1
|
Prete V, Di Pietro P, Abate AC, Venturini E, Iside C, Vecchione C, Carrizzo A. TRIB1: a multifaceted regulator of cardiometabolic health. Am J Physiol Cell Physiol 2025; 328:C1973-C1981. [PMID: 40331689 DOI: 10.1152/ajpcell.00231.2025] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/13/2025] [Revised: 04/02/2025] [Accepted: 05/01/2025] [Indexed: 05/08/2025]
Abstract
Cardiovascular diseases (CVDs) are the leading cause of morbidity and mortality worldwide. The rising prevalence of CVD is primarily driven by several risk factors, including dyslipidemia, atherosclerosis, diabetes, and obesity. Many current studies are focused on unraveling the underlying pathophysiological mechanisms that govern these risk factors, with the main goal of identifying novel biomarkers and therapeutic targets to prevent the onset of CVD in the population. In recent decades, genome-wide association studies (GWASs) have linked the 8q24 locus containing the TRIB1 (Tribbles homolog 1) gene to various cardiometabolic traits in humans, such as plasma triglycerides, LDL cholesterol, HDL cholesterol, total cholesterol, adiponectin, and glycated hemoglobin levels. Emerging research has investigated the role of Trib1 in regulating plasma lipid levels, inflammation, and insulin signaling, opening new avenues for the potential therapeutic role of Trib1 in CVD risk assessment. Accordingly, this review aims to explore the crucial role of Trib1 as a therapeutic biomarker in CVDs, with a focus on its association with lipid metabolism, atherosclerosis, obesity, and diabetes, analyzing in vitro and in vivo studies and offering insights into its underlying molecular mechanisms.
Collapse
Affiliation(s)
- Valeria Prete
- Department of Medicine, Surgery and Dentistry "Scuola Medica Salernitana", University of Salerno, Baronissi, Italy
- Department of Biology, University of Naples Federico II, Complesso Universitario Monte S. Angelo, Naples, Italy
| | - Paola Di Pietro
- Department of Medicine, Surgery and Dentistry "Scuola Medica Salernitana", University of Salerno, Baronissi, Italy
| | - Angela Carmelita Abate
- Department of Medicine, Surgery and Dentistry "Scuola Medica Salernitana", University of Salerno, Baronissi, Italy
| | | | - Concetta Iside
- Department of Medicine, Surgery and Dentistry "Scuola Medica Salernitana", University of Salerno, Baronissi, Italy
| | - Carmine Vecchione
- Department of Medicine, Surgery and Dentistry "Scuola Medica Salernitana", University of Salerno, Baronissi, Italy
- Vascular Pathophysiology Unit, IRCCS Neuromed, Pozzilli, Italy
| | - Albino Carrizzo
- Department of Medicine, Surgery and Dentistry "Scuola Medica Salernitana", University of Salerno, Baronissi, Italy
- Vascular Pathophysiology Unit, IRCCS Neuromed, Pozzilli, Italy
| |
Collapse
|
2
|
Hammond FR, Lewis A, Pollara G, Tomlinson GS, Noursadeghi M, Kiss-Toth E, Elks PM. Tribbles1 is host protective during in vivo mycobacterial infection. eLife 2024; 13:e95980. [PMID: 38896446 PMCID: PMC11186633 DOI: 10.7554/elife.95980] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/10/2024] [Accepted: 05/28/2024] [Indexed: 06/21/2024] Open
Abstract
Tuberculosis is a major global health problem and is one of the top 10 causes of death worldwide. There is a pressing need for new treatments that circumvent emerging antibiotic resistance. Mycobacterium tuberculosis parasitises macrophages, reprogramming them to establish a niche in which to proliferate, therefore macrophage manipulation is a potential host-directed therapy if druggable molecular targets could be identified. The pseudokinase Tribbles1 (Trib1) regulates multiple innate immune processes and inflammatory profiles making it a potential drug target in infections. Trib1 controls macrophage function, cytokine production, and macrophage polarisation. Despite wide-ranging effects on leukocyte biology, data exploring the roles of Tribbles in infection in vivo are limited. Here, we identify that human Tribbles1 is expressed in monocytes and is upregulated at the transcript level after stimulation with mycobacterial antigen. To investigate the mechanistic roles of Tribbles in the host response to mycobacteria in vivo, we used a zebrafish Mycobacterium marinum (Mm) infection tuberculosis model. Zebrafish Tribbles family members were characterised and shown to have substantial mRNA and protein sequence homology to their human orthologues. trib1 overexpression was host-protective against Mm infection, reducing burden by approximately 50%. Conversely, trib1 knockdown/knockout exhibited increased infection. Mechanistically, trib1 overexpression significantly increased the levels of proinflammatory factors il-1β and nitric oxide. The host-protective effect of trib1 was found to be dependent on the E3 ubiquitin kinase Cop1. These findings highlight the importance of Trib1 and Cop1 as immune regulators during infection in vivo and suggest that enhancing macrophage TRIB1 levels may provide a tractable therapeutic intervention to improve bacterial infection outcomes in tuberculosis.
Collapse
Affiliation(s)
- Ffion R Hammond
- The Bateson Centre, School of Medicine and Population Health, Faculty of Health, University of SheffieldSheffieldUnited Kingdom
| | - Amy Lewis
- The Bateson Centre, School of Medicine and Population Health, Faculty of Health, University of SheffieldSheffieldUnited Kingdom
| | - Gabriele Pollara
- Division of Infection & Immunity, University College LondonLondonUnited Kingdom
| | - Gillian S Tomlinson
- Division of Infection & Immunity, University College LondonLondonUnited Kingdom
| | - Mahdad Noursadeghi
- Division of Infection & Immunity, University College LondonLondonUnited Kingdom
| | - Endre Kiss-Toth
- The Bateson Centre, School of Medicine and Population Health, Faculty of Health, University of SheffieldSheffieldUnited Kingdom
| | - Philip M Elks
- The Bateson Centre, School of Medicine and Population Health, Faculty of Health, University of SheffieldSheffieldUnited Kingdom
| |
Collapse
|
3
|
Singh K, Showalter CA, Manring HR, Haque SJ, Chakravarti A. "Oh, Dear We Are in Tribble": An Overview of the Oncogenic Functions of Tribbles 1. Cancers (Basel) 2024; 16:1889. [PMID: 38791967 PMCID: PMC11120034 DOI: 10.3390/cancers16101889] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/18/2024] [Revised: 05/11/2024] [Accepted: 05/13/2024] [Indexed: 05/26/2024] Open
Abstract
Pseudokinases are catalytically inactive proteins in the human genome that lack the ability to transfer phosphate from ATP to their substrates. The Tribbles family of pseudokinases contains three members: Tribbles 1, 2, and 3. Tribbles 1 has recently gained importance because of its involvement in various diseases, including cancer. It acts as a scaffolding protein that brings about the degradation of its substrate proteins, such as C/EBPα/β, MLXIPL, and RAR/RXRα, among others, via the ubiquitin proteasome system. It also serves as an adapter protein, which sequesters different protein molecules and activates their downstream signaling, leading to processes, such as cell survival, cell proliferation, and lipid metabolism. It has been implicated in cancers such as AML, prostate cancer, breast cancer, CRC, HCC, and glioma, where it activates oncogenic signaling pathways such as PI3K-AKT and MAPK and inhibits the anti-tumor function of p53. TRIB1 also causes treatment resistance in cancers such as NSCLC, breast cancer, glioma, and promyelocytic leukemia. All these effects make TRIB1 a potential drug target. However, the lack of a catalytic domain renders TRIB1 "undruggable", but knowledge about its structure, conformational changes during substrate binding, and substrate binding sites provides an opportunity to design small-molecule inhibitors against specific TRIB1 interactions.
