1
|
Qu Y, Liu ZX, Zheng XX, Wu SN, An JQ, Zou MH, Zhang ZR. MFN2-mediated decrease in mitochondria-associated endoplasmic reticulum membranes contributes to sunitinib-induced endothelial dysfunction and hypertension. J Mol Cell Cardiol 2025; 200:45-60. [PMID: 39848488 DOI: 10.1016/j.yjmcc.2025.01.005] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/30/2024] [Revised: 12/04/2024] [Accepted: 01/19/2025] [Indexed: 01/25/2025]
Abstract
Treatment of cancer patients with tyrosine kinase inhibitors (TKIs) often results in hypertension, but the underlying mechanism remains unclear. This study aimed to examine the role of mitochondrial morphology and function, particularly mitochondria-associated endoplasmic reticulum membranes (MAMs), in sunitinib-induced hypertension. METHODS Both in vitro and in vivo experiments performed to assesse reactive oxygen species (ROS), nitric oxide (NO), endothelium-dependent vasorelaxation, systemic blood pressure, and mitochondrial function in human umbilical vein endothelial cells (HUVECs) and C57BL/6 mouse aortic endothelial cells, under vehicle or sunitinib treatment condition. RESULTS Sunitinib increased mitochondrial ROS accumulation, decreased oxygen consumption rate, ATP production, and mitochondrial calcium ([Ca2+]M) levels, and impaired endothelial nitric oxide synthase (eNOS) and nitric oxide (NO) signaling in HUVECs. In addition, sunitinib also decreased mitochondrial membrane potential, elongated mitochondria, and reduced MAMs. Remarkably, these effects were reversed by an adeno-virus linker (Ad-linker) that reinforces MAMs. Engineered augmentation of MAMs using AAV-FLT1-linker significantly mitigated sunitinib-induced hypertension, by restoring endothelium-dependent relaxation in mice, highlighting the crucial role of MAMs in this process. Further analyses revealed that sunitinib enhanced Akt-mediated expression of mitofusin 2 (MFN2), causing mitochondrial elongation, and induced dephosphorylation of inositol 1,4,5-trisphosphate receptor type 1 (IP3R1) at residues Y1737/Y1738, reducing [Ca2+]M. Our study suggests that increased MFN2 expression and IP3R1 dephosphorylation are critical in sunitinib-induced MAMs reduction and [Ca2+]M homeostasis. CONCLUSION Sunitinib induces mitochondrial dysfunction, Akt/MFN2-mediated decrease in MAMs and mitochondrial elongation, and IP3R1 dephosphorylation in endothelial cells, leading to endothelial dysfunction and hypertension. Our results provide the potential therapeutic targets for combating TKI-induced hypertension.
Collapse
Affiliation(s)
- Yao Qu
- Department of Cardiology, Harbin Medical University Cancer Hospital, NHC Key Laboratory of Cell Transplantation, Department of Cardiology, Central Laboratory, The First Affiliated Hospital of Harbin Medical University, Institute of Metabolic Disease, Heilongjiang Academy of Medical Sciences, Heilongjiang Key Laboratory for Metabolic Disorder & Cancer Related Cardiovascular Diseases, Key Laboratories of Education Ministry for Myocardial Ischemia Mechanism and Treatment, State Key Laboratory of Frigid Zone Cardiovascular Diseases (SKLFZCD), Harbin, China; Center for Molecular and Translational Medicine, Georgia State University, Atlanta, USA
| | - Zhi-Xue Liu
- Center for Molecular and Translational Medicine, Georgia State University, Atlanta, USA
| | - Xiao-Xu Zheng
- Center for Molecular and Translational Medicine, Georgia State University, Atlanta, USA
| | - Sheng-Nan Wu
- Center for Molecular and Translational Medicine, Georgia State University, Atlanta, USA
| | - Jun-Qing An
- Center for Molecular and Translational Medicine, Georgia State University, Atlanta, USA
| | - Ming-Hui Zou
- Department of Endocrinology and Metabolism, Tianjin Medical University General Hospital, Tianjin, China; Center for Molecular and Translational Medicine, Georgia State University, Atlanta, USA.
| | - Zhi-Ren Zhang
- Department of Cardiology, Harbin Medical University Cancer Hospital, NHC Key Laboratory of Cell Transplantation, Department of Cardiology, Central Laboratory, The First Affiliated Hospital of Harbin Medical University, Institute of Metabolic Disease, Heilongjiang Academy of Medical Sciences, Heilongjiang Key Laboratory for Metabolic Disorder & Cancer Related Cardiovascular Diseases, Key Laboratories of Education Ministry for Myocardial Ischemia Mechanism and Treatment, State Key Laboratory of Frigid Zone Cardiovascular Diseases (SKLFZCD), Harbin, China.
| |
Collapse
|
2
|
Zhu ML, Fan JX, Guo YQ, Guo LJ, Que HD, Cui BY, Li YL, Guo S, Zhang MX, Yin YL, Li P. Protective effect of alizarin on vascular endothelial dysfunction via inhibiting the type 2 diabetes-induced synthesis of THBS1 and activating the AMPK signaling pathway. PHYTOMEDICINE : INTERNATIONAL JOURNAL OF PHYTOTHERAPY AND PHYTOPHARMACOLOGY 2024; 128:155557. [PMID: 38547622 DOI: 10.1016/j.phymed.2024.155557] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/03/2023] [Revised: 03/03/2024] [Accepted: 03/19/2024] [Indexed: 05/01/2024]
Abstract
BACKGROUND In this study, we investigated the protective effects of alizarin (AZ) on endothelial dysfunction (ED). AZ has inhibition of the type 2 diabetes mellitus (T2DM)-induced synthesis of thrombospondin 1 (THBS1). Adenosine 5'-monophosphate- activated protein kinase (AMPK), particularly AMPKα2 isoform, plays a critical role in maintaining cardiac homeostasis. PURPOSE The aim of this study was to investigate the ameliorative effect of AZ on vascular injury caused by T2DM and to reveal the potential mechanism of AZ in high glucose (HG)-stimulated human umbilical vein endothelial cells (HUVECs) and diabetic model rats. STUDY DESIGN HUVECs, rats and AMPK-/- transgenic mice were used to investigate the mitigating effects of AZ on vascular endothelial dysfunction caused by T2DM and its in vitro and in vivo molecular mechanisms. METHODS In type 2 diabetes mellitus rats and HUVECs, the inhibitory effect of alizarin on THBS1 synthesis was verified by immunohistochemistry (IHC), immunofluorescence (IF) and Western blot (WB) so that increase endothelial nitric oxide synthase (eNOS) content in vitro and in vivo. In addition, we verified protein interactions with immunoprecipitation (IP). To probe the mechanism, we also performed AMPKα2 transfection. AMPK's pivotal role in AZ-mediated prevention against T2DM-induced vascular endothelial dysfunction was tested using AMPKα2-/- mice. RESULTS We first demonstrated that THBS1 and AMPK are targets of AZ. In T2DM, THBS1 was robustly induced by high glucose and inhibited by AZ. Furthermore, AZ activates the AMPK signaling pathway, and recoupled eNOS in stressed endothelial cells which plays a protective role in vascular endothelial dysfunction. CONCLUSIONS The main finding of this study is that AZ can play a role in different pathways of vascular injury due to T2DM. Mechanistically, alizarin inhibits the increase in THBS1 protein synthesis after high glucose induction and activates AMPKα2, which increases NO release from eNOS, which is essential in the prevention of vascular endothelial dysfunction caused by T2DM.
Collapse
Affiliation(s)
- Mo-Li Zhu
- Henan international joint laboratory of cardiovascular remodeling and drug intervention, Sino-UK Joint Laboratory of Brain Function and Injury and Department of Physiology and Neurobiology, School of Basic Medical Sciences, College of Pharmacy, Xinxiang Medical University, Xinxiang, 453003, China
| | - Jia-Xin Fan
- Henan international joint laboratory of cardiovascular remodeling and drug intervention, Sino-UK Joint Laboratory of Brain Function and Injury and Department of Physiology and Neurobiology, School of Basic Medical Sciences, College of Pharmacy, Xinxiang Medical University, Xinxiang, 453003, China
| | - Ya-Qi Guo
- Henan international joint laboratory of cardiovascular remodeling and drug intervention, Sino-UK Joint Laboratory of Brain Function and Injury and Department of Physiology and Neurobiology, School of Basic Medical Sciences, College of Pharmacy, Xinxiang Medical University, Xinxiang, 453003, China
| | - Li-Juan Guo
- Department of Oncology, First Affiliated Hospital of Xinxiang Medical University, Xinxiang, 453119, China
| | - Hua-Dong Que
- Henan international joint laboratory of cardiovascular remodeling and drug intervention, Sino-UK Joint Laboratory of Brain Function and Injury and Department of Physiology and Neurobiology, School of Basic Medical Sciences, College of Pharmacy, Xinxiang Medical University, Xinxiang, 453003, China
| | - Bao-Yue Cui
- Henan international joint laboratory of cardiovascular remodeling and drug intervention, Sino-UK Joint Laboratory of Brain Function and Injury and Department of Physiology and Neurobiology, School of Basic Medical Sciences, College of Pharmacy, Xinxiang Medical University, Xinxiang, 453003, China
| | - Yin-Lan Li
- College of Pharmacy, Heilongjiang University of Chinese Medicine, Heilongjiang, 150040, China
| | - Shuang Guo
- Hubei Key Laboratory of Diabetes and Angiopathy, Hubei University of Science and Technology, Xianning, 437100, China
| | - Ming-Xiang Zhang
- Henan international joint laboratory of cardiovascular remodeling and drug intervention, Sino-UK Joint Laboratory of Brain Function and Injury and Department of Physiology and Neurobiology, School of Basic Medical Sciences, College of Pharmacy, Xinxiang Medical University, Xinxiang, 453003, China
| | - Ya-Ling Yin
- Henan international joint laboratory of cardiovascular remodeling and drug intervention, Sino-UK Joint Laboratory of Brain Function and Injury and Department of Physiology and Neurobiology, School of Basic Medical Sciences, College of Pharmacy, Xinxiang Medical University, Xinxiang, 453003, China.
| | - Peng Li
- Henan international joint laboratory of cardiovascular remodeling and drug intervention, Sino-UK Joint Laboratory of Brain Function and Injury and Department of Physiology and Neurobiology, School of Basic Medical Sciences, College of Pharmacy, Xinxiang Medical University, Xinxiang, 453003, China; Hubei Key Laboratory of Diabetes and Angiopathy, Hubei University of Science and Technology, Xianning, 437100, China.
| |
Collapse
|
3
|
Qiu Y, Zhang X, Li SS, Li YL, Mao BY, Fan JX, Shuang-Guo, Yin YL, Li P. Citronellal can alleviate vascular endothelial dysfunction by reducing ectopic miR-133a expression. Life Sci 2024; 339:122382. [PMID: 38154610 DOI: 10.1016/j.lfs.2023.122382] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/12/2023] [Revised: 12/18/2023] [Accepted: 12/20/2023] [Indexed: 12/30/2023]
Abstract
AIMS Endothelial dysfunction (ED) is the initial cause of atherosclerosis (AS) and an early marker of many cardiovascular diseases (CVD). Citronellal (CT), a monoterpenoid natural product extracted from grass plant Citronella, has been shown to have anti-thrombotic, anti-hypertensive and anti-diabetic cardiomyopathy activities. The aim of this study is to investigate the effects of citronellal on vascular endothelial dysfunction and the underlying mechanisms. MATERIALS AND METHODS The left common carotid artery was subjected to one-time balloon injury to cause vascular endothelial injury, and the AS model was established by feeding with high-fat diet. Use of HUVECs H2O2 treatment induced HUVECs oxidative stress damage model. The blood lipid level, histopathology, Western blot, immunohistochemistry, RT-PCR, ELISA and in situ fluorescence hybridization of common carotid artery tissues and HUVECs were studied. KEY FINDINGS CT significantly reduced vascular plate area and endothelial lipid and cholesterol deposition in the common carotid artery of mice in a dose-dependent manner. CT increased the expression of activated protein 2α (AP-2α/TFAP2A) and circRNA_102979, and inhibited the ectopic expression level of miR-133a. However, the constructed lentivirus with AP-2α silencing and circRNA_102979 silencing reversed this phenomenon. SIGNIFICANCE The current study verifies CT can increase the expression levels of AP-2α and circRNA_102979 in vascular endothelium, increase the adsorption effect of circRNA_102979 on miR-133a and relieve the inhibitory effect of miR-133a on target genes, thereby alleviating AS-induced ED.
Collapse
Affiliation(s)
- Yue Qiu
- Department of Pharmacy, Beijing Renhe Hospital, Beijing 102600, China; Sino-UK Joint Laboratory of Brain Function and Injury and Department of Physiology and Neurobiology, Henan International Joint Laboratory of Cardiovascular Remodeling and Drug Intervention, School of Basic Medical Sciences, College of Pharmacy, Xinxiang Medical University, Xinxiang 453003, China
| | - Xue Zhang
- Sino-UK Joint Laboratory of Brain Function and Injury and Department of Physiology and Neurobiology, Henan International Joint Laboratory of Cardiovascular Remodeling and Drug Intervention, School of Basic Medical Sciences, College of Pharmacy, Xinxiang Medical University, Xinxiang 453003, China
| | - Shan-Shan Li
- Sino-UK Joint Laboratory of Brain Function and Injury and Department of Physiology and Neurobiology, Henan International Joint Laboratory of Cardiovascular Remodeling and Drug Intervention, School of Basic Medical Sciences, College of Pharmacy, Xinxiang Medical University, Xinxiang 453003, China
| | - Yin-Lan Li
- College of Pharmacy, Heilongjiang University of Chinese Medicine, Heilongjiang 150040, China
| | - Bing-Yan Mao
- Sino-UK Joint Laboratory of Brain Function and Injury and Department of Physiology and Neurobiology, Henan International Joint Laboratory of Cardiovascular Remodeling and Drug Intervention, School of Basic Medical Sciences, College of Pharmacy, Xinxiang Medical University, Xinxiang 453003, China
| | - Jia-Xin Fan
- Sino-UK Joint Laboratory of Brain Function and Injury and Department of Physiology and Neurobiology, Henan International Joint Laboratory of Cardiovascular Remodeling and Drug Intervention, School of Basic Medical Sciences, College of Pharmacy, Xinxiang Medical University, Xinxiang 453003, China
| | - Shuang-Guo
- Key Laboratory of Diabetes and Angiopathy, Hubei University of Science and Technology, Xianning 437100, China
| | - Ya-Ling Yin
- Sino-UK Joint Laboratory of Brain Function and Injury and Department of Physiology and Neurobiology, Henan International Joint Laboratory of Cardiovascular Remodeling and Drug Intervention, School of Basic Medical Sciences, College of Pharmacy, Xinxiang Medical University, Xinxiang 453003, China.
| | - Peng Li
- Department of Pharmacy, Beijing Renhe Hospital, Beijing 102600, China; Sino-UK Joint Laboratory of Brain Function and Injury and Department of Physiology and Neurobiology, Henan International Joint Laboratory of Cardiovascular Remodeling and Drug Intervention, School of Basic Medical Sciences, College of Pharmacy, Xinxiang Medical University, Xinxiang 453003, China; Key Laboratory of Diabetes and Angiopathy, Hubei University of Science and Technology, Xianning 437100, China.
| |
Collapse
|
4
|
Kvandova M, Puzserova A, Balis P. Sexual Dimorphism in Cardiometabolic Diseases: The Role of AMPK. Int J Mol Sci 2023; 24:11986. [PMID: 37569362 PMCID: PMC10418890 DOI: 10.3390/ijms241511986] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/28/2023] [Revised: 07/18/2023] [Accepted: 07/24/2023] [Indexed: 08/13/2023] Open
Abstract
Cardiovascular diseases (CVDs) are the leading cause of mortality and disability among both males and females. The risk of cardiovascular diseases is heightened by the presence of a risk factor cluster of metabolic syndrome, covering obesity and obesity-related cardiometabolic risk factors such as hypertension, glucose, and lipid metabolism dysregulation primarily. Sex hormones contribute to metabolic regulation and make women and men susceptible to obesity development in a different manner, which necessitates sex-specific management. Identifying crucial factors that protect the cardiovascular system is essential to enhance primary and secondary prevention of cardiovascular diseases and should be explicitly studied from the perspective of sex differences. It seems that AMP-dependent protein kinase (AMPK) may be such a factor since it has the protective role of AMPK in the cardiovascular system, has anti-diabetic properties, and is regulated by sex hormones. Those findings highlight the potential cardiometabolic benefits of AMPK, making it an essential factor to consider. Here, we review information about the cross-talk between AMPK and sex hormones as a critical point in cardiometabolic disease development and progression and a target for therapeutic intervention in human disease.
Collapse
Affiliation(s)
- Miroslava Kvandova
- Institute of Normal and Pathological Physiology, Centre of Experimental Medicine, Slovak Academy of Sciences, 841 04 Bratislava, Slovakia; (A.P.); (P.B.)
| | | | | |
Collapse
|
5
|
Purwaningsih I, Maksum IP, Sumiarsa D, Sriwidodo S. A Review of Fibraurea tinctoria and Its Component, Berberine, as an Antidiabetic and Antioxidant. Molecules 2023; 28:1294. [PMID: 36770960 PMCID: PMC9919506 DOI: 10.3390/molecules28031294] [Citation(s) in RCA: 17] [Impact Index Per Article: 8.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/14/2022] [Revised: 01/25/2023] [Accepted: 01/27/2023] [Indexed: 01/31/2023] Open
Abstract
Diabetes mellitus is a group of metabolic disorders characterized by hyperglycemia caused by resistance to insulin action, inadequate insulin secretion, or excessive glucagon production. Numerous studies have linked diabetes mellitus and oxidative stress. People with diabetes usually exhibit high oxidative stress due to persistent and chronic hyperglycemia, which impairs the activity of the antioxidant defense system and promotes the formation of free radicals. Recently, several studies have focused on exploring natural antioxidants to improve diabetes mellitus. Fibraurea tinctoria has long been known as the native Borneo used in traditional medicine to treat diabetes. Taxonomically, this plant is part of the Menispermaceae family, widely known for producing various alkaloids. Among them are protoberberine alkaloids such as berberine. Berberine is an isoquinoline alkaloid with many pharmacological activities. Berberine is receiving considerable interest because of its antidiabetic and antioxidant activities, which are based on many biochemical pathways. Therefore, this review explores the pharmacological effects of Fibraurea tinctoria and its active constituent, berberine, against oxidative stress and diabetes, emphasizing its mechanistic aspects. This review also summarizes the pharmacokinetics and toxicity of berberine and in silico studies of berberine in several diseases and its protein targets.
Collapse
Affiliation(s)
- Indah Purwaningsih
- Department of Chemistry, Faculty of Mathematics and Natural Science, Universitas Padjadjaran, Sumedang 45363, Indonesia
- Department of Medical Laboratory Technology, Poltekkes Kemenkes Pontianak, Pontianak 78124, Indonesia
| | - Iman Permana Maksum
- Department of Chemistry, Faculty of Mathematics and Natural Science, Universitas Padjadjaran, Sumedang 45363, Indonesia
| | - Dadan Sumiarsa
- Department of Chemistry, Faculty of Mathematics and Natural Science, Universitas Padjadjaran, Sumedang 45363, Indonesia
| | - Sriwidodo Sriwidodo
- Department of Pharmaceutics and Pharmaceutical Technology, Faculty of Pharmacy, Universitas Padjadjaran, Sumedang 45363, Indonesia
| |
Collapse
|
6
|
Yin YL, Wang HH, Gui ZC, Mi S, Guo S, Wang Y, Wang QQ, Yue RZ, Lin LB, Fan JX, Zhang X, Mao BY, Liu TH, Wan GR, Zhan HQ, Zhu ML, Jiang LH, Li P. Citronellal Attenuates Oxidative Stress-Induced Mitochondrial Damage through TRPM2/NHE1 Pathway and Effectively Inhibits Endothelial Dysfunction in Type 2 Diabetes Mellitus. Antioxidants (Basel) 2022; 11:2241. [PMID: 36421426 PMCID: PMC9686689 DOI: 10.3390/antiox11112241] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/01/2022] [Accepted: 11/08/2022] [Indexed: 07/30/2023] Open
Abstract
In type 2 diabetes mellitus (T2DM), oxidative stress induces endothelial dysfunction (ED), which is closely related to the formation of atherosclerosis. However, there are few effective drugs to prevent and cure it. Citronellal (CT) is an aromatic active substance extracted from citronella plants. Recently, CT has been shown to prevent ED, but the underlying mechanism remains unclear. The purpose of this study was to investigate whether CT ameliorated T2DM-induced ED by inhibiting the TRPM2/NHE1 signal pathway. Transient receptor potential channel M2 (TRPM2) is a Ca2+-permeable cation channel activated by oxidative stress, which damages endothelial cell barrier function and further leads to ED or atherosclerosis in T2DM. The Na+/H+ exchanger 1 (NHE1), a transmembrane protein, also plays an important role in ED. Whether TRPM2 and NHE1 are involved in the mechanism of CT improving ED in T2DM still needs further study. Through the evaluations of ophthalmoscope, HE and Oil red staining, vascular function, oxidative stress level, and mitochondrial membrane potential evaluation, we observed that CT not only reduced the formation of lipid deposition but also inhibited ED and suppressed oxidative stress-induced mitochondrial damage in vasculature of T2DM rats. The expressions of NHE1 and TRPM2 was up-regulated in the carotid vessels of T2DM rats; NHE1 expression was also upregulated in endothelial cells with overexpression of TRPM2, but CT reversed the up-regulation of NHE1 in vivo and in vitro. In contrast, CT had no inhibitory effect on the expression of NHE1 in TRPM2 knockout mice. Our study show that CT suppressed the expression of NHE1 and TPRM2, alleviated oxidative stress-induced mitochondrial damage, and imposed a protective effect on ED in T2DM rats.
