University of Leipzig and University Hospital Leipzig, Leipzig, Germany
| | - Michael Stumvoll
- Medical Department III – Endocrinology, Nephrology and Rheumatology, University of Leipzig Medical Center, Leipzig, Germany
| | - Arne Dietrich
- Clinic for Visceral, Transplantation and Thorax and Vascular Surgery, University Hospital Leipzig, Leipzig, Germany
| | - Martin von Bergen
- Department of Molecular Systems Biology, Helmholtz Centre for Environmental Research (UFZ), Leipzig, Germany,Faculty of Life Science, Institute of Biochemistry, University of Leipzig, Leipzig, Germany
| | - Peter F Stadler
- Faculty of Mathematics and Computer Science, Department of Computer Science and Interdisciplinary Center for Bioinformatics, University of Leipzig, Leipzig, Germany,Max Planck Institute for Mathematics in the Sciences, Leipzig, Germany
| | | | - Martin Krüger
- Faculty of Medicine, Institute of Anatomy, University of Leipzig, Leipzig, Germany
| | - Matthias Blüher
- Helmholtz Institute for Metabolic Obesity and Vascular Research (HI-MAG), Helmholtz Zentrum München, University of Leipzig and University Hospital Leipzig, Leipzig, Germany,Medical Department III – Endocrinology, Nephrology and Rheumatology, University of Leipzig Medical Center, Leipzig, Germany
| | - Martin Gericke
- Faculty of Medicine, Institute of Anatomy, University of Leipzig, Leipzig, Germany,Institute of Anatomy and Cell Biology, Martin Luther University Halle-Wittenberg, Halle, Germany
| | - Kristin Schubert
- Department of Molecular Systems Biology, Helmholtz Centre for Environmental Research (UFZ), Leipzig, Germany
| | - Peter Kovacs
- Medical Department III – Endocrinology, Nephrology and Rheumatology, University of Leipzig Medical Center, Leipzig, Germany,Deutsches Zentrum für Diabetesforschung eV, Neuherberg, Germany
| | - Rima Chakaroun
- Medical Department III - Endocrinology, Nephrology and Rheumatology, University of Leipzig Medical Center, Leipzig, Germany
| | - Lucas Massier
- Department of Medicine (H7), Karolinska Institutet, Stockholm, Sweden .,Medical Department III - Endocrinology, Nephrology and Rheumatology, University of Leipzig Medical Center, Leipzig, Germany
| |
Collapse
|
8
|
Parys JB, Van Coppenolle F. Sec61 complex/translocon: The role of an atypical ER Ca 2+-leak channel in health and disease. Front Physiol 2022; 13:991149. [PMID: 36277220 PMCID: PMC9582130 DOI: 10.3389/fphys.2022.991149] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/11/2022] [Accepted: 09/20/2022] [Indexed: 11/02/2023] Open
Abstract
The heterotrimeric Sec61 protein complex forms the functional core of the so-called translocon that forms an aqueous channel in the endoplasmic reticulum (ER). The primary role of the Sec61 complex is to allow protein import in the ER during translation. Surprisingly, a completely different function in intracellular Ca2+ homeostasis has emerged for the Sec61 complex, and the latter is now accepted as one of the major Ca2+-leak pathways of the ER. In this review, we first discuss the structure of the Sec61 complex and focus on the pharmacology and regulation of the Sec61 complex as a Ca2+-leak channel. Subsequently, we will pay particular attention to pathologies that are linked to Sec61 mutations, such as plasma cell deficiency and congenital neutropenia. Finally, we will explore the relevance of the Sec61 complex as a Ca2+-leak channel in various pathophysiological (ER stress, apoptosis, ischemia-reperfusion) and pathological (type 2 diabetes, cancer) settings.
Collapse
Affiliation(s)
- Jan B. Parys
- Laboratory for Molecular and Cellular Signaling, Department of Cellular and Molecular Medicine & Leuven Kanker Instituut, KU Leuven, Leuven, Belgium
| | - Fabien Van Coppenolle
- CarMeN Laboratory, INSERM, INRA, INSA Lyon, Université Claude Bernard Lyon 1, Lyon, France
- Groupement Hospitalier EST, Department of Cardiology, Hospices Civils de Lyon, Lyon, France
| |
Collapse
|
9
|
Lang S, Nguyen D, Bhadra P, Jung M, Helms V, Zimmermann R. Signal Peptide Features Determining the Substrate Specificities of Targeting and Translocation Components in Human ER Protein Import. Front Physiol 2022; 13:833540. [PMID: 35899032 PMCID: PMC9309488 DOI: 10.3389/fphys.2022.833540] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/11/2021] [Accepted: 05/17/2022] [Indexed: 12/11/2022] Open
Abstract
In human cells, approximately 30% of all polypeptides enter the secretory pathway at the level of the endoplasmic reticulum (ER). This process involves cleavable amino-terminal signal peptides (SPs) or more or less amino-terminal transmembrane helices (TMHs), which serve as targeting determinants, at the level of the precursor polypeptides and a multitude of cytosolic and ER proteins, which facilitate their ER import. Alone or in combination SPs and TMHs guarantee the initial ER targeting as well as the subsequent membrane integration or translocation. Cytosolic SRP and SR, its receptor in the ER membrane, mediate cotranslational targeting of most nascent precursor polypeptide chains to the polypeptide-conducting Sec61 complex in the ER membrane. Alternatively, fully-synthesized precursor polypeptides and certain nascent precursor polypeptides are targeted to the ER membrane by either the PEX-, SND-, or TRC-pathway. Although these targeting pathways may have overlapping functions, the question arises how relevant this is under cellular conditions and which features of SPs and precursor polypeptides determine preference for a certain pathway. Irrespective of their targeting pathway(s), most precursor polypeptides are integrated into or translocated across the ER membrane via the Sec61 channel. For some precursor polypeptides specific Sec61 interaction partners have to support the gating of the channel to the open state, again raising the question why and when this is the case. Recent progress shed light on the client spectrum and specificities of some auxiliary components, including Sec62/Sec63, TRAM1 protein, and TRAP. To address the question which precursors use a certain pathway or component in intact human cells, i.e., under conditions of fast translation rates and molecular crowding, in the presence of competing precursors, different targeting organelles, and relevant stoichiometries of the involved components, siRNA-mediated depletion of single targeting or transport components in HeLa cells was combined with label-free quantitative proteomics and differential protein abundance analysis. Here, we present a summary of the experimental approach as well as the resulting differential protein abundance analyses and discuss their mechanistic implications in light of the available structural data.
Collapse
Affiliation(s)
- Sven Lang
- Medical Biochemistry and Molecular Biology, Saarland University, Homburg, Germany
| | - Duy Nguyen
- Center for Bioinformatics, Saarland University, Saarbrücken, Germany
| | - Pratiti Bhadra
- Center for Bioinformatics, Saarland University, Saarbrücken, Germany
| | - Martin Jung
- Medical Biochemistry and Molecular Biology, Saarland University, Homburg, Germany
| | - Volkhard Helms
- Center for Bioinformatics, Saarland University, Saarbrücken, Germany
| | - Richard Zimmermann
- Medical Biochemistry and Molecular Biology, Saarland University, Homburg, Germany
| |
Collapse
|
10
|
Regulation of calcium homeostasis and flux between the endoplasmic reticulum and the cytosol. J Biol Chem 2022; 298:102061. [PMID: 35609712 PMCID: PMC9218512 DOI: 10.1016/j.jbc.2022.102061] [Citation(s) in RCA: 57] [Impact Index Per Article: 19.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/18/2021] [Revised: 05/17/2022] [Accepted: 05/18/2022] [Indexed: 12/20/2022] Open
Abstract
The concentration of Ca2+ in the endoplasmic reticulum (ER) is critically important for maintaining its oxidizing environment as well as for maintaining luminal ATP levels required for chaperone activity. Therefore, local luminal Ca2+ concentrations and the dynamic Ca2+ flux between the different subcellular compartments are tightly controlled. Influx of Ca2+ into the ER is enabled by a reductive shift, which opens the sarcoendoplasmic reticulum calcium transport ATPase pump, building the Ca2+ gradient across the ER membrane required for ATP import. Meanwhile, Ca2+ leakage from the ER has been reported to occur via the Sec61 translocon following protein translocation. In this review, we provide an overview of the complex regulation of Ca2+ homeostasis, Ca2+ flux between subcellular compartments, and the cellular stress response (the unfolded protein response) induced upon dysregulated luminal Ca2+ metabolism. We also provide insight into the structure and gating mechanism at the Sec61 translocon and examine the role of ER-resident cochaperones in assisting the central ER-resident chaperone BiP in the control of luminal Ca2+ concentrations.
Collapse
|
11
|
Zanetti M, Xian S, Dosset M, Carter H. The Unfolded Protein Response at the Tumor-Immune Interface. Front Immunol 2022; 13:823157. [PMID: 35237269 PMCID: PMC8882736 DOI: 10.3389/fimmu.2022.823157] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/26/2021] [Accepted: 01/26/2022] [Indexed: 12/14/2022] Open
Abstract
The tumor-immune interface has surged to primary relevance in an effort to understand the hurdles facing immune surveillance and cancer immunotherapy. Reports over the past decades have indicated a role for the unfolded protein response (UPR) in modulating not only tumor cell fitness and drug resistance, but also local immunity, with emphasis on the phenotype and altered function of immune cells such as myeloid cells and T cells. Emerging evidence also suggests that aneuploidy correlates with local immune dysregulation. Recently, we reported that the UPR serves as a link between aneuploidy and immune cell dysregulation in a cell nonautonomous way. These new findings add considerable complexity to the organization of the tumor microenvironment (TME) and the origin of its altered function. In this review, we summarize these data and also discuss the role of aneuploidy as a negative regulator of local immunity.
Collapse
Affiliation(s)
- Maurizio Zanetti
- The Laboratory of Immunology, Department of Medicine and Moores Cancer Center, University of California San Diego, La Jolla, CA, United States
- *Correspondence: Maurizio Zanetti, ; orcid.org/0000-0001-6346-8776
| | - Su Xian
- Division of Medical Genetics, Department of Medicine, Bioinformatics and System Biology Program, University of California San Diego, La Jolla, CA, United States
| | - Magalie Dosset
- The Laboratory of Immunology, Department of Medicine and Moores Cancer Center, University of California San Diego, La Jolla, CA, United States
| | - Hannah Carter
- Division of Medical Genetics, Department of Medicine, Bioinformatics and System Biology Program, University of California San Diego, La Jolla, CA, United States
| |
Collapse
|
12
|
Wu Y, Wang MH, Yang T, Qin TY, Qin LL, Hu YM, Zhang CF, Sun BJ, Ding L, Wu LL, Liu TH. Mechanisms for Improving Hepatic Glucolipid Metabolism by Cinnamic Acid and Cinnamic Aldehyde: An Insight Provided by Multi-Omics. Front Nutr 2022; 8:794841. [PMID: 35087857 PMCID: PMC8786797 DOI: 10.3389/fnut.2021.794841] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/14/2021] [Accepted: 12/13/2021] [Indexed: 12/15/2022] Open
Abstract
Cinnamic acid (AC) and cinnamic aldehyde (AL) are two chemicals enriched in cinnamon and have been previously proved to improve glucolipid metabolism, thus ameliorating metabolic disorders. In this study, we employed transcriptomes and proteomes on AC and AL treated db/db mice in order to explore the underlying mechanisms for their effects. Db/db mice were divided into three groups: the control group, AC group and AL group. Gender- and age-matched wt/wt mice were used as a normal group. After 4 weeks of treatments, mice were sacrificed, and liver tissues were used for further analyses. Functional enrichment of differentially expressed genes (DEGs) and differentially expressed proteins (DEPs) were performed using Gene Ontology (GO) and Kyoto Encyclopedia of Genes and Genomes (KEGG) databases. DEPs were further verified by parallel reaction monitoring (PRM). The results suggested that AC and AL share similar mechanisms, and they may improve glucolipid metabolism by improving mitochondrial functions, decreasing serotonin contents and upregulating autophagy mediated lipid clearance. This study provides an insight into the molecular mechanisms of AC and AL on hepatic transcriptomes and proteomes in disrupted metabolic situations and lays a foundation for future experiments.