Collapse
Affiliation(s)
| | | | | | | | - Arnab Chakravarti
- Department of Radiation Oncology, The Ohio State University Comprehensive Cancer Center, Columbus, OH 43210, USA
| |
Collapse
|
4
|
Hernandez-Resendiz I, Burkhardt R. Novel functions of Tribbles-homolog 1 in liver, adipocytes and atherosclerosis. Curr Opin Lipidol 2024; 35:51-57. [PMID: 38236937 DOI: 10.1097/mol.0000000000000917] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 03/08/2024]
Abstract
PURPOSE OF REVIEW Human genetics studies have sparked great interest in the pseudokinase Tribbles homolog 1, as variant at the TRIB1 gene locus were robustly linked to several cardiometabolic traits, including plasma lipids and coronary artery disease. In this review, we summarize recent findings from mouse models that investigated the function of hepatic and adipocyte Trib1 in lipid metabolism and its role in atherosclerosis. RECENT FINDINGS Studies in atherosclerosis prone low-density lipoprotein (LDL)-receptor knockout mice suggested that systemic Trib1 -deficiency promotes atherosclerotic lesion formation through the modulation of plasma lipids and inflammation. Further, investigations in mice with hepatocyte specific deletion of Trib1 identified a novel role in the catabolism of apoB-containing lipoproteins via regulation of the LDL-receptor. Moreover, recent studies on Trib1 in adipocytes uncovered critical functions in adipose tissue biology, including the regulation of plasma lipid and adiponectin levels and the response to β3-adrenergic receptor activation. SUMMARY Functional studies in mice have expanded our understanding of how Trib1 contributes to various aspects of cardiometabolic diseases. They support the notion that Trib1 exerts tissue-specific effects, which can result in opposing effects on cardiometabolic traits. Additional studies are required to fully elucidate the molecular mechanisms underlying the cellular and systemic effects of Trib1 .
Collapse
Affiliation(s)
- Ileana Hernandez-Resendiz
- Institute of Clinical Chemistry and Laboratory Medicine, University Hospital Regensburg, University of Regensburg, Germany
| | | |
Collapse
|
5
|
Asselstine V, Medrano JF, Muniz MMM, Mallard BA, Karrow NA, Cánovas A. Novel lncRNA regulatory elements in milk somatic cells of Holstein dairy cows associated with mastitis. Commun Biol 2024; 7:98. [PMID: 38225372 PMCID: PMC10789785 DOI: 10.1038/s42003-024-05764-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/06/2021] [Accepted: 01/01/2024] [Indexed: 01/17/2024] Open
Abstract
Despite regulatory elements such as long non - coding RNAs representing most of the transcriptome, the functional understanding of long non - coding RNAs in relation to major health conditions including bovine mastitis is limited. This study examined the milk somatic cell transcriptome from udder quarters of 6 Holstein dairy cows to identify differentially expressed long non - coding RNAs using RNA - Sequencing. Ninety - four differentially expressed long non - coding RNAs are identified, 5 of which are previously annotated for gene name and length, 11 are annotated for gene name and 78 are novel, having no gene name or length previously annotated. Significant inflammatory response and regulation of immune response pathways (false discovery rate < 0.05) are associated with the differentially expressed long non - coding RNAs. QTL annotation analysis revealed 31 QTL previously annotated in the genomic regions of the 94 differentially expressed long non - coding RNAs, and the majority are associated with milk traits. This research provides a better understanding of long non - coding RNAs regulatory elements in milk somatic cells, which may enhance current breeding strategies for more adaptable or high mastitis resistant cattle.
Collapse
Affiliation(s)
- Victoria Asselstine
- Centre for Genetic Improvement of Livestock, Department of Animal Biosciences, University of Guelph, N1G 2W1, Guelph, ON, Canada
| | - Juan F Medrano
- Department of Animal Science, University of California-Davis, 95616, Davis, CA, USA
| | - Malane M M Muniz
- Centre for Genetic Improvement of Livestock, Department of Animal Biosciences, University of Guelph, N1G 2W1, Guelph, ON, Canada
| | - Bonnie A Mallard
- Department of Pathobiology, Ontario Veterinary College, University of Guelph, N1G 2W1, Guelph, ON, Canada
| | - Niel A Karrow
- Centre for Genetic Improvement of Livestock, Department of Animal Biosciences, University of Guelph, N1G 2W1, Guelph, ON, Canada
| | - Angela Cánovas
- Centre for Genetic Improvement of Livestock, Department of Animal Biosciences, University of Guelph, N1G 2W1, Guelph, ON, Canada.