Collapse
Affiliation(s)
- Ya-Ling Yin
- Sino-UK Joint Laboratory of Brain Function and Injury and Department of Physiology and Neurobiology, Department of Physiology and Pathophysiology, School of Basic Medical Sciences, Xinxiang Medical University, Xinxiang 453003, China
- Henan International Joint Laboratory of Cardiovascular Remodeling and Drug Intervention, Xinxiang Key Laboratory of Vascular Remodeling Intervention and Molecular Targeted Therapy Drug Development, College of Pharmacy, Xinxiang Medical University, Xinxiang 453003, China
| | - Huan-Huan Wang
- Henan International Joint Laboratory of Cardiovascular Remodeling and Drug Intervention, Xinxiang Key Laboratory of Vascular Remodeling Intervention and Molecular Targeted Therapy Drug Development, College of Pharmacy, Xinxiang Medical University, Xinxiang 453003, China
| | - Zi-Chen Gui
- Hepatic Surgery Center, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430030, China
| | - Shan Mi
- Henan International Joint Laboratory of Cardiovascular Remodeling and Drug Intervention, Xinxiang Key Laboratory of Vascular Remodeling Intervention and Molecular Targeted Therapy Drug Development, College of Pharmacy, Xinxiang Medical University, Xinxiang 453003, China
| | - Shuang Guo
- Hubei Key Laboratory of Diabetes and Angiopathy, Hubei University of Science and Technology, Xianning 437100, China
| | - Yue Wang
- Sanquan College, Xinxiang Medical University, Xinxiang 453003, China
| | - Qian-Qian Wang
- Henan International Joint Laboratory of Cardiovascular Remodeling and Drug Intervention, Xinxiang Key Laboratory of Vascular Remodeling Intervention and Molecular Targeted Therapy Drug Development, College of Pharmacy, Xinxiang Medical University, Xinxiang 453003, China
| | - Rui-Zhu Yue
- Sino-UK Joint Laboratory of Brain Function and Injury and Department of Physiology and Neurobiology, Department of Physiology and Pathophysiology, School of Basic Medical Sciences, Xinxiang Medical University, Xinxiang 453003, China
| | - Lai-Biao Lin
- Henan International Joint Laboratory of Cardiovascular Remodeling and Drug Intervention, Xinxiang Key Laboratory of Vascular Remodeling Intervention and Molecular Targeted Therapy Drug Development, College of Pharmacy, Xinxiang Medical University, Xinxiang 453003, China
| | - Jia-Xin Fan
- Henan International Joint Laboratory of Cardiovascular Remodeling and Drug Intervention, Xinxiang Key Laboratory of Vascular Remodeling Intervention and Molecular Targeted Therapy Drug Development, College of Pharmacy, Xinxiang Medical University, Xinxiang 453003, China
| | - Xue Zhang
- Henan International Joint Laboratory of Cardiovascular Remodeling and Drug Intervention, Xinxiang Key Laboratory of Vascular Remodeling Intervention and Molecular Targeted Therapy Drug Development, College of Pharmacy, Xinxiang Medical University, Xinxiang 453003, China
| | - Bing-Yan Mao
- Henan International Joint Laboratory of Cardiovascular Remodeling and Drug Intervention, Xinxiang Key Laboratory of Vascular Remodeling Intervention and Molecular Targeted Therapy Drug Development, College of Pharmacy, Xinxiang Medical University, Xinxiang 453003, China
| | - Tian-Heng Liu
- Henan International Joint Laboratory of Cardiovascular Remodeling and Drug Intervention, Xinxiang Key Laboratory of Vascular Remodeling Intervention and Molecular Targeted Therapy Drug Development, College of Pharmacy, Xinxiang Medical University, Xinxiang 453003, China
| | - Guang-Rui Wan
- Henan International Joint Laboratory of Cardiovascular Remodeling and Drug Intervention, Xinxiang Key Laboratory of Vascular Remodeling Intervention and Molecular Targeted Therapy Drug Development, College of Pharmacy, Xinxiang Medical University, Xinxiang 453003, China
| | - He-Qin Zhan
- Henan International Joint Laboratory of Cardiovascular Remodeling and Drug Intervention, Xinxiang Key Laboratory of Vascular Remodeling Intervention and Molecular Targeted Therapy Drug Development, College of Pharmacy, Xinxiang Medical University, Xinxiang 453003, China
| | - Mo-Li Zhu
- Henan International Joint Laboratory of Cardiovascular Remodeling and Drug Intervention, Xinxiang Key Laboratory of Vascular Remodeling Intervention and Molecular Targeted Therapy Drug Development, College of Pharmacy, Xinxiang Medical University, Xinxiang 453003, China
| | - Lin-Hua Jiang
- Sino-UK Joint Laboratory of Brain Function and Injury and Department of Physiology and Neurobiology, Department of Physiology and Pathophysiology, School of Basic Medical Sciences, Xinxiang Medical University, Xinxiang 453003, China
- School of Biomedical Sciences, Faculty of Biological Sciences, University of Leeds, Leeds LS2 9JT, UK
| | - Peng Li
- Sino-UK Joint Laboratory of Brain Function and Injury and Department of Physiology and Neurobiology, Department of Physiology and Pathophysiology, School of Basic Medical Sciences, Xinxiang Medical University, Xinxiang 453003, China
- Henan International Joint Laboratory of Cardiovascular Remodeling and Drug Intervention, Xinxiang Key Laboratory of Vascular Remodeling Intervention and Molecular Targeted Therapy Drug Development, College of Pharmacy, Xinxiang Medical University, Xinxiang 453003, China
- Hubei Key Laboratory of Diabetes and Angiopathy, Hubei University of Science and Technology, Xianning 437100, China
| |
Collapse
|
7
|
Xue B, Wang Y. Naringenin upregulates GTPCH1/eNOS to ameliorate high glucose‑induced retinal endothelial cell injury. Exp Ther Med 2022; 23:428. [PMID: 35607381 PMCID: PMC9121200 DOI: 10.3892/etm.2022.11355] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/25/2022] [Accepted: 03/18/2022] [Indexed: 11/06/2022] Open
Affiliation(s)
- Bing Xue
- Health Management Center of Dalian Second People's Hospital, Dalian, Liaoning 116011, P.R. China
| | - Yu Wang
- Medical Department of Dalian Second People's Hospital, Dalian, Liaoning 116011, P.R. China
| |
Collapse
|
8
|
Qiu Y, Chao CY, Jiang L, Zhang J, Niu QQ, Guo YQ, Song YT, Li P, Zhu ML, Yin YL. Citronellal alleviate macro- and micro-vascular damage in high fat diet / streptozotocin - Induced diabetic rats via a S1P/S1P1 dependent signaling pathway. Eur J Pharmacol 2022; 920:174796. [PMID: 35151650 DOI: 10.1016/j.ejphar.2022.174796] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/01/2021] [Revised: 01/31/2022] [Accepted: 02/01/2022] [Indexed: 12/19/2022]
Abstract
Citronellal (CT) is an acyclic monoterpene aldehyde isolated from lemon citronella, which could ameliorate vascular endothelial dysfunction in atherosclerosis in our previous study, however, whether CT can alleviate vascular endothelial dysfunction related with type 2 diabetes (T2DM) is still unknown. So, we investigated the role of CT in vascular dysfunction related to T2DM and the mechanism involved. T2DM rat model was induced by a single intraperitoneal injection of low-dose streptozotocin (STZ) (60 mg/kg) to rats fed with high-fat diet (HFD) (4 weeks). After treated with CT (150 mg/kg/d), both the thoracic aorta injury and micro-vascular pathological injury in T2DM rats ex vivo were alleviated, and the oxidative stress in T2DM rats treated with CT were attenuated, manifested as increased content of endothelial nitric oxide synthase (eNOS) and superoxide dismutase (SOD), and decreased content of malondialdehyde (MDA). Furthermore, CT (15 μg/L) increased the migration capacity of human umbilical vein endothelial cells (HUVECs) under high glucose circumstance (30 mM), and increased the endothelial-dependent relaxation in thoracic aorta isolated from T2DM rats in vitro. Finally, all of these effects of CT were blocked by fingolimod (FTY720), a sphingosine-1-phosphate receptor agonist, and the expression of sphingosine-1-phosphate receptor 1 (S1P1) was increased by CT. In conclusion, CT improved vascular function through S1P/S1P1 signaling pathway.
Collapse
Affiliation(s)
- Yue Qiu
- College of Pharmacy, Henan International Joint Laboratory of Cardiovascular Remodeling and Drug Intervention, Xinxiang Key Laboratory of Vascular Remodeling Intervention and Molecular Targeted Therapy Drug Development, Xinxiang Medical University, Xinxiang, 453003, China
| | - Chun-Yan Chao
- College of Pharmacy, Henan International Joint Laboratory of Cardiovascular Remodeling and Drug Intervention, Xinxiang Key Laboratory of Vascular Remodeling Intervention and Molecular Targeted Therapy Drug Development, Xinxiang Medical University, Xinxiang, 453003, China; Huang Huai University, Zhumadian, 463000, China
| | - Li Jiang
- College of Pharmacy, Henan International Joint Laboratory of Cardiovascular Remodeling and Drug Intervention, Xinxiang Key Laboratory of Vascular Remodeling Intervention and Molecular Targeted Therapy Drug Development, Xinxiang Medical University, Xinxiang, 453003, China; School of Nursing, Xinxiang University, Xinxiang, 453003, China
| | - Jie Zhang
- College of Pharmacy, Henan International Joint Laboratory of Cardiovascular Remodeling and Drug Intervention, Xinxiang Key Laboratory of Vascular Remodeling Intervention and Molecular Targeted Therapy Drug Development, Xinxiang Medical University, Xinxiang, 453003, China
| | - Qian-Qian Niu
- College of Pharmacy, Henan International Joint Laboratory of Cardiovascular Remodeling and Drug Intervention, Xinxiang Key Laboratory of Vascular Remodeling Intervention and Molecular Targeted Therapy Drug Development, Xinxiang Medical University, Xinxiang, 453003, China
| | - Ya-Qi Guo
- College of Pharmacy, Henan International Joint Laboratory of Cardiovascular Remodeling and Drug Intervention, Xinxiang Key Laboratory of Vascular Remodeling Intervention and Molecular Targeted Therapy Drug Development, Xinxiang Medical University, Xinxiang, 453003, China
| | - Yu-Ting Song
- College of Pharmacy, Henan International Joint Laboratory of Cardiovascular Remodeling and Drug Intervention, Xinxiang Key Laboratory of Vascular Remodeling Intervention and Molecular Targeted Therapy Drug Development, Xinxiang Medical University, Xinxiang, 453003, China
| | - Peng Li
- College of Pharmacy, Henan International Joint Laboratory of Cardiovascular Remodeling and Drug Intervention, Xinxiang Key Laboratory of Vascular Remodeling Intervention and Molecular Targeted Therapy Drug Development, Xinxiang Medical University, Xinxiang, 453003, China.
| | - Mo-Li Zhu
- College of Pharmacy, Henan International Joint Laboratory of Cardiovascular Remodeling and Drug Intervention, Xinxiang Key Laboratory of Vascular Remodeling Intervention and Molecular Targeted Therapy Drug Development, Xinxiang Medical University, Xinxiang, 453003, China.
| | - Ya-Ling Yin
- School of Basic Medical Sciences, Sino-UK Joint Laboratory of Brain Function and Injury and Department of Physiology and Neurobiology, Xinxiang Medical University, Xinxiang, 453003, China.
| |
Collapse
|
9
|
Miao M, Dai Y, Rui C, Fan Y, Wang X, Fan C, Mu J, Hou W, Dong Z, Li P, Sun G, Zeng X. Dietary supplementation of inulin alleviates metabolism disorders in gestational diabetes mellitus mice via RENT/AKT/IRS/GLUT4 pathway. Diabetol Metab Syndr 2021; 13:150. [PMID: 34952629 PMCID: PMC8709963 DOI: 10.1186/s13098-021-00768-8] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/18/2021] [Accepted: 12/09/2021] [Indexed: 12/16/2022] Open
Abstract
BACKGROUND Gestational diabetes mellitus (GDM) has significant short and long-term health consequences for both the mother and child. There is limited but suggestive evidence that inulin could improve glucose tolerance during pregnancy. This study assessed the effect of inulin on glucose homeostasis and elucidated the molecular mechanisms underlying the inulin-induced antidiabetic effects during pregnancy. METHOD Female C57BL/6 mice were randomized to receive either no treatment, high-dose inulin and low-dose inulin for 7 weeks with measurement of biochemical profiles. A real-time2 (RT2) profiler polymerase chain reaction (PCR) array involved in glycolipid metabolism was measured. RESULTS Inulin treatment facilitated glucose homeostasis in a dose-dependent manner by decreasing fasting blood glucose, advanced glycation end products and total cholesterol, and improving glucose tolerance. Suppressing resistin (RETN) expression was observed in the inulin treatment group and the expression was significantly correlated with fasting blood glucose levels. The ratios of p-IRS to IRS and p-Akt to Akt in liver tissue and the ratio of p-Akt to Akt in adipose tissue as well as the expression level of GLUT4 increased significantly after inulin treatment. CONCLUSIONS Our findings indicated improvement of glucose and lipid metabolism by inulin was to activate glucose transport through the translocation of GLUT4 which was mediated by insulin signaling pathway repairment due to decreased expression of RETN and enhanced phosphorylation of IRS and Akt in GDM mice.
Collapse
Affiliation(s)
- Miao Miao
- Nanjing Maternity and Child Health Care Hospital, Women's Hospital of Nanjing Medical University, 210004, Nanjing, Jiangsu, P. R. China
| | - Yongmei Dai
- Nanjing Maternity and Child Health Care Hospital, Women's Hospital of Nanjing Medical University, 210004, Nanjing, Jiangsu, P. R. China
| | - Can Rui
- Nanjing Maternity and Child Health Care Hospital, Women's Hospital of Nanjing Medical University, 210004, Nanjing, Jiangsu, P. R. China
| | - Yuru Fan
- Nanjing Maternity and Child Health Care Hospital, Women's Hospital of Nanjing Medical University, 210004, Nanjing, Jiangsu, P. R. China
| | - Xinyan Wang
- Nanjing Maternity and Child Health Care Hospital, Women's Hospital of Nanjing Medical University, 210004, Nanjing, Jiangsu, P. R. China
| | - Chong Fan
- Nanjing Maternity and Child Health Care Hospital, Women's Hospital of Nanjing Medical University, 210004, Nanjing, Jiangsu, P. R. China
| | - Juan Mu
- Nanjing Maternity and Child Health Care Hospital, Women's Hospital of Nanjing Medical University, 210004, Nanjing, Jiangsu, P. R. China
| | - Wenwen Hou
- Nanjing Maternity and Child Health Care Hospital, Women's Hospital of Nanjing Medical University, 210004, Nanjing, Jiangsu, P. R. China
| | - Zhiyong Dong
- Nanjing Maternity and Child Health Care Hospital, Women's Hospital of Nanjing Medical University, 210004, Nanjing, Jiangsu, P. R. China
| | - Ping Li
- Nanjing Maternity and Child Health Care Hospital, Women's Hospital of Nanjing Medical University, 210004, Nanjing, Jiangsu, P. R. China.
| | - Guiju Sun
- Key Laboratory of Environmental Medicine and Engineering of Ministry of Education, Department of Nutrition and Food Hygiene, School of Public Health, Southeast University, 210004, Nanjing, Jiangsu, P. R. China.
| | - Xin Zeng
- Nanjing Maternity and Child Health Care Hospital, Women's Hospital of Nanjing Medical University, 210004, Nanjing, Jiangsu, P. R. China.
| |
Collapse
|
10
|
Ding Y, Zhou Y, Ling P, Feng X, Luo S, Zheng X, Little PJ, Xu S, Weng J. Metformin in cardiovascular diabetology: a focused review of its impact on endothelial function. Am J Cancer Res 2021; 11:9376-9396. [PMID: 34646376 PMCID: PMC8490502 DOI: 10.7150/thno.64706] [Citation(s) in RCA: 54] [Impact Index Per Article: 13.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/08/2021] [Accepted: 08/30/2021] [Indexed: 02/07/2023] Open
Abstract
As a first-line treatment for diabetes, the insulin-sensitizing biguanide, metformin, regulates glucose levels and positively affects cardiovascular function in patients with diabetes and cardiovascular complications. Endothelial dysfunction (ED) represents the primary pathological change of multiple vascular diseases, because it causes decreased arterial plasticity, increased vascular resistance, reduced tissue perfusion and atherosclerosis. Caused by “biochemical injury”, ED is also an independent predictor of cardiovascular events. Accumulating evidence shows that metformin improves ED through liver kinase B1 (LKB1)/5'-adenosine monophosphat-activated protein kinase (AMPK) and AMPK-independent targets, including nuclear factor-kappa B (NF-κB), phosphatidylinositol 3 kinase-protein kinase B (PI3K-Akt), endothelial nitric oxide synthase (eNOS), sirtuin 1 (SIRT1), forkhead box O1 (FOXO1), krüppel-like factor 4 (KLF4) and krüppel-like factor 2 (KLF2). Evaluating the effects of metformin on endothelial cell functions would facilitate our understanding of the therapeutic potential of metformin in cardiovascular diabetology (including diabetes and its cardiovascular complications). This article reviews the physiological and pathological functions of endothelial cells and the intact endothelium, reviews the latest research of metformin in the treatment of diabetes and related cardiovascular complications, and focuses on the mechanism of action of metformin in regulating endothelial cell functions.
Collapse
|
11
|
Guerra JVS, Dias MMG, Brilhante AJVC, Terra MF, García-Arévalo M, Figueira ACM. Multifactorial Basis and Therapeutic Strategies in Metabolism-Related Diseases. Nutrients 2021; 13:nu13082830. [PMID: 34444990 PMCID: PMC8398524 DOI: 10.3390/nu13082830] [Citation(s) in RCA: 35] [Impact Index Per Article: 8.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/28/2021] [Revised: 08/09/2021] [Accepted: 08/11/2021] [Indexed: 12/11/2022] Open
Abstract
Throughout the 20th and 21st centuries, the incidence of non-communicable diseases (NCDs), also known as chronic diseases, has been increasing worldwide. Changes in dietary and physical activity patterns, along with genetic conditions, are the main factors that modulate the metabolism of individuals, leading to the development of NCDs. Obesity, diabetes, metabolic associated fatty liver disease (MAFLD), and cardiovascular diseases (CVDs) are classified in this group of chronic diseases. Therefore, understanding the underlying molecular mechanisms of these diseases leads us to develop more accurate and effective treatments to reduce or mitigate their prevalence in the population. Given the global relevance of NCDs and ongoing research progress, this article reviews the current understanding about NCDs and their related risk factors, with a focus on obesity, diabetes, MAFLD, and CVDs, summarizing the knowledge about their pathophysiology and highlighting the currently available and emerging therapeutic strategies, especially pharmacological interventions. All of these diseases play an important role in the contamination by the SARS-CoV-2 virus, as well as in the progression and severity of the symptoms of the coronavirus disease 2019 (COVID-19). Therefore, we briefly explore the relationship between NCDs and COVID-19.
Collapse
Affiliation(s)
- João V. S. Guerra
- Brazilian Center for Research in Energy and Materials (CNPEM), Brazilian Biosciences National Laboratory (LNBio), Polo II de Alta Tecnologia—R. Giuseppe Máximo Scolfaro, Campinas 13083-100, Brazil; (J.V.S.G.); (M.M.G.D.); (M.F.T.)
- Graduate Program in Pharmaceutical Sciences, Faculty Pharmaceutical Sciences, University of Campinas, Campinas 13083-970, Brazil
| | - Marieli M. G. Dias
- Brazilian Center for Research in Energy and Materials (CNPEM), Brazilian Biosciences National Laboratory (LNBio), Polo II de Alta Tecnologia—R. Giuseppe Máximo Scolfaro, Campinas 13083-100, Brazil; (J.V.S.G.); (M.M.G.D.); (M.F.T.)
- Graduate Program in Functional and Molecular Biology, Institute of Biology, State University of Campinas (Unicamp), Campinas 13083-970, Brazil;
| | - Anna J. V. C. Brilhante
- Graduate Program in Functional and Molecular Biology, Institute of Biology, State University of Campinas (Unicamp), Campinas 13083-970, Brazil;
- Brazilian Center for Research in Energy and Materials (CNPEM), Brazilian Biorenewables National Laboratory (LNBR), Polo II de Alta Tecnologia—R. Giuseppe Máximo Scolfaro, Campinas 13083-100, Brazil
| | - Maiara F. Terra
- Brazilian Center for Research in Energy and Materials (CNPEM), Brazilian Biosciences National Laboratory (LNBio), Polo II de Alta Tecnologia—R. Giuseppe Máximo Scolfaro, Campinas 13083-100, Brazil; (J.V.S.G.); (M.M.G.D.); (M.F.T.)