Collapse
Affiliation(s)
- You Wu
- Key Laboratory of Health Cultivation of the Ministry of Education, Beijing University of Chinese Medicine, Beijing, China.,Key Laboratory of Health Cultivation of Beijing, Beijing University of Chinese Medicine, Beijing, China
| | - Ming-Hui Wang
- Key Laboratory of Health Cultivation of the Ministry of Education, Beijing University of Chinese Medicine, Beijing, China
| | - Tao Yang
- Key Laboratory of Health Cultivation of the Ministry of Education, Beijing University of Chinese Medicine, Beijing, China.,Key Laboratory of Health Cultivation of Beijing, Beijing University of Chinese Medicine, Beijing, China
| | - Tian-Yu Qin
- Key Laboratory of Health Cultivation of the Ministry of Education, Beijing University of Chinese Medicine, Beijing, China
| | - Ling-Ling Qin
- Department of Science and Technology, Beijing University of Chinese Medicine, Beijing, China
| | - Yao-Mu Hu
- Key Laboratory of Health Cultivation of the Ministry of Education, Beijing University of Chinese Medicine, Beijing, China.,Key Laboratory of Health Cultivation of Beijing, Beijing University of Chinese Medicine, Beijing, China
| | - Cheng-Fei Zhang
- Key Laboratory of Health Cultivation of the Ministry of Education, Beijing University of Chinese Medicine, Beijing, China.,Key Laboratory of Health Cultivation of Beijing, Beijing University of Chinese Medicine, Beijing, China
| | - Bo-Ju Sun
- Key Laboratory of Health Cultivation of the Ministry of Education, Beijing University of Chinese Medicine, Beijing, China
| | - Lei Ding
- Key Laboratory of Health Cultivation of the Ministry of Education, Beijing University of Chinese Medicine, Beijing, China.,Key Laboratory of Health Cultivation of Beijing, Beijing University of Chinese Medicine, Beijing, China
| | - Li-Li Wu
- Key Laboratory of Health Cultivation of the Ministry of Education, Beijing University of Chinese Medicine, Beijing, China.,Key Laboratory of Health Cultivation of Beijing, Beijing University of Chinese Medicine, Beijing, China
| | - Tong-Hua Liu
- Key Laboratory of Health Cultivation of the Ministry of Education, Beijing University of Chinese Medicine, Beijing, China.,Key Laboratory of Health Cultivation of Beijing, Beijing University of Chinese Medicine, Beijing, China
| |
Collapse
|
13
|
Tirincsi A, Sicking M, Hadzibeganovic D, Haßdenteufel S, Lang S. The Molecular Biodiversity of Protein Targeting and Protein Transport Related to the Endoplasmic Reticulum. Int J Mol Sci 2021; 23:143. [PMID: 35008565 PMCID: PMC8745461 DOI: 10.3390/ijms23010143] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/27/2021] [Revised: 12/19/2021] [Accepted: 12/20/2021] [Indexed: 12/15/2022] Open
Abstract
Looking at the variety of the thousands of different polypeptides that have been focused on in the research on the endoplasmic reticulum from the last five decades taught us one humble lesson: no one size fits all. Cells use an impressive array of components to enable the safe transport of protein cargo from the cytosolic ribosomes to the endoplasmic reticulum. Safety during the transit is warranted by the interplay of cytosolic chaperones, membrane receptors, and protein translocases that together form functional networks and serve as protein targeting and translocation routes. While two targeting routes to the endoplasmic reticulum, SRP (signal recognition particle) and GET (guided entry of tail-anchored proteins), prefer targeting determinants at the N- and C-terminus of the cargo polypeptide, respectively, the recently discovered SND (SRP-independent) route seems to preferentially cater for cargos with non-generic targeting signals that are less hydrophobic or more distant from the termini. With an emphasis on targeting routes and protein translocases, we will discuss those functional networks that drive efficient protein topogenesis and shed light on their redundant and dynamic nature in health and disease.
Collapse
Affiliation(s)
- Andrea Tirincsi
- Department of Medical Biochemistry and Molecular Biology, Saarland University, 66421 Homburg, Germany; (A.T.); (M.S.); (D.H.)
| | - Mark Sicking
- Department of Medical Biochemistry and Molecular Biology, Saarland University, 66421 Homburg, Germany; (A.T.); (M.S.); (D.H.)
| | - Drazena Hadzibeganovic
- Department of Medical Biochemistry and Molecular Biology, Saarland University, 66421 Homburg, Germany; (A.T.); (M.S.); (D.H.)
| | - Sarah Haßdenteufel
- Department of Molecular Genetics, Weizmann Institute of Science, Rehovot 7610001, Israel
| | - Sven Lang
- Department of Medical Biochemistry and Molecular Biology, Saarland University, 66421 Homburg, Germany; (A.T.); (M.S.); (D.H.)
| |
Collapse
|
14
|
Pick T, Beck A, Gamayun I, Schwarz Y, Schirra C, Jung M, Krause E, Niemeyer BA, Zimmermann R, Lang S, Anken EV, Cavalié A. Remodelling of Ca 2+ homeostasis is linked to enlarged endoplasmic reticulum in secretory cells. Cell Calcium 2021; 99:102473. [PMID: 34560367 DOI: 10.1016/j.ceca.2021.102473] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/28/2021] [Revised: 08/27/2021] [Accepted: 09/08/2021] [Indexed: 11/30/2022]
Abstract
The endoplasmic reticulum (ER) is extensively remodelled during the development of professional secretory cells to cope with high protein production. Since ER is the principal Ca2+ store in the cell, we characterised the Ca2+ homeostasis in NALM-6 and RPMI 8226 cells, which are commonly used as human pre-B and antibody secreting plasma cell models, respectively. Expression levels of Sec61 translocons and the corresponding Sec61-mediated Ca2+ leak from ER, Ca2+ storage capacity and store-operated Ca2+ entry were significantly enlarged in the secretory RPMI 8226 cell line. Using an immunoglobulin M heavy chain producing HeLa cell model, we found that the enlarged Ca2+ storage capacity and Ca2+ leak from ER are linked to ER expansion. Our data delineates a developmental remodelling of Ca2+ homeostasis in professional secretory cells in which a high Sec61-mediated Ca2+ leak and, thus, a high Ca2+ turnover in the ER is backed up by enhanced store-operated Ca2+ entry.
Collapse
Affiliation(s)
- Tillman Pick
- Experimental and Clinical Pharmacology and Toxicology, Pre-clinical Center for Molecular Signalling (PZMS), Saarland University, 66421 Homburg, Germany.
| | - Andreas Beck
- Experimental and Clinical Pharmacology and Toxicology, Pre-clinical Center for Molecular Signalling (PZMS), Saarland University, 66421 Homburg, Germany
| | - Igor Gamayun
- Experimental and Clinical Pharmacology and Toxicology, Pre-clinical Center for Molecular Signalling (PZMS), Saarland University, 66421 Homburg, Germany
| | - Yvonne Schwarz
- Molecular Neurophysiology, Center for Integrative Physiology and Molecular Medicine (CIPMM), Saarland University, 66421 Homburg, Germany
| | - Claudia Schirra
- Cellular Neurophysiology, Center for Integrative Physiology and Molecular Medicine (CIPMM), Saarland University, 66421 Homburg, Germany
| | - Martin Jung
- Medical Biochemistry and Molecular Biology, Pre-clinical Centre for Molecular Signalling (PZMS), Saarland University, 66421 Homburg, Germany
| | - Elmar Krause
- Cellular Neurophysiology, Center for Integrative Physiology and Molecular Medicine (CIPMM), Saarland University, 66421 Homburg, Germany
| | - Barbara A Niemeyer
- Molecular Biophysics, Center for Integrative Physiology and Molecular Medicine (CIPMM), Saarland University, 66421 Homburg, Germany
| | - Richard Zimmermann
- Medical Biochemistry and Molecular Biology, Pre-clinical Centre for Molecular Signalling (PZMS), Saarland University, 66421 Homburg, Germany
| | - Sven Lang
- Medical Biochemistry and Molecular Biology, Pre-clinical Centre for Molecular Signalling (PZMS), Saarland University, 66421 Homburg, Germany
| | - Eelco van Anken
- Division of Genetics and Cell Biology, San Raffaele Scientific Institute and Università Vita-Salute San Raffaele, Milan, Italy
| | - Adolfo Cavalié
- Experimental and Clinical Pharmacology and Toxicology, Pre-clinical Center for Molecular Signalling (PZMS), Saarland University, 66421 Homburg, Germany.
| |
Collapse
|
15
|
Sicking M, Lang S, Bochen F, Roos A, Drenth JPH, Zakaria M, Zimmermann R, Linxweiler M. Complexity and Specificity of Sec61-Channelopathies: Human Diseases Affecting Gating of the Sec61 Complex. Cells 2021; 10:1036. [PMID: 33925740 PMCID: PMC8147068 DOI: 10.3390/cells10051036] [Citation(s) in RCA: 27] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/09/2021] [Revised: 04/15/2021] [Accepted: 04/17/2021] [Indexed: 12/14/2022] Open
Abstract
The rough endoplasmic reticulum (ER) of nucleated human cells has crucial functions in protein biogenesis, calcium (Ca2+) homeostasis, and signal transduction. Among the roughly one hundred components, which are involved in protein import and protein folding or assembly, two components stand out: The Sec61 complex and BiP. The Sec61 complex in the ER membrane represents the major entry point for precursor polypeptides into the membrane or lumen of the ER and provides a conduit for Ca2+ ions from the ER lumen to the cytosol. The second component, the Hsp70-type molecular chaperone immunoglobulin heavy chain binding protein, short BiP, plays central roles in protein folding and assembly (hence its name), protein import, cellular Ca2+ homeostasis, and various intracellular signal transduction pathways. For the purpose of this review, we focus on these two components, their relevant allosteric effectors and on the question of how their respective functional cycles are linked in order to reconcile the apparently contradictory features of the ER membrane, selective permeability for precursor polypeptides, and impermeability for Ca2+. The key issues are that the Sec61 complex exists in two conformations: An open and a closed state that are in a dynamic equilibrium with each other, and that BiP contributes to its gating in both directions in cooperation with different co-chaperones. While the open Sec61 complex forms an aqueous polypeptide-conducting- and transiently Ca2+-permeable channel, the closed complex is impermeable even to Ca2+. Therefore, we discuss the human hereditary and tumor diseases that are linked to Sec61 channel gating, termed Sec61-channelopathies, as disturbances of selective polypeptide-impermeability and/or aberrant Ca2+-permeability.