| |
Collapse
|
6
|
Arndt L, Hernandez-Resendiz I, Moos D, Dokas J, Müller S, Jeromin F, Wagner R, Ceglarek U, Heid IM, Höring M, Liebisch G, Stadler SC, Burkhardt R. Trib1 Deficiency Promotes Hyperlipidemia, Inflammation, and Atherosclerosis in LDL Receptor Knockout Mice. Arterioscler Thromb Vasc Biol 2023; 43:979-994. [PMID: 37078290 DOI: 10.1161/atvbaha.122.318137] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/21/2020] [Accepted: 04/04/2023] [Indexed: 04/21/2023]
Abstract
BACKGROUND Genetic variants at the TRIB1 gene locus are strongly associated with plasma lipid traits and the risk of coronary artery disease in humans. Here, we analyzed the consequences of Trib1 deficiency on lipid metabolism and atherosclerotic lesion formation in atherosclerosis-susceptible Ldlr-/- mice. METHODS Trib1-/- mice were crossed onto the Ldlr-/- background to generate double-knockout mice (Trib1-/-Ldlr-/-) and fed a semisynthetic, modified AIN76 diet (0.02% cholesterol and 4.3% fat) until 20 weeks of age. RESULTS Trib1-/-Ldlr-/- mice had profoundly larger (5.8-fold) and more advanced atherosclerotic lesions at the aortic root as compared with Trib1+/+Ldlr-/- controls. Further, we observed significantly elevated plasma total cholesterol and triglyceride levels in Trib1-/-Ldlr-/- mice, resulting from higher VLDL (very-low-density lipoprotein) secretion. Lipidomics analysis revealed that loss of Trib1 altered hepatic lipid composition, including the accumulation of cholesterol and proinflammatory ceramide species, which was accompanied by signs of hepatic inflammation and injury. Concomitantly, we detected higher plasma levels of IL (interleukin)-6 and LCN2 (lipocalin 2), suggesting increased systemic inflammation in Trib1-/-Ldlr-/- mice. Hepatic transcriptome analysis demonstrated significant upregulation of key genes controlling lipid metabolism and inflammation in Trib1-/-Ldlr-/- mice. Further experiments suggested that these effects may be mediated through pathways involving a C/EPB (CCAAT/enhancer binding protein)-PPARγ (peroxisome proliferator-activated receptor γ) axis and JNK (c-Jun N-terminal kinase) signaling. CONCLUSIONS We provide experimental evidence that Trib1 deficiency promotes atherosclerotic lesion formation in a complex manner that includes the modulation of lipid metabolism and inflammation.
Collapse
Affiliation(s)
- Lilli Arndt
- Institute of Laboratory Medicine, Clinical Chemistry and Molecular Diagnostics, University Hospital Leipzig, Germany (L.A., D.M., J.D., S.M., F.J., R.W., U.C.)
- Institute of Clinical Chemistry and Laboratory Medicine, University Hospital Regensburg, Germany (L.A., I.H.-R., M.H., G.L., S.C.S., R.B.)
| | - Ileana Hernandez-Resendiz
- Institute of Clinical Chemistry and Laboratory Medicine, University Hospital Regensburg, Germany (L.A., I.H.-R., M.H., G.L., S.C.S., R.B.)
| | - Doreen Moos
- Institute of Laboratory Medicine, Clinical Chemistry and Molecular Diagnostics, University Hospital Leipzig, Germany (L.A., D.M., J.D., S.M., F.J., R.W., U.C.)
| | - Janine Dokas
- Institute of Laboratory Medicine, Clinical Chemistry and Molecular Diagnostics, University Hospital Leipzig, Germany (L.A., D.M., J.D., S.M., F.J., R.W., U.C.)
| | - Silvana Müller
- Institute of Laboratory Medicine, Clinical Chemistry and Molecular Diagnostics, University Hospital Leipzig, Germany (L.A., D.M., J.D., S.M., F.J., R.W., U.C.)
| | - Franziska Jeromin
- Institute of Laboratory Medicine, Clinical Chemistry and Molecular Diagnostics, University Hospital Leipzig, Germany (L.A., D.M., J.D., S.M., F.J., R.W., U.C.)
| | - Richard Wagner
- Institute of Laboratory Medicine, Clinical Chemistry and Molecular Diagnostics, University Hospital Leipzig, Germany (L.A., D.M., J.D., S.M., F.J., R.W., U.C.)
| | - Uta Ceglarek
- Institute of Laboratory Medicine, Clinical Chemistry and Molecular Diagnostics, University Hospital Leipzig, Germany (L.A., D.M., J.D., S.M., F.J., R.W., U.C.)
| | - Iris M Heid
- Department of Genetic Epidemiology, University of Regensburg, Germany (I.M.H.)
| | - Marcus Höring
- Institute of Clinical Chemistry and Laboratory Medicine, University Hospital Regensburg, Germany (L.A., I.H.-R., M.H., G.L., S.C.S., R.B.)
| | - Gerhard Liebisch
- Institute of Clinical Chemistry and Laboratory Medicine, University Hospital Regensburg, Germany (L.A., I.H.-R., M.H., G.L., S.C.S., R.B.)
| | - Sonja C Stadler
- Institute of Clinical Chemistry and Laboratory Medicine, University Hospital Regensburg, Germany (L.A., I.H.-R., M.H., G.L., S.C.S., R.B.)
| | - Ralph Burkhardt
- Institute of Clinical Chemistry and Laboratory Medicine, University Hospital Regensburg, Germany (L.A., I.H.-R., M.H., G.L., S.C.S., R.B.)
| |
Collapse
|
7
|
Bai H, Kawahara M, Takahashi M. Identification of menaquinone-4 (vitamin K2) target genes in bovine endometrial epithelial cells in vitro. Theriogenology 2023; 198:183-193. [PMID: 36592516 DOI: 10.1016/j.theriogenology.2022.12.033] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/22/2022] [Revised: 12/22/2022] [Accepted: 12/22/2022] [Indexed: 12/29/2022]
Abstract
The effect of vitamin K on bovine endometrial epithelial cells has not been thoroughly investigated. The objective of this study was to examine the effect of the biologically active form of vitamin K, menaquinone-4, on gene expression in bovine endometrial epithelial cells. First, we examined the mRNA and protein expression levels of UBIAD1, a menaquinone-4 biosynthetic enzyme. Second, we screened for potential target genes of menaquinone-4 in bovine endometrial epithelial cells using RNA-sequencing. We found 50 differentially expressed genes; 42 were upregulated, and 8 were downregulated. Among them, a dose-dependent response to menaquinone-4 was observed for the top three upregulated (TRIB3, IL6, and TNFAIP3) and downregulated (CDC6, ORC1, and RRM2) genes. It has been suggested that these genes play important roles in reproductive events. In addition, GDF15 and VEGFA, which are important for cellular functions as they are commonly involved in pathways, such as positive regulation of cell communication, cell differentiation, and positive regulation of MAPK cascade, were upregulated in endometrial epithelial cells by menaquinone-4 treatment. To the best of our knowledge, this is the first study showing the expression of UBIAD1 in the bovine uterus. Moreover, the study determined menaquinone-4 target genes in bovine endometrial epithelial cells, which may positively affect pregnancy with alteration of gene expression in cattle uterus.