- Graduate Program in Functional and Molecular Biology, Institute of Biology, State University of Campinas (Unicamp), Campinas 13083-970, Brazil;
| | - Marta García-Arévalo
- Brazilian Center for Research in Energy and Materials (CNPEM), Brazilian Biosciences National Laboratory (LNBio), Polo II de Alta Tecnologia—R. Giuseppe Máximo Scolfaro, Campinas 13083-100, Brazil; (J.V.S.G.); (M.M.G.D.); (M.F.T.)
- Correspondence: or (M.G.-A.); (A.C.M.F.)
| | - Ana Carolina M. Figueira
- Brazilian Center for Research in Energy and Materials (CNPEM), Brazilian Biosciences National Laboratory (LNBio), Polo II de Alta Tecnologia—R. Giuseppe Máximo Scolfaro, Campinas 13083-100, Brazil; (J.V.S.G.); (M.M.G.D.); (M.F.T.)
- Correspondence: or (M.G.-A.); (A.C.M.F.)
| |
Collapse
|
12
|
Fu CN, Wei H, Gao WS, Song SS, Yue SW, Qu YJ. Obesity increases neuropathic pain via the AMPK-ERK-NOX4 pathway in rats. Aging (Albany NY) 2021; 13:18606-18619. [PMID: 34326272 PMCID: PMC8351691 DOI: 10.18632/aging.203305] [Citation(s) in RCA: 16] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/06/2021] [Accepted: 07/01/2021] [Indexed: 12/14/2022]
Abstract
This study focused on the relationship between extracellular-regulated kinase (ERK) and obesity-induced increases in neuropathic pain. We fed rats a high-fat diet to establish the obesity model, and rats were given surgery to establish the chronic compression of the dorsal root ganglia (CCD) model. U0126 was applied to inhibit ERK, and metformin or 5-aminoimidazole-4-carboxamide ribonucleoside (AICAR) was applied to cause AMP-activated protein kinase (AMPK) activation. Paw withdrawal mechanical threshold (PWMT) were calculated to indicate the level of neuropathic pain. The data indicated that compared with normal CCD rats, the PWMT of obese CCD rats were decreased, accompanied with an increase of ERK phosphorylation, NAD(P)H oxidase 4 (NOX4) protein expression, oxidative stress and inflammatory level in the L4 to L5 spinal cord and dorsal root ganglia (DRG). Administration of U0126 could partially elevate the PWMT and reduce the protein expression of NOX4 and the above pathological changes in obese CCD rats. In vitro, ERK phosphorylation, NOX4 protein expression increased significantly in DRG neurons under the stimulation of palmitic acid (PA), accompanied with increased secretion of inflammatory factors, oxidative stress and apoptosis level, while U0126 partially attenuated the PA-induced upregulation of NOX4 and other pathological changes. In the rescue experiment, overexpression of NOX4 abolished the above protective effect of U0126 on DRG neurons in high-fat environment. Next, we explore upstream mechanisms. Metformin gavage significantly reduced neuropathic pain in obese CCD rats. For the mechanisms, activating AMPK with metformin (obese CCD rats) or AICAR (DRG neurons in a high-fat environment) not only inhibited the ERK-NOX4 pathway, but also improved oxidative stress and inflammation caused by high-fat. In conclusion, the AMPK-ERK-NOX4 pathway may has a pivotal role in mediating obesity-induced increases in neuropathic pain.
Collapse
Affiliation(s)
- Chang-Ning Fu
- Rehabilitation Center, Qilu Hospital, Cheelo College of Medicine, Shandong University, Jinan, China
- Department of Critical Care Medicine, Shandong Provincial Hospital Affiliated to Shandong First Medical University, Jinan, China
| | - Hui Wei
- Rehabilitation Center, Qilu Hospital, Cheelo College of Medicine, Shandong University, Jinan, China
| | - Wen-Shuang Gao
- Rehabilitation Center, Qilu Hospital, Cheelo College of Medicine, Shandong University, Jinan, China
| | - Sha-Sha Song
- Rehabilitation Center, Qilu Hospital, Cheelo College of Medicine, Shandong University, Jinan, China
| | - Shou-Wei Yue
- Rehabilitation Center, Qilu Hospital, Cheelo College of Medicine, Shandong University, Jinan, China
| | - Yu-Juan Qu
- Rehabilitation Center, Qilu Hospital, Cheelo College of Medicine, Shandong University, Jinan, China
| |
Collapse
|
13
|
Rodríguez C, Muñoz M, Contreras C, Prieto D. AMPK, metabolism, and vascular function. FEBS J 2021; 288:3746-3771. [PMID: 33825330 DOI: 10.1111/febs.15863] [Citation(s) in RCA: 91] [Impact Index Per Article: 22.8] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2020] [Revised: 03/04/2021] [Accepted: 04/04/2021] [Indexed: 12/12/2022]
Abstract
Adenosine monophosphate-activated protein kinase (AMPK) is a cellular energy sensor activated during energy stress that plays a key role in maintaining energy homeostasis. This ubiquitous signaling pathway has been implicated in multiple functions including mitochondrial biogenesis, redox regulation, cell growth and proliferation, cell autophagy and inflammation. The protective role of AMPK in cardiovascular function and the involvement of dysfunctional AMPK in the pathogenesis of cardiovascular disease have been highlighted in recent years. In this review, we summarize and discuss the role of AMPK in the regulation of blood flow in response to metabolic demand and the basis of the AMPK physiological anticontractile, antioxidant, anti-inflammatory, and antiatherogenic actions in the vascular system. Investigations by others and us have demonstrated the key role of vascular AMPK in the regulation of endothelial function, redox homeostasis, and inflammation, in addition to its protective role in the hypoxia and ischemia/reperfusion injury. The pathophysiological implications of AMPK involvement in vascular function with regard to the vascular complications of metabolic disease and the therapeutic potential of AMPK activators are also discussed.
Collapse
Affiliation(s)
- Claudia Rodríguez
- Departamento de Fisiología, Facultad de Farmacia, Universidad Complutense, Madrid, Spain
| | - Mercedes Muñoz
- Departamento de Fisiología, Facultad de Farmacia, Universidad Complutense, Madrid, Spain
| | - Cristina Contreras
- Departamento de Fisiología, Facultad de Farmacia, Universidad Complutense, Madrid, Spain
| | - Dolores Prieto
- Departamento de Fisiología, Facultad de Farmacia, Universidad Complutense, Madrid, Spain
| |
Collapse
|
14
|
Build-UPS and break-downs: metabolism impacts on proteostasis and aging. Cell Death Differ 2021; 28:505-521. [PMID: 33398091 PMCID: PMC7862225 DOI: 10.1038/s41418-020-00682-y] [Citation(s) in RCA: 34] [Impact Index Per Article: 8.5] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/04/2020] [Revised: 11/09/2020] [Accepted: 11/10/2020] [Indexed: 12/30/2022] Open
Abstract
Perturbation of metabolism elicits cellular stress which profoundly modulates the cellular proteome and thus protein homeostasis (proteostasis). Consequently, changes in the cellular proteome due to metabolic shift require adaptive mechanisms by molecular protein quality control. The mechanisms vitally controlling proteostasis embrace the entire life cycle of a protein involving translational control at the ribosome, chaperone-assisted native folding, and subcellular sorting as well as proteolysis by the proteasome or autophagy. While metabolic imbalance and proteostasis decline have been recognized as hallmarks of aging and age-associated diseases, both processes are largely considered independently. Here, we delineate how proteome stability is governed by insulin/IGF1 signaling (IIS), mechanistic target of Rapamycin (TOR), 5′ adenosine monophosphate-activated protein kinase (AMPK), and NAD-dependent deacetylases (Sir2-like proteins known as sirtuins). This comprehensive overview is emphasizing the regulatory interconnection between central metabolic pathways and proteostasis, indicating the relevance of shared signaling nodes as targets for future therapeutic interventions. ![]()
Collapse
|
15
|
Salvatore T, Pafundi PC, Galiero R, Rinaldi L, Caturano A, Vetrano E, Aprea C, Albanese G, Di Martino A, Ricozzi C, Imbriani S, Sasso FC. Can Metformin Exert as an Active Drug on Endothelial Dysfunction in Diabetic Subjects? Biomedicines 2020; 9:biomedicines9010003. [PMID: 33375185 PMCID: PMC7822116 DOI: 10.3390/biomedicines9010003] [Citation(s) in RCA: 75] [Impact Index Per Article: 15.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2020] [Revised: 12/18/2020] [Accepted: 12/21/2020] [Indexed: 12/12/2022] Open
Abstract
Cardiovascular mortality is a major cause of death among in type 2 diabetes (T2DM). Endothelial dysfunction (ED) is a well-known important risk factor for the development of diabetes cardiovascular complications. Therefore, the prevention of diabetic macroangiopathies by preserving endothelial function represents a major therapeutic concern for all National Health Systems. Several complex mechanisms support ED in diabetic patients, frequently cross-talking each other: uncoupling of eNOS with impaired endothelium-dependent vascular response, increased ROS production, mitochondrial dysfunction, activation of polyol pathway, generation of advanced glycation end-products (AGEs), activation of protein kinase C (PKC), endothelial inflammation, endothelial apoptosis and senescence, and dysregulation of microRNAs (miRNAs). Metformin is a milestone in T2DM treatment. To date, according to most recent EASD/ADA guidelines, it still represents the first-choice drug in these patients. Intriguingly, several extraglycemic effects of metformin have been recently observed, among which large preclinical and clinical evidence support metformin’s efficacy against ED in T2DM. Metformin seems effective thanks to its favorable action on all the aforementioned pathophysiological ED mechanisms. AMPK pharmacological activation plays a key role, with metformin inhibiting inflammation and improving ED. Therefore, aim of this review is to assess metformin’s beneficial effects on endothelial dysfunction in T2DM, which could preempt development of atherosclerosis.
Collapse
Affiliation(s)
- Teresa Salvatore
- Department of Precision Medicine, University of Campania Luigi Vanvitelli, Via De Crecchio 7, I-80138 Naples, Italy;
| | - Pia Clara Pafundi
- Department of Advanced Medical and Surgical Sciences, University of Campania Luigi Vanvitelli, Piazza Luigi Miraglia 2, I-80138 Naples, Italy; (P.C.P.); (R.G.); (L.R.); (A.C.); (E.V.); (C.A.); (G.A.); (A.D.M.); (C.R.); (S.I.)
| | - Raffaele Galiero
- Department of Advanced Medical and Surgical Sciences, University of Campania Luigi Vanvitelli, Piazza Luigi Miraglia 2, I-80138 Naples, Italy; (P.C.P.); (R.G.); (L.R.); (A.C.); (E.V.); (C.A.); (G.A.); (A.D.M.); (C.R.); (S.I.)
| | - Luca Rinaldi
- Department of Advanced Medical and Surgical Sciences, University of Campania Luigi Vanvitelli, Piazza Luigi Miraglia 2, I-80138 Naples, Italy; (P.C.P.); (R.G.); (L.R.); (A.C.); (E.V.); (C.A.); (G.A.); (A.D.M.); (C.R.); (S.I.)
| | - Alfredo Caturano
- Department of Advanced Medical and Surgical Sciences, University of Campania Luigi Vanvitelli, Piazza Luigi Miraglia 2, I-80138 Naples, Italy; (P.C.P.); (R.G.); (L.R.); (A.C.); (E.V.); (C.A.); (G.A.); (A.D.M.); (C.R.); (S.I.)
| | - Erica Vetrano
- Department of Advanced Medical and Surgical Sciences, University of Campania Luigi Vanvitelli, Piazza Luigi Miraglia 2, I-80138 Naples, Italy; (P.C.P.); (R.G.); (L.R.); (A.C.); (E.V.); (C.A.); (G.A.); (A.D.M.); (C.R.); (S.I.)
| | - Concetta Aprea
- Department of Advanced Medical and Surgical Sciences, University of Campania Luigi Vanvitelli, Piazza Luigi Miraglia 2, I-80138 Naples, Italy; (P.C.P.); (R.G.); (L.R.); (A.C.); (E.V.); (C.A.); (G.A.); (A.D.M.); (C.R.); (S.I.)
| | - Gaetana Albanese
- Department of Advanced Medical and Surgical Sciences, University of Campania Luigi Vanvitelli, Piazza Luigi Miraglia 2, I-80138 Naples, Italy; (P.C.P.); (R.G.); (L.R.); (A.C.); (E.V.); (C.A.); (G.A.); (A.D.M.); (C.R.); (S.I.)
| | - Anna Di Martino
- Department of Advanced Medical and Surgical Sciences, University of Campania Luigi Vanvitelli, Piazza Luigi Miraglia 2, I-80138 Naples, Italy; (P.C.P.); (R.G.); (L.R.); (A.C.); (E.V.); (C.A.); (G.A.); (A.D.M.); (C.R.); (S.I.)
| | - Carmen Ricozzi
- Department of Advanced Medical and Surgical Sciences, University of Campania Luigi Vanvitelli, Piazza Luigi Miraglia 2, I-80138 Naples, Italy; (P.C.P.); (R.G.); (L.R.); (A.C.); (E.V.); (C.A.); (G.A.); (A.D.M.); (C.R.); (S.I.)
| | - Simona Imbriani
- Department of Advanced Medical and Surgical Sciences, University of Campania Luigi Vanvitelli, Piazza Luigi Miraglia 2, I-80138 Naples, Italy; (P.C.P.); (R.G.); (L.R.); (A.C.); (E.V.); (C.A.); (G.A.); (A.D.M.); (C.R.); (S.I.)
| | - Ferdinando Carlo Sasso
- Department of Advanced Medical and Surgical Sciences, University of Campania Luigi Vanvitelli, Piazza Luigi Miraglia 2, I-80138 Naples, Italy; (P.C.P.); (R.G.); (L.R.); (A.C.); (E.V.); (C.A.); (G.A.); (A.D.M.); (C.R.); (S.I.)
- Correspondence: ; Tel.: +39-081-566-5010
| |
Collapse
|
16
|
Hu DJ, Li ZY, Zhu YT, Li CC. Overexpression of long noncoding RNA ANRIL inhibits phenotypic switching of vascular smooth muscle cells to prevent atherosclerotic plaque development in vivo. Aging (Albany NY) 2020; 13:4299-4316. [PMID: 33411680 PMCID: PMC7906209 DOI: 10.18632/aging.202392] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/03/2020] [Accepted: 11/05/2020] [Indexed: 01/30/2023]
Abstract
Background: Phenotypic switching of vascular smooth muscle cells (VSMCs) plays a key role in atherosclerosis. Long noncoding RNA ANRIL (lncRNA-ANRIL) is critical in vascular homeostasis. Metformin produces multiple beneficial effects in atherosclerosis. However, the underlying mechanisms need to be elucidated. Methods and Results: Metformin increased lncRNA-ANRIL expression and AMPK activity in cultured VSMCs, and inhibited the phenotypic switching of VSMCs to the synthetic phenotype induced by platelet-derived growth factor (PDGF). Overexpression of lncRNA-ANRIL inhibited phenotypic switching and reversed the reduction of AMPK activity in PDGF-treated VSMCs. While, gene knockdown of lncRNA-ANRIL by adenovirus or silence of AMPKγ through siRNA abolished AMPK activation induced by metformin in VSMCs. RNA-immunoprecipitation analysis indicated that the affinity of lncRNA-ANRIL to AMPKγ subunit was increased by metformin. In vivo, administration of metformin increased the levels of lncRNA-ANRIL, suppressed VSMC phenotypic switching, and prevented the development of atherosclerotic plaque in Apoe-/- mice fed with western diet. These protective effects of metformin were abolished by infecting Apoe-/- mice with adenovirus expressing lncRNA-ANRIL shRNA. The levels of AMPK phosphorylation, AMPK activity, and lncRNA-ANRIL expression were decreased in human atherosclerotic lesions. Conclusion: Metformin activates AMPK to suppress the formation of atherosclerotic plaque through upregulation of lncRNA-ANRIL.
Collapse
Affiliation(s)
- Da-Jun Hu
- Department of Cardiology, The First People's Hospital of Chenzhou, Chenzhou 423000, China
| | - Zhen-Yu Li
- Department of Geriatric Medicine, Xiangya Hospital, Central South University, Changsha 410008, China.,National Clinical Research Center for Geriatric Disorders, Xiangya Hospital, Central South University, Changsha 410008, China
| | - Yuan-Ting Zhu
- Department of Geriatric Medicine, Xiangya Hospital, Central South University, Changsha 410008, China.,National Clinical Research Center for Geriatric Disorders, Xiangya Hospital, Central South University, Changsha 410008, China
| | - Chuan-Chang Li
- Department of Geriatric Medicine, Xiangya Hospital, Central South University, Changsha 410008, China.,National Clinical Research Center for Geriatric Disorders, Xiangya Hospital, Central South University, Changsha 410008, China
| |
Collapse
|
17
|
Li XY, Zhang HM, An GP, Liu MY, Han SF, Jin Q, Song Y, Lin YM, Dong B, Wang SX, Meng LB. S-Nitrosylation of Akt by organic nitrate delays revascularization and the recovery of cardiac function in mice following myocardial infarction. J Cell Mol Med 2020; 25:27-36. [PMID: 33128338 PMCID: PMC7810919 DOI: 10.1111/jcmm.15263] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/26/2019] [Revised: 02/29/2020] [Accepted: 03/20/2020] [Indexed: 12/26/2022] Open
Abstract
The effects of long‐term nitrate therapy are compromised due to protein S‐Nitrosylation, which is mediated by nitric oxide (NO). This study is to determine the role of Akt S‐Nitrosylation in the recovery of heart functions after ischaemia. In recombinant Akt protein and in HEK293 cells, NO donor decreased Akt activity and induced Akt S‐Nitrosylation, but was abolished if Akt protein was mutated by replacing cysteine 296/344 with alanine (Akt‐C296/344A). In endothelial cells, NO induced Akt S‐Nitrosylation, reduced Akt activity and damaged multiple cellular functions including proliferation, migration and tube formation. These alterations were ablated if cells expressed Akt‐C296/344A mutant. In Apoe−/− mice, nitroglycerine infusion increased both Akt S‐Nitrosylation and infarct size, reduced Akt activity and capillary density, and delayed the recovery of cardiac function in ischaemic hearts, compared with mice infused with vehicle. Importantly, these in vivo effects of nitroglycerine in Apoe−/− mice were remarkably prevented by adenovirus‐mediated enforced expression of Akt‐C296/344A mutant. In conclusion, long‐term usage of organic nitrate may inactivate Akt to delay ischaemia‐induced revascularization and the recovery of cardiac function through NO‐mediated S‐Nitrosylation.
Collapse
Affiliation(s)
- Xiao-Yan Li
- Department of Cardiology, the 960thHospital of Chinese People's Liberation Army, Jinan, China
| | - Hong-Ming Zhang
- Department of Cardiology, the 960thHospital of Chinese People's Liberation Army, Jinan, China
| | - Gui-Peng An
- Department of Cardiology, Qilu Hospital of Shandong University, Jinan, China
| | - Mo-Yan Liu
- Department of Cardiology, the 960thHospital of Chinese People's Liberation Army, Jinan, China
| | - Shu-Fang Han
- Department of Cardiology, the 960thHospital of Chinese People's Liberation Army, Jinan, China
| | - Qun Jin
- Department of Cardiology, the 960thHospital of Chinese People's Liberation Army, Jinan, China
| | - Ying Song
- Department of Cardiology, the 960thHospital of Chinese People's Liberation Army, Jinan, China
| | - Yi-Meng Lin
- Department of Cardiology, the 960thHospital of Chinese People's Liberation Army, Jinan, China
| | - Bo Dong
- Department of Cardiology, Qilu Hospital of Shandong University, Jinan, China.,Department of Cardiology, Shandong Provincial Hospital, Shandong University, Jinan, China
| | - Shuang-Xi Wang
- Department of Cardiology, Qilu Hospital of Shandong University, Jinan, China
| | - Ling-Bo Meng
- Department of Cardiology, The Second Hospital affiliated to Harbin Medical University, Harbin, China
| |
Collapse
|
18
|
Kim HK, Ko TH, Song IS, Jeong YJ, Heo HJ, Jeong SH, Kim M, Park NM, Seo DY, Kha PT, Kim SW, Lee SR, Cho SW, Won JC, Youm JB, Ko KS, Rhee BD, Kim N, Cho KI, Shimizu I, Minamino T, Ha NC, Park YS, Nilius B, Han J. BH4 activates CaMKK2 and rescues the cardiomyopathic phenotype in rodent models of diabetes. Life Sci Alliance 2020; 3:e201900619. [PMID: 32699151 PMCID: PMC7383063 DOI: 10.26508/lsa.201900619] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/02/2019] [Revised: 07/13/2020] [Accepted: 07/14/2020] [Indexed: 12/15/2022] Open
Abstract
Diabetic cardiomyopathy (DCM) is a major cause of mortality/morbidity in diabetes mellitus patients. Although tetrahydrobiopterin (BH4) shows therapeutic potential as an endogenous cardiovascular target, its effect on myocardial cells and mitochondria in DCM and the underlying mechanisms remain unknown. Here, we determined the involvement of BH4 deficiency in DCM and the therapeutic potential of BH4 supplementation in a rodent DCM model. We observed a decreased BH4:total biopterin ratio in heart and mitochondria accompanied by cardiac remodeling, lower cardiac contractility, and mitochondrial dysfunction. Prolonged BH4 supplementation improved cardiac function, corrected morphological abnormalities in cardiac muscle, and increased mitochondrial activity. Proteomics analysis revealed oxidative phosphorylation (OXPHOS) as the BH4-targeted biological pathway in diabetic hearts as well as BH4-mediated rescue of down-regulated peroxisome proliferator-activated receptor-γ coactivator 1-α (PGC-1α) signaling as a key modulator of OXPHOS and mitochondrial biogenesis. Mechanistically, BH4 bound to calcium/calmodulin-dependent protein kinase kinase 2 (CaMKK2) and activated downstream AMP-activated protein kinase/cAMP response element binding protein/PGC-1α signaling to rescue mitochondrial and cardiac dysfunction in DCM. These results suggest BH4 as a novel endogenous activator of CaMKK2.