Collapse
Affiliation(s)
- Mark Sicking
- Department of Medical Biochemistry & Molecular Biology, Saarland University, D-66421 Homburg, Germany;
| | - Sven Lang
- Department of Medical Biochemistry & Molecular Biology, Saarland University, D-66421 Homburg, Germany;
| | - Florian Bochen
- Department of Otorhinolaryngology, Head and Neck Surgery, Saarland University Medical Center, D-66421 Homburg, Germany; (F.B.); (M.L.)
| | - Andreas Roos
- Department of Neuropediatrics, Essen University Hospital, D-45147 Essen, Germany;
| | - Joost P. H. Drenth
- Department of Molecular Gastroenterology and Hepatology, Radboud University Medical Center, 6525 GA Nijmegen, The Netherlands;
| | - Muhammad Zakaria
- Department of Genetics, Hazara University, Mansehra 21300, Pakistan;
| | - Richard Zimmermann
- Department of Medical Biochemistry & Molecular Biology, Saarland University, D-66421 Homburg, Germany;
| | - Maximilian Linxweiler
- Department of Otorhinolaryngology, Head and Neck Surgery, Saarland University Medical Center, D-66421 Homburg, Germany; (F.B.); (M.L.)
| |
Collapse
|
16
|
Meng H, Jiang X, Wang J, Sang Z, Guo L, Yin G, Wang Y. SEC61G is upregulated and required for tumor progression in human kidney cancer. Mol Med Rep 2021; 23:427. [PMID: 33846795 PMCID: PMC8047765 DOI: 10.3892/mmr.2021.12066] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/16/2019] [Accepted: 01/29/2021] [Indexed: 12/24/2022] Open
Abstract
Kidney cancer is a malignant tumor of the urinary system. Although the 5-year survival rate of patients with kidney cancer has increased by ~30% in recent years due to the early detection of low-grade tumors using more accurate diagnostic methods, the global incidence of kidney cancer continues to increase every year. Therefore, identification of novel and efficient candidate genes for predicting the prognosis of patients with kidney cancer is important. The present study aimed to investigate the role of SEC61 translocon subunit-γ (SEC61G) in kidney cancer. The Cancer Genome Atlas database was screened to obtain the expression profile of SEC61G and identify its association with kidney cancer prognosis. Furthermore, the in vitro effect of SEC61G knockdown on kidney cancer cell proliferation, migration, invasion and apoptosis was investigated using a Cell Counting Kit-8 assay, wound healing assay, Transwell assay and flow cytometry. The results demonstrated that compared with healthy tissues, SEC61G was upregulated in human kidney tumor tissues, which was associated with poor prognosis. In addition, SEC61G knockdown significantly inhibited kidney cancer cell proliferation, migration and invasion compared with the negative control (NC) group. Furthermore, E-cadherin expression was significantly upregulated, and N-cadherin and β-catenin expression levels were significantly downregulated in SEC61G-knockdown kidney cancer cells compared with the NC group. In addition, compared with the NC group, SEC61G knockdown significantly promoted cell apoptosis in a caspase-dependent manner. The aforementioned results suggested that SEC61G might serve as a proto-oncogene to promote kidney tumor progression. Therefore, the present study provided a novel candidate gene for predicting the prognosis of patients with kidney cancer.
Collapse
Affiliation(s)
- Hui Meng
- Department of Urology, Qilu Hospital, Cheeloo College of Medicine, Shandong University, Jinan, Shandong 250012, P.R. China
| | - Xuewen Jiang
- Department of Urology, Qilu Hospital, Cheeloo College of Medicine, Shandong University, Jinan, Shandong 250012, P.R. China
| | - Jian Wang
- Department of Urology, People's Hospital of Laoling, Laoling, Shandong 253600, P.R. China
| | - Zunmeng Sang
- Department of Urology, Qilu Hospital, Cheeloo College of Medicine, Shandong University, Jinan, Shandong 250012, P.R. China
| | - Longfei Guo
- Department of Urology, Qilu Hospital, Cheeloo College of Medicine, Shandong University, Jinan, Shandong 250012, P.R. China
| | - Gang Yin
- Department of Urology, Qilu Hospital, Cheeloo College of Medicine, Shandong University, Jinan, Shandong 250012, P.R. China
| | - Yu Wang
- Reproductive Medicine Center, Department of Obstetrics and Gynecology, Qilu Hospital, Cheeloo College of Medicine, Shandong University, Jinan, Shandong 250012, P.R. China
| |
Collapse
|
17
|
Schorr S, Nguyen D, Haßdenteufel S, Nagaraj N, Cavalié A, Greiner M, Weissgerber P, Loi M, Paton AW, Paton JC, Molinari M, Förster F, Dudek J, Lang S, Helms V, Zimmermann R. Identification of signal peptide features for substrate specificity in human Sec62/Sec63-dependent ER protein import. FEBS J 2020; 287:4612-4640. [PMID: 32133789 DOI: 10.1111/febs.15274] [Citation(s) in RCA: 36] [Impact Index Per Article: 7.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/06/2019] [Revised: 01/22/2020] [Accepted: 03/02/2020] [Indexed: 02/06/2023]
Abstract
In mammalian cells, one-third of all polypeptides are integrated into the membrane or translocated into the lumen of the endoplasmic reticulum (ER) via the Sec61 channel. While the Sec61 complex facilitates ER import of most precursor polypeptides, the Sec61-associated Sec62/Sec63 complex supports ER import in a substrate-specific manner. So far, mainly posttranslationally imported precursors and the two cotranslationally imported precursors of ERj3 and prion protein were found to depend on the Sec62/Sec63 complex in vitro. Therefore, we determined the rules for engagement of Sec62/Sec63 in ER import in intact human cells using a recently established unbiased proteomics approach. In addition to confirming ERj3, we identified 22 novel Sec62/Sec63 substrates under these in vivo-like conditions. As a common feature, those previously unknown substrates share signal peptides (SP) with comparatively longer but less hydrophobic hydrophobic region of SP and lower carboxy-terminal region of SP (C-region) polarity. Further analyses with four substrates, and ERj3 in particular, revealed the combination of a slowly gating SP and a downstream translocation-disruptive positively charged cluster of amino acid residues as decisive for the Sec62/Sec63 requirement. In the case of ERj3, these features were found to be responsible for an additional immunoglobulin heavy-chain binding protein (BiP) requirement and to correlate with sensitivity toward the Sec61-channel inhibitor CAM741. Thus, the human Sec62/Sec63 complex may support Sec61-channel opening for precursor polypeptides with slowly gating SPs by direct interaction with the cytosolic amino-terminal peptide of Sec61α or via recruitment of BiP and its interaction with the ER-lumenal loop 7 of Sec61α. These novel insights into the mechanism of human ER protein import contribute to our understanding of the etiology of SEC63-linked polycystic liver disease. DATABASES: The mass spectrometry proteomics data have been deposited to the ProteomeXchange Consortium via the PRIDE partner repository (http://www.ebi.ac.uk/pride/archive/projects/Identifiers) with the dataset identifiers: PXD008178, PXD011993, and PXD012078. Supplementary information was deposited at Mendeley Data (https://data.mendeley.com/datasets/6s5hn73jcv/2).
Collapse
Affiliation(s)
- Stefan Schorr
- Medical Biochemistry and Molecular Biology, Saarland University, Homburg, Germany
| | - Duy Nguyen
- Center for Bioinformatics, Saarland University, Saarbrücken, Germany
| | - Sarah Haßdenteufel
- Medical Biochemistry and Molecular Biology, Saarland University, Homburg, Germany
| | - Nagarjuna Nagaraj
- Core Facility, Max Planck Institute of Biochemistry, Martinsried, Germany
| | - Adolfo Cavalié
- Experimental and Clinical Pharmacology and Toxicology, Saarland University, Homburg, Germany
| | - Markus Greiner
- Medical Biochemistry and Molecular Biology, Saarland University, Homburg, Germany
| | - Petra Weissgerber
- Experimental and Clinical Pharmacology and Toxicology, Saarland University, Homburg, Germany
| | - Marisa Loi
- Faculty of Biomedical Sciences, Institute for Research in Biomedicine, Università della Svizzera italiana, Bellinzona, Switzerland
| | - Adrienne W Paton
- Research Centre for Infectious Diseases, University of Adelaide, SA, Australia
| | - James C Paton
- Research Centre for Infectious Diseases, University of Adelaide, SA, Australia
| | - Maurizio Molinari
- Faculty of Biomedical Sciences, Institute for Research in Biomedicine, Università della Svizzera italiana, Bellinzona, Switzerland
| | - Friedrich Förster
- Bijvoet Center for Biomolecular Research, Utrecht University, The Netherlands
| | - Johanna Dudek
- Medical Biochemistry and Molecular Biology, Saarland University, Homburg, Germany
| | - Sven Lang
- Medical Biochemistry and Molecular Biology, Saarland University, Homburg, Germany
| | - Volkhard Helms
- Center for Bioinformatics, Saarland University, Saarbrücken, Germany
| | - Richard Zimmermann
- Medical Biochemistry and Molecular Biology, Saarland University, Homburg, Germany
| |
Collapse
|
18
|
Zhang IX, Raghavan M, Satin LS. The Endoplasmic Reticulum and Calcium Homeostasis in Pancreatic Beta Cells. Endocrinology 2020; 161:bqz028. [PMID: 31796960 PMCID: PMC7028010 DOI: 10.1210/endocr/bqz028] [Citation(s) in RCA: 56] [Impact Index Per Article: 11.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/20/2019] [Accepted: 12/01/2019] [Indexed: 12/14/2022]
Abstract
The endoplasmic reticulum (ER) mediates the first steps of protein assembly within the secretory pathway and is the site where protein folding and quality control are initiated. The storage and release of Ca2+ are critical physiological functions of the ER. Disrupted ER homeostasis activates the unfolded protein response (UPR), a pathway which attempts to restore cellular equilibrium in the face of ER stress. Unremitting ER stress, and insufficient compensation for it results in beta-cell apoptosis, a process that has been linked to both type 1 diabetes (T1D) and type 2 diabetes (T2D). Both types are characterized by progressive beta-cell failure and a loss of beta-cell mass, although the underlying causes are different. The reduction of mass occurs secondary to apoptosis in the case of T2D, while beta cells undergo autoimmune destruction in T1D. In this review, we examine recent findings that link the UPR pathway and ER Ca2+ to beta cell dysfunction. We also discuss how UPR activation in beta cells favors cell survival versus apoptosis and death, and how ER protein chaperones are involved in regulating ER Ca2+ levels. Abbreviations: BiP, Binding immunoglobulin Protein ER; endoplasmic reticulum; ERAD, ER-associated protein degradation; IFN, interferon; IL, interleukin; JNK, c-Jun N-terminal kinase; KHE, proton-K+ exchanger; MODY, maturity-onset diabetes of young; PERK, PRKR-like ER kinase; SERCA, Sarco/Endoplasmic Reticulum Ca2+-ATPases; T1D, type 1 diabetes; T2D, type 2 diabetes; TNF, tumor necrosis factor; UPR, unfolded protein response; WRS, Wolcott-Rallison syndrome.
Collapse
Affiliation(s)
- Irina X Zhang
- Department of Pharmacology and Brehm Diabetes Research Center, University of Michigan, Ann Arbor, MI
| | - Malini Raghavan
- Department of Microbiology and Immunology Michigan Medicine, University of Michigan, Ann Arbor, MI
| | - Leslie S Satin
- Department of Pharmacology and Brehm Diabetes Research Center, University of Michigan, Ann Arbor, MI
| |
Collapse
|
19
|
Hyung D, Mallon AM, Kyung DS, Cho SY, Seong JK. TarGo: network based target gene selection system for human disease related mouse models. Lab Anim Res 2019; 35:23. [PMID: 32257911 PMCID: PMC7081697 DOI: 10.1186/s42826-019-0023-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/16/2019] [Accepted: 10/21/2019] [Indexed: 11/25/2022] Open
Abstract
Genetically engineered mouse models are used in high-throughput phenotyping screens to understand genotype-phenotype associations and their relevance to human diseases. However, not all mutant mouse lines with detectable phenotypes are associated with human diseases. Here, we propose the “Target gene selection system for Genetically engineered mouse models” (TarGo). Using a combination of human disease descriptions, network topology, and genotype-phenotype correlations, novel genes that are potentially related to human diseases are suggested. We constructed a gene interaction network using protein-protein interactions, molecular pathways, and co-expression data. Several repositories for human disease signatures were used to obtain information on human disease-related genes. We calculated disease- or phenotype-specific gene ranks using network topology and disease signatures. In conclusion, TarGo provides many novel features for gene function prediction.