Collapse
Affiliation(s)
- Hanako Bai
- Laboratory of Animal Breeding and Reproduction, Research Faculty of Agriculture, Hokkaido University, Kita-ku Kita 9 Nishi 9, Sapporo, 060-8589, Japan.
| | - Manabu Kawahara
- Laboratory of Animal Breeding and Reproduction, Research Faculty of Agriculture, Hokkaido University, Kita-ku Kita 9 Nishi 9, Sapporo, 060-8589, Japan.
| | - Masashi Takahashi
- Laboratory of Animal Breeding and Reproduction, Research Faculty of Agriculture, Hokkaido University, Kita-ku Kita 9 Nishi 9, Sapporo, 060-8589, Japan; Global Station for Food, Land and Water Resources, Global Institution for Collaborative Research and Education, Hokkaido University, Kita-ku Kita 9 Nishi 9, Sapporo, 060-0815, Japan.
| |
Collapse
|
8
|
Obesity and cancer-extracellular matrix, angiogenesis, and adrenergic signaling as unusual suspects linking the two diseases. Cancer Metastasis Rev 2022; 41:517-547. [PMID: 36074318 PMCID: PMC9470659 DOI: 10.1007/s10555-022-10058-y] [Citation(s) in RCA: 14] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/07/2022] [Accepted: 07/29/2022] [Indexed: 12/24/2022]
Abstract
Obesity is an established risk factor for several human cancers. Given the association between excess body weight and cancer, the increasing rates of obesity worldwide are worrisome. A variety of obesity-related factors has been implicated in cancer initiation, progression, and response to therapy. These factors include circulating nutritional factors, hormones, and cytokines, causing hyperinsulinemia, inflammation, and adipose tissue dysfunction. The impact of these conditions on cancer development and progression has been the focus of extensive literature. In this review, we concentrate on processes that can link obesity and cancer, and which provide a novel perspective: extracellular matrix remodeling, angiogenesis, and adrenergic signaling. We describe molecular mechanisms involved in these processes, which represent putative targets for intervention. Liver, pancreas, and breast cancers were chosen as exemplary disease models. In view of the expanding epidemic of obesity, a better understanding of the tumorigenic process in obese individuals might lead to more effective treatments and preventive measures.
Collapse
|
9
|
Danger R, Feseha Y, Brouard S. The Pseudokinase TRIB1 in Immune Cells and Associated Disorders. Cancers (Basel) 2022; 14:cancers14041011. [PMID: 35205759 PMCID: PMC8869936 DOI: 10.3390/cancers14041011] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/04/2022] [Revised: 02/07/2022] [Accepted: 02/14/2022] [Indexed: 12/10/2022] Open
Abstract
Simple Summary TRIB1 is at the center of major cell signaling pathways. In this review, we describe its role in immune cells and highlight TRIB1 interacting partners which suggests cell-specific functions and that TRIB1 is involved in cellular homeostasis and also in different cancers and immune-related disorders. Abstract Research advances in Tribbles homolog (TRIB) genes have established the consensus that this protein family plays roles in diverse biological conditions and regulates intracellular signaling networks and several human diseases. In this review, we focus on one member of the family, TRIB1, and its role at the crossroads of immune signaling. TRIB1 directly interacts with transcription factors such as FOXP3 and C/EBPα, with several signaling molecules such as MEK1 and MALT1 and directly acts on key cell signaling pathways such as the MAPK and NF-κB pathways. Altogether, these interactions emphasize that TRIB1 is at the center of major cell signaling pathways while TRIB1 has cell-specific roles, potentially depending on the expressing cells and binding partners. In this review, we describe its roles in immune cells and highlight the interacting partners explaining these functions which suggests TRIB1 as a precise mediator of cellular homeostasis as well as in different cancers and immune-related disorders.
Collapse
Affiliation(s)
- Richard Danger
- CHU Nantes, Nantes Université, INSERM, Center for Research in Transplantation and Translational Immunology (CR2TI), UMR 1064, F-44000 Nantes, France; (R.D.); (Y.F.)
| | - Yodit Feseha
- CHU Nantes, Nantes Université, INSERM, Center for Research in Transplantation and Translational Immunology (CR2TI), UMR 1064, F-44000 Nantes, France; (R.D.); (Y.F.)
| | - Sophie Brouard
- CHU Nantes, Nantes Université, INSERM, Center for Research in Transplantation and Translational Immunology (CR2TI), UMR 1064, F-44000 Nantes, France; (R.D.); (Y.F.)
- LabEx IGO “Immunotherapy, Graft, Oncology”, F-44000 Nantes, France
- Correspondence: ; Tel.: +33-240-087-842
| |
Collapse
|
10
|
Ha EE, Quartuccia GI, Ling R, Xue C, Karikari RA, Hernandez-Ono A, Hu KY, Matias CV, Imam R, Cui J, Pellegata NS, Herzig S, Georgiadi A, Soni RK, Bauer RC. Adipocyte-specific tribbles pseudokinase 1 regulates plasma adiponectin and plasma lipids in mice. Mol Metab 2021; 56:101412. [PMID: 34890852 PMCID: PMC8749272 DOI: 10.1016/j.molmet.2021.101412] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/13/2021] [Revised: 11/16/2021] [Accepted: 11/30/2021] [Indexed: 02/06/2023] Open
Abstract
OBJECTIVE Multiple genome-wide association studies (GWAS) have identified SNPs in the 8q24 locus near TRIB1 that are significantly associated with plasma lipids and other markers of cardiometabolic health, and prior studies have revealed the roles of hepatic and myeloid Trib1 in plasma lipid regulation and atherosclerosis. The same 8q24 SNPs are additionally associated with plasma adiponectin levels in humans, implicating TRIB1 in adipocyte biology. Here, we hypothesize that TRIB1 in adipose tissue regulates plasma adiponectin, lipids, and metabolic health. METHODS We investigate the metabolic phenotype of adipocyte-specific Trib1 knockout mice (Trib1_ASKO) fed on chow and high-fat diet (HFD). Through secretomics of adipose tissue explants and RNA-seq of adipocytes and livers from these mice, we further investigate the mechanism of TRIB1 in adipose tissue. RESULTS Trib1_ASKO mice have an improved metabolic phenotype with increased plasma adiponectin levels, improved glucose tolerance, and decreased plasma lipids. Trib1_ASKO adipocytes have increased adiponectin production and secretion independent of the known TRIB1 function of regulating proteasomal degradation. RNA-seq analysis of adipocytes and livers from Trib1_ASKO mice indicates that alterations in adipocyte function underlie the observed plasma lipid changes. Adipose tissue explant secretomics further reveals that Trib1_ASKO adipose tissue has decreased ANGPTL4 production, and we demonstrate an accompanying increase in the lipoprotein lipase (LPL) activity that likely underlies the triglyceride phenotype. CONCLUSIONS This study shows that adipocyte Trib1 regulates multiple aspects of metabolic health, confirming previously observed genetic associations in humans and shedding light on the further mechanisms by which TRIB1 regulates plasma lipids and metabolic health.