Collapse
Affiliation(s)
- Hyoung Kyu Kim
- Department of Physiology, BK21 Plus Project Team, College of Medicine, Smart Marine Therapeutics Center, Cardiovascular and Metabolic Disease Center, Inje University, Busan, Republic of Korea
| | - Tae Hee Ko
- Department of Physiology, BK21 Plus Project Team, College of Medicine, Smart Marine Therapeutics Center, Cardiovascular and Metabolic Disease Center, Inje University, Busan, Republic of Korea
| | - In-Sung Song
- Department of Physiology, BK21 Plus Project Team, College of Medicine, Smart Marine Therapeutics Center, Cardiovascular and Metabolic Disease Center, Inje University, Busan, Republic of Korea
| | - Yu Jeong Jeong
- Department of Physiology, BK21 Plus Project Team, College of Medicine, Smart Marine Therapeutics Center, Cardiovascular and Metabolic Disease Center, Inje University, Busan, Republic of Korea
| | - Hye Jin Heo
- Department of Physiology, BK21 Plus Project Team, College of Medicine, Smart Marine Therapeutics Center, Cardiovascular and Metabolic Disease Center, Inje University, Busan, Republic of Korea
| | - Seung Hun Jeong
- Department of Physiology, BK21 Plus Project Team, College of Medicine, Smart Marine Therapeutics Center, Cardiovascular and Metabolic Disease Center, Inje University, Busan, Republic of Korea
| | - Min Kim
- Department of Physiology, BK21 Plus Project Team, College of Medicine, Smart Marine Therapeutics Center, Cardiovascular and Metabolic Disease Center, Inje University, Busan, Republic of Korea
| | - Nam Mi Park
- Department of Physiology, BK21 Plus Project Team, College of Medicine, Smart Marine Therapeutics Center, Cardiovascular and Metabolic Disease Center, Inje University, Busan, Republic of Korea
| | - Dae Yun Seo
- Department of Physiology, BK21 Plus Project Team, College of Medicine, Smart Marine Therapeutics Center, Cardiovascular and Metabolic Disease Center, Inje University, Busan, Republic of Korea
| | - Pham Trong Kha
- Department of Physiology, BK21 Plus Project Team, College of Medicine, Smart Marine Therapeutics Center, Cardiovascular and Metabolic Disease Center, Inje University, Busan, Republic of Korea
| | - Sun-Woo Kim
- Department of Physiology, BK21 Plus Project Team, College of Medicine, Smart Marine Therapeutics Center, Cardiovascular and Metabolic Disease Center, Inje University, Busan, Republic of Korea
| | - Sung Ryul Lee
- Department of Physiology, BK21 Plus Project Team, College of Medicine, Smart Marine Therapeutics Center, Cardiovascular and Metabolic Disease Center, Inje University, Busan, Republic of Korea
| | - Sung Woo Cho
- Department of Physiology, BK21 Plus Project Team, College of Medicine, Smart Marine Therapeutics Center, Cardiovascular and Metabolic Disease Center, Inje University, Busan, Republic of Korea
- Division of Cardiology, Department of Internal Medicine, Inje University College of Medicine, Ilsan Paik Hospital, Goyang, Korea
| | - Jong Chul Won
- Department of Physiology, BK21 Plus Project Team, College of Medicine, Smart Marine Therapeutics Center, Cardiovascular and Metabolic Disease Center, Inje University, Busan, Republic of Korea
| | - Jae Boum Youm
- Department of Physiology, BK21 Plus Project Team, College of Medicine, Smart Marine Therapeutics Center, Cardiovascular and Metabolic Disease Center, Inje University, Busan, Republic of Korea
| | - Kyung Soo Ko
- Department of Physiology, BK21 Plus Project Team, College of Medicine, Smart Marine Therapeutics Center, Cardiovascular and Metabolic Disease Center, Inje University, Busan, Republic of Korea
| | - Byoung Doo Rhee
- Department of Physiology, BK21 Plus Project Team, College of Medicine, Smart Marine Therapeutics Center, Cardiovascular and Metabolic Disease Center, Inje University, Busan, Republic of Korea
| | - Nari Kim
- Department of Physiology, BK21 Plus Project Team, College of Medicine, Smart Marine Therapeutics Center, Cardiovascular and Metabolic Disease Center, Inje University, Busan, Republic of Korea
| | - Kyoung Im Cho
- Division of Cardiology, Department of Internal Medicine, College of Medicine, Kosin University, Busan, Republic of Korea
| | - Ippei Shimizu
- Department of Cardiovascular Biology and Medicine, Niigata University Graduate School of Medical and Dental Sciences, Niigata, Japan
| | - Tohru Minamino
- Department of Cardiovascular Biology and Medicine, Niigata University Graduate School of Medical and Dental Sciences, Niigata, Japan
| | - Nam-Chul Ha
- Department of Agricultural Biotechnology, Seoul National University, Seoul, Republic of Korea
| | - Young Shik Park
- School of Biotechnology and Biomedical Science, Inje University, Kimhae, Republic of Korea
| | - Bernd Nilius
- Katholieke Universiteit Leuven, Department of Cellular and Molecular Medicine, Leuven, Belgium
| | - Jin Han
- Department of Physiology, BK21 Plus Project Team, College of Medicine, Smart Marine Therapeutics Center, Cardiovascular and Metabolic Disease Center, Inje University, Busan, Republic of Korea
| |
Collapse
|
19
|
Kim HK, Han J. Tetrahydrobiopterin in energy metabolism and metabolic diseases. Pharmacol Res 2020; 157:104827. [PMID: 32348841 DOI: 10.1016/j.phrs.2020.104827] [Citation(s) in RCA: 23] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/17/2020] [Revised: 04/09/2020] [Accepted: 04/10/2020] [Indexed: 12/13/2022]
Abstract
Tetrahydrobiopterin (BH4) is an endogenous cofactor for various enzymatic conversions of essential biomolecules including nitric oxide, tyrosine, dopamine, serotonin and phenylalanine. Depending on the physiological functions of these molecules, BH4 plays multiple roles in the cardiovascular, immune, nervous and endocrine systems. A deficiency of BH4 or an imbalance of the redox state of biopterin has been implicated in various cardiovascular and metabolic diseases. Therefore, supplementation with BH4 is considered as a therapeutic option for these diseases. In addition to the classical nitric oxide synthase (NOS)-dependent role of BH4, recent studies proposed novel NOS-independent roles of BH4 in health and disease conditions. This article reviews the updated role of BH4 in mitochondrial regulation, energy metabolism and cardiovascular and metabolic diseases.
Collapse
Affiliation(s)
- Hyoung Kyu Kim
- National Research Laboratory for Mitochondrial Signaling, Department of Physiology, Department of Health Sciences and Technology, BK21 Project Team, College of Medicine, Cardiovascular and Metabolic Disease Center, Inje University, Busan, 47392, Republic of Korea; Smart Marine Therapeutics Center, Inje Univeristy, Busan, 47392, Republic of Korea
| | - Jin Han
- National Research Laboratory for Mitochondrial Signaling, Department of Physiology, Department of Health Sciences and Technology, BK21 Project Team, College of Medicine, Cardiovascular and Metabolic Disease Center, Inje University, Busan, 47392, Republic of Korea; Smart Marine Therapeutics Center, Inje Univeristy, Busan, 47392, Republic of Korea.
| |
Collapse
|
20
|
Jansen T, Kvandová M, Daiber A, Stamm P, Frenis K, Schulz E, Münzel T, Kröller-Schön S. The AMP-Activated Protein Kinase Plays a Role in Antioxidant Defense and Regulation of Vascular Inflammation. Antioxidants (Basel) 2020; 9:antiox9060525. [PMID: 32560060 PMCID: PMC7346208 DOI: 10.3390/antiox9060525] [Citation(s) in RCA: 46] [Impact Index Per Article: 9.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/27/2020] [Revised: 06/10/2020] [Accepted: 06/11/2020] [Indexed: 12/12/2022] Open
Abstract
Cardiovascular diseases represent the leading cause of global deaths and life years spent with a severe disability. Endothelial dysfunction and vascular oxidative stress are early precursors of atherosclerotic processes in the vascular wall, all of which are hallmarks in the development of cardiovascular diseases and predictors of future cardiovascular events. There is growing evidence that inflammatory processes represent a major trigger for endothelial dysfunction, vascular oxidative stress and atherosclerosis and clinical data identified inflammation as a cardiovascular risk factor on its own. AMP-activated protein kinase (AMPK) is a central enzyme of cellular energy balance and metabolism that has been shown to confer cardio-protection and antioxidant defense which thereby contributes to vascular health. Interestingly, AMPK is also redox-regulated itself. We have previously shown that AMPK largely contributes to a healthy endothelium, confers potent antioxidant effects and prevents arterial hypertension. Recently, we provided deep mechanistic insights into the role of AMPK in cardiovascular protection and redox homeostasis by studies on arterial hypertension in endothelial and myelomonocytic cell-specific AMPK knockout (Cadh5CrexAMPKfl/fl and LysMCrexAMPKfl/fl) mice. Using these cell-specific knockout mice, we revealed the potent anti-inflammatory properties of AMPK representing the molecular basis of the antihypertensive effects of AMPK. Here, we discuss our own findings in the context of literature data with respect to the anti-inflammatory and antioxidant effects of AMPK in the specific setting of arterial hypertension as well as cardiovascular diseases in general.
Collapse
Affiliation(s)
- Thomas Jansen
- Center for Cardiology, Department of Cardiology 1—Molecular Cardiology, University Medical Center, Johannes Gutenberg University, 55131 Mainz, Germany; (T.J.); (M.K.); (P.S.); (K.F.); (T.M.)
| | - Miroslava Kvandová
- Center for Cardiology, Department of Cardiology 1—Molecular Cardiology, University Medical Center, Johannes Gutenberg University, 55131 Mainz, Germany; (T.J.); (M.K.); (P.S.); (K.F.); (T.M.)
| | - Andreas Daiber
- Center for Cardiology, Department of Cardiology 1—Molecular Cardiology, University Medical Center, Johannes Gutenberg University, 55131 Mainz, Germany; (T.J.); (M.K.); (P.S.); (K.F.); (T.M.)
- Partner Site Rhine-Main, German Center for Cardiovascular Research (DZHK), Langenbeckstr. 1, 55131 Mainz, Germany
- Correspondence: (A.D.); (S.K.-S); Tel.: +49-(0)6131-176280 (A.D.); Fax: +49-(0)6131-176293 (A.D.)
| | - Paul Stamm
- Center for Cardiology, Department of Cardiology 1—Molecular Cardiology, University Medical Center, Johannes Gutenberg University, 55131 Mainz, Germany; (T.J.); (M.K.); (P.S.); (K.F.); (T.M.)
| | - Katie Frenis
- Center for Cardiology, Department of Cardiology 1—Molecular Cardiology, University Medical Center, Johannes Gutenberg University, 55131 Mainz, Germany; (T.J.); (M.K.); (P.S.); (K.F.); (T.M.)
| | - Eberhard Schulz
- Department of Cardiology, Allgemeines Krankenhaus Celle, 29223 Celle, Germany;
| | - Thomas Münzel
- Center for Cardiology, Department of Cardiology 1—Molecular Cardiology, University Medical Center, Johannes Gutenberg University, 55131 Mainz, Germany; (T.J.); (M.K.); (P.S.); (K.F.); (T.M.)
- Partner Site Rhine-Main, German Center for Cardiovascular Research (DZHK), Langenbeckstr. 1, 55131 Mainz, Germany
| | - Swenja Kröller-Schön
- Center for Cardiology, Department of Cardiology 1—Molecular Cardiology, University Medical Center, Johannes Gutenberg University, 55131 Mainz, Germany; (T.J.); (M.K.); (P.S.); (K.F.); (T.M.)
- Correspondence: (A.D.); (S.K.-S); Tel.: +49-(0)6131-176280 (A.D.); Fax: +49-(0)6131-176293 (A.D.)
| |
Collapse
|
21
|
Liang L, Su W, Zhou L, Cao Y, Zhou X, Liu S, Zhao Y, Ding X, Wang Q, Zhang H. Statin downregulation of miR-652-3p protects endothelium from dyslipidemia by promoting ISL1 expression. Metabolism 2020; 107:154226. [PMID: 32277945 DOI: 10.1016/j.metabol.2020.154226] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/25/2019] [Revised: 04/01/2020] [Accepted: 04/06/2020] [Indexed: 12/15/2022]
Abstract
BACKGROUND Aberrant endothelial function is a major contributing factor in cardiovascular disease. Dyslipidemia leads to decreased nitric oxide (NO) bioavailability, an early sign of endothelial failure. Low insulin gene enhancer protein (ISL1) levels decrease healthy NO bioavailability. We hypothesized that the microRNA miR-652-3p negatively regulates endothelial ISL1 expression and that dyslipidemia-induced miR-652-3p upregulation induces aberrant endothelial functioning via ISL1 downregulation. METHODS Various in vitro experiments were conducted in human umbilical vein endothelial cells (HUVECs). Luciferase assays were performed in HEK293 cells. We constructed a high-fat diet (HFD) Apoe-/- murine model of dyslipidemia and a rat model of low-density lipoprotein (LDL)-induced dyslipidemia to conduct in vivo and ex vivo experiments. RESULTS Luciferase assays confirmed miR-652-3p's targeting of the ISL1 3'-untranslated region (3'-UTR). Simvastatin blocked oxidized LDL (ox-LDL)-induced increases in miR-652-3p and ox-LDL-induced decreases in ISL1 protein expression, endothelial NO synthase (eNOS) activation, and NO production. Simvastatin's effects were abrogated by miR-652-3p overexpression and phenocopied by miR-652-3p inhibition. The dyslipidemic mouse model exhibited increased miR-652-3p and decreased ISL1 protein levels in the endothelium, effects opposed by simvastatin or miR-652-3p inhibition. The impact of simvastatin in vivo was abolished by overexpressing miR-652-3p or knocking-down ISL1. The rat model of dyslipidemia exhibited a similar pattern of miR-652-3p upregulation, attenuated ISL1 protein levels, decreased eNOS activation, and decreased NO production, effects mitigated by simvastatin. CONCLUSIONS Dyslipidemia upregulates endothelial miR-652-3p, which decreases ISL1 protein levels, eNOS activation, and NO production. Simvastatin therapy lowers endothelial miR-652-3p expression to protect endothelial function under dyslipidemic conditions.
Collapse
Affiliation(s)
- Liwen Liang
- Department of Cardiology, First People's Hospital of Yunnan Province, Kunming, China
| | - Wenhua Su
- Department of Cardiology, First People's Hospital of Yunnan Province, Kunming, China
| | - Liang Zhou
- Department of Cardiology, First People's Hospital of Yunnan Province, Kunming, China
| | - Yu Cao
- Department of Cardiology, First People's Hospital of Yunnan Province, Kunming, China
| | - Xiuli Zhou
- Department of Cardiology, First People's Hospital of Yunnan Province, Kunming, China
| | - Shiqi Liu
- Department of Cardiology, First People's Hospital of Yunnan Province, Kunming, China
| | - Yan Zhao
- Department of Cardiology, First People's Hospital of Yunnan Province, Kunming, China
| | - Xiaoxue Ding
- Department of Cardiology, First People's Hospital of Yunnan Province, Kunming, China
| | - Qian Wang
- Department of Cardiology, First People's Hospital of Yunnan Province, Kunming, China
| | - Hong Zhang
- Department of Cardiology, First People's Hospital of Yunnan Province, Kunming, China.
| |
Collapse
|
22
|
Molecular Mechanisms of Adiponectin-Induced Attenuation of Mechanical Stretch-Mediated Vascular Remodeling. OXIDATIVE MEDICINE AND CELLULAR LONGEVITY 2020; 2020:6425782. [PMID: 32566092 DOI: 10.1155/2020/6425782] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/06/2019] [Revised: 04/12/2020] [Accepted: 04/17/2020] [Indexed: 12/30/2022]
Abstract
Hypertension induces vascular hypertrophy, which changes blood vessels structurally and functionally, leading to reduced tissue perfusion and further hypertension. It is also associated with dysregulated levels of the circulating adipokines leptin and adiponectin (APN). Leptin is an obesity-associated hormone that promotes vascular smooth muscle cell (VSMC) hypertrophy. APN is a cardioprotective hormone that has been shown to attenuate hypertrophic cardiomyopathy. In this study, we investigated the molecular mechanisms of hypertension-induced VSMC remodeling and the involvement of leptin and APN in this process. To mimic hypertension, the rat portal vein (RPV) was mechanically stretched, and the protective effects of APN on mechanical stretch-induced vascular remodeling and the molecular mechanisms involved were examined by using 10 μg/ml APN. Mechanically stretching the RPV significantly decreased APN protein expression after 24 hours and APN mRNA expression in a time-dependent manner in VSMCs. The mRNA expression of the APN receptors AdipoR1, AdipoR2, and T-cadherin significantly increased after 15 hours of stretch. The ratio of APN/leptin expression in VSMCs significantly decreased after 24 hours of mechanical stretch. Stretching the RPV for 3 days increased the weight and [3H]-leucine incorporation significantly, whereas APN significantly reduced hypertrophy in mechanically stretched vessels. Stretching the RPV for 10 minutes significantly decreased phosphorylation of LKB1, AMPK, and eNOS, while APN significantly increased p-LKB1, p-AMPK, and p-eNOS in stretched vessels. Mechanical stretch significantly increased p-ERK1/2 after 10 minutes, whereas APN significantly reduced stretch-induced ERK1/2 phosphorylation. Stretching the RPV also significantly increased ROS generation after 1 hour, whereas APN significantly decreased mechanical stretch-induced ROS production. Exogenous leptin (3.1 nM) markedly increased GATA-4 nuclear translocation in VSMCs, whereas APN significantly attenuated leptin-induced GATA-4 nuclear translocation. Our results decipher molecular mechanisms of APN-induced attenuation of mechanical stretch-mediated vascular hypertrophy, with the promising potential of ultimately translating this protective hormone into the clinic.
Collapse
|
23
|
Oduro PK, Fang J, Niu L, Li Y, Li L, Zhao X, Wang Q. Pharmacological management of vascular endothelial dysfunction in diabetes: TCM and western medicine compared based on biomarkers and biochemical parameters. Pharmacol Res 2020; 158:104893. [PMID: 32434053 DOI: 10.1016/j.phrs.2020.104893] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/12/2020] [Revised: 04/18/2020] [Accepted: 05/03/2020] [Indexed: 12/20/2022]
Abstract
Diabetes, a worldwide health concern while burdening significant populace of countries with time due to a hefty increase in both incidence and prevalence rates. Hyperglycemia has been buttressed both in clinical and experimental studies to modulate widespread molecular actions that effect macro and microvascular dysfunctions. Endothelial dysfunction, activation, inflammation, and endothelial barrier leakage are key factors contributing to vascular complications in diabetes, plus the development of diabetes-induced cardiovascular diseases. The recent increase in molecular, transcriptional, and clinical studies has brought a new scope to the understanding of molecular mechanisms and the therapeutic targets for endothelial dysfunction in diabetes. In this review, an attempt made to discuss up to date critical and emerging molecular signaling pathways involved in the pathophysiology of endothelial dysfunction and viable pharmacological management targets. Importantly, we exploit some Traditional Chinese Medicines (TCM)/TCM isolated bioactive compounds modulating effects on endothelial dysfunction in diabetes. Finally, clinical studies data on biomarkers and biochemical parameters involved in the assessment of the efficacy of treatment in vascular endothelial dysfunction in diabetes was compared between clinically used western hypoglycemic drugs and TCM formulas.