Collapse
Affiliation(s)
- Daejin Hyung
- 1National Cancer Center, 323 Ilsan-ro, Goyang-si, Kyeonggi-do 10408 Republic of Korea
| | - Ann-Marie Mallon
- 2MRC Harwell Institute, Mammalian Genetics Unit, Oxfordshire, OX11 0RD UK
| | - Dong Soo Kyung
- 3Laboratory of Developmental Biology and Genomics, Research Institute for Veterinary Science, and BK21 Plus Program for Creative Veterinary Science, College of Veterinary Medicine, Seoul National University, Seoul, 08826 Republic of Korea.,4Korea Mouse Phenotyping Center (KMPC), Seoul National University, Seoul, 08826 Republic of Korea.,5Interdisciplinary Program for Bioinformatics, Program for Cancer Biology and BIO-MAX institute, Seoul National University, Seoul, 08826 Republic of Korea
| | - Soo Young Cho
- 1National Cancer Center, 323 Ilsan-ro, Goyang-si, Kyeonggi-do 10408 Republic of Korea.,4Korea Mouse Phenotyping Center (KMPC), Seoul National University, Seoul, 08826 Republic of Korea
| | - Je Kyung Seong
- 3Laboratory of Developmental Biology and Genomics, Research Institute for Veterinary Science, and BK21 Plus Program for Creative Veterinary Science, College of Veterinary Medicine, Seoul National University, Seoul, 08826 Republic of Korea.,4Korea Mouse Phenotyping Center (KMPC), Seoul National University, Seoul, 08826 Republic of Korea.,5Interdisciplinary Program for Bioinformatics, Program for Cancer Biology and BIO-MAX institute, Seoul National University, Seoul, 08826 Republic of Korea
| |
Collapse
|
20
|
Haßdenteufel S, Johnson N, Paton AW, Paton JC, High S, Zimmermann R. Chaperone-Mediated Sec61 Channel Gating during ER Import of Small Precursor Proteins Overcomes Sec61 Inhibitor-Reinforced Energy Barrier. Cell Rep 2019; 23:1373-1386. [PMID: 29719251 PMCID: PMC5946456 DOI: 10.1016/j.celrep.2018.03.122] [Citation(s) in RCA: 40] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/05/2017] [Revised: 02/15/2018] [Accepted: 03/27/2018] [Indexed: 11/24/2022] Open
Abstract
Protein transport into the mammalian endoplasmic reticulum (ER) is mediated by the heterotrimeric Sec61 channel. The signal recognition particle (SRP) and TRC systems and Sec62 have all been characterized as membrane-targeting components for small presecretory proteins, whereas Sec63 and the lumenal chaperone BiP act as auxiliary translocation components. Here, we report the transport requirements of two natural, small presecretory proteins and engineered variants using semipermeabilized human cells after the depletion of specific ER components. Our results suggest that hSnd2, Sec62, and SRP and TRC receptor each provide alternative targeting pathways for short secretory proteins and define rules of engagement for the actions of Sec63 and BiP during their membrane translocation. We find that the Sec62/Sec63 complex plus BiP can facilitate Sec61 channel opening, thereby allowing precursors that have weak signal peptides or other inhibitory features to translocate. A Sec61 inhibitor can mimic the effect of BiP depletion on Sec61 gating, suggesting that they both act at the same essential membrane translocation step. Small human presecretory proteins use all known targeting routes to the Sec61 complex Their insertion into Sec61 is selectively facilitated by BiP, Sec62, and Sec63 Selectivity is driven by weak signal peptides plus downstream inhibitory features Cyclic heptadepsipeptides phenocopy the effect of BiP depletion on Sec61 gating
Collapse
Affiliation(s)
- Sarah Haßdenteufel
- Medical Biochemistry and Molecular Biology, Saarland University, 66421 Homburg, Germany.
| | - Nicholas Johnson
- Faculty of Biology, Medicine and Health, University of Manchester, Manchester M13 9PT, UK
| | - Adrienne W Paton
- Research Centre for Infectious Disease, University of Adelaide, Adelaide, SA 5005, Australia
| | - James C Paton
- Research Centre for Infectious Disease, University of Adelaide, Adelaide, SA 5005, Australia
| | - Stephen High
- Faculty of Biology, Medicine and Health, University of Manchester, Manchester M13 9PT, UK
| | - Richard Zimmermann
- Medical Biochemistry and Molecular Biology, Saarland University, 66421 Homburg, Germany.
| |
Collapse
|
21
|
Haßdenteufel S, Nguyen D, Helms V, Lang S, Zimmermann R. ER import of small human presecretory proteins: components and mechanisms. FEBS Lett 2019; 593:2506-2524. [PMID: 31325177 DOI: 10.1002/1873-3468.13542] [Citation(s) in RCA: 20] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/03/2019] [Revised: 07/10/2019] [Accepted: 07/13/2019] [Indexed: 11/12/2022]
Abstract
Protein transport into the mammalian endoplasmic reticulum (ER) used to be seen as strictly cotranslational, that is temporarily and mechanistically coupled to protein synthesis. In the course of the last decades, however, several classes of precursors of soluble and membrane proteins were found to be post-translationally imported into the ER, without any involvement of the ribosome. The first such class to be identified were the small presecretory proteins; tail-anchored membrane proteins followed next. In both classes, the inherent address tag is released from the translating ribosome before the initiation of ER import, as part of the fully synthesized precursor. In small presecretory proteins, the information for ER targeting and -translocation via the polypeptide-conducting Sec61-channel is encoded by a classical N-terminal signal peptide, which is released from the ribsosome before targeting due to the small size of the full-length precursor. Here, we discuss the current state of research on targeting and translocation of small presecretory proteins into the mammalian ER. In closing, we present a unifying hypothesis for ER protein translocation in terms of an energy diagram for Sec61-channel gating.
Collapse
Affiliation(s)
- Sarah Haßdenteufel
- Department of Medical Biochemistry and Molecular Biology, Saarland University, Homburg, Germany
| | - Duy Nguyen
- Center for Bioinformatics, Saarland University, Saarbrücken, Germany
| | - Volkhard Helms
- Center for Bioinformatics, Saarland University, Saarbrücken, Germany
| | - Sven Lang
- Department of Medical Biochemistry and Molecular Biology, Saarland University, Homburg, Germany
| | - Richard Zimmermann
- Department of Medical Biochemistry and Molecular Biology, Saarland University, Homburg, Germany
| |
Collapse
|
22
|
Abstract
Endoplasmic reticulum (ER) stress is a major contributor to liver disease and hepatic fibrosis, but the role it plays varies depending on the cause and progression of the disease. Furthermore, ER stress plays a distinct role in hepatocytes versus hepatic stellate cells (HSCs), which adds to the complexity of understanding ER stress and its downstream signaling through the unfolded protein response (UPR) in liver disease. Here, the authors focus on the current literature of ER stress in nonalcoholic and alcoholic fatty liver diseases, how ER stress impacts hepatocyte injury, and the role of ER stress in HSC activation and hepatic fibrosis. This review provides insight into the complex signaling and regulation of the UPR, parallels and distinctions between different liver diseases, and how ER stress may be targeted as an antisteatotic or antifibrotic therapy to limit the progression of liver disease.
Collapse
Affiliation(s)
- Jessica L. Maiers
- Division of Gastroenterology and Hepatology, Mayo Clinic, Rochester, Minnesota
| | - Harmeet Malhi
- Division of Gastroenterology and Hepatology, Mayo Clinic, Rochester, Minnesota
| |
Collapse
|
23
|
Ishikawa Y, Fedeles S, Marlier A, Zhang C, Gallagher AR, Lee AH, Somlo S. Spliced XBP1 Rescues Renal Interstitial Inflammation Due to Loss of Sec63 in Collecting Ducts. J Am Soc Nephrol 2019; 30:443-459. [PMID: 30745418 PMCID: PMC6405156 DOI: 10.1681/asn.2018060614] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/13/2018] [Accepted: 01/07/2019] [Indexed: 01/13/2023] Open
Abstract
BACKGROUND SEC63 encodes a resident protein in the endoplasmic reticulum membrane that, when mutated, causes human autosomal dominant polycystic liver disease. Selective inactivation of Sec63 in all distal nephron segments in embryonic mouse kidney results in polycystin-1-mediated polycystic kidney disease (PKD). It also activates the Ire1α-Xbp1 branch of the unfolded protein response, producing Xbp1s, the active transcription factor promoting expression of specific genes to alleviate endoplasmic reticulum stress. Simultaneous inactivation of Xbp1 and Sec63 worsens PKD in this model. METHODS We explored the renal effects of postnatal inactivation of Sec63 alone or with concomitant inactivation of Xbp1 or Ire1α, specifically in the collecting ducts of neonatal mice. RESULTS The later onset of inactivation of Sec63 restricted to the collecting duct does not result in overt activation of the Ire1α-Xbp1 pathway or cause polycystin-1-dependent PKD. Inactivating Sec63 along with either Xbp1 or Ire1α in this model causes interstitial inflammation and associated fibrosis with decline in kidney function over several months. Re-expression of XBP1s in vivo completely rescues the chronic kidney injury observed after inactivation of Sec63 with either Xbp1 or Ire1α. CONCLUSIONS In the absence of Sec63, basal levels of Xbp1s activity in collecting ducts is both necessary and sufficient to maintain proteostasis (protein homeostasis) and protect against inflammation, myofibroblast activation, and kidney functional decline. The Sec63-Xbp1 double knockout mouse offers a novel genetic model of chronic tubulointerstitial kidney injury, using collecting duct proteostasis defects as a platform for discovery of signals that may underlie CKD of disparate etiologies.
Collapse
Affiliation(s)
| | | | | | | | | | - Ann-Hwee Lee
- Department of Pathology and Laboratory Medicine, Weill Cornell Medical College, New York, New York
| | - Stefan Somlo
- Departments of Internal Medicine and
- Genetics, Yale University School of Medicine, New Haven, Connecticut; and
| |
Collapse
|
24
|
Lang S, Nguyen D, Pfeffer S, Förster F, Helms V, Zimmermann R. Functions and Mechanisms of the Human Ribosome-Translocon Complex. Subcell Biochem 2019; 93:83-141. [PMID: 31939150 DOI: 10.1007/978-3-030-28151-9_4] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
The membrane of the endoplasmic reticulum (ER) in human cells harbors the protein translocon, which facilitates membrane insertion and translocation of almost every newly synthesized polypeptide targeted to organelles of the secretory pathway. The translocon comprises the polypeptide-conducting Sec61 channel and several additional proteins, which are associated with the heterotrimeric Sec61 complex. This ensemble of proteins facilitates ER targeting of precursor polypeptides, Sec61 channel opening and closing, and modification of precursor polypeptides in transit through the Sec61 complex. Recently, cryoelectron tomography of translocons in native ER membranes has given unprecedented insights into the architecture and dynamics of the native, ribosome-associated translocon and the Sec61 channel. These structural data are discussed in light of different Sec61 channel activities including ribosome receptor function, membrane insertion or translocation of newly synthesized polypeptides as well as the possible roles of the Sec61 channel as a passive ER calcium leak channel and regulator of ATP/ADP exchange between cytosol and ER.
Collapse
Affiliation(s)
- Sven Lang
- Competence Center for Molecular Medicine, Saarland University Medical School, Building 44, 66421, Homburg, Germany.
| | - Duy Nguyen
- Center for Bioinformatics, Saarland University, 66041, Saarbrücken, Germany
| | - Stefan Pfeffer
- Department of Molecular Structural Biology, Max-Planck Institute of Biochemistry, 82152, Martinsried, Germany
- ZMBH, 69120, Heidelberg, Germany
| | - Friedrich Förster
- Department of Molecular Structural Biology, Max-Planck Institute of Biochemistry, 82152, Martinsried, Germany
- Center for Biomolecular Research, Utrecht University, 3584 CH, Utrecht, The Netherlands
| | - Volkhard Helms
- Center for Bioinformatics, Saarland University, 66041, Saarbrücken, Germany
| | - Richard Zimmermann
- Competence Center for Molecular Medicine, Saarland University Medical School, Building 44, 66421, Homburg, Germany
| |
Collapse
|
25
|
Pan-Hammarström Q, Abolhassani H, Hammarström L. Defects in plasma cell differentiation are associated with primary immunodeficiency in human subjects. J Allergy Clin Immunol 2017; 141:1217-1219. [PMID: 29155100 DOI: 10.1016/j.jaci.2017.10.025] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/03/2017] [Revised: 10/07/2017] [Accepted: 10/11/2017] [Indexed: 01/28/2023]
Affiliation(s)
- Qiang Pan-Hammarström
- Division of Clinical Immunology, Department of Laboratory Medicine, Karolinska University Hospital Huddinge, Karolinska Institutet, Stockholm, Sweden
| | - Hassan Abolhassani
- Division of Clinical Immunology, Department of Laboratory Medicine, Karolinska University Hospital Huddinge, Karolinska Institutet, Stockholm, Sweden
| | - Lennart Hammarström
- Division of Clinical Immunology, Department of Laboratory Medicine, Karolinska University Hospital Huddinge, Karolinska Institutet, Stockholm, Sweden; BGI-Shenzhen, Shenzhen, China.
| |
Collapse
|
26
|
Lang S, Pfeffer S, Lee PH, Cavalié A, Helms V, Förster F, Zimmermann R. An Update on Sec61 Channel Functions, Mechanisms, and Related Diseases. Front Physiol 2017; 8:887. [PMID: 29163222 PMCID: PMC5672155 DOI: 10.3389/fphys.2017.00887] [Citation(s) in RCA: 114] [Impact Index Per Article: 14.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/03/2017] [Accepted: 10/19/2017] [Indexed: 12/18/2022] Open
Abstract
The membrane of the endoplasmic reticulum (ER) of nucleated human cells harbors the protein translocon, which facilitates membrane integration or translocation of almost every newly synthesized polypeptide targeted to organelles of the endo- and exocytotic pathway. The translocon comprises the polypeptide-conducting Sec61 channel and several additional proteins and complexes that are permanently or transiently associated with the heterotrimeric Sec61 complex. This ensemble of proteins facilitates ER targeting of precursor polypeptides, modification of precursor polypeptides in transit through the Sec61 complex, and Sec61 channel gating, i.e., dynamic regulation of the pore forming subunit to mediate precursor transport and calcium efflux. Recently, cryoelectron tomography of translocons in native ER membrane vesicles, derived from human cell lines or patient fibroblasts, and even intact cells has given unprecedented insights into the architecture and dynamics of the native translocon and the Sec61 channel. These structural data are discussed in light of different Sec61 channel activities including ribosome receptor function, membrane insertion, and translocation of newly synthesized polypeptides as well as the putative physiological roles of the Sec61 channel as a passive ER calcium leak channel. Furthermore, the structural insights into the Sec61 channel are incorporated into an overview and update on Sec61 channel-related diseases—the Sec61 channelopathies—and novel therapeutic concepts for their treatment.