Collapse
Affiliation(s)
- Elizabeth E Ha
- Cardiometabolic Genomics Program, Division of Cardiology, Department of Medicine, Columbia University, New York, NY, USA
| | - Gabriella I Quartuccia
- Cardiometabolic Genomics Program, Division of Cardiology, Department of Medicine, Columbia University, New York, NY, USA
| | - Ruifeng Ling
- Cardiometabolic Genomics Program, Division of Cardiology, Department of Medicine, Columbia University, New York, NY, USA
| | - Chenyi Xue
- Cardiometabolic Genomics Program, Division of Cardiology, Department of Medicine, Columbia University, New York, NY, USA
| | - Rhoda A Karikari
- Institute for Diabetes and Cancer, Helmholtz Centre, Munich, Germany
| | - Antonio Hernandez-Ono
- Department of Medicine, Vagelos College of Physicians and Surgeons, Columbia University, New York, NY, USA
| | - Krista Y Hu
- Cardiometabolic Genomics Program, Division of Cardiology, Department of Medicine, Columbia University, New York, NY, USA
| | - Caio V Matias
- Cardiometabolic Genomics Program, Division of Cardiology, Department of Medicine, Columbia University, New York, NY, USA
| | - Rami Imam
- Cardiometabolic Genomics Program, Division of Cardiology, Department of Medicine, Columbia University, New York, NY, USA
| | - Jian Cui
- Cardiometabolic Genomics Program, Division of Cardiology, Department of Medicine, Columbia University, New York, NY, USA
| | | | - Stephan Herzig
- Institute for Diabetes and Cancer, Helmholtz Centre, Munich, Germany
| | | | - Rajesh K Soni
- Proteomics and Macromolecular Crystallography Shared Resource, Herbert Irving Comprehensive Cancer Center, Columbia University, New York, NY, USA
| | - Robert C Bauer
- Cardiometabolic Genomics Program, Division of Cardiology, Department of Medicine, Columbia University, New York, NY, USA.
| |
Collapse
|
11
|
Zhang X, Zhang B, Zhang C, Sun G, Sun X. Trib1 deficiency causes brown adipose respiratory chain depletion and mitochondrial disorder. Cell Death Dis 2021; 12:1098. [PMID: 34811364 PMCID: PMC8608845 DOI: 10.1038/s41419-021-04389-x] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2021] [Revised: 09/17/2021] [Accepted: 11/10/2021] [Indexed: 01/21/2023]
Abstract
Tribbles homolog 1 (TRIB1) belongs to the Tribbles family of pseudokinases, which plays a key role in tumorigenesis and inflammation. Although genome-wide analysis shows that TRIB1 expression is highly correlated with blood lipid levels, the relationship between TRIB1 and adipose tissue metabolism remains unclear. Accordingly, the aim of the present study was to explore the role of TRIB1 on mitochondrial function in the brown adipose tissue (BAT). Trib1-knockout mice were established using clustered regularly interspaced short palindromic repeats (CRISPR)/Cas9 technology. The metabolic function of the BAT was induced by a β3-adrenoceptor agonist and the energy metabolism function of mitochondria in the BAT of mice was evaluated. Trib1-knockout mice exhibited obesity and impaired BAT thermogenesis. In particular, Trib1 knockout reduced the ability of the BAT to maintain body temperature, inhibited β3-adrenoceptor agonist-induced thermogenesis, and accelerated lipid accumulation in the liver and adipose tissues. In addition, Trib1 knockout reduced mitochondrial respiratory chain complex III activity, produced an imbalance between mitochondrial fusion and fission, caused mitochondrial structural damage and dysfunction, and affected heat production and lipid metabolism in the BAT. Conversely, overexpression of Trib1 in 3T3-L1 adipocytes increased the number of mitochondria and improved respiratory function. These findings support the role of Trib1 in regulating the mitochondrial respiratory chain and mitochondrial dynamics by affecting mitochondrial function and thermogenesis in the BAT.
Collapse
Affiliation(s)
- Xuelian Zhang
- Institute of Medicinal Plant Development, Peking Union Medical College and Chinese Academy of Medical Sciences, Beijing, 100193, China
- Key Laboratory of Bioactive Substances and Resources Utilization of Chinese Herbal Medicine, Ministry of Education, Beijing, 100193, China
- Beijing Key Laboratory of Innovative Drug Discovery of Traditional Chinese Medicine (Natural Medicine) and Translational Medicine, Beijing, 100193, China
- Key Laboratory of Efficacy Evaluation of Chinese Medicine Against Glyeolipid Metabolism Disorder Disease, State Administration of Traditional Chinese Medicine, Beijing, 100193, China
| | - Bin Zhang
- Institute of Medicinal Plant Development, Peking Union Medical College and Chinese Academy of Medical Sciences, Beijing, 100193, China
- Key Laboratory of Bioactive Substances and Resources Utilization of Chinese Herbal Medicine, Ministry of Education, Beijing, 100193, China
- Beijing Key Laboratory of Innovative Drug Discovery of Traditional Chinese Medicine (Natural Medicine) and Translational Medicine, Beijing, 100193, China
- Key Laboratory of Efficacy Evaluation of Chinese Medicine Against Glyeolipid Metabolism Disorder Disease, State Administration of Traditional Chinese Medicine, Beijing, 100193, China
| | - Chenyang Zhang
- Institute of Medicinal Plant Development, Peking Union Medical College and Chinese Academy of Medical Sciences, Beijing, 100193, China
- Key Laboratory of Bioactive Substances and Resources Utilization of Chinese Herbal Medicine, Ministry of Education, Beijing, 100193, China
- Beijing Key Laboratory of Innovative Drug Discovery of Traditional Chinese Medicine (Natural Medicine) and Translational Medicine, Beijing, 100193, China
- Key Laboratory of Efficacy Evaluation of Chinese Medicine Against Glyeolipid Metabolism Disorder Disease, State Administration of Traditional Chinese Medicine, Beijing, 100193, China
| | - Guibo Sun
- Institute of Medicinal Plant Development, Peking Union Medical College and Chinese Academy of Medical Sciences, Beijing, 100193, China.
- Key Laboratory of Bioactive Substances and Resources Utilization of Chinese Herbal Medicine, Ministry of Education, Beijing, 100193, China.
- Beijing Key Laboratory of Innovative Drug Discovery of Traditional Chinese Medicine (Natural Medicine) and Translational Medicine, Beijing, 100193, China.
- Key Laboratory of Efficacy Evaluation of Chinese Medicine Against Glyeolipid Metabolism Disorder Disease, State Administration of Traditional Chinese Medicine, Beijing, 100193, China.
| | - Xiaobo Sun
- Institute of Medicinal Plant Development, Peking Union Medical College and Chinese Academy of Medical Sciences, Beijing, 100193, China.