Collapse
Affiliation(s)
- Patrick Kwabena Oduro
- Institute of Traditional Chinese Medicine, Tianjin University of Traditional Chinese Medicine, Tianjin 301617, PR China; Key Laboratory of Pharmacology of Traditional Chinese Medical Formulae, Ministry of Education, Tianjin 301617, PR China
| | - Jingmei Fang
- Institute of Traditional Chinese Medicine, Tianjin University of Traditional Chinese Medicine, Tianjin 301617, PR China; Key Laboratory of Pharmacology of Traditional Chinese Medical Formulae, Ministry of Education, Tianjin 301617, PR China
| | - Lu Niu
- Institute of Traditional Chinese Medicine, Tianjin University of Traditional Chinese Medicine, Tianjin 301617, PR China; Key Laboratory of Pharmacology of Traditional Chinese Medical Formulae, Ministry of Education, Tianjin 301617, PR China
| | - Yuhong Li
- Institute of Traditional Chinese Medicine, Tianjin University of Traditional Chinese Medicine, Tianjin 301617, PR China; Key Laboratory of Pharmacology of Traditional Chinese Medical Formulae, Ministry of Education, Tianjin 301617, PR China; Tianjin Key Laboratory of Chinese medicine Pharmacology, Tianjin University of Traditional Chinese Medicine, Tianjin 301617, PR China
| | - Lin Li
- Institute of Traditional Chinese Medicine, Tianjin University of Traditional Chinese Medicine, Tianjin 301617, PR China; Key Laboratory of Pharmacology of Traditional Chinese Medical Formulae, Ministry of Education, Tianjin 301617, PR China; Tianjin Key Laboratory of Chinese medicine Pharmacology, Tianjin University of Traditional Chinese Medicine, Tianjin 301617, PR China
| | - Xin Zhao
- Institute of Traditional Chinese Medicine, Tianjin University of Traditional Chinese Medicine, Tianjin 301617, PR China; Key Laboratory of Pharmacology of Traditional Chinese Medical Formulae, Ministry of Education, Tianjin 301617, PR China; Tianjin Key Laboratory of Chinese medicine Pharmacology, Tianjin University of Traditional Chinese Medicine, Tianjin 301617, PR China
| | - Qilong Wang
- Institute of Traditional Chinese Medicine, Tianjin University of Traditional Chinese Medicine, Tianjin 301617, PR China; Key Laboratory of Pharmacology of Traditional Chinese Medical Formulae, Ministry of Education, Tianjin 301617, PR China; Tianjin Key Laboratory of Chinese medicine Pharmacology, Tianjin University of Traditional Chinese Medicine, Tianjin 301617, PR China.
| |
Collapse
|
24
|
Zhao Q, Coughlan KA, Zou MH, Song P. Loss of AMPKalpha1 Triggers Centrosome Amplification via PLK4 Upregulation in Mouse Embryonic Fibroblasts. Int J Mol Sci 2020; 21:ijms21082772. [PMID: 32316320 PMCID: PMC7216113 DOI: 10.3390/ijms21082772] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/01/2020] [Revised: 04/15/2020] [Accepted: 04/15/2020] [Indexed: 11/16/2022] Open
Abstract
Recent evidence indicates that activation of adenosine monophosphate-activated protein kinase (AMPK), a highly conserved sensor and modulator of cellular energy and redox, regulates cell mitosis. However, the underlying molecular mechanisms for AMPKα subunit regulation of chromosome segregation remain poorly understood. This study aimed to ascertain if AMPKα1 deletion contributes to chromosome missegregation by elevating Polo-like kinase 4 (PLK4) expression. Centrosome proteins and aneuploidy were monitored in cultured mouse embryonic fibroblasts (MEFs) isolated from wild type (WT, C57BL/6J) or AMPKα1 homozygous deficient (AMPKα1−/−) mice by Western blotting and metaphase chromosome spread. Deletion of AMPKα1, the predominant AMPKα isoform in immortalized MEFs, led to centrosome amplification and chromosome missegregation, as well as the consequent aneuploidy (34–66%) and micronucleus. Furthermore, AMPKα1 null cells exhibited a significant induction of PLK4. Knockdown of nuclear factor kappa B2/p52 ameliorated the PLK4 elevation in AMPKα1-deleted MEFs. Finally, PLK4 inhibition by Centrinone reversed centrosome amplification of AMPKα1-deleted MEFs. Taken together, our results suggest that AMPKα1 plays a fundamental role in the maintenance of chromosomal integrity through the control of p52-mediated transcription of PLK4, a trigger of centriole biogenesis.
Collapse
Affiliation(s)
- Qiang Zhao
- Center for Molecular and Translational Medicine, Georgia State University, Atlanta, GA 30302, USA; (Q.Z.); (M.-H.Z.)
| | | | - Ming-Hui Zou
- Center for Molecular and Translational Medicine, Georgia State University, Atlanta, GA 30302, USA; (Q.Z.); (M.-H.Z.)
| | - Ping Song
- Center for Molecular and Translational Medicine, Georgia State University, Atlanta, GA 30302, USA; (Q.Z.); (M.-H.Z.)
- Correspondence: ; Tel.: +1-404-413-6636
| |
Collapse
|
25
|
Shan MR, Zhou SN, Fu CN, Song JW, Wang XQ, Bai WW, Li P, Song P, Zhu ML, Ma ZM, Liu Z, Xu J, Dong B, Liu C, Guo T, Zhang C, Wang SX. Vitamin B6 inhibits macrophage activation to prevent lipopolysaccharide-induced acute pneumonia in mice. J Cell Mol Med 2020; 24:3139-3148. [PMID: 31970902 PMCID: PMC7077594 DOI: 10.1111/jcmm.14983] [Citation(s) in RCA: 31] [Impact Index Per Article: 6.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/19/2019] [Revised: 11/25/2019] [Accepted: 12/17/2019] [Indexed: 01/08/2023] Open
Abstract
Macrophage activation participates in the pathogenesis of pulmonary inflammation. As a coenzyme, vitamin B6 (VitB6) is mainly involved in the metabolism of amino acids, nucleic acids, glycogen and lipids. We have previously reported that activation of AMP‐activated protein kinase (AMPK) produces anti‐inflammatory effects both in vitro and in vivo. Whether VitB6 via AMPK activation prevents pulmonary inflammation remains unknown. The model of acute pneumonia was induced by injecting mice with lipopolysaccharide (LPS). The inflammation was determined by measuring the levels of interleukin‐1 beta (IL‐1β), IL‐6 and tumour necrosis factor alpha (TNF‐α) using real time PCR, ELISA and immunohistochemistry. Exposure of cultured primary macrophages to VitB6 increased AMP‐activated protein kinase (AMPK) Thr172 phosphorylation in a time/dose‐dependent manner, which was inhibited by compound C. VitB6 downregulated the inflammatory gene expressions including IL‐1β, IL‐6 and TNF‐α in macrophages challenged with LPS. These effects of VitB6 were mirrored by AMPK activator 5‐aminoimidazole‐4‐carboxamide ribonucleoside (AICAR). However, VitB6 was unable to inhibit LPS‐induced macrophage activation if AMPK was in deficient through siRNA‐mediated approaches. Further, the anti‐inflammatory effects produced by VitB6 or AICAR in LPS‐treated macrophages were abolished in DOK3 gene knockout (DOK3−/−) macrophages, but were enhanced in macrophages if DOK3 was overexpressed. In vivo studies indicated that administration of VitB6 remarkably inhibited LPS‐induced both systemic inflammation and acute pneumonia in wild‐type mice, but not in DOK3−/− mice. VitB6 prevents LPS‐induced acute pulmonary inflammation in mice via the inhibition of macrophage activation.
Collapse
Affiliation(s)
- Mei-Rong Shan
- The Key Laboratory of Cardiovascular Remodeling and Function Research, The State and Shandong Province Joint Key Laboratory of Translational Cardiovascular Medicine, Chinese Ministry of Education, Chinese National Health Commission and Chinese Academy of Medical Sciences, Qilu Hospital of Shandong University, Jinan, China
| | - Sheng-Nan Zhou
- The Key Laboratory of Cardiovascular Remodeling and Function Research, The State and Shandong Province Joint Key Laboratory of Translational Cardiovascular Medicine, Chinese Ministry of Education, Chinese National Health Commission and Chinese Academy of Medical Sciences, Qilu Hospital of Shandong University, Jinan, China
| | - Chang-Ning Fu
- The Key Laboratory of Cardiovascular Remodeling and Function Research, The State and Shandong Province Joint Key Laboratory of Translational Cardiovascular Medicine, Chinese Ministry of Education, Chinese National Health Commission and Chinese Academy of Medical Sciences, Qilu Hospital of Shandong University, Jinan, China
| | - Jia-Wen Song
- The Key Laboratory of Cardiovascular Remodeling and Function Research, The State and Shandong Province Joint Key Laboratory of Translational Cardiovascular Medicine, Chinese Ministry of Education, Chinese National Health Commission and Chinese Academy of Medical Sciences, Qilu Hospital of Shandong University, Jinan, China
| | - Xue-Qing Wang
- The Key Laboratory of Cardiovascular Remodeling and Function Research, The State and Shandong Province Joint Key Laboratory of Translational Cardiovascular Medicine, Chinese Ministry of Education, Chinese National Health Commission and Chinese Academy of Medical Sciences, Qilu Hospital of Shandong University, Jinan, China
| | - Wen-Wu Bai
- The Key Laboratory of Cardiovascular Remodeling and Function Research, The State and Shandong Province Joint Key Laboratory of Translational Cardiovascular Medicine, Chinese Ministry of Education, Chinese National Health Commission and Chinese Academy of Medical Sciences, Qilu Hospital of Shandong University, Jinan, China.,Department of Traditional Chinese Medicine, Qilu Hospital of Shandong University, Jinan, China
| | - Peng Li
- College of Pharmacy, Xinxiang Medical University, Xinxiang, China
| | - Ping Song
- College of Pharmacy, Xinxiang Medical University, Xinxiang, China
| | - Mo-Li Zhu
- College of Pharmacy, Xinxiang Medical University, Xinxiang, China
| | - Zhi-Min Ma
- Department of Endocrinology, Suzhou Science & Technology Town Hospital, Suzhou, China
| | - Zhan Liu
- Department of Gastroenterology and Clinical Nutrition, The First Affiliated Hospital of Hunan Normal University, Changsha, China
| | - Jian Xu
- College of Pharmacy, Xinxiang Medical University, Xinxiang, China
| | - Bo Dong
- Department of Cardiology, Shandong Provincial Hospital, Shandong University, Jinan, China
| | - Chao Liu
- Hubei Key Laboratory of Cardiovascular, Cerebrovascular, and Metabolic Disorders, Hubei University of Science and Technology, Xianning, China
| | - Tao Guo
- The Key Laboratory of Cardiovascular Remodeling and Function Research, The State and Shandong Province Joint Key Laboratory of Translational Cardiovascular Medicine, Chinese Ministry of Education, Chinese National Health Commission and Chinese Academy of Medical Sciences, Qilu Hospital of Shandong University, Jinan, China
| | - Cheng Zhang
- The Key Laboratory of Cardiovascular Remodeling and Function Research, The State and Shandong Province Joint Key Laboratory of Translational Cardiovascular Medicine, Chinese Ministry of Education, Chinese National Health Commission and Chinese Academy of Medical Sciences, Qilu Hospital of Shandong University, Jinan, China
| | - Shuang-Xi Wang
- The Key Laboratory of Cardiovascular Remodeling and Function Research, The State and Shandong Province Joint Key Laboratory of Translational Cardiovascular Medicine, Chinese Ministry of Education, Chinese National Health Commission and Chinese Academy of Medical Sciences, Qilu Hospital of Shandong University, Jinan, China.,College of Pharmacy, Xinxiang Medical University, Xinxiang, China.,Hubei Key Laboratory of Cardiovascular, Cerebrovascular, and Metabolic Disorders, Hubei University of Science and Technology, Xianning, China
| |
Collapse
|
26
|
Chen H, Vanhoutte PM, Leung SWS. Vascular adenosine monophosphate-activated protein kinase: Enhancer, brake or both? Basic Clin Pharmacol Toxicol 2019; 127:81-91. [PMID: 31671245 DOI: 10.1111/bcpt.13357] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/18/2019] [Accepted: 10/24/2019] [Indexed: 12/25/2022]
Abstract
Adenosine monophosphate-activated protein kinase (AMPK), expressed/present ubiquitously in the body, contributes to metabolic regulation. In the vasculature, activation of AMPK is associated with several beneficial biological effects including enhancement of vasodilatation, reduction of oxidative stress and inhibition of inflammatory reactions. The vascular protective effects of certain anti-diabetic (metformin and sitagliptin) or lipid-lowering (simvastatin and fenofibrate) therapeutic agents, of active components of Chinese medicinal herbs (resveratrol and berberine) and of pharmacological agents (AICAR, A769662 and PT1) have been attributed to the activation of AMPK (in endothelial cells, vascular smooth muscle cells and/or perivascular adipocytes), independently of changes in the metabolic profile (eg glucose tolerance and/or plasma lipoprotein levels), leading to improved endothelium-derived nitric oxide-mediated vasodilatation and attenuated endothelium-derived cyclooxygenase-dependent vasoconstriction. By contrast, endothelial AMPK activation with pharmacological agents or by genetic modification is associated with reduced endothelium-dependent relaxations in small blood vessels and elevated systolic blood pressure. Indeed, AMPK activators inhibit endothelium-dependent hyperpolarization (EDH)-type relaxations in superior mesenteric arteries, partly by inhibiting endothelial calcium-activated potassium channel signalling. Therefore, AMPK activation is not necessarily beneficial in terms of endothelial function. The contribution of endothelial AMPK in the regulation of vascular tone, in particular in the microvasculature where EDH plays a more important role, remains to be characterized.
Collapse
Affiliation(s)
- Hui Chen
- Department of Pharmacology and Pharmacy, The University of Hong Kong, Hong Kong, China
| | - Paul Michel Vanhoutte
- Department of Pharmacology and Pharmacy, The University of Hong Kong, Hong Kong, China.,State Key Laboratory of Pharmaceutical Biotechnology, The University of Hong Kong, Hong Kong, China.,Department of Cardiovascular and Renal Research, Institute for Molecular Medicine, University of Southern Denmark, Odense, Denmark
| | - Susan Wai Sum Leung
- Department of Pharmacology and Pharmacy, The University of Hong Kong, Hong Kong, China
| |
Collapse
|
27
|
Jiang T, Gu J, Chen W, Chang Q. Resveratrol inhibits high-glucose-induced inflammatory "metabolic memory" in human retinal vascular endothelial cells through SIRT1-dependent signaling. Can J Physiol Pharmacol 2019; 97:1141-1151. [PMID: 31638409 DOI: 10.1139/cjpp-2019-0201] [Citation(s) in RCA: 23] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/01/2023]
Abstract
Diabetes induces vascular endothelial damage and this study investigated high-glucose-induced inflammation "metabolic memory" of human retinal vascular endothelial cells (HRVECs), the effects of resveratrol on HRVECs, and the underlying signaling. HRVECs were grown under various conditions and assayed for levels of sirtuin 1 (SIRT1); acetylated nuclear factor κB (Ac-NF-κB); NOD-like receptor family, pyrin domain containing 3 (NLRP3); and other inflammatory cytokines; and cell viability. A high glucose concentration induced HRVEC inflammation metabolic memory by decreasing SIRT1 and increasing Ac-NF-κB, NLRP3, caspase 1, interleukin-1β, inducible nitric oxide synthase, and tumor necrosis factor α, whereas exposure of HRVECs to a high glucose medium for 4 days, followed by a normal glucose concentration for an additional 4 days, failed to reverse these changes. A high glucose concentration also significantly reduced HRVEC viability. In contrast, resveratrol, a selective SIRT1 activator, markedly enhanced HRVEC viability and reduced the inflammatory cytokines expressions. In addition, high glucose reduced AMP-activated protein kinase (AMPK) phosphorylation and retained during the 4 days of the reversal period of culture. The effects of resveratrol were abrogated after co-treatment with the SIRT1 inhibitor nicotinamide and the AMPK inhibitor compound C. In conclusion, resveratrol was able to reverse high-glucose-induced inflammation "metabolic memory" of HRVECs by activation of the SIRT1/AMPK/NF-κB pathway.
Collapse
Affiliation(s)
- Tingting Jiang
- Department of Ophthalmology, Eye and ENT Hospital, Fudan University, Shanghai 200031, China.,Shanghai Key Laboratory of Visual Impairment and Restoration, Shanghai 200031, China.,Key Laboratory of Myopia of National Health Commission, Fudan University, Shanghai 200000, China.,Key Laboratory of Myopia, Chinese Academy of Medical Sciences, Shanghai 200000, China
| | - Junxiang Gu
- Department of Ophthalmology, Eye and ENT Hospital, Fudan University, Shanghai 200031, China.,Shanghai Key Laboratory of Visual Impairment and Restoration, Shanghai 200031, China.,Key Laboratory of Myopia of National Health Commission, Fudan University, Shanghai 200000, China.,Key Laboratory of Myopia, Chinese Academy of Medical Sciences, Shanghai 200000, China
| | - Wenwen Chen
- Department of Ophthalmology, Eye and ENT Hospital, Fudan University, Shanghai 200031, China.,Shanghai Key Laboratory of Visual Impairment and Restoration, Shanghai 200031, China.,Key Laboratory of Myopia of National Health Commission, Fudan University, Shanghai 200000, China.,Key Laboratory of Myopia, Chinese Academy of Medical Sciences, Shanghai 200000, China
| | - Qing Chang
- Department of Ophthalmology, Eye and ENT Hospital, Fudan University, Shanghai 200031, China.,Shanghai Key Laboratory of Visual Impairment and Restoration, Shanghai 200031, China.,Key Laboratory of Myopia of National Health Commission, Fudan University, Shanghai 200000, China.,Key Laboratory of Myopia, Chinese Academy of Medical Sciences, Shanghai 200000, China
| |
Collapse
|
28
|
Yu L, Liang Q, Zhang W, Liao M, Wen M, Zhan B, Bao H, Cheng X. HSP22 suppresses diabetes-induced endothelial injury by inhibiting mitochondrial reactive oxygen species formation. Redox Biol 2019; 21:101095. [PMID: 30640127 PMCID: PMC6327915 DOI: 10.1016/j.redox.2018.101095] [Citation(s) in RCA: 44] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/20/2018] [Revised: 12/28/2018] [Accepted: 12/31/2018] [Indexed: 12/20/2022] Open
Abstract
The induction of mitochondrial reactive oxygen species (mtROS) by hyperglycemia is a key event responsible for endothelial activation and injury. Heat shock protein 22 (HSP22) is a stress-inducible protein associated with cytoprotection and apoptosis inhibition. However, whether HSP22 prevents hyperglycemia-induced vascular endothelial injury remains unclear. Here, we investigated whether HSP22 protects the vascular endothelium from hyperglycemia-induced injury by reducing mtROS production. We used a high-fat diet and streptozotocin injection model to induce type 2 diabetes mellitus (T2DM, metabolic syndrome) and exposed human umbilical vein endothelial cells (HUVECs) to high glucose following overexpression or silencing of HSP22 to explore the role of HSP22. We found that HSP22 markedly inhibited endothelial cell activation and vascular lesions by inhibiting endothelial adhesion and decreasing cytokine secretion. We performed confocal microscopy and flow cytometry assays using HUVECs and showed that HSP22 attenuated mtROS and mitochondrial dysfunction in hyperglycemia-stimulated endothelial cells. Mechanistically, using the mtROS inhibitor MitoTEMPO, we demonstrated that HSP22 suppressed endothelial activation and injury by eliminating hyperglycemia-mediated increases in mtROS. Furthermore, we found that HSP22 maintained the balance of mitochondrial fusion and fission by mitigating mtROS in vitro. HSP22 attenuated the development of vascular lesions by suppressing mtROS-mediated endothelial activation in a T2DM mouse model. This study provides evidence that HSP22 may be a promising therapeutic target for vascular complications in T2DM. HSP22 reduces endothelial inflammation under diabetic conditions. HSP22 restrains hyperglycemia-induced oxidative stress in the vascular endothelium. HSP22 reduces hyperglycemia-induced mtROS and endothelial mitochondrial dysfunction. HSP22 maintains the balance of mitochondrial fusion and fission by mitigating mtROS.