Collapse
Affiliation(s)
- Sven Lang
- Competence Center for Molecular Medicine, Saarland University Medical School, Homburg, Germany
| | - Stefan Pfeffer
- Department of Molecular Structural Biology, Max-Planck Institute of Biochemistry, Martinsried, Germany
| | - Po-Hsien Lee
- Center for Bioinformatics, Saarland University, Saarbrücken, Germany
| | - Adolfo Cavalié
- Experimental and Clinical Pharmacology and Toxicology, Saarland University, Homburg, Germany
| | - Volkhard Helms
- Center for Bioinformatics, Saarland University, Saarbrücken, Germany
| | - Friedrich Förster
- Bijvoet Center for Biomolecular Research, Utrecht University, Utrecht, Netherlands
| | - Richard Zimmermann
- Competence Center for Molecular Medicine, Saarland University Medical School, Homburg, Germany
| |
Collapse
|
27
|
Plasma cell deficiency in human subjects with heterozygous mutations in Sec61 translocon alpha 1 subunit (SEC61A1). J Allergy Clin Immunol 2017; 141:1427-1438. [PMID: 28782633 DOI: 10.1016/j.jaci.2017.06.042] [Citation(s) in RCA: 60] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/06/2016] [Revised: 05/30/2017] [Accepted: 06/20/2017] [Indexed: 01/22/2023]
Abstract
BACKGROUND Primary antibody deficiencies (PADs) are the most frequent primary immunodeficiencies in human subjects. The genetic causes of PADs are largely unknown. Sec61 translocon alpha 1 subunit (SEC61A1) is the major subunit of the Sec61 complex, which is the main polypeptide-conducting channel in the endoplasmic reticulum membrane. SEC61A1 is a target gene of spliced X-box binding protein 1 and strongly induced during plasma cell (PC) differentiation. OBJECTIVE We identified a novel genetic defect and studied its pathologic mechanism in 11 patients from 2 unrelated families with PADs. METHODS Whole-exome and targeted sequencing were conducted to identify novel genetic mutations. Functional studies were carried out ex vivo in primary cells of patients and in vitro in different cell lines to assess the effect of SEC61A1 mutations on B-cell differentiation and survival. RESULTS We investigated 2 families with patients with hypogammaglobulinemia, severe recurrent respiratory tract infections, and normal peripheral B- and T-cell subpopulations. On in vitro stimulation, B cells showed an intrinsic deficiency to develop into PCs. Genetic analysis and targeted sequencing identified novel heterozygous missense (c.254T>A, p.V85D) and nonsense (c.1325G>T, p.E381*) mutations in SEC61A1, segregating with the disease phenotype. SEC61A1-V85D was deficient in cotranslational protein translocation, and it disturbed the cellular calcium homeostasis in HeLa cells. Moreover, SEC61A1-V85D triggered the terminal unfolded protein response in multiple myeloma cell lines. CONCLUSION We describe a monogenic defect leading to a specific PC deficiency in human subjects, expanding our knowledge about the pathogenesis of antibody deficiencies.
Collapse
|
28
|
Let's talk about Secs: Sec61, Sec62 and Sec63 in signal transduction, oncology and personalized medicine. Signal Transduct Target Ther 2017; 2:17002. [PMID: 29263911 PMCID: PMC5661625 DOI: 10.1038/sigtrans.2017.2] [Citation(s) in RCA: 114] [Impact Index Per Article: 14.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/02/2016] [Revised: 01/11/2017] [Accepted: 01/17/2017] [Indexed: 12/11/2022] Open
Abstract
The heterotrimeric Sec61 complex and the dimeric Sec62/Sec63 complex are located in the membrane of the human endoplasmic reticulum (ER) and play a central role in translocation of nascent and newly synthesized precursor polypeptides into the ER. This process involves targeting of the precursors to the membrane and opening of the polypeptide conducting Sec61 channel for translocation. Apart from this central role in the intracellular transport of polypeptides, several studies of the last decade uncovered additional functions of Sec proteins in intracellular signaling: Sec62 can induce ER-phagy in the process of recovery of cells from ER stress and the Sec61 channel can also act as a passive ER calcium leak channel. Furthermore, mutations, amplifications and an overexpression of the SEC genes were linked to various diseases including kidney and liver diseases, diabetes and human cancer. Studies of the last decade could not only elucidate the functional role of Sec proteins in the pathogenesis of these diseases, but also demonstrate a relevance of Sec62 as a prognostic and predictive biomarker in head and neck cancer, prostate and lung cancer including a basis for new therapeutic strategies. In this article, we review the current understanding of protein transport across the ER membrane as central function of Sec proteins and further focus on recent studies that gave first insights into the functional role and therapeutic relevance of Sec61, Sec62 and Sec63 in human diseases.
Collapse
|
29
|
Römisch K. A Case for Sec61 Channel Involvement in ERAD. Trends Biochem Sci 2016; 42:171-179. [PMID: 27932072 DOI: 10.1016/j.tibs.2016.10.005] [Citation(s) in RCA: 35] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/14/2016] [Revised: 10/19/2016] [Accepted: 10/20/2016] [Indexed: 11/25/2022]
Abstract
Proteins that misfold in the endoplasmic reticulum (ER) need to be transported back to the cytosol for degradation by proteasomes, a process known as ER-associated degradation (ERAD). The first candidate discussed as a retrograde protein transport conduit was the Sec61 channel which is responsible for secretory protein transport into the ER during biogenesis. The Sec61 channel binds the proteasome 19S regulatory particle which can extract an ERAD substrate from the ER. Nevertheless its role as a general export channel has been dismissed, and Hrd1 and Der1 have been proposed as alternatives. The discovery of export-specific sec61 mutants and of mammalian ERAD substrates whose export is dependent on the 19S regulatory particle suggest that dismissal of a role of Sec61 in export may have been premature.
Collapse
Affiliation(s)
- Karin Römisch
- Department of Biology, Naturwissenschaftlich-technische Fakultät 8, Saarland University, 66123 Saarbruecken, Germany.
| |
Collapse
|
30
|
Bolar N, Golzio C, Živná M, Hayot G, Van Hemelrijk C, Schepers D, Vandeweyer G, Hoischen A, Huyghe J, Raes A, Matthys E, Sys E, Azou M, Gubler MC, Praet M, Van Camp G, McFadden K, Pediaditakis I, Přistoupilová A, Hodaňová K, Vyleťal P, Hartmannová H, Stránecký V, Hůlková H, Barešová V, Jedličková I, Sovová J, Hnízda A, Kidd K, Bleyer A, Spong R, Vande Walle J, Mortier G, Brunner H, Van Laer L, Kmoch S, Katsanis N, Loeys B. Heterozygous Loss-of-Function SEC61A1 Mutations Cause Autosomal-Dominant Tubulo-Interstitial and Glomerulocystic Kidney Disease with Anemia. Am J Hum Genet 2016; 99:174-87. [PMID: 27392076 PMCID: PMC5005467 DOI: 10.1016/j.ajhg.2016.05.028] [Citation(s) in RCA: 104] [Impact Index Per Article: 11.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/02/2015] [Accepted: 05/30/2016] [Indexed: 02/08/2023] Open
Abstract
Autosomal-dominant tubulo-interstitial kidney disease (ADTKD) encompasses a group of disorders characterized by renal tubular and interstitial abnormalities, leading to slow progressive loss of kidney function requiring dialysis and kidney transplantation. Mutations in UMOD, MUC1, and REN are responsible for many, but not all, cases of ADTKD. We report on two families with ADTKD and congenital anemia accompanied by either intrauterine growth retardation or neutropenia. Ultrasound and kidney biopsy revealed small dysplastic kidneys with cysts and tubular atrophy with secondary glomerular sclerosis, respectively. Exclusion of known ADTKD genes coupled with linkage analysis, whole-exome sequencing, and targeted re-sequencing identified heterozygous missense variants in SEC61A1-c.553A>G (p.Thr185Ala) and c.200T>G (p.Val67Gly)-both affecting functionally important and conserved residues in SEC61. Both transiently expressed SEC6A1A variants are delocalized to the Golgi, a finding confirmed in a renal biopsy from an affected individual. Suppression or CRISPR-mediated deletions of sec61al2 in zebrafish embryos induced convolution defects of the pronephric tubules but not the pronephric ducts, consistent with the tubular atrophy observed in the affected individuals. Human mRNA encoding either of the two pathogenic alleles failed to rescue this phenotype as opposed to a complete rescue by human wild-type mRNA. Taken together, these findings provide a mechanism by which mutations in SEC61A1 lead to an autosomal-dominant syndromic form of progressive chronic kidney disease. We highlight protein translocation defects across the endoplasmic reticulum membrane, the principal role of the SEC61 complex, as a contributory pathogenic mechanism for ADTKD.
Collapse
|
31
|
Zimmermann R. Components and Mechanisms of Import, Modification, Folding, and Assembly of Immunoglobulins in the Endoplasmic Reticulum. J Clin Immunol 2016; 36 Suppl 1:5-11. [PMID: 26923573 DOI: 10.1007/s10875-016-0250-0] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/17/2016] [Accepted: 02/19/2016] [Indexed: 11/27/2022]
Abstract
In mammalian cells, the endoplasmic reticulum (ER) plays a central role in biogenesis of secretory- and plasma membrane proteins as well as in cellular calcium (Ca(2+)) homeostasis. The protein biogenesis function involves an aqueous polypeptide conducting channel in the ER membrane, which is formed by the heterotrimeric Sec61 complex; the store- and receptor-controlled Ca(2+)- release function requires a steep ER to cytosol gradient, with more than 500 μM free Ca(2+) in the ER and 50 nM Ca(2+) in the cytosol. Recent work demonstrated that the Sec61 complex can transiently allow passive ER Ca(2+) efflux. Therefore, gating of the Sec61 channel has to be tightly regulated by substrates as well as allosteric effectors. The ER lumenal Hsp70-type molecular chaperone, immunoglobulin heavy-chain binding protein (BiP), together with its membrane resident co-chaperone Sec63 facilitates channel opening in a precursor specific manner. In addition, BiP, together with its lumenal co-chaperones, ERj3 and ERj6, as well as cytosolic Ca(2+)-calmodulin (CaM) in collaboration with the membrane resident Sec62 protein represent allosteric effectors for channel closure. In the course of the last couple of years several human diseases were linked to the Sec61 complex and its effectors and were termed Sec61-channelopathies.