- Key Laboratory of Bioactive Substances and Resources Utilization of Chinese Herbal Medicine, Ministry of Education, Beijing, 100193, China.
- Beijing Key Laboratory of Innovative Drug Discovery of Traditional Chinese Medicine (Natural Medicine) and Translational Medicine, Beijing, 100193, China.
- Key Laboratory of Efficacy Evaluation of Chinese Medicine Against Glyeolipid Metabolism Disorder Disease, State Administration of Traditional Chinese Medicine, Beijing, 100193, China.
| |
Collapse
|
12
|
Zhang X, Zhang B, Zhang C, Sun G, Sun X. Current Progress in Delineating the Roles of Pseudokinase TRIB1 in Controlling Human Diseases. J Cancer 2021; 12:6012-6020. [PMID: 34539875 PMCID: PMC8425202 DOI: 10.7150/jca.51627] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/06/2020] [Accepted: 08/10/2021] [Indexed: 12/15/2022] Open
Abstract
Tribbles homolog 1 (TRIB1) is a member of the tribbles family of pseudoprotein kinases and is widely expressed in numerous tissues, such as bone marrow, skeletal muscle, liver, heart, and adipose tissue. It is closely associated with acute myeloid leukemia, prostate cancer, and tumor drug resistance, and can interfere with the hematopoietic stem cell cycle, promote tumor cell proliferation, and inhibit apoptosis. Recent studies have shown that TRIB1 can regulate acute and chronic inflammation by affecting the secretion of inflammatory factors, which is closely related to the occurrence of hyperlipidemia and cardiovascular diseases. Given the important biological functions of TRIB1, the reviews published till now are not sufficiently comprehensive. Therefore, this paper reviews the progress in TRIB1 research aimed at exploring its roles in cancer, hyperlipidemia, and cardiovascular disease, and providing a theoretical basis for further studies on the biological roles of TRIB1.
Collapse
Affiliation(s)
- Xuelian Zhang
- Institute of Medicinal Plant Development, Peking Union Medical College and Chinese Academy of Medical Sciences, Beijing 100193, China.,Key Laboratory of Bioactive Substances and Resources Utilization of Chinese Herbal Medicine, Ministry of Education, Beijing 100193, China.,Beijing Key Laboratory of Innovative Drug Discovery of Traditional Chinese Medicine (Natural Medicine) and Translational Medicine, Beijing 100193, China.,Key Laboratory of efficacy evaluation of Chinese Medicine against Glyeolipid Metabolism Disorder Disease, State Administration of Traditional Chinese Medicine, Beijing 100193, China
| | - Bin Zhang
- Institute of Medicinal Plant Development, Peking Union Medical College and Chinese Academy of Medical Sciences, Beijing 100193, China.,Key Laboratory of Bioactive Substances and Resources Utilization of Chinese Herbal Medicine, Ministry of Education, Beijing 100193, China.,Beijing Key Laboratory of Innovative Drug Discovery of Traditional Chinese Medicine (Natural Medicine) and Translational Medicine, Beijing 100193, China.,Key Laboratory of efficacy evaluation of Chinese Medicine against Glyeolipid Metabolism Disorder Disease, State Administration of Traditional Chinese Medicine, Beijing 100193, China
| | - Chenyang Zhang
- Institute of Medicinal Plant Development, Peking Union Medical College and Chinese Academy of Medical Sciences, Beijing 100193, China.,Key Laboratory of Bioactive Substances and Resources Utilization of Chinese Herbal Medicine, Ministry of Education, Beijing 100193, China.,Beijing Key Laboratory of Innovative Drug Discovery of Traditional Chinese Medicine (Natural Medicine) and Translational Medicine, Beijing 100193, China.,Key Laboratory of efficacy evaluation of Chinese Medicine against Glyeolipid Metabolism Disorder Disease, State Administration of Traditional Chinese Medicine, Beijing 100193, China
| | - Guibo Sun
- Institute of Medicinal Plant Development, Peking Union Medical College and Chinese Academy of Medical Sciences, Beijing 100193, China.,Key Laboratory of Bioactive Substances and Resources Utilization of Chinese Herbal Medicine, Ministry of Education, Beijing 100193, China.,Beijing Key Laboratory of Innovative Drug Discovery of Traditional Chinese Medicine (Natural Medicine) and Translational Medicine, Beijing 100193, China.,Key Laboratory of efficacy evaluation of Chinese Medicine against Glyeolipid Metabolism Disorder Disease, State Administration of Traditional Chinese Medicine, Beijing 100193, China
| | - Xiaobo Sun
- Institute of Medicinal Plant Development, Peking Union Medical College and Chinese Academy of Medical Sciences, Beijing 100193, China.,Key Laboratory of Bioactive Substances and Resources Utilization of Chinese Herbal Medicine, Ministry of Education, Beijing 100193, China.,Beijing Key Laboratory of Innovative Drug Discovery of Traditional Chinese Medicine (Natural Medicine) and Translational Medicine, Beijing 100193, China.,Key Laboratory of efficacy evaluation of Chinese Medicine against Glyeolipid Metabolism Disorder Disease, State Administration of Traditional Chinese Medicine, Beijing 100193, China
| |
Collapse
|
13
|
Vega RB, Brouwers B, Parsons SA, Stephens NA, Pino MF, Hodges A, Yi F, Yu G, Pratley RE, Smith SR, Sparks LM. An improvement in skeletal muscle mitochondrial capacity with short-term aerobic training is associated with changes in Tribbles 1 expression. Physiol Rep 2021; 8:e14416. [PMID: 32562350 PMCID: PMC7305239 DOI: 10.14814/phy2.14416] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/12/2020] [Revised: 03/17/2020] [Accepted: 03/17/2020] [Indexed: 12/18/2022] Open
Abstract
Exercise training and physical activity are known to be associated with high mitochondrial content and oxidative capacity in skeletal muscle. Metabolic diseases including obesity and insulin resistance are associated with low mitochondrial capacity in skeletal muscle. Certain transcriptional factors such as PGC-1α are known to mediate the exercise response; however, the precise molecular mechanisms involved in the adaptation to exercise are not completely understood. We performed multiple measurements of mitochondrial capacity both in vivo and ex vivo in lean or overweight individuals before and after an 18-day aerobic exercise training regimen. These results were compared to lean, active individuals. Aerobic training in these individuals resulted in a marked increase in mitochondrial oxidative respiratory capacity without an appreciable increase in mitochondrial content. These adaptations were associated with robust transcriptome changes. This work also identifies the Tribbles pseudokinase 1, TRIB1, as a potential mediator of the exercise response in human skeletal muscle.