Collapse
Affiliation(s)
- Lingling Yu
- Department of Cardiology, The Second Affiliated Hospital of Nanchang University, No. 1 Minde Road, Nanchang 330006, Jiangxi, PR China
| | - Qian Liang
- Key Laboratory of Molecular Biology in Jiangxi Province, The Second Affiliated Hospital of Nanchang University, PR China
| | - Weifang Zhang
- Department of Pharmacy, The Second Affiliated Hospital of Nanchang University, PR China
| | - Minqi Liao
- Department of Cardiology, The Second Affiliated Hospital of Nanchang University, No. 1 Minde Road, Nanchang 330006, Jiangxi, PR China
| | - Minghua Wen
- Department of Cardiology, The Second Affiliated Hospital of Nanchang University, No. 1 Minde Road, Nanchang 330006, Jiangxi, PR China
| | - Biming Zhan
- Department of Cardiology, The Second Affiliated Hospital of Nanchang University, No. 1 Minde Road, Nanchang 330006, Jiangxi, PR China
| | - Huihui Bao
- Department of Cardiology, The Second Affiliated Hospital of Nanchang University, No. 1 Minde Road, Nanchang 330006, Jiangxi, PR China.
| | - Xiaoshu Cheng
- Department of Cardiology, The Second Affiliated Hospital of Nanchang University, No. 1 Minde Road, Nanchang 330006, Jiangxi, PR China.
| |
Collapse
|
29
|
Yin S, Bai W, Li P, Jian X, Shan T, Tang Z, Jing X, Ping S, Li Q, Miao Z, Wang S, Ou W, Fei J, Guo T. Berberine suppresses the ectopic expression of miR-133a in endothelial cells to improve vascular dementia in diabetic rats. Clin Exp Hypertens 2018; 41:708-716. [PMID: 30472896 DOI: 10.1080/10641963.2018.1545846] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/27/2022]
Affiliation(s)
- Sen Yin
- Department of Neurology, Qilu Hospital, Shandong University, Jinan, China
| | - Wenwu Bai
- The Key Laboratory of Cardiovascular Remodeling and Function Research, Qilu Hospital, Shandong University, Jinan, China
- Department of Traditional Chinese Medicine, Qilu Hospital, Shandong University, Jinan, China
| | - Peng Li
- Department of Pharmacology, College of Pharmacy, Xinxiang Medical University, Xinxiang, China
| | - Xu Jian
- Department of Pharmacology, College of Pharmacy, Xinxiang Medical University, Xinxiang, China
| | - Tichao Shan
- Department of Intensive Care Unit, Qilu Hospital, Shandong University, Jinan, China
| | - Zhenyu Tang
- Department of Intensive Care Unit, Qilu Hospital, Shandong University, Jinan, China
| | - Xuejiao Jing
- Department of Healthcare, Qilu Hospital, Shandong University, Jinan, China
| | - Song Ping
- Department of Pharmacology, College of Pharmacy, Xinxiang Medical University, Xinxiang, China
| | - Quanzhong Li
- Department of Cardiology, Affiliated Hospital of Guilin Medical University, Guilin, China
| | - Zhang Miao
- The Key Laboratory of Cardiovascular Remodeling and Function Research, Qilu Hospital, Shandong University, Jinan, China
| | - Shuangxi Wang
- The Key Laboratory of Cardiovascular Remodeling and Function Research, Qilu Hospital, Shandong University, Jinan, China
- Department of Pharmacology, College of Pharmacy, Xinxiang Medical University, Xinxiang, China
| | - Wensheng Ou
- Department of Liver Disease, Chenzhou NO. 1 People’s Hospital, Chenzhou, China
| | - Jianchun Fei
- Department of Anaesthesia, Qilu Hospital, Shandong University, Jinan, China
| | - Tao Guo
- The Key Laboratory of Cardiovascular Remodeling and Function Research, Qilu Hospital, Shandong University, Jinan, China
| |
Collapse
|
30
|
Li J, Liu S, Cao G, Sun Y, Chen W, Dong F, Xu J, Zhang C, Zhang W. Nicotine induces endothelial dysfunction and promotes atherosclerosis via GTPCH1. J Cell Mol Med 2018; 22:5406-5417. [PMID: 30091833 PMCID: PMC6201367 DOI: 10.1111/jcmm.13812] [Citation(s) in RCA: 42] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/27/2018] [Accepted: 06/30/2018] [Indexed: 12/23/2022] Open
Abstract
Smoking is a major preventable risk factor for atherosclerosis. However, the causative link between cigarette smoke and atherosclerosis remains to be established. The objective of this study is to characterize the role of GTP cyclohydrolase 1 (GTPCH1), the rate-limiting enzyme for de novo tetrahydrobiopterin (BH4) synthesis, in the smoking-accelerated atherosclerosis and the mechanism involved. In vitro, human umbilical vein endothelial cells were treated with nicotine, a major component of cigarette smoke, which reduced the mRNA and protein levels of GTPCH1 and led to endothelial dysfunction. GTPCH1 overexpression or sepiapterin could attenuate nicotine-reduced nitric oxide and -increased reactive oxygen species levels. Mechanistically, human antigen R (HuR) bound with the adenylateuridylate-rich elements of the GTPCH1 3' untranslated region and increased its stability; nicotine inhibited HuR translocation from the nucleus to cytosol, which downregulated GTPCH1. In vivo, nicotine induced endothelial dysfunction and promoted atherosclerosis in ApoE-/- mice, which were attenuated by GTPCH1 overexpression or BH4 supplement. Our findings may provide a novel and promising approach to atherosclerosis treatment.
Collapse
Affiliation(s)
- Jingyuan Li
- The Key Laboratory of Cardiovascular Remodeling and Function Research, Chinese Ministry of Education and Chinese Ministry of Health; The State and Shandong Province Joint Key Laboratory of Translational Cardiovascular MedicineQilu Hospital of Shandong UniversityJinanShandongChina
| | - Shangming Liu
- Department of Histology and EmbryologyShandong University School of MedicineJinanChina
| | - Guangqing Cao
- Department of Cardiovascular SurgeryQilu Hospital of Shandong UniversityJinanShandongChina
| | - Yuanyuan Sun
- The Key Laboratory of Cardiovascular Remodeling and Function Research, Chinese Ministry of Education and Chinese Ministry of Health; The State and Shandong Province Joint Key Laboratory of Translational Cardiovascular MedicineQilu Hospital of Shandong UniversityJinanShandongChina
| | - Weiqian Chen
- Departmen of Cardiovascular Surgery of the First Affiliated Hospital & Institute for Cardiovascular ScienceSoochow UniversitySuzhouChina
| | - Fajin Dong
- Department of UltrasonographySecond Clinical College of Jinan UniversityShenzhen People's HospitalShenzhenChina
| | - Jinfeng Xu
- Department of UltrasonographySecond Clinical College of Jinan UniversityShenzhen People's HospitalShenzhenChina
| | - Cheng Zhang
- The Key Laboratory of Cardiovascular Remodeling and Function Research, Chinese Ministry of Education and Chinese Ministry of Health; The State and Shandong Province Joint Key Laboratory of Translational Cardiovascular MedicineQilu Hospital of Shandong UniversityJinanShandongChina
| | - Wencheng Zhang
- The Key Laboratory of Cardiovascular Remodeling and Function Research, Chinese Ministry of Education and Chinese Ministry of Health; The State and Shandong Province Joint Key Laboratory of Translational Cardiovascular MedicineQilu Hospital of Shandong UniversityJinanShandongChina
| |
Collapse
|
31
|
Lu JX, Guo C, Ou WS, Jing Y, Niu HF, Song P, Li QZ, Liu Z, Xu J, Li P, Zhu ML, Yin YL. Citronellal prevents endothelial dysfunction and atherosclerosis in rats. J Cell Biochem 2018; 120:3790-3800. [PMID: 30367511 DOI: 10.1002/jcb.27660] [Citation(s) in RCA: 25] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/04/2018] [Accepted: 08/21/2018] [Indexed: 01/21/2023]
Abstract
BACKGROUND Atherosclerosis is a chronical inflammatory disease in arterial walls, which is involved in oxidative stress and endothelial dysfunction. Aromatherapy is one of the complementary therapies that use essential oils as the major therapeutic agents to treat several diseases. Citronellal (CT) is a monoterpene predominantly formed by the secondary metabolism of plants, producing antithrombotic, antiplatelet, and antihypertensive activities. AIM The aim of the present study is to explore whether aromatherapy with CT improves endothelial function to prevent the formation of atherosclerotic plaque in vivo. METHODS An AS model in carotid artery was induced by balloon injury and vitamin D3 injection in rats fed with a high-fat diet. The size of the carotid atherosclerotic plaque was determined by ultrasound, oil red, and hematoxylin-eosin staining. Endothelial function was assessed by measuring acetylcholine-induced vessel relaxation in an organ chamber. RESULTS Administrations of CT (50, 100, and 150 mg/kg) as well as lovastatin dramatically reduced the size of carotid atherosclerotic plaque in rats in a dose-dependent manner, compared with atherosclerotic rats fed with a high-fat diet plus balloon injury and vitamin D3. Mechanically, CT improved endothelial dysfunction, increased cell migration, and suppressed oxidative stress and inflammation in vascular endothelium in rats feeding on the high-fat diet plus balloon injury. Further, CT downregulated the protein levels of sodium-hydrogen exchanger 1 in rats with atherosclerosis. CONCLUSION CT improves endothelial dysfunction and prevents the growth of atherosclerosis in rats by reducing oxidative stress. Clinically, CT is potentially considered as a medicine to treat patients with atherosclerosis.
Collapse
Affiliation(s)
- Jun-X Lu
- Department of Histology and Embryology, School of Basic Medical Sciences, Xinxiang Medical University, Xinxiang, China
| | - Chao Guo
- Department of Clinical Pharmacology, College of Pharmacy, Xinxiang Medical University, Xinxiang, China
| | - Wen-S Ou
- Department of Gastroenterology, Chenzhou No.1 People's Hospital, Chenzhou, China
| | - Yun Jing
- Department of Clinical Pharmacology, College of Pharmacy, Xinxiang Medical University, Xinxiang, China
| | - Hui-F Niu
- Department of Clinical Pharmacology, College of Pharmacy, Xinxiang Medical University, Xinxiang, China
| | - Ping Song
- Department of Clinical Pharmacology, College of Pharmacy, Xinxiang Medical University, Xinxiang, China
| | - Quan-Z Li
- Department of Cardiology, Affiliated Hospital, Guilin Medical University, Guilin, China
| | - Zhan Liu
- Department of Clinical Nutrition, The Affiliated Hospital, Hunan Normal University, Changsha, China
| | - Jian Xu
- Department of Clinical Pharmacology, College of Pharmacy, Xinxiang Medical University, Xinxiang, China
| | - Peng Li
- Department of Clinical Pharmacology, College of Pharmacy, Xinxiang Medical University, Xinxiang, China
| | - Mo-L Zhu
- Department of Clinical Pharmacology, College of Pharmacy, Xinxiang Medical University, Xinxiang, China
| | - Ya-L Yin
- Department of Histology and Embryology, School of Basic Medical Sciences, Xinxiang Medical University, Xinxiang, China
| |
Collapse
|
32
|
Zhang ZM, Wang BX, Ou WS, Lv YH, Li MM, Miao Z, Wang SX, Fei JC, Guo T. Administration of losartan improves aortic arterial stiffness and reduces the occurrence of acute coronary syndrome in aged patients with essential hypertension. J Cell Biochem 2018; 120:5713-5721. [PMID: 30362602 DOI: 10.1002/jcb.27856] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/07/2018] [Accepted: 09/19/2018] [Indexed: 02/03/2023]
Abstract
BACKGROUNDS AND AIMS Increased arterial stiffness may increase cardiovascular morbidity and mortality. Angiotensin II type 1 receptor blocker losartan is potentially useful in controlling the central blood pressure and arterial stiffness in mild to moderate essential hypertension, while the effects of losartan in aged patients with essential hypertension are not entirely investigated. METHODS The carotid-femoral arterial pulse wave velocity (PWV) was measured in aged patients with essential hypertension. RESULTS In a cross-sectional study, PWV value was significantly higher in these old patients with essential hypertension, compared with patients without essential hypertension. Logistic regression analysis indicated that age, hypertension duration, and losartan treatment are risk factors of arterial stiffness. In a perspective study, long-term administration of losartan (50 mg/d) remarkably reduced PWV in aged patients with essential hypertension. In a longitudinal study, PWV is an independent predictor of the occurrence of acute coronary syndrome (ACS) in elderly patients with essential hypertension by using multivariate analysis. Further, the ACS occurrence was reduced by long-term administration of losartan in aged patients with essential hypertension, compared with the old hypertensive patients without taking losartan. CONCLUSION Losartan treatment is a negative risk factor of arterial stiffness and reduces the risk of ACS in aged patients with essential hypertension.
Collapse
Affiliation(s)
- Zhi-Mian Zhang
- Department of Cardiology, The Center of Health Examination, Qilu Hospital, Shandong University, Jinan, China
| | - Bing-Xiang Wang
- Department of Orthopedics, Provincial Hospital of Shandong, Jinan, China
| | - Wen-Sheng Ou
- Department of Liver Disease, Chenzhou No.1 People s Hospital, Chenzhou, China
| | - Yan-Hong Lv
- Department of Cardiology, The Center of Health Examination, Qilu Hospital, Shandong University, Jinan, China
| | - Ming-Min Li
- Department of Cardiology, The Center of Health Examination, Qilu Hospital, Shandong University, Jinan, China
| | - Zhang Miao
- The Key Laboratory of Cardiovascular Remodeling and Function Research, The State and Shandong Province Joint Key Laboratory of Translational Cardiovascular Medicine, Department of Cardiology, Chinese Ministry of Education, Chinese National Health Commission and Chinese Academy of Medical Sciences, Qilu Hospital of Shandong University, Jinan, China
| | - Shuang-Xi Wang
- The Key Laboratory of Cardiovascular Remodeling and Function Research, The State and Shandong Province Joint Key Laboratory of Translational Cardiovascular Medicine, Department of Cardiology, Chinese Ministry of Education, Chinese National Health Commission and Chinese Academy of Medical Sciences, Qilu Hospital of Shandong University, Jinan, China
| | - Jian-Chun Fei
- Department of Anaesthesia, Qilu Hospital, Shandong University, Jinan, China
| | - Tao Guo
- The Key Laboratory of Cardiovascular Remodeling and Function Research, The State and Shandong Province Joint Key Laboratory of Translational Cardiovascular Medicine, Department of Cardiology, Chinese Ministry of Education, Chinese National Health Commission and Chinese Academy of Medical Sciences, Qilu Hospital of Shandong University, Jinan, China
| |
Collapse
|
33
|
Zhu ML, Sun RL, Zhang HY, Zhao FR, Pan GP, Zhang C, Song P, Li P, Xu J, Wang S, Yin YL. Angiotensin II type 1 receptor blockers prevent aortic arterial stiffness in elderly patients with hypertension. Clin Exp Hypertens 2018; 41:657-661. [PMID: 30311805 DOI: 10.1080/10641963.2018.1529781] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/28/2022]
Abstract
Backgrounds and aims: Increased arterial stiffness may increase cardiovascular morbidity and mortality. Angiotensin II type 1 receptor blockers (ARBs) are potentially useful in controlling the central blood pressure and arterial stiffness in mild to moderate essential hypertension, while the effects of ARBs in aged patients with essential hypertension are not entirely investigated. Methods: The carotid-femoral arterial pulse wave velocity (PWV) was measured in aged patients with essential hypertension. Results: In a cross-sectional study, PWV value was significantly higher in these old patients with essential hypertension, compared to patients without essential hypertension. In correlation analysis, PWV was associated positively with age, hypertension duration, and carotid atherosclerosis. However, there was no relationship between PWV and gender in aged patients with essential hypertension. In a perspective study, 6-12 months administration of ARBs (losartan, 50 mg/day; telmisartan, 40 mg/day; valsartan 80 mg/day; irbesartan, 150 mg/day) remarkably reduced PWV in aged patients with essential hypertension. Regression analyses of multiple factors indicated that the effects of ARBs on arterial stiffness were not associated with the reduction of blood pressure. Conclusion: ARB treatment is a negative risk factor of arterial stiffness in aged patients with essential hypertension.
Collapse
Affiliation(s)
- Mo-Li Zhu
- a College of Pharmacy, Xinxiang Medical University , Xinxiang , China
| | - Rui-Li Sun
- b Henan Key Laboratory of Immunology and Targeted Therapy, Henan Collaborative Innovation Center of Molecular Diagnosis and Laboratory Medicine in Henan Province, School of Laboratory Medicine, Xinxiang Medical University , Xinxiang , China
| | - He-Yun Zhang
- a College of Pharmacy, Xinxiang Medical University , Xinxiang , China
| | - Fan-Rong Zhao
- a College of Pharmacy, Xinxiang Medical University , Xinxiang , China
| | - Guo-Pin Pan
- a College of Pharmacy, Xinxiang Medical University , Xinxiang , China
| | - Chong Zhang
- a College of Pharmacy, Xinxiang Medical University , Xinxiang , China
| | - Ping Song
- a College of Pharmacy, Xinxiang Medical University , Xinxiang , China
| | - Peng Li
- a College of Pharmacy, Xinxiang Medical University , Xinxiang , China
| | - Jian Xu
- a College of Pharmacy, Xinxiang Medical University , Xinxiang , China
| | - Shuangxi Wang
- a College of Pharmacy, Xinxiang Medical University , Xinxiang , China
| | - Ya-Ling Yin
- c School of Basic Medical Sciences, Xinxiang Medical University , Xinxiang , China
| |
Collapse
|
34
|
Endothelial AMP-Activated Kinase α1 Phosphorylates eNOS on Thr495 and Decreases Endothelial NO Formation. Int J Mol Sci 2018; 19:ijms19092753. [PMID: 30217073 PMCID: PMC6165563 DOI: 10.3390/ijms19092753] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/02/2018] [Revised: 09/07/2018] [Accepted: 09/11/2018] [Indexed: 02/08/2023] Open
Abstract
AMP-activated protein kinase (AMPK) is frequently reported to phosphorylate Ser1177 of the endothelial nitric-oxide synthase (eNOS), and therefore, is linked with a relaxing effect. However, previous studies failed to consistently demonstrate a major role for AMPK on eNOS-dependent relaxation. As AMPK also phosphorylates eNOS on the inhibitory Thr495 site, this study aimed to determine the role of AMPKα1 and α2 subunits in the regulation of NO-mediated vascular relaxation. Vascular reactivity to phenylephrine and acetylcholine was assessed in aortic and carotid artery segments from mice with global (AMPKα-/-) or endothelial-specific deletion (AMPKαΔEC) of the AMPKα subunits. In control and AMPKα1-depleted human umbilical vein endothelial cells, eNOS phosphorylation on Ser1177 and Thr495 was assessed after AMPK activation with thiopental or ionomycin. Global deletion of the AMPKα1 or α2 subunit in mice did not affect vascular reactivity. The endothelial-specific deletion of the AMPKα1 subunit attenuated phenylephrine-mediated contraction in an eNOS- and endothelium-dependent manner. In in vitro studies, activation of AMPK did not alter the phosphorylation of eNOS on Ser1177, but increased its phosphorylation on Thr495. Depletion of AMPKα1 in cultured human endothelial cells decreased Thr495 phosphorylation without affecting Ser1177 phosphorylation. The results of this study indicate that AMPKα1 targets the inhibitory phosphorylation Thr495 site in the calmodulin-binding domain of eNOS to attenuate basal NO production and phenylephrine-induced vasoconstriction.
Collapse
|
35
|
Yu L, Liu H. Perillaldehyde prevents the formations of atherosclerotic plaques through recoupling endothelial nitric oxide synthase. J Cell Biochem 2018; 119:10204-10215. [DOI: 10.1002/jcb.27362] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/23/2017] [Accepted: 06/26/2018] [Indexed: 11/10/2022]
Affiliation(s)
- Li Yu
- Department of Physiology, School of Basic Medical Sciences Jinzhou Medical University Jinzhou China
- Institue of Eyes Jinzhou Medical University Jinzhou China
| | - Hua Liu
- Institue of Eyes Jinzhou Medical University Jinzhou China
| |
Collapse
|
36
|
Zhang HM, Liu MY, Lu JX, Zhu ML, Jin Q, Ping S, Li P, Jian X, Han YL, Wang SX, Li XY. Intracellular acidosis via activation of Akt-Girdin signaling promotes post ischemic angiogenesis during hyperglycemia. Int J Cardiol 2018; 277:205-211. [PMID: 30316647 DOI: 10.1016/j.ijcard.2018.08.028] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/25/2018] [Revised: 08/07/2018] [Accepted: 08/09/2018] [Indexed: 10/28/2022]
Abstract
AIMS The impaired angiogenesis is the major cause of diabetic delayed wound healing. The molecular insight remains unknown. Previous study has shown that high glucose (HG) activates Na+/H+ exchanger 1 (NHE1) and induces intracellular alkalinization, resulting in endothelial dysfunction. The aim of this study is to investigate whether activation of NHE1 in endothelial cells by HG damages the angiogenesis in vitro and in vivo. METHODS AND RESULTS We used western blot to detect the phosphorylations of both Akt and Girdin, and pH-sensitive BCECF fluorescence to assay NHE1 activity and pHi value, respectively. The angiogenesis was evaluated by measuring the number of tube formation in vitro, and blood perfusion by laser doppler and neovascularization by staining CD31 in vivo. Our results indicated that induction of intracellular acidosis (IA) increased p-Akt and p-Girdin in human umbilical vein endothelial cells (HUVEC). HG activated NHE1 and increased pHi value in a time-dependent manner, associated with the decreased phosphorylations of both Akt and Gridin, while inhibition of NHE1 by amiloride abolished the HG-induced reductions of p-Akt and p-Girdin. However, silence of Akt by siRNA transfection or pharmacological inhibitors (wortmannin and LY294002) bypassed IA-induced Girdin phosphorylation. Overexpression of constitutively active Akt abolished HG-reduced Girdin phosphorylation. In addition, upregulation of Akt or inhibition of NHE1 remarkably attenuated HG-impaired tube formation in HUVEC. In vivo study revealed that amiloride dramatically rescued hyperglycemia-delayed blood perfusion and neovascularization by augmenting ischemia-induced angiogenesis. CONCLUSION IA promotes ischemia-induced angiogenesis via Akt-dependent Girdin phosphorylation in diabetic mice.