Collapse
Affiliation(s)
- Richard Zimmermann
- Competence Center for Molecular Medicine, Saarland University Medical School, Building 44, D-66421, Homburg, Germany.
| |
Collapse
|
32
|
Cassel R, Ducreux S, Alam MR, Dingreville F, Berlé C, Burda-Jacob K, Chauvin MA, Chikh K, Païta L, Al-Mawla R, Crola Da Silva C, Rieusset J, Thivolet C, Van Coppenolle F, Madec AM. Protection of Human Pancreatic Islets from Lipotoxicity by Modulation of the Translocon. PLoS One 2016; 11:e0148686. [PMID: 26862742 PMCID: PMC4749224 DOI: 10.1371/journal.pone.0148686] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/05/2015] [Accepted: 01/20/2016] [Indexed: 12/04/2022] Open
Abstract
Type 2 diabetes is characterized by peripheral insulin resistance and pancreatic beta cell dysfunction. Elevated free fatty acids (FFAs) may impair beta cell function and mass (lipotoxicity). Altered calcium homeostasis may be involved in defective insulin release. The endoplasmic reticulum (ER) is the major intracellular calcium store. Lipotoxicity induces ER stress and in parallel an ER calcium depletion through unknown ER calcium leak channels. The main purposes of this study is first to identify one of these channels and secondly, to check the opportunity to restore beta cells function (i.e., insulin secretion) after pharmacological inhibition of ER calcium store depletion. We investigated the functionality of translocon, an ER calcium leak channel and its involvement on FFAs-induced alterations in MIN6B1 cells and in human pancreatic islets. We evidenced that translocon acts as a functional ER calcium leak channel in human beta cells using anisomycin and puromycin (antibiotics), respectively blocker and opener of this channel. Puromycin induced a significant ER calcium release, inhibited by anisomycin pretreatment. Palmitate treatment was used as FFA model to induce a mild lipotoxic effect: ER calcium content was reduced, ER stress but not apoptosis were induced and glucose induced insulin secretion was decreased in our beta cells. Interestingly, translocon inhibition by chronic anisomycin treatment prevented dysfunctions induced by palmitate, avoiding reticular calcium depletion, ER stress and restoring insulin secretion. Our results provide for the first time compelling evidence that translocon actively participates to the palmitate-induced ER calcium leak and insulin secretion decrease in beta cells. Its inhibition reduces these lipotoxic effects. Taken together, our data indicate that TLC may be a new potential target for the treatment of type 2 diabetes.
Collapse
Affiliation(s)
- R. Cassel
- Inserm UMR-U1060 CarMeN Laboratory, University Lyon 1, INRA U1235, INSA-Lyon, Facultés de médecine Charles Mérieux Lyon-Sud, F-69003 Lyon, France
| | - S. Ducreux
- Inserm UMR-U1060 CarMeN Laboratory, University Lyon 1, INRA U1235, INSA-Lyon, Facultés de médecine Rockefeller, F-69003 Lyon, France
| | - M. R. Alam
- Inserm UMR-U1060 CarMeN Laboratory, University Lyon 1, INRA U1235, INSA-Lyon, Facultés de médecine Rockefeller, F-69003 Lyon, France
| | - F. Dingreville
- Inserm UMR-U1060 CarMeN Laboratory, University Lyon 1, INRA U1235, INSA-Lyon, Facultés de médecine Charles Mérieux Lyon-Sud, F-69003 Lyon, France
| | - C. Berlé
- Inserm UMR-U1060 CarMeN Laboratory, University Lyon 1, INRA U1235, INSA-Lyon, Facultés de médecine Charles Mérieux Lyon-Sud, F-69003 Lyon, France
| | - K. Burda-Jacob
- Inserm UMR-U1060 CarMeN Laboratory, University Lyon 1, INRA U1235, INSA-Lyon, Facultés de médecine Charles Mérieux Lyon-Sud, F-69003 Lyon, France
| | - M. A. Chauvin
- Inserm UMR-U1060 CarMeN Laboratory, University Lyon 1, INRA U1235, INSA-Lyon, Facultés de médecine Charles Mérieux Lyon-Sud, F-69003 Lyon, France
| | - K. Chikh
- Inserm UMR-U1060 CarMeN Laboratory, University Lyon 1, INRA U1235, INSA-Lyon, Facultés de médecine Charles Mérieux Lyon-Sud, F-69003 Lyon, France
| | - L. Païta
- Inserm UMR-U1060 CarMeN Laboratory, University Lyon 1, INRA U1235, INSA-Lyon, Facultés de médecine Rockefeller, F-69003 Lyon, France
| | - R. Al-Mawla
- Inserm UMR-U1060 CarMeN Laboratory, University Lyon 1, INRA U1235, INSA-Lyon, Facultés de médecine Rockefeller, F-69003 Lyon, France
| | - C. Crola Da Silva
- Inserm UMR-U1060 CarMeN Laboratory, University Lyon 1, INRA U1235, INSA-Lyon, Facultés de médecine Rockefeller, F-69003 Lyon, France
| | - J. Rieusset
- Inserm UMR-U1060 CarMeN Laboratory, University Lyon 1, INRA U1235, INSA-Lyon, Facultés de médecine Charles Mérieux Lyon-Sud, F-69003 Lyon, France
| | - C. Thivolet
- Inserm UMR-U1060 CarMeN Laboratory, University Lyon 1, INRA U1235, INSA-Lyon, Facultés de médecine Charles Mérieux Lyon-Sud, F-69003 Lyon, France
- Hospices Civils de Lyon, Hôpital Lyon-Sud, Service d’Endocrinologie, Diabétologie et Nutrition, F-69310 Pierre Bénite, France
| | - F. Van Coppenolle
- Inserm UMR-U1060 CarMeN Laboratory, University Lyon 1, INRA U1235, INSA-Lyon, Facultés de médecine Rockefeller, F-69003 Lyon, France
| | - A. M. Madec
- Inserm UMR-U1060 CarMeN Laboratory, University Lyon 1, INRA U1235, INSA-Lyon, Facultés de médecine Charles Mérieux Lyon-Sud, F-69003 Lyon, France
| |
Collapse
|
33
|
Wang Y, Wang J, Zhao Y, Hu S, Shi D, Xue C. Fucoidan from sea cucumber Cucumaria frondosa exhibits anti-hyperglycemic effects in insulin resistant mice via activating the PI3K/PKB pathway and GLUT4. J Biosci Bioeng 2016; 121:36-42. [DOI: 10.1016/j.jbiosc.2015.05.012] [Citation(s) in RCA: 37] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/25/2015] [Revised: 05/07/2015] [Accepted: 05/19/2015] [Indexed: 12/24/2022]
|
34
|
Schorr S, Klein MC, Gamayun I, Melnyk A, Jung M, Schäuble N, Wang Q, Hemmis B, Bochen F, Greiner M, Lampel P, Urban SK, Hassdenteufel S, Dudek J, Chen XZ, Wagner R, Cavalié A, Zimmermann R. Co-chaperone Specificity in Gating of the Polypeptide Conducting Channel in the Membrane of the Human Endoplasmic Reticulum. J Biol Chem 2015; 290:18621-35. [PMID: 26085089 DOI: 10.1074/jbc.m115.636639] [Citation(s) in RCA: 28] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/06/2015] [Indexed: 11/06/2022] Open
Abstract
In mammalian cells, signal peptide-dependent protein transport into the endoplasmic reticulum (ER) is mediated by a dynamic polypeptide-conducting channel, the heterotrimeric Sec61 complex. Previous work has characterized the Sec61 complex as a potential ER Ca(2+) leak channel in HeLa cells and identified ER lumenal molecular chaperone immunoglobulin heavy-chain-binding protein (BiP) as limiting Ca(2+) leakage via the open Sec61 channel by facilitating channel closing. This BiP activity involves binding of BiP to the ER lumenal loop 7 of Sec61α in the vicinity of tyrosine 344. Of note, the Y344H mutation destroys the BiP binding site and causes pancreatic β-cell apoptosis and diabetes in mice. Here, we systematically depleted HeLa cells of the BiP co-chaperones by siRNA-mediated gene silencing and used live cell Ca(2+) imaging to monitor the effects on ER Ca(2+) leakage. Depletion of either one of the ER lumenal BiP co-chaperones, ERj3 and ERj6, but not the ER membrane-resident co-chaperones (such as Sec63 protein, which assists BiP in Sec61 channel opening) led to increased Ca(2+) leakage via Sec6 complex, thereby phenocopying the effect of BiP depletion. Thus, BiP facilitates Sec61 channel closure (i.e. limits ER Ca(2+) leakage) via the Sec61 channel with the help of ERj3 and ERj6. Interestingly, deletion of ERj6 causes pancreatic β-cell failure and diabetes in mice and humans. We suggest that co-chaperone-controlled gating of the Sec61 channel by BiP is particularly important for cells, which are highly active in protein secretion, and that breakdown of this regulatory mechanism can cause apoptosis and disease.
Collapse
Affiliation(s)
- Stefan Schorr
- From the Departments of Medical Biochemistry and Molecular Biology and
| | | | - Igor Gamayun
- Experimental and Clinical Pharmacology and Toxicology, Saarland University, 66421 Homburg, Germany
| | - Armin Melnyk
- From the Departments of Medical Biochemistry and Molecular Biology and
| | - Martin Jung
- From the Departments of Medical Biochemistry and Molecular Biology and
| | - Nico Schäuble
- From the Departments of Medical Biochemistry and Molecular Biology and
| | - Qian Wang
- the Department of Physiology, University of Alberta, Edmonton T6G 2H7, Canada, and
| | - Birgit Hemmis
- the Division of Biophysics, Universität Osnabrück, FB Biologie/Chemie, 49076 Osnabrück, Germany
| | - Florian Bochen
- From the Departments of Medical Biochemistry and Molecular Biology and
| | - Markus Greiner
- From the Departments of Medical Biochemistry and Molecular Biology and
| | - Pavel Lampel
- From the Departments of Medical Biochemistry and Molecular Biology and
| | | | | | - Johanna Dudek
- From the Departments of Medical Biochemistry and Molecular Biology and
| | - Xing-Zhen Chen
- the Department of Physiology, University of Alberta, Edmonton T6G 2H7, Canada, and
| | - Richard Wagner
- the Division of Biophysics, Universität Osnabrück, FB Biologie/Chemie, 49076 Osnabrück, Germany
| | - Adolfo Cavalié
- Experimental and Clinical Pharmacology and Toxicology, Saarland University, 66421 Homburg, Germany
| | | |
Collapse
|
35
|
Kaiser ML, Römisch K. Proteasome 19S RP binding to the Sec61 channel plays a key role in ERAD. PLoS One 2015; 10:e0117260. [PMID: 25658429 PMCID: PMC4319758 DOI: 10.1371/journal.pone.0117260] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/14/2014] [Accepted: 12/20/2014] [Indexed: 11/24/2022] Open
Abstract
Import of secretory proteins into the Endoplasmic Reticulum (ER) is an established function of the Sec61 channel. The contribution of the Sec61 channel to export of misfolded proteins from the ER for degradation by proteasomes is still controversial, but the proteasome 19S regulatory particle (RP) is necessary and sufficient for extraction of specific misfolded proteins from the ER, and binds directly to the Sec61 channel. In this work we have identified an import-competent sec61 mutant, S353C, carrying a point mutation in ER-lumenal loop 7 which reduces affinity of the cytoplasmic face of the Sec61 channel for the 19S RP. This indicates that the interaction between the 19S RP and the Sec61 channel is dependent on conformational changes in Sec61p hinging on loop 7. The sec61-S353C mutant had no measurable ER import defects and did not cause ER stress in intact cells, but reduced ER-export of a 19S RP-dependent misfolded protein when proteasomes were limiting in a cell-free assay. Our data suggest that the interaction between the 19S RP and the Sec61 channel is essential for the export of specific substrates from the ER to the cytosol for proteasomal degradation.