Collapse
Affiliation(s)
- Rick B Vega
- Translational Research Institute, AdventHealth, Orlando, FL, USA
| | - Bram Brouwers
- Translational Research Institute, AdventHealth, Orlando, FL, USA
| | | | | | - Maria F Pino
- Translational Research Institute, AdventHealth, Orlando, FL, USA
| | - Andrew Hodges
- Sanford Burnham Prebys Medical Discovery Institute, La Jolla, CA, USA
| | - Fanchao Yi
- Translational Research Institute, AdventHealth, Orlando, FL, USA
| | - Gongxin Yu
- Translational Research Institute, AdventHealth, Orlando, FL, USA
| | | | - Steven R Smith
- Translational Research Institute, AdventHealth, Orlando, FL, USA
| | - Lauren M Sparks
- Translational Research Institute, AdventHealth, Orlando, FL, USA
| |
Collapse
|
14
|
Abstract
PURPOSE OF REVIEW The pseudokinase Tribbles-1 (TRIB1) remains the focus of intense research since genome-wide association studies (GWAS) associated it with multiple cardiometabolic traits in humans, including plasma lipids and atherosclerosis. This review highlights recent advances in understanding the function of TRIB1 and what outstanding questions remain. RECENT FINDINGS Studies performed in a myeloid-specific Trib1 mouse model show that Trib1 contributes to foam cell formation, underscoring the importance of continued research into tissue-specific functions of TRIB1. Investigations of TRIB1 function in a 3D hepatic organoid model demonstrate that hepatic TRIB1 functions elucidated in mouse models are recapitulated in these organoid systems. Lastly, a recent study showed berberine, an existing lipid-lowering drug, to be acting via a TRIB1-dependent mechanism, highlighting both a novel regulator of TRIB1 expression and the potential of studying TRIB1 through existing therapeutics. SUMMARY TRIB1 remains one of the more fascinating loci to arise from cardiometabolic GWAS, given the constellation of traits it associates with. As genetic studies continue to link TRIB1 to metabolic phenotypes, more functional research on tissue-specific TRIB1, regulation of TRIB1 and its function in current therapies, as well as the reproduction of results from mice in human contexts are all necessary to increase our understanding of TRIB1 and its relevance.
Collapse
Affiliation(s)
- Krista Y. Hu
- Cardiometabolic Genomics Program, Division of Cardiology, Department of Medicine, Columbia University, New York, NY, 10032
| | - Robert C. Bauer
- Cardiometabolic Genomics Program, Division of Cardiology, Department of Medicine, Columbia University, New York, NY, 10032
| |
Collapse
|
15
|
Okun JG, Rusu PM, Chan AY, Wu Y, Yap YW, Sharkie T, Schumacher J, Schmidt KV, Roberts-Thomson KM, Russell RD, Zota A, Hille S, Jungmann A, Maggi L, Lee Y, Blüher M, Herzig S, Keske MA, Heikenwalder M, Müller OJ, Rose AJ. Liver alanine catabolism promotes skeletal muscle atrophy and hyperglycaemia in type 2 diabetes. Nat Metab 2021; 3:394-409. [PMID: 33758419 DOI: 10.1038/s42255-021-00369-9] [Citation(s) in RCA: 65] [Impact Index Per Article: 16.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/27/2020] [Accepted: 02/18/2021] [Indexed: 01/31/2023]
Abstract
Both obesity and sarcopenia are frequently associated in ageing, and together may promote the progression of related conditions such as diabetes and frailty. However, little is known about the pathophysiological mechanisms underpinning this association. Here we show that systemic alanine metabolism is linked to glycaemic control. We find that expression of alanine aminotransferases is increased in the liver in mice with obesity and diabetes, as well as in humans with type 2 diabetes. Hepatocyte-selective silencing of both alanine aminotransferase enzymes in mice with obesity and diabetes retards hyperglycaemia and reverses skeletal muscle atrophy through restoration of skeletal muscle protein synthesis. Mechanistically, liver alanine catabolism driven by chronic glucocorticoid and glucagon signalling promotes hyperglycaemia and skeletal muscle wasting. We further provide evidence for amino acid-induced metabolic cross-talk between the liver and skeletal muscle in ex vivo experiments. Taken together, we reveal a metabolic inter-tissue cross-talk that links skeletal muscle atrophy and hyperglycaemia in type 2 diabetes.
Collapse
Affiliation(s)
- Jürgen G Okun
- Division of Inherited Metabolic Diseases, University Children's Hospital, Heidelberg, Germany
| | - Patricia M Rusu
- Department of Biochemistry and Molecular Biology, Biomedicine Discovery Institute, Monash University, Melbourne, Victoria, Australia
| | - Andrea Y Chan
- Department of Biochemistry and Molecular Biology, Biomedicine Discovery Institute, Monash University, Melbourne, Victoria, Australia
| | - Yuqin Wu
- Department of Biochemistry and Molecular Biology, Biomedicine Discovery Institute, Monash University, Melbourne, Victoria, Australia
| | - Yann W Yap
- Department of Biochemistry and Molecular Biology, Biomedicine Discovery Institute, Monash University, Melbourne, Victoria, Australia
| | - Thomas Sharkie
- Department of Biochemistry and Molecular Biology, Biomedicine Discovery Institute, Monash University, Melbourne, Victoria, Australia
| | - Jonas Schumacher
- Division of Molecular Metabolic Control, German Cancer Research Center (DKFZ), Heidelberg, Germany
| | - Kathrin V Schmidt
- Division of Inherited Metabolic Diseases, University Children's Hospital, Heidelberg, Germany
| | - Katherine M Roberts-Thomson
- Institute for Physical Activity and Nutrition, School of Exercise and Nutrition Sciences, Deakin University, Geelong, Victoria, Australia
| | - Ryan D Russell
- Department of Health and Human Performance, College of Health Professions, University of Texas Rio Grande Valley, Brownsville, TX, USA
| | - Annika Zota
- Division of Molecular Metabolic Control, German Cancer Research Center (DKFZ), Heidelberg, Germany
- Institute for Diabetes and Cancer (IDC), Helmholtz Center Munich, Joint Heidelberg-IDC Translational Diabetes Program, Inner Medicine I, Heidelberg University Hospital and Chair Molecular Metabolic Control, Technical University Munich, Neuherberg, Germany
| | - Susanne Hille
- Department of Internal Medicine III, University of Kiel, Kiel, Germany
- German Center for Cardiovascular Research (DZHK), Heidelberg and Kiel sites, Germany
| | - Andreas Jungmann
- German Center for Cardiovascular Research (DZHK), Heidelberg and Kiel sites, Germany
- Department of Internal Medicine III, University Hospital Heidelberg, Heidelberg, Germany
| | - Ludovico Maggi
- Division of Molecular Metabolic Control, German Cancer Research Center (DKFZ), Heidelberg, Germany
| | - Young Lee
- Touchstone Diabetes Center, Department of Internal Medicine, The University of Texas Southwestern Medical Center, Dallas, TX, USA
| | - Matthias Blüher
- Helmholtz Institute for Metabolic, Obesity and Vascular Research (HI-MAG) of the Helmholtz Zentrum München at the University of Leipzig, Leipzig, Germany
| | - Stephan Herzig
- Division of Molecular Metabolic Control, German Cancer Research Center (DKFZ), Heidelberg, Germany
- Institute for Diabetes and Cancer (IDC), Helmholtz Center Munich, Joint Heidelberg-IDC Translational Diabetes Program, Inner Medicine I, Heidelberg University Hospital and Chair Molecular Metabolic Control, Technical University Munich, Neuherberg, Germany
| | - Michelle A Keske
- Institute for Physical Activity and Nutrition, School of Exercise and Nutrition Sciences, Deakin University, Geelong, Victoria, Australia
| | - Mathias Heikenwalder
- Division of Chronic Inflammation and Cancer, German Cancer Research Center, Heidelberg, Germany
| | - Oliver J Müller
- Department of Internal Medicine III, University of Kiel, Kiel, Germany
- German Center for Cardiovascular Research (DZHK), Heidelberg and Kiel sites, Germany
| | - Adam J Rose
- Department of Biochemistry and Molecular Biology, Biomedicine Discovery Institute, Monash University, Melbourne, Victoria, Australia.