Collapse
Affiliation(s)
- Hong-Ming Zhang
- Department of Cardiology, General Hospital of Jinan Military Command, Jinan, China
| | - Mo-Yan Liu
- Department of Cardiology, General Hospital of Jinan Military Command, Jinan, China
| | - Jun-Xiu Lu
- Department of Pharmacology, College of Pharmacy, Xinxiang Medical University, Xinxiang, China
| | - Mo-Li Zhu
- Department of Pharmacology, College of Pharmacy, Xinxiang Medical University, Xinxiang, China
| | - Qun Jin
- Department of Cardiology, General Hospital of Jinan Military Command, Jinan, China
| | - Song Ping
- Department of Pharmacology, College of Pharmacy, Xinxiang Medical University, Xinxiang, China
| | - Peng Li
- Department of Pharmacology, College of Pharmacy, Xinxiang Medical University, Xinxiang, China
| | - Xu Jian
- Department of Pharmacology, College of Pharmacy, Xinxiang Medical University, Xinxiang, China
| | - Ya-Ling Han
- Department of Cardiology, General Hospital of Shenyang Military Command, Shenyang, China.
| | - Shuang-Xi Wang
- Department of Pharmacology, College of Pharmacy, Xinxiang Medical University, Xinxiang, China; The Key Laboratory of Cardiovascular Remodeling and Function Research, Chinese Ministry of Education, Chinese National Health Commission and Chinese Academy of Medical Sciences, The State and Shandong Province Joint Key Laboratory of Translational Cardiovascular Medicine, Department of Cardiology, Qilu Hospital of Shandong University, Jinan, China.
| | - Xiao-Yan Li
- Department of Cardiology, General Hospital of Jinan Military Command, Jinan, China.
| |
Collapse
|
37
|
Nafisa A, Gray SG, Cao Y, Wang T, Xu S, Wattoo FH, Barras M, Cohen N, Kamato D, Little PJ. Endothelial function and dysfunction: Impact of metformin. Pharmacol Ther 2018; 192:150-162. [PMID: 30056057 DOI: 10.1016/j.pharmthera.2018.07.007] [Citation(s) in RCA: 91] [Impact Index Per Article: 13.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
Cardiovascular and metabolic diseases remain the leading cause of morbidity and mortality worldwide. Endothelial dysfunction is a key player in the initiation and progression of cardiovascular and metabolic diseases. Current evidence suggests that the anti-diabetic drug metformin improves insulin resistance and protects against endothelial dysfunction in the vasculature. Hereby, we provide a timely review on the protective effects and molecular mechanisms of metformin in preventing endothelial dysfunction and cardiovascular and metabolic diseases.
Collapse
Affiliation(s)
- Asma Nafisa
- School of Pharmacy, University of Queensland, Pharmacy Australia Centre of Excellence, Woolloongabba, QLD, Australia.
| | - Susan G Gray
- School of Pharmacy, University of Queensland, Pharmacy Australia Centre of Excellence, Woolloongabba, QLD, Australia.
| | - Yingnan Cao
- Xinhua College of Sun Yat-sen University, Tianhe District, Guangzhou, China
| | - Tinghuai Wang
- Xinhua College of Sun Yat-sen University, Tianhe District, Guangzhou, China.
| | - Suowen Xu
- Aab Cardiovascular Research Institute, Department of Medicine, University of Rochester School of Medicine and Dentistry, Rochester, NY, USA.
| | - Feroza H Wattoo
- Department of Biochemistry, PMAS Arid Agriculture University, Shamasabad, Muree Road, Rawalpindi 4600, Pakistan..
| | - Michael Barras
- Dept. of Pharmacy, Princess Alexandra Hospital, 199 Ipswich Rd, Woolloongabba, QLD 4102, Australia.
| | - Neale Cohen
- Baker Heart and Diabetes Institute, Melbourne, 3004, Victoria, Australia.
| | - Danielle Kamato
- School of Pharmacy, University of Queensland, Pharmacy Australia Centre of Excellence, Woolloongabba, QLD, Australia; Xinhua College of Sun Yat-sen University, Tianhe District, Guangzhou, China.
| | - Peter J Little
- School of Pharmacy, University of Queensland, Pharmacy Australia Centre of Excellence, Woolloongabba, QLD, Australia; Xinhua College of Sun Yat-sen University, Tianhe District, Guangzhou, China.
| |
Collapse
|
38
|
Huang M, Wei R, Wang Y, Su T, Li P, Chen X. The uremic toxin hippurate promotes endothelial dysfunction via the activation of Drp1-mediated mitochondrial fission. Redox Biol 2018; 16:303-313. [PMID: 29573704 PMCID: PMC5953222 DOI: 10.1016/j.redox.2018.03.010] [Citation(s) in RCA: 74] [Impact Index Per Article: 10.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/22/2018] [Revised: 03/14/2018] [Accepted: 03/15/2018] [Indexed: 12/31/2022] Open
Abstract
The accumulation of uremic toxins in chronic kidney disease (CKD) induces inflammation, oxidative stress and endothelial dysfunction, which is a key step in atherosclerosis. Accumulating evidence indicates increased mitochondrial fission is a contributing mechanism for impaired endothelial function. Hippurate, a uremic toxin, has been reported to be involved in cardiovascular diseases. Here, we assessed the endothelial toxicity of hippurate and the contribution of altered mitochondrial dynamics to hippurate-induced endothelial dysfunction. Treatment of human aortic endothelial cells with hippurate reduced the expression of endothelial nitric oxide synthase (eNOS) and increased the expression of intercellular cell adhesion molecule-1 (ICAM-1) and von Willebrand factor (vWF). The mechanisms of hippurate-induced endothelial dysfunction in vitro depended on the activation of Dynamin-related protein 1 (Drp1)-mediated mitochondrial fission and overproduction of mitochondrial reactive oxygen species (mitoROS). In a rat model in which CKD was induced by 5/6 nephrectomy (CKD rat), we observed increased oxidative stress, impaired endothelium-dependent vasodilation, and elevated soluble biomarkers of endothelial dysfunction (ICAM-1 and vWF). Similarly, endothelial dysfunction was identified in healthy rats treated with disease-relevant concentrations of hippurate. In aortas of CKD rats and hippurate-treated rats, we observed an increase in Drp1 protein levels and mitochondrial fission. Inhibition of Drp1 improved endothelial function in both rat models. These results indicate that hippurate, by itself, can cause endothelial dysfunction. Increased mitochondrial fission plays an active role in hippurate-induced endothelial dysfunction via an increase in mitoROS.
Collapse
Affiliation(s)
- Mengjie Huang
- Department of Nephrology, Chinese PLA General Hospital, Chinese PLA Institute of Nephrology, State Key Laboratory of Kidney Diseases, National Clinical Research Center for Kidney Diseases, Beijing Key Laboratory of Kidney Disease, Beijing 100853,People's Republic of China
| | - Ribao Wei
- Department of Nephrology, Chinese PLA General Hospital, Chinese PLA Institute of Nephrology, State Key Laboratory of Kidney Diseases, National Clinical Research Center for Kidney Diseases, Beijing Key Laboratory of Kidney Disease, Beijing 100853,People's Republic of China.
| | - Yang Wang
- Department of Nephrology, Chinese PLA General Hospital, Chinese PLA Institute of Nephrology, State Key Laboratory of Kidney Diseases, National Clinical Research Center for Kidney Diseases, Beijing Key Laboratory of Kidney Disease, Beijing 100853,People's Republic of China
| | - Tingyu Su
- Department of Nephrology, Chinese PLA General Hospital, Chinese PLA Institute of Nephrology, State Key Laboratory of Kidney Diseases, National Clinical Research Center for Kidney Diseases, Beijing Key Laboratory of Kidney Disease, Beijing 100853,People's Republic of China
| | - Ping Li
- Department of Nephrology, Chinese PLA General Hospital, Chinese PLA Institute of Nephrology, State Key Laboratory of Kidney Diseases, National Clinical Research Center for Kidney Diseases, Beijing Key Laboratory of Kidney Disease, Beijing 100853,People's Republic of China
| | - Xiangmei Chen
- Department of Nephrology, Chinese PLA General Hospital, Chinese PLA Institute of Nephrology, State Key Laboratory of Kidney Diseases, National Clinical Research Center for Kidney Diseases, Beijing Key Laboratory of Kidney Disease, Beijing 100853,People's Republic of China
| |
Collapse
|
39
|
Liang WJ, Zhou SN, Shan MR, Wang XQ, Zhang M, Chen Y, Zhang Y, Wang SX, Guo T. AMPKα inactivation destabilizes atherosclerotic plaque in streptozotocin-induced diabetic mice through AP-2α/miRNA-124 axis. J Mol Med (Berl) 2018; 96:403-412. [PMID: 29502204 DOI: 10.1007/s00109-018-1627-8] [Citation(s) in RCA: 34] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/09/2017] [Revised: 12/09/2017] [Accepted: 02/05/2018] [Indexed: 01/02/2023]
Abstract
Diabetes mellitus is one of risk factors of cardiovascular diseases including atherosclerosis. Whether and how diabetes promotes the formation of unstable atherosclerotic plaque is not fully understood. Here, we show that streptozotocin-induced type 1 diabetes reduced collagen synthesis, leading to the formation of unstable atherosclerotic plaque induced by collar placement around carotid in apolipoprotein E knockout (Apoe-/-) mice. These detrimental effects of hyperglycemia on plaque stability were reversed by metformin in vivo without altering the levels of blood glucose and lipids. Mechanistically, we found that high glucose reduced the phosphorylated level of AMP-activated protein kinase alpha (AMPKα) and the transcriptional activity of activator protein 2 alpha (AP-2α), increased the expression of miR-124 expression, and downregulated prolyl-4-hydroxylase alpha 1 (P4Hα1) protein expression and collagen biosynthesis in cultured vascular smooth muscle cells. Importantly, these in vitro effects produced by high glucose were abolished by AMPKα pharmacological activation or adenovirus-mediated AMPKα overexpression. Further, adenovirus-mediated AMPKα gain of function remitted the process of diabetes-induced plaque destabilization in Apoe-/- mice injected with streptozotocin. Administration of metformin enhanced pAP-2α level, reduced miR-124 expression, and increased P4Hα1 and collagens in carotid atherosclerotic plaque in diabetic Apoe-/- mice. We conclude that streptozotocin-induced toxic diabetes promotes the formation of unstable atherosclerotic plaques based on the vulnerability index in Apoe-/- mice, which is related to the inactivation of AMPKα/AP-2α/miRNA-124/P4Hα1 axis. Clinically, targeting AMPKα/AP-2α/miRNA-124/P4Hα1 signaling should be considered to increase the plaque stability in patients with atherosclerosis. KEY MESSAGES Hyperglycemia reduced collagen synthesis, leading to the formation of unstable atherosclerotic plaque induced by collar placement around carotid in apolipoprotein E knockout mice. Hyperglycemia destabilizes atherosclerotic plaque in vivo through an AMPKα/AP-2α/miRNA-124/P4Hα1-dependent collagen synthesis. Metformin functions as a stabilizer of atherosclerotic plaque to reduce acute coronary accent.
Collapse
Affiliation(s)
- Wen-Jing Liang
- The Key Laboratory of Cardiovascular Remodeling and Function Research, Qilu Hospital, Shandong University School of Medicine, No. 107 West Culture Road, Jinan, Shandong, 250012, China
| | - Sheng-Nan Zhou
- The Key Laboratory of Cardiovascular Remodeling and Function Research, Qilu Hospital, Shandong University School of Medicine, No. 107 West Culture Road, Jinan, Shandong, 250012, China
| | - Mei-Rong Shan
- The Key Laboratory of Cardiovascular Remodeling and Function Research, Qilu Hospital, Shandong University School of Medicine, No. 107 West Culture Road, Jinan, Shandong, 250012, China
| | - Xue-Qin Wang
- The Key Laboratory of Cardiovascular Remodeling and Function Research, Qilu Hospital, Shandong University School of Medicine, No. 107 West Culture Road, Jinan, Shandong, 250012, China
| | - Miao Zhang
- The Key Laboratory of Cardiovascular Remodeling and Function Research, Qilu Hospital, Shandong University School of Medicine, No. 107 West Culture Road, Jinan, Shandong, 250012, China
| | - Yuan Chen
- The Key Laboratory of Cardiovascular Remodeling and Function Research, Qilu Hospital, Shandong University School of Medicine, No. 107 West Culture Road, Jinan, Shandong, 250012, China
| | - Yun Zhang
- The Key Laboratory of Cardiovascular Remodeling and Function Research, Qilu Hospital, Shandong University School of Medicine, No. 107 West Culture Road, Jinan, Shandong, 250012, China.
| | - Shuang-Xi Wang
- The Key Laboratory of Cardiovascular Remodeling and Function Research, Qilu Hospital, Shandong University School of Medicine, No. 107 West Culture Road, Jinan, Shandong, 250012, China.
| | - Tao Guo
- The Key Laboratory of Cardiovascular Remodeling and Function Research, Qilu Hospital, Shandong University School of Medicine, No. 107 West Culture Road, Jinan, Shandong, 250012, China.
| |
Collapse
|
40
|
Wang F, Ma H, Liang WJ, Yang JJ, Wang XQ, Shan MR, Chen Y, Jia M, Yin YL, Sun XY, Zhang JN, Peng QS, Chen YG, Liu LY, Li P, Guo T, Wang SX. Lovastatin upregulates microRNA-29b to reduce oxidative stress in rats with multiple cardiovascular risk factors. Oncotarget 2018; 8:9021-9034. [PMID: 28061433 PMCID: PMC5354712 DOI: 10.18632/oncotarget.14462] [Citation(s) in RCA: 28] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/03/2016] [Accepted: 09/25/2016] [Indexed: 12/18/2022] Open
Abstract
AIMS Proteasome-linked oxidative stress is believed to cause endothelial dysfunction, an early event in cardiovascular diseases (CVD). Statin, as HMG-CoA reductase inhibitor, prevents endothelial dysfunction in CVD. However, the molecular mechanism of statin-mediated normalization of endothelial function is not completely elucidated. METHODS AND RESULTS Lovastatin time/dose-dependently increased miR-29b expression and decreased proteasome activity in cultured human umbilical vein endothelial cells (HUVECs). Anti-miR-29b or overexpression of PA200 abolished lovastatin-induced inhibition of proteasome activity in HUVECs. In contrast, pre-miR-29b or PA200 siRNA mimics these effects of lovastatin on proteasome activity. Lovastatin inhibited oxidative stress induced by multiple oxidants including ox-LDL, H2O2, TNFα, homocysteine thiolactone (HTL), and high glucose (HG), which were reversed by inhibition of miR-29b in HUVECs. Ex vivo analysis indicated that lovastatin normalized the acetylcholine-induced endothelium-dependent relaxation and the redox status in isolated rat aortic arteries exposure to multiple cardiovascular risk factors. In vivo analysis revealed that administration of lovastatin remarkably suppressed oxidative stress and prevented endothelial dysfunction in rats with hyperglycemia, dyslipidemia, and hyperhomocysteinemia, as well as increased miR-29b expressions, reduced PA200 protein levels, and suppression of proteasome activity in aortic tissues. CONCLUSION Upregulation of miR-29b expression is a common mechanism contributing to endothelial dysfunction induced by multiple cardiovascular risk factors through PA200-dependent proteasome-mediated oxidative stress, which is prevented by lovastatin.
Collapse
Affiliation(s)
- Fu Wang
- The Key Laboratory of Cardiovascular Remodeling and Function Research, Qilu Hospital, Shandong University School of Medicine, Jinan, China
| | - Hui Ma
- The Key Laboratory of Cardiovascular Remodeling and Function Research, Qilu Hospital, Shandong University School of Medicine, Jinan, China
| | - Wen-Jing Liang
- The Key Laboratory of Cardiovascular Remodeling and Function Research, Qilu Hospital, Shandong University School of Medicine, Jinan, China
| | - Jing-Jing Yang
- The Key Laboratory of Cardiovascular Remodeling and Function Research, Qilu Hospital, Shandong University School of Medicine, Jinan, China
| | - Xue-Qing Wang
- The Key Laboratory of Cardiovascular Remodeling and Function Research, Qilu Hospital, Shandong University School of Medicine, Jinan, China
| | - Mei-Rong Shan
- The Key Laboratory of Cardiovascular Remodeling and Function Research, Qilu Hospital, Shandong University School of Medicine, Jinan, China
| | - Yuan Chen
- The Key Laboratory of Cardiovascular Remodeling and Function Research, Qilu Hospital, Shandong University School of Medicine, Jinan, China
| | - Min Jia
- Department of Rehabilitation Medicine, Jinan Municipal Hospital of Traditional Chinese Medicine, Jinan, China
| | - Ya-Ling Yin
- Department of Pharmacology, College of Pharmacy, Xinxiang Medical University, Xinxiang, China
| | - Xue-Ying Sun
- Department of Pharmacology, Pharmaceutical College, Central South University, Changsha, China
| | - Jia-Ning Zhang
- Biology and Chemistry, Denison University, Granville, OH, USA
| | - Qi-Sheng Peng
- Key Laboratory for Zoonosis Research, Ministry of Education, Institute of Zoonosis, Jilin University, Changchun, China
| | - Yu-Guo Chen
- The Key Laboratory of Cardiovascular Remodeling and Function Research, Qilu Hospital, Shandong University School of Medicine, Jinan, China
| | - Li-Ying Liu
- Department of Pharmacology, Pharmaceutical College, Central South University, Changsha, China
| | - Peng Li
- Department of Pharmacology, College of Pharmacy, Xinxiang Medical University, Xinxiang, China
| | - Tao Guo
- The Key Laboratory of Cardiovascular Remodeling and Function Research, Qilu Hospital, Shandong University School of Medicine, Jinan, China
| | - Shuang-Xi Wang
- The Key Laboratory of Cardiovascular Remodeling and Function Research, Qilu Hospital, Shandong University School of Medicine, Jinan, China
| |
Collapse
|
41
|
Antagonist of thromboxane A2 receptor by SQ29548 lowers DOCA-induced hypertension in diabetic rats. Eur J Pharmacol 2017; 815:298-303. [DOI: 10.1016/j.ejphar.2017.09.028] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/02/2017] [Revised: 09/13/2017] [Accepted: 09/19/2017] [Indexed: 02/03/2023]
|
42
|
Ning C, Wang X, Gao S, Mu J, Wang Y, Liu S, Zhu J, Meng X. Chicory inulin ameliorates type 2 diabetes mellitus and suppresses JNK and MAPK pathways in vivo and in vitro. Mol Nutr Food Res 2017; 61. [PMID: 28105758 DOI: 10.1002/mnfr.201600673] [Citation(s) in RCA: 42] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/03/2016] [Revised: 01/12/2017] [Accepted: 01/13/2017] [Indexed: 12/13/2022]
Abstract
SCOPE Chicory inulin is a naturally occurring fructan that is conducive to glucose and lipid metabolism in patients with diabetes mellitus. This study aims to investigate the mechanism by which chicory inulin improves glucolipid metabolism in diabetic conditions. METHODS AND RESULTS Rats were injected with streptozotocin and fed with high fat diet to induce diabetes, and then administrated with different doses of chicory inulin for 8 weeks. The glycometabolism and lipid metabolism parameters were determined, the activity of insulin receptor substrate (IRS) and mitogen-activated protein kinase (MAPK) pathways were examined by western blot. The effect of chicory inulin on glucose uptake of myoblast and hepatocyte were also measured in vitro. Data were analyzed by student's t-test or one-way analysis of variance followed by the Bonferroni post-hoc testing. The results showed that chicory inulin improved glucolipid metabolism, and it activated IRS but suppressed the MAPK pathways in vivo and in vitro. CONCLUSION Our study demonstrates that chicory inulin, as a nutritional supplement, may be beneficial for the patients with type 2 diabetes mellitus, and the metabolism-modulatory effect seems to be related with the inhibition of JNK and P38 MAPK pathways.
Collapse
Affiliation(s)
- Chong Ning
- College of Food Science, Shenyang Agricultural University, Shenyang, P. R. China
| | - Xiyao Wang
- School of Biomedical and Chemical Engineering, Liaoning Institute of Science and Technology, Benxi, P. R. China
| | - Song Gao
- College of Food Science, Shenyang Agricultural University, Shenyang, P. R. China
| | - Jingjing Mu
- College of Food Science, Shenyang Agricultural University, Shenyang, P. R. China
| | - Yuehua Wang
- College of Food Science, Shenyang Agricultural University, Shenyang, P. R. China
| | - Suwen Liu
- College of Food Science, Shenyang Agricultural University, Shenyang, P. R. China
- College of Food Science and Technology, Hebei Normal University of Science and Technology, Qinhuangdao, P. R. China
| | - Jinyan Zhu
- College of Food Science, Shenyang Agricultural University, Shenyang, P. R. China
- Food Inspection Monitoring Center of Zhuanghe, Dalian, P. R. China
| | - Xianjun Meng
- College of Food Science, Shenyang Agricultural University, Shenyang, P. R. China
| |
Collapse
|
43
|
Zhu ML, Yin YL, Ping S, Yu HY, Wan GR, Jian X, Li P. Berberine promotes ischemia-induced angiogenesis in mice heart via upregulation of microRNA-29b. Clin Exp Hypertens 2017; 39:672-679. [PMID: 28722488 DOI: 10.1080/10641963.2017.1313853] [Citation(s) in RCA: 36] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/06/2017] [Revised: 03/20/2017] [Accepted: 03/23/2017] [Indexed: 02/06/2023]
Abstract
BACKGROUND Berberine has several preventive effects on cardiovascular diseases. Increased expression of miR-29b has been reported to attenuate cardiac remodeling after myocardial infarction (MI). We hypothesized that berberine via an miR-29b-dependent mechanism promotes angiogenesis and improves heart functions in mice after MI. METHODS The MI model was established in mice by ligation of left anterior descending coronary artery. The expression of miR-29b was examined by RT-qPCR. Angiogenesis was assessed by immunohistochemistry. RESULTS Berberine increased miR-29b expression and promoted cell proliferations and migrations in cultured endothelial cells, which were abolished by miR-29b antagomir or AMP-activated protein kinase inhibitor compound C. In mice following MI, administration of berberine significantly increased miR-29b expressional level, promoted angiogenesis, reduced infarct size, and improved heart functions after 14 postoperative days. Importantly, these in vivo effects of berberine were ablated by antagonism of miR-29b. CONCLUSION Berberine via upregulation of miR-29b promotes ischemia-induced angiogenesis and improves heart functions.