Collapse
Affiliation(s)
- Marie-Luise Kaiser
- Department of Microbiology, Faculty of Natural Sciences and Technology VIII, Saarland University, 66123, Saarbrücken, Germany
| | - Karin Römisch
- Department of Microbiology, Faculty of Natural Sciences and Technology VIII, Saarland University, 66123, Saarbrücken, Germany
- * E-mail:
| |
Collapse
|
36
|
Abstract
In mammalian cells, the rough endoplasmic reticulum or ER plays a central role in the biogenesis of most extracellular plus many organellar proteins and in cellular calcium homeostasis. Therefore, this organelle comprises molecular chaperones that are involved in import, folding/assembly, export, and degradation of polypeptides in millimolar concentrations. In addition, there are calcium channels/pumps and signal transduction components present in the ER membrane that affect and are affected by these processes. The ER lumenal Hsp70, termed immunoglobulin-heavy chain binding protein or BiP, is the central player in all these activities and involves up to seven different co-chaperones, i.e. ER-membrane integrated as well as ER-lumenal Hsp40s, which are termed ERj or ERdj, and two nucleotide exchange factors.
Collapse
|
37
|
A gain-of-function mutation in adenylate cyclase 3 protects mice from diet-induced obesity. PLoS One 2014; 9:e110226. [PMID: 25329148 PMCID: PMC4199629 DOI: 10.1371/journal.pone.0110226] [Citation(s) in RCA: 46] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/02/2014] [Accepted: 09/17/2014] [Indexed: 12/22/2022] Open
Abstract
In a screen for genes that affect the metabolic response to high-fat diet (HFD), we selected one line of N-ethyl-N-nitrosourea (ENU)-mutagenized mice, Jll, with dominantly inherited resistance to diet-induced obesity (DIO). Mutant animals had dramatically reduced body weight and fat mass, and low basal insulin and glucose levels relative to unaffected controls. Both white adipose tissue (WAT) and brown adipose tissue (BAT) depots were smaller in mutant animals. Mutant animals fed a HFD gained only slightly more weight than animals fed regular chow, and were protected from hepatic lipid accumulation. The phenotype was genetically linked to a 5.7-Mb interval on chromosome 12, and sequencing of the entire interval identified a single coding mutation, predicted to cause a methionine-to-isoleucine substitution at position 279 of the Adcy3 protein (Adcy3M279I, henceforth referred to as Adcy3Jll). The mutant protein is hyperactive, possibly constitutively so, producing elevated levels of cyclic AMP in a cell-based assay. These mice demonstrate that increased Adcy3 activity robustly protect animals from diet-induced metabolic derangements.
Collapse
|
38
|
Cao SS, Kaufman RJ. Endoplasmic reticulum stress and oxidative stress in cell fate decision and human disease. Antioxid Redox Signal 2014; 21:396-413. [PMID: 24702237 PMCID: PMC4076992 DOI: 10.1089/ars.2014.5851] [Citation(s) in RCA: 982] [Impact Index Per Article: 89.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
Abstract
SIGNIFICANCE The endoplasmic reticulum (ER) is a specialized organelle for the folding and trafficking of proteins, which is highly sensitive to changes in intracellular homeostasis and extracellular stimuli. Alterations in the protein-folding environment cause accumulation of misfolded proteins in the ER that profoundly affect a variety of cellular signaling processes, including reduction-oxidation (redox) homeostasis, energy production, inflammation, differentiation, and apoptosis. The unfolded protein response (UPR) is a collection of adaptive signaling pathways that evolved to resolve protein misfolding and restore an efficient protein-folding environment. RECENT ADVANCES Production of reactive oxygen species (ROS) has been linked to ER stress and the UPR. ROS play a critical role in many cellular processes and can be produced in the cytosol and several organelles, including the ER and mitochondria. Studies suggest that altered redox homeostasis in the ER is sufficient to cause ER stress, which could, in turn, induce the production of ROS in the ER and mitochondria. CRITICAL ISSUES Although ER stress and oxidative stress coexist in many pathologic states, whether and how these stresses interact is unknown. It is also unclear how changes in the protein-folding environment in the ER cause oxidative stress. In addition, how ROS production and protein misfolding commit the cell to an apoptotic death and contribute to various degenerative diseases is unknown. FUTURE DIRECTIONS A greater fundamental understanding of the mechanisms that preserve protein folding homeostasis and redox status will provide new information toward the development of novel therapeutics for many human diseases.
Collapse
Affiliation(s)
- Stewart Siyan Cao
- 1 Degenerative Diseases Program, Sanford Burnham Medical Research Institute , La Jolla, California
| | | |
Collapse
|
39
|
Endoplasmic reticulum stress does not contribute to steatohepatitis in obese and insulin-resistant high-fat-diet-fed foz/foz mice. Clin Sci (Lond) 2014; 127:507-18. [DOI: 10.1042/cs20140026] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
Abstract
Unlike in mice developing simple steatosis, endoplasmic reticulum stress does not contribute to the pathogenesis of insulin resistance and steatohepatitis in high-fat-diet-fed foz/foz mice, which develop progressive liver disease in the metabolic context seen in human non-alcoholic steatohepatitis.
Collapse
|
40
|
Dudek J, Pfeffer S, Lee PH, Jung M, Cavalié A, Helms V, Förster F, Zimmermann R. Protein transport into the human endoplasmic reticulum. J Mol Biol 2014; 427:1159-75. [PMID: 24968227 DOI: 10.1016/j.jmb.2014.06.011] [Citation(s) in RCA: 62] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/17/2014] [Accepted: 06/11/2014] [Indexed: 12/22/2022]
Abstract
Protein transport into the endoplasmic reticulum (ER) is essential for all eukaryotic cells and evolutionary related to protein transport into and across the cytoplasmic membrane of eubacteria and archaea. It is based on amino-terminal signal peptides in the precursor polypeptides plus various transport components in cytosol plus ER and can occur either cotranslationally or posttranslationally. The two mechanisms merge at the heterotrimeric Sec61 complex in the ER membrane, which forms an aqueous polypeptide-conducting channel. Since the mammalian ER is also the main intracellular calcium storage organelle, the Sec61 complex is tightly regulated in its dynamics between the open and closed conformations by various ligands, such as precursor polypeptides at the cytosolic face and the Hsp70-type molecular chaperone BiP at the ER lumenal face (Hsp, heat shock protein). Furthermore, BiP binding to the incoming precursor polypeptide contributes to unidirectionality and efficiency of transport. Recent insights into the structural dynamics of the Sec61 complex and related complexes in eubacteria and archaea have various mechanistic and functional implications.
Collapse
Affiliation(s)
- Johanna Dudek
- Medical Biochemistry and Molecular Biology, Saarland University, 66421 Homburg, Germany
| | - Stefan Pfeffer
- Department of Molecular Structural Biology, Max Planck Institute of Biochemistry, 82152 Martinsried, Germany
| | - Po-Hsien Lee
- Computational Biology, Saarland University, 66041 Saarbrücken, Germany
| | - Martin Jung
- Medical Biochemistry and Molecular Biology, Saarland University, 66421 Homburg, Germany
| | - Adolfo Cavalié
- Experimental and Clinical Pharmacology and Toxicology, Saarland University, 66421 Homburg, Germany
| | - Volkhard Helms
- Computational Biology, Saarland University, 66041 Saarbrücken, Germany
| | - Friedrich Förster
- Department of Molecular Structural Biology, Max Planck Institute of Biochemistry, 82152 Martinsried, Germany
| | - Richard Zimmermann
- Medical Biochemistry and Molecular Biology, Saarland University, 66421 Homburg, Germany.
| |
Collapse
|
41
|
Wheeler MC, Gekakis N. Hsp90 modulates PPARγ activity in a mouse model of nonalcoholic fatty liver disease. J Lipid Res 2014; 55:1702-10. [PMID: 24927728 DOI: 10.1194/jlr.m048918] [Citation(s) in RCA: 33] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/05/2014] [Indexed: 12/24/2022] Open
Abstract
Nonalcoholic fatty liver disease (NAFLD) is a highly prevalent complication of obesity, yet cellular mechanisms that lead to its development are not well defined. Previously, we have documented hepatic steatosis in mice carrying a mutation in the Sec61a1 gene. Here we examined the mechanism behind NAFLD in Sec61a1 mutant mice. Livers of mutant mice exhibited upregulation of Pparg and its target genes Cd36, Cidec, and Lpl, correlating with increased uptake of fatty acid. Interestingly, these mice also displayed activation of the heat shock response (HSR), with elevated levels of heat shock protein (Hsp) 70, Hsp90, and heat shock factor 1. In cell lines, inhibition of Hsp90 function reduced Pparγ signaling and protein levels. Conversely, overexpression of Hsp90 increased Pparγ signaling and protein levels by reducing degradation. This may occur via a physical interaction as Hsp90 and Pparγ coimmunoprecipitated in vivo. Furthermore, inhibition of Hsp90 in Sec61a1 mutant hepatocytes also reduced Pparγ protein levels and signaling. Finally, overexpression of Hsp90 in liver cell lines increased neutral lipid accumulation, and this accumulation was blocked by Hsp90 inhibition. Our results show that the HSR and Hsp90 play an important role in the development of NAFLD, opening new avenues for the prevention and treatment of this highly prevalent disease.
Collapse
Affiliation(s)
- Matthew C Wheeler
- Department of Cell and Molecular Biology, Scripps Research Institute, La Jolla, CA 92037
| | - Nicholas Gekakis
- Department of Cell and Molecular Biology, Scripps Research Institute, La Jolla, CA 92037
| |
Collapse
|
42
|
Haßdenteufel S, Klein MC, Melnyk A, Zimmermann R. Protein transport into the human ER and related diseases, Sec61-channelopathies. Biochem Cell Biol 2014; 92:499-509. [PMID: 24934166 DOI: 10.1139/bcb-2014-0043] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/06/2023] Open
Abstract
Protein transport into the human endoplasmic reticulum (ER) is relevant to the biogenesis of most soluble and membrane proteins of organelles, which are involved in endo- or exo-cytsosis. It involves amino-terminal signal peptides in the precursor polypeptides and various transport components in the cytosol plus the ER, and can occur co- or post-translationally. The two mechanisms merge at the level of the ER membrane, specifically at the level of the heterotrimeric Sec61 complex, which forms a dynamic polypeptide-conducting channel in the ER membrane. Since the mammalian ER is also the main intracellular calcium storage organelle, and the Sec61 complex is calcium permeable, the Sec61 complex is tightly regulated in its equilibrium between the closed and open conformations, or "gated", by ligands, such as signal peptides of the transport substrates and the ER lumenal Hsp70-type molecular chaperone BiP. Furthermore, BiP binding to the incoming polypeptide contributes to the efficiency and unidirectionality of transport. Recent insights into the structure and dynamic equilibrium of the Sec61 complex have various mechanistic as well as medical implications.
Collapse
Affiliation(s)
- Sarah Haßdenteufel
- Medical Biochemistry & Molecular Biology, Saarland University, Building 44, Kirrbergerstr, D-66421 Homburg, Germany
| | | | | | | |
Collapse
|
43
|
Tretter T, Pereira FP, Ulucan O, Helms V, Allan S, Kalies KU, Römisch K. ERAD and protein import defects in a sec61 mutant lacking ER-lumenal loop 7. BMC Cell Biol 2013; 14:56. [PMID: 24314051 PMCID: PMC3897919 DOI: 10.1186/1471-2121-14-56] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/20/2013] [Accepted: 11/28/2013] [Indexed: 11/22/2022] Open
Abstract
Background The Sec61 channel mediates protein translocation across the endoplasmic reticulum (ER) membrane during secretory protein biogenesis, and likely also during export of misfolded proteins for ER-associated degradation (ERAD). The mechanisms of channel opening for the different modes of translocation are not understood so far, but the position of the large ER-lumenal loop 7 of Sec61p suggests a decisive role. Results We show here that the Y345H mutation in L7 which causes diabetes in the mouse displays no ER import defects in yeast, but a delay in misfolded protein export. A complete deletion of L7 in Sec61p resulted in viable, cold- and tunicamycin-hypersensitive yeast cells with strong defects in posttranslational protein import of soluble proteins into the ER, and in ERAD of soluble substrates. Membrane protein ERAD was only moderately slower in sec61∆L7 than in wildtype cells. Although Sec61∆L7 channels were unstable in detergent, co-translational protein integration into the ER membrane, proteasome binding to Sec61∆L7 channels, and formation of hetero-heptameric Sec complexes were not affected. Conclusions We conclude that L7 of Sec61p is required for initiation of posttranslational soluble protein import into and misfolded soluble protein export from the ER, suggesting a key role for L7 in transverse gating of the Sec61 channel.