- Division of Molecular Metabolic Control, German Cancer Research Center (DKFZ), Heidelberg, Germany.
| |
Collapse
|
16
|
Niespolo C, Johnston JM, Deshmukh SR, Satam S, Shologu Z, Villacanas O, Sudbery IM, Wilson HL, Kiss-Toth E. Tribbles-1 Expression and Its Function to Control Inflammatory Cytokines, Including Interleukin-8 Levels are Regulated by miRNAs in Macrophages and Prostate Cancer Cells. Front Immunol 2020; 11:574046. [PMID: 33329538 PMCID: PMC7728618 DOI: 10.3389/fimmu.2020.574046] [Citation(s) in RCA: 20] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/18/2020] [Accepted: 10/27/2020] [Indexed: 12/21/2022] Open
Abstract
The pseudokinase TRIB1 controls cell function in a range of contexts, by regulating MAP kinase activation and mediating protein degradation via the COP1 ubiquitin ligase. TRIB1 regulates polarization of macrophages and dysregulated Trib1 expression in murine models has been shown to alter atherosclerosis burden and adipose homeostasis. Recently, TRIB1 has also been implicated in the pathogenesis of prostate cancer, where it is often overexpressed, even in the absence of genetic amplification. Well described TRIB1 effectors include MAP kinases and C/EBP transcription factors, both in immune cells and in carcinogenesis. However, the mechanisms that regulate TRIB1 itself remain elusive. Here, we show that the long and conserved 3’untranslated region (3’UTR) of TRIB1 is targeted by miRNAs in macrophage and prostate cancer models. By using a systematic in silico analysis, we identified multiple “high confidence” miRNAs potentially binding to the 3’UTR of TRIB1 and report that miR-101-3p and miR-132-3p are direct regulators of TRIB1 expression and function. Binding of miR-101-3p and miR-132-3p to the 3’UTR of TRIB1 mRNA leads to an increased transcription and secretion of interleukin-8. Our data demonstrate that modulation of TRIB1 by miRNAs alters the inflammatory profile of both human macrophages and prostate cancer cells.
Collapse
Affiliation(s)
- Chiara Niespolo
- Department of Infection, Immunity and Cardiovascular Disease, Medical School, University of Sheffield, Sheffield, United Kingdom
| | - Jessica M Johnston
- Department of Infection, Immunity and Cardiovascular Disease, Medical School, University of Sheffield, Sheffield, United Kingdom
| | - Sumeet R Deshmukh
- Department of Molecular Biology and Biotechnology, Sheffield Institute for Nucleic Acids, University of Sheffield, Sheffield, United Kingdom
| | - Swapna Satam
- Institute for Diabetes and Cancer IDC, Helmholtz Center, Munich, Germany
| | - Ziyanda Shologu
- Health Sciences Research Centre, University of Beira Interior, Covilhã, Portugal
| | | | - Ian M Sudbery
- Department of Molecular Biology and Biotechnology, Sheffield Institute for Nucleic Acids, University of Sheffield, Sheffield, United Kingdom
| | - Heather L Wilson
- Department of Infection, Immunity and Cardiovascular Disease, Medical School, University of Sheffield, Sheffield, United Kingdom
| | - Endre Kiss-Toth
- Department of Infection, Immunity and Cardiovascular Disease, Medical School, University of Sheffield, Sheffield, United Kingdom
| |
Collapse
|
17
|
Abstract
Genome-wide association studies (GWAS) have identified hundreds of genomic loci in humans that are significantly associated with plasma cholesterol, triglycerides, and coronary artery disease. Although some loci contain genes with known regulatory roles in lipid metabolism and atherosclerosis, the majority were being implicated for the first time. The 8q24 locus, containing the gene TRIB1 ( Tribbles-1), is the only novel GWAS locus that associates with all 4 plasma lipid traits and coronary artery disease, an observation that has spurred immense interest in this locus. Subsequent in vivo loss and gain of function studies confirmed that Trib1 plays a role in hepatic lipid metabolism, validating the initial genetic observation. Yet, many challenges remain in discerning the nature of the association between the TRIB1 locus and cardiometabolic phenotypes. Is TRIB1 the causal gene at the 8q24 locus and what is the functional consequence of the associated noncoding variation? Is the relationship between TRIB1 and the transcription factor C/EBPα (CCAAT/enhancer-binding protein alpha) the primary molecular mechanism governing the genetic association or could it be an as yet unknown function for this interesting pseudokinase? Is hepatic TRIB1 the sole regulator of lipid metabolism or could extrahepatic TRIB1 play a role as well? The following review summarizes key findings related to these questions and highlights both the challenges and excitement in pursuing translational research of a novel gene in the post-GWAS era.
Collapse
Affiliation(s)
- Kavita S Jadhav
- From the Cardiometabolic Genomics Program, Division of Cardiology, Department of Medicine, Columbia University Medical Center, New York
| | - Robert C Bauer
- From the Cardiometabolic Genomics Program, Division of Cardiology, Department of Medicine, Columbia University Medical Center, New York
| |
Collapse
|
18
|
Arndt L, Dokas J, Gericke M, Kutzner CE, Müller S, Jeromin F, Thiery J, Burkhardt R. Tribbles homolog 1 deficiency modulates function and polarization of murine bone marrow-derived macrophages. J Biol