Collapse
Affiliation(s)
- Mo-Li Zhu
- a College of Pharmacy , Xinxiang Medical University , Xinxiang , Henan , China
| | - Ya-Ling Yin
- b School of Basic Medical Sciences , Xinxiang Medical University , Xinxiang , Henan , China
| | - Song Ping
- a College of Pharmacy , Xinxiang Medical University , Xinxiang , Henan , China
| | - Hai-Ya Yu
- c Department of Neurology , The People's Hospital of Xishui County , Huangang , Hubei , China
| | - Guang-Rui Wan
- a College of Pharmacy , Xinxiang Medical University , Xinxiang , Henan , China
| | - Xu Jian
- a College of Pharmacy , Xinxiang Medical University , Xinxiang , Henan , China
| | - Peng Li
- a College of Pharmacy , Xinxiang Medical University , Xinxiang , Henan , China
| |
Collapse
|
44
|
Wu J, Wang J, Li X, Liu X, Yu X, Tian Y. MicroRNA-145 Mediates the Formation of Angiotensin II-Induced Murine Abdominal Aortic Aneurysm. Heart Lung Circ 2017; 26:619-626. [PMID: 27956160 DOI: 10.1016/j.hlc.2016.10.009] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/30/2016] [Revised: 09/29/2016] [Accepted: 10/23/2016] [Indexed: 01/22/2023]
Abstract
BACKGROUND MicroRNA-145 (miR-145) has been implicated in vascular smooth muscle cell differentiation, but the underlying mechanisms have not been fully understood, especially their role in abdominal aortic aneurysm (AAA) expansion. Here, we sought to explore and define the mechanisms of miR-145 function in the experimental AAA models in AngII-infused ApoE-/- mice. METHODS miR-145 was overexpressed in ApoE-/- mice via lentivirus infection, and then the incidence of AAA, maximum abdominal aortic diameter, elastin degradation and MMP2 activation were determined in AngII-infused ApoE-/- mice. RESULTS In vivo overexpression of miR-145 by lentivirus infection greatly decreased the incidence of AAA, maximum abdominal aortic diameter, and elastin degradation, accompanied with downregulation of MMP2 activation in AngII-infused ApoE-/- mice. Cell culture assays indicated that miR-145 inhibited AngII-induced upregulation of MMP2 gene expression. In contrast, deficiency of MMP2 abolished the effects of miR-145 on AngII-induced elastin and collagens degradations in ApoE-/- mice. CONCLUSION These data suggest that regulation of expression of miR-145 may be a potential therapeutic option for vascular disease progression such as AAA expansion.
Collapse
Affiliation(s)
- Jing Wu
- School of Nursing, Gansu University of Chinese Medicine, Lanzhou 730000, China
| | - Jun Wang
- Shenzhen Center for Chronic Disease Control, Shenzhen 518020, China
| | - Xiaoou Li
- Tumor Hospital of Jilin Province, Changchun 130021, China
| | - Xiaofeng Liu
- Tumor Hospital of Jilin Province, Changchun 130021, China
| | - Xiuyan Yu
- Tumor Hospital of Jilin Province, Changchun 130021, China
| | - Yunling Tian
- The First Hospital of Lanzhou University, Lanzhou 730000, China.
| |
Collapse
|
45
|
Abstract
The AMP-activated protein kinase (AMPK) is a key regulator of cellular and whole-body energy homeostasis, which acts to restore energy homoeostasis whenever cellular energy charge is depleted. Over the last 2 decades, it has become apparent that AMPK regulates several other cellular functions and has specific roles in cardiovascular tissues, acting to regulate cardiac metabolism and contractile function, as well as promoting anticontractile, anti-inflammatory, and antiatherogenic actions in blood vessels. In this review, we discuss the role of AMPK in the cardiovascular system, including the molecular basis of mutations in AMPK that alter cardiac physiology and the proposed mechanisms by which AMPK regulates vascular function under physiological and pathophysiological conditions.
Collapse
Affiliation(s)
- Ian P Salt
- From the Institute of Cardiovascular & Medical Sciences, College of Medical, Veterinary & Life Sciences, University of Glasgow, Scotland, United Kingdom (I.P.S.); and Division of Cell Signalling & Immunology, School of Life Sciences, University of Dundee, Scotland, United Kingdom (D.G.H.).
| | - D Grahame Hardie
- From the Institute of Cardiovascular & Medical Sciences, College of Medical, Veterinary & Life Sciences, University of Glasgow, Scotland, United Kingdom (I.P.S.); and Division of Cell Signalling & Immunology, School of Life Sciences, University of Dundee, Scotland, United Kingdom (D.G.H.)
| |
Collapse
|
46
|
Xie X, Sun W, Wang J, Li X, Liu X, Liu N. Activation of thromboxane A2 receptors mediates endothelial dysfunction in diabetic mice. Clin Exp Hypertens 2017; 39:312-318. [PMID: 28513223 DOI: 10.1080/10641963.2016.1246558] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
Abstract
BACKGROUND Diabetes is one of high-risk factors for cardiovascular disease. Improvement of endothelial dysfunction in diabetes reduces vascular complications. However, the underlying mechanism needs to be uncovered. This study was conducted to elucidate whether and how thromboxane A2 receptor (TPr) activation contributes to endothelial dysfunction in diabetes. METHODS AND RESULTS Exposure of human umbilical vein endothelial cells (HUVECs) to either TPr agonists, two structurally related thromboxane A2 (TxA2) mimetics, significantly reduced phosphorylations of endothelial nitric oxide synthase (eNOS) at Ser1177 and Akt at Ser473. These effects were abolished by pharmacological or genetic inhibitors of TPr. TPr-induced suppression of eNOS and Akt phosphorylation was accompanied by upregulation of PTEN (phosphatase and tension homolog deleted on chromosome 10) and Ser380/Thr382/383 PTEN phosphorylation. PTEN-specific siRNA restored Akt-eNOS signaling in the face of TPr activation. The small GTPase, Rho, was also activated by TPr stimulation, and pretreatment of HUVECs with Y27632, a Rho-associated kinase (ROCK) inhibitor, rescued TPr-impaired Akt-eNOS signaling. In mice, streptozotocin-induced diabetes was associated with aortic PTEN upregulation, PTEN-Ser380/Thr382/383 phosphorylation, and dephosphorylation of Akt (at Ser473) and eNOS (at Ser1177). Importantly, administration of TPr antagonist blocked these changes. CONCLUSION We conclude that TPr activation impairs endothelial function by selectively inactivating the ROCK-PTEN-Akt-eNOS pathway in diabetic mice.
Collapse
Affiliation(s)
- Xiaona Xie
- a Central Laboratory , The Second Hospital of Jilin University , Changchun , P. R. China.,b The First Hospital of Jilin University , Changchun , China
| | - Wanchun Sun
- c Key Laboratory of Zoonosis, Ministry of Education , Institute of Zoonosis, Jilin University , Changchun , China
| | - Jun Wang
- d Shenzhen Center for Chronic Disease Control , Shenzhen , China
| | - Xiaoou Li
- e Tumor Hospital of Jilin Province , Changchun , China
| | - Xiaofeng Liu
- e Tumor Hospital of Jilin Province , Changchun , China
| | - Ning Liu
- a Central Laboratory , The Second Hospital of Jilin University , Changchun , P. R. China
| |
Collapse
|
47
|
Dai X, Okon I, Liu Z, Wu Y, Zhu H, Song P, Zou MH. A novel role for myeloid cell-specific neuropilin 1 in mitigating sepsis. FASEB J 2017; 31:2881-2892. [PMID: 28325756 DOI: 10.1096/fj.201601238r] [Citation(s) in RCA: 29] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/13/2016] [Accepted: 03/06/2017] [Indexed: 01/13/2023]
Abstract
Sepsis-typically caused by an uncontrolled and amplified host systemic inflammatory response to microbial infection-is a life-threatening complex clinical disorder and remains a major cause of infection-related deaths in the intensive care unit. Emerging evidence suggests that neuropilin 1 (Nrp1), an originally defined coreceptor for class 3 semaphorins and VEGF, plays important roles in the immune system; however, the function and regulation of macrophage Nrp1 in host immune defense against bacterial infection remain unknown. To address this problem, we generated myeloid cell-specific Nrp1-knockout (Nrp1myel-KO) mice and applied 2 stringent animal models of sepsis: cecal ligation and puncture as well as intraperitoneal injection of LPS. Here, we reported that myeloid cell-specific Nrp1-deficient mice exhibited enhanced susceptibility to cecal ligation and puncture- and LPS-induced sepsis, which correlated with significantly decreased survival rates and heightened levels of proinflammatory cytokines in both peritoneal lavage and serum. Mechanistically, LPS specifically attenuated the expression of Nrp1 in macrophages, which was mediated by TLR4-NF-κB p50 and -65 pathways. By using isolated primary macrophages, loss of Nrp1 consistently resulted in increased production of proinflammatory cytokines, including iNOS, TNF-α, and IL-6. Together, these findings demonstrate a novel role of macrophage Nrp1 in sepsis.-Dai, X. Okon, I., Liu, Z., Wu, Y., Zhu, H., Song, P., Zou, M.-H. A novel role for myeloid cell-specific neuropilin 1 in mitigating sepsis.
Collapse
Affiliation(s)
- Xiaoyan Dai
- Center for Molecular and Translational Medicine, Georgia State University, Atlanta, Georgia, USA
| | - Imoh Okon
- Center for Molecular and Translational Medicine, Georgia State University, Atlanta, Georgia, USA
| | - Zhaoyu Liu
- Center for Molecular and Translational Medicine, Georgia State University, Atlanta, Georgia, USA
| | - Yue Wu
- Department of Cardiology, Cardiovascular Research Center, First Affiliated Hospital of Xi'an Jiaotong University, Xi'an, China
| | - Huaiping Zhu
- Center for Molecular and Translational Medicine, Georgia State University, Atlanta, Georgia, USA
| | - Ping Song
- Center for Molecular and Translational Medicine, Georgia State University, Atlanta, Georgia, USA
| | - Ming-Hui Zou
- Center for Molecular and Translational Medicine, Georgia State University, Atlanta, Georgia, USA;
| |
Collapse
|
48
|
Yin YL, Zhu ML, Wan J, Zhang C, Pan GP, Lu JX, Ping S, Chen Y, Zhao FR, Yu HY, Guo T, Jian X, Liu LY, Zhang JN, Wan GR, Wang SX, Li P. Traditional Chinese medicine xin-mai-jia recouples endothelial nitric oxide synthase to prevent atherosclerosis in vivo. Sci Rep 2017; 7:43508. [PMID: 28252100 PMCID: PMC5333158 DOI: 10.1038/srep43508] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/07/2016] [Accepted: 01/27/2017] [Indexed: 11/09/2022] Open
Abstract
Endothelial dysfunction, which is caused by endothelial nitric oxide synthase (eNOS) uncoupling, is an initial step in atherosclerosis. This study was designed to explore whether Chinese medicine xin-mai-jia (XMJ) recouples eNOS to exert anti-atherosclerotic effects. Pretreatment of XMJ (25, 50, 100 μg/ml) for 30 minutes concentration-dependently activated eNOS, improved cell viabilities, increased NO generations, and reduced ROS productions in human umbilical vein endothelial cells incubated with H2O2 for 2 hours, accompanied with restoration of BH4. Importantly, these protective effects produced by XMJ were abolished by eNOS inhibitor L-NAME or specific eNOS siRNA in H2O2-treated cells. In ex vivo experiments, exposure of isolated aortic rings from rats to H2O2 for 6 hours dramatically impaired acetylcholine-induced vasorelaxation, reduced NO levels and increased ROS productions, which were ablated by XMJ in concentration-dependent manner. In vivo analysis indicated that administration of XMJ (0.6, 2.0, 6.0 g/kg/d) for 12 weeks remarkably recoupled eNOS and reduced the size of carotid atherosclerotic plaque in rats feeding with high fat diet plus balloon injury. In conclusion, XMJ recouples eNOS to prevent the growth of atherosclerosis in rats. Clinically, XMJ is potentially considered as a medicine to treat patients with atherosclerosis.
Collapse
Affiliation(s)
- Ya-Ling Yin
- College of Pharmacy and School of Basic Medical Sciences, Xinxiang Medical University, Xinxiang, 453003, China
| | - Mo-Li Zhu
- College of Pharmacy and School of Basic Medical Sciences, Xinxiang Medical University, Xinxiang, 453003, China
| | - Jia Wan
- Department of Drug and Cosmetics Supervision, Henan Food and Drug Administration, Zhengzhou, 450018, China
| | - Chong Zhang
- College of Pharmacy and School of Basic Medical Sciences, Xinxiang Medical University, Xinxiang, 453003, China
| | - Guo-Pin Pan
- College of Pharmacy and School of Basic Medical Sciences, Xinxiang Medical University, Xinxiang, 453003, China
| | - Jun-Xiu Lu
- College of Pharmacy and School of Basic Medical Sciences, Xinxiang Medical University, Xinxiang, 453003, China
| | - Song Ping
- College of Pharmacy and School of Basic Medical Sciences, Xinxiang Medical University, Xinxiang, 453003, China
| | - Yuan Chen
- The Key Laboratory of Cardiovascular Remodeling and Function Research, Qilu Hospital, Shandong University, Jinan, 250012, China
| | - Fan-Rong Zhao
- Sanquan College of Xinxiang Medical University, Xinxiang, 453003, China
| | - Hai-Ya Yu
- Department of Neurology, The People's Hospital of Xishui County, Huangang, Hubei, China
| | - Tao Guo
- The Key Laboratory of Cardiovascular Remodeling and Function Research, Qilu Hospital, Shandong University, Jinan, 250012, China
| | - Xu Jian
- College of Pharmacy and School of Basic Medical Sciences, Xinxiang Medical University, Xinxiang, 453003, China
| | - Li-Ying Liu
- Sanquan College of Xinxiang Medical University, Xinxiang, 453003, China.,Department of Pharmacology, Xiangya School of Pharmaceutical Sciences, Central South University, Changsha, China
| | - Jia-Ning Zhang
- Biology and Chemistry, Denison University, Granville, OH, USA
| | - Guang-Rui Wan
- College of Pharmacy and School of Basic Medical Sciences, Xinxiang Medical University, Xinxiang, 453003, China
| | - Shuang-Xi Wang
- College of Pharmacy and School of Basic Medical Sciences, Xinxiang Medical University, Xinxiang, 453003, China.,The Key Laboratory of Cardiovascular Remodeling and Function Research, Qilu Hospital, Shandong University, Jinan, 250012, China
| | - Peng Li
- College of Pharmacy and School of Basic Medical Sciences, Xinxiang Medical University, Xinxiang, 453003, China
| |
Collapse
|
49
|
Mori A, Ishikawa E, Amano T, Sakamoto K, Nakahara T. Anti-diabetic drug metformin dilates retinal blood vessels through activation of AMP-activated protein kinase in rats. Eur J Pharmacol 2017; 798:66-71. [PMID: 28087254 DOI: 10.1016/j.ejphar.2017.01.003] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/31/2016] [Revised: 12/20/2016] [Accepted: 01/09/2017] [Indexed: 12/29/2022]
Abstract
The aim of this study was to examine whether metformin, a biguanide anti-hyperglycemic drug, dilates retinal blood vessels in rats. Ocular fundus images were captured with an original high-resolution digital fundus camera in vivo and diameters of retinal blood vessels were measured. Both systemic blood pressure and heart rate were continuously recorded. Metformin (0.01-0.3mg/kg/min) increased diameters of retinal blood vessels in a dose-dependent manner. This retinal vasodilator effect of metformin was abolished by compound C, an inhibitor of AMP-activated protein kinase (AMPK), and NG-nitro-L-arginine methyl ester, an inhibitor of nitric oxide (NO) synthase. Similar results were obtained with the AMPK activator 5-aminoimidazole-4-carboxamide-1-β-D-ribonucleoside (AICAR, 0.01-1mg/kg/min). Neither metformin nor AICAR exerted significant effect on mean blood pressure and heart rate. However, a significant pressor response to AICAR was observed upon inhibition of NO synthase. These results suggest that metformin dilates retinal blood vessels through activation of AMPK, and NO plays an important role in the retinal vasodilator response following AMPK activation.
Collapse
Affiliation(s)
- Asami Mori
- Department of Molecular Pharmacology, Kitasato University School of Pharmaceutical Sciences, 5-9-1 Shirokane, Minato-ku, Tokyo 108-8641, Japan
| | - Eriko Ishikawa
- Department of Molecular Pharmacology, Kitasato University School of Pharmaceutical Sciences, 5-9-1 Shirokane, Minato-ku, Tokyo 108-8641, Japan
| | - Tomoyo Amano
- Department of Molecular Pharmacology, Kitasato University School of Pharmaceutical Sciences, 5-9-1 Shirokane, Minato-ku, Tokyo 108-8641, Japan
| | - Kenji Sakamoto
- Department of Molecular Pharmacology, Kitasato University School of Pharmaceutical Sciences, 5-9-1 Shirokane, Minato-ku, Tokyo 108-8641, Japan
| | - Tsutomu Nakahara
- Department of Molecular Pharmacology, Kitasato University School of Pharmaceutical Sciences, 5-9-1 Shirokane, Minato-ku, Tokyo 108-8641, Japan.
| |
Collapse
|
50
|
Wang Q, Zhang M, Torres G, Wu S, Ouyang C, Xie Z, Zou MH. Metformin Suppresses Diabetes-Accelerated Atherosclerosis via the Inhibition of Drp1-Mediated Mitochondrial Fission. Diabetes 2017; 66:193-205. [PMID: 27737949 PMCID: PMC5204316 DOI: 10.2337/db16-0915] [Citation(s) in RCA: 282] [Impact Index Per Article: 35.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/26/2016] [Accepted: 10/06/2016] [Indexed: 12/21/2022]
Abstract
Metformin is a widely used antidiabetic drug that exerts cardiovascular protective effects in patients with diabetes. How metformin protects against diabetes-related cardiovascular diseases remains poorly understood. Here, we show that metformin abated the progression of diabetes-accelerated atherosclerosis by inhibiting mitochondrial fission in endothelial cells. Metformin treatments markedly reduced mitochondrial fragmentation, mitigated mitochondrial-derived superoxide release, improved endothelial-dependent vasodilation, inhibited vascular inflammation, and suppressed atherosclerotic lesions in streptozotocin (STZ)-induced diabetic ApoE-/- mice. In high glucose-exposed endothelial cells, metformin treatment and adenoviral overexpression of constitutively active AMPK downregulated mitochondrial superoxide, lowered levels of dynamin-related protein (Drp1) and its translocation into mitochondria, and prevented mitochondrial fragmentation. In contrast, AMPK-α2 deficiency abolished the effects of metformin on Drp1 expression, oxidative stress, and atherosclerosis in diabetic ApoE-/-/AMPK-α2-/- mice, indicating that metformin exerts an antiatherosclerotic action in vivo via the AMPK-mediated blockage of Drp1-mediated mitochondrial fission. Consistently, mitochondrial division inhibitor 1, a potent and selective Drp1 inhibitor, reduced mitochondrial fragmentation, attenuated oxidative stress, ameliorated endothelial dysfunction, inhibited inflammation, and suppressed atherosclerosis in diabetic mice. These findings show that metformin attenuated the development of atherosclerosis by reducing Drp1-mediated mitochondrial fission in an AMPK-dependent manner. Suppression of mitochondrial fission may be a therapeutic approach for treating macrovascular complications in patients with diabetes.
Collapse
Affiliation(s)
- Qilong Wang
- Center for Molecular and Translational Medicine, Georgia State University, Atlanta, GA
| | - Miao Zhang
- Department of Medicine, The University of Oklahoma Health Sciences Center, Oklahoma City, OK
| | - Gloria Torres
- Center for Molecular and Translational Medicine, Georgia State University, Atlanta, GA
| | - Shengnan Wu
- Center for Molecular and Translational Medicine, Georgia State University, Atlanta, GA
| | - Changhan Ouyang
- Center for Molecular and Translational Medicine, Georgia State University, Atlanta, GA
| | - Zhonglin Xie
- Center for Molecular and Translational Medicine, Georgia State University, Atlanta, GA
| | - Ming-Hui Zou
- Center for Molecular and Translational Medicine, Georgia State University, Atlanta, GA
- Corresponding author: Ming-Hui Zou, , or Zhonglin Xie,
| |
Collapse
|