Collapse
Affiliation(s)
| | | | | | | | | | | | - Karin Römisch
- Department of Microbiology, Faculty of Natural Sciences and Technology VIII, Saarland University, Campus A1,5, 66123 Saarbrücken, Germany.
| |
Collapse
|
44
|
The role of the unfolded protein response in diabetes mellitus. Semin Immunopathol 2013; 35:333-50. [PMID: 23529219 DOI: 10.1007/s00281-013-0369-5] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/19/2012] [Accepted: 03/13/2013] [Indexed: 12/13/2022]
Abstract
The endoplasmic reticulum (ER) plays a key role in the synthesis and modification of secretory and membrane proteins in all eukaryotic cells. Under normal conditions, these proteins are correctly folded and assembled in the ER. However, when cells are exposed to environmental factors such as overproduction of ER proteins, viral infections, or glucose deprivation, the secretory and membrane proteins can accumulate in unfolded or misfolded forms in the lumen of the ER, and consequently, cause stress in the ER. To maintain cellular homeostasis, cells induce several responses to ER stress. In mammalian cells, ER stress responses are induced by a diversity of signal pathways. There are three ER-located transmembrane proteins that play important roles in mammalian ER stress responses: activating transcription factor 6, inositol-requiring protein 1, and protein kinase RNA-like endoplasmic reticulum kinase. ER stress is linked to various diseases, including diabetes. This review highlights the particular importance of ER stress-responsive molecules in insulin biosynthesis, glyconeogenesis, insulin resistance, glucose intolerance, and pancreatic β-cell apoptosis. An understanding of the pathogenic mechanism of diabetes from the aspect of ER stress is crucial in formulating therapeutic strategies.
Collapse
|
45
|
Paredes RM, Bollo M, Holstein D, Lechleiter JD. Luminal Ca2+ depletion during the unfolded protein response in Xenopus oocytes: cause and consequence. Cell Calcium 2013; 53:286-96. [PMID: 23415071 DOI: 10.1016/j.ceca.2013.01.002] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/29/2012] [Revised: 01/15/2013] [Accepted: 01/18/2013] [Indexed: 01/22/2023]
Abstract
The endoplasmic reticulum (ER) is a Ca(2+) storing organelle that plays a critical role in the synthesis, folding and post-translational modifications of many proteins. The ER enters into a condition of stress when the load of newly synthesized proteins exceeds its folding and processing capacity. This activates a signal transduction pathway called the unfolded protein response (UPR) that attempts to restore homeostasis. The precise role of ER Ca(2+) in the initiation of the UPR has not been defined. Specifically, it has not been established whether ER Ca(2+) dysregulation is a cause or consequence of ER stress. Here, we report that partial depletion of ER Ca(2+) stores induces a significant induction of the UPR, and leads to the retention of a normally secreted protein Carboxypeptidase Y. Moreover, inhibition of protein glycosylation by tunicamycin rapidly induced an ER Ca(2+) leak into the cytosol. However, blockade of the translocon with emetine inhibited the tunicamycin-induced Ca(2+) release. Furthermore, emetine treatment blocked elF2α phosphorylation and reduced expression of the chaperone BiP. These findings suggest that Ca(2+) may be both a cause and a consequence of ER protein misfolding. Thus, it appears that ER Ca(2+) leak is a significant co-factor for the initiation of the UPR.
Collapse
Affiliation(s)
- R Madelaine Paredes
- Department of Cellular and Structural Biology, University of Texas Health Science Center at San Antonio (UTHSCSA), San Antonio, TX 78229-3900, USA
| | | | | | | |
Collapse
|
46
|
Cao SS, Kaufman RJ. Targeting endoplasmic reticulum stress in metabolic disease. Expert Opin Ther Targets 2013; 17:437-48. [PMID: 23324104 DOI: 10.1517/14728222.2013.756471] [Citation(s) in RCA: 115] [Impact Index Per Article: 9.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
Abstract
INTRODUCTION Endoplasmic reticulum (ER) stress, a condition that dramatically affects protein folding homeostasis in cells, has been associated with a number of metabolic diseases. Emerging preclinical and clinical evidence supports the notion that pharmacological modulators of ER stress have therapeutic potential as novel treatments of metabolic disorders. AREAS COVERED In this review, the molecular mechanisms of ER stress and the unfolded protein response (UPR) in the pathogenesis of metabolic diseases are discussed, highlighting the roles of various UPR components revealed using disease models in mice. Special emphasis is placed on the use of novel small molecules in animal disease models and human pathologies, including type 2 diabetes, obesity, fatty liver disease, and atherosclerosis. EXPERT OPINION ER stress is a highly promising therapeutic target for metabolic disease. Small molecular chemical chaperones have already demonstrated therapeutic efficacy in animal and human studies. The emergence of compounds that target specific UPR signaling pathways will provide more options for this purpose. Although the findings are promising, more studies are needed to elucidate the efficacy and side effects of these small molecules for future use in humans.
Collapse
Affiliation(s)
- Stewart Siyan Cao
- Del E. Webb Neuroscience, Aging and Stem Cell Research Center, Sanford-Burnham Medical Research Institute, La Jolla, CA 92037, USA
| | | |
Collapse
|
47
|
Robertson DG, Reily MD. The Current Status of Metabolomics in Drug Discovery and Development. Drug Dev Res 2012. [DOI: 10.1002/ddr.21047] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
Affiliation(s)
- Donald G. Robertson
- Applied and Investigative Metabolomics; Bristol-Myers Squibb Pharmaceutical Co.; Princeton; NJ; 08543; USA
| | - Michael D. Reily
- Applied and Investigative Metabolomics; Bristol-Myers Squibb Pharmaceutical Co.; Princeton; NJ; 08543; USA
| |
Collapse
|
48
|
Wheeler MC, Gekakis N. Defective ER associated degradation of a model luminal substrate in yeast carrying a mutation in the 4th ER luminal loop of Sec61p. Biochem Biophys Res Commun 2012; 427:768-73. [PMID: 23044417 DOI: 10.1016/j.bbrc.2012.09.136] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/19/2012] [Accepted: 09/28/2012] [Indexed: 11/17/2022]
Abstract
The major constituent of the eukaryotic ER protein-translocation channel (Sec61p in yeast, Sec61α in higher eukaryotes) shows a high degree of evolutionary conservation from yeast to humans. The vast majority of eukaryotic species have a conserved di-tyrosine in the 4th ER luminal loop. Previously, we discovered through a screen of ethylnitrosourea- (ENU-) mutagenized mice that substitution of the latter of these tyrosines with histidine (Y344H) of the murine Sec61α protein results in diabetes and hepatic steatosis in mice that is a result of ER stress. To further characterize the mechanism behind ER stress in these mice we made the homologous mutation in yeast Sec61p (Y345H). We found that this mutation increased sensitivity of yeast to ER stressing agents and to reduction of Inositol Requiring Enzyme 1 (IRE1) activity. Furthermore, we found that, while this mutation did not affect translocation, it did delay degradation of the model ER-associated degradation (ERAD) substrate CPY(∗). Replacing both ER luminal tyrosines with alanines resulted in a destabilization of the Sec61 protein that was rescued by over expression of Sss1p. This double mutant still lacked a noticeable translocation defect after stabilization by Sss1p, but exhibited a similar defect in CPY(∗) degradation.
Collapse
Affiliation(s)
- Matthew C Wheeler
- The Department of Cell Biology, The Scripps Research Institute, La Jolla, CA 92037, USA
| | | |
Collapse
|
49
|
Schäuble N, Lang S, Jung M, Cappel S, Schorr S, Ulucan Ö, Linxweiler J, Dudek J, Blum R, Helms V, Paton AW, Paton JC, Cavalié A, Zimmermann R. BiP-mediated closing of the Sec61 channel limits Ca2+ leakage from the ER. EMBO J 2012; 31:3282-96. [PMID: 22796945 PMCID: PMC3411083 DOI: 10.1038/emboj.2012.189] [Citation(s) in RCA: 126] [Impact Index Per Article: 9.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/22/2011] [Accepted: 06/20/2012] [Indexed: 01/08/2023] Open
Abstract
In mammalian cells, signal peptide-dependent protein transport into the endoplasmic reticulum (ER) is mediated by a dynamic protein-conducting channel, the Sec61 complex. Previous work has characterized the Sec61 channel as a potential ER Ca(2+) leak channel and identified calmodulin as limiting Ca(2+) leakage in a Ca(2+)-dependent manner by binding to an IQ motif in the cytosolic aminoterminus of Sec61α. Here, we manipulated the concentration of the ER lumenal chaperone BiP in cells in different ways and used live cell Ca(2+) imaging to monitor the effects of reduced levels of BiP on ER Ca(2+) leakage. Regardless of how the BiP concentration was lowered, the absence of available BiP led to increased Ca(2+) leakage via the Sec61 complex. When we replaced wild-type Sec61α with mutant Sec61αY344H in the same model cell, however, Ca(2+) leakage from the ER increased and was no longer affected by manipulation of the BiP concentration. Thus, BiP limits ER Ca(2+) leakage through the Sec61 complex by binding to the ER lumenal loop 7 of Sec61α in the vicinity of tyrosine 344.
Collapse
Affiliation(s)
- Nico Schäuble
- Department of Medical Biochemistry and Molecular Biology, Saarland University, Homburg, Germany
| | - Sven Lang
- Department of Medical Biochemistry and Molecular Biology, Saarland University, Homburg, Germany
| | - Martin Jung
- Department of Medical Biochemistry and Molecular Biology, Saarland University, Homburg, Germany
| | - Sabine Cappel
- Department of Medical Biochemistry and Molecular Biology, Saarland University, Homburg, Germany
| | - Stefan Schorr
- Department of Medical Biochemistry and Molecular Biology, Saarland University, Homburg, Germany
| | - Özlem Ulucan
- Department of Computational Biology, Saarland University, Saarbrücken, Germany
| | - Johannes Linxweiler
- Department of Medical Biochemistry and Molecular Biology, Saarland University, Homburg, Germany
| | - Johanna Dudek
- Department of Medical Biochemistry and Molecular Biology, Saarland University, Homburg, Germany
| | - Robert Blum
- Department of Clinical Neurobiology, Würzburg University, Würzburg, Germany
| | - Volkhard Helms
- Department of Computational Biology, Saarland University, Saarbrücken, Germany
| | - Adrienne W Paton
- Research Centre for Infectious Disease, School of Molecular and Biomedical Science, University of Adelaide, South Australia, Australia
| | - James C Paton
- Research Centre for Infectious Disease, School of Molecular and Biomedical Science, University of Adelaide, South Australia, Australia
| | - Adolfo Cavalié
- Department of Experimental and Clinical Pharmacology and Toxicology, Saarland University, Homburg, Germany
| | - Richard Zimmermann
- Department of Medical Biochemistry and Molecular Biology, Saarland University, Homburg, Germany
| |
Collapse
|
50
|
Tarantino LM, Eisener-Dorman AF. Forward genetic approaches to understanding complex behaviors. Curr Top Behav Neurosci 2012; 12:25-58. [PMID: 22297575 PMCID: PMC6989028 DOI: 10.1007/7854_2011_189] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Abstract
Assigning function to genes has long been a focus of biomedical research.Even with complete knowledge of the genomic sequences of humans, mice and other experimental organisms, there is still much to be learned about gene function and control. Ablation or overexpression of single genes using knockout or transgenic technologies has provided functional annotation for many genes, but these technologies do not capture the extensive genetic variation present in existing experimental mouse populations. Researchers have only recently begun to truly appreciate naturally occurring genetic variation resulting from single nucleotide substitutions,insertions, deletions, copy number variation, epigenetic changes (DNA methylation,histone modifications, etc.) and gene expression differences and how this variation contributes to complex phenotypes. In this chapter, we will discuss the benefits and limitations of different forward genetic approaches that capture the genetic variation present in inbred mouse strains and present the utility of these approaches for mapping QTL that influence complex behavioral phenotypes.
Collapse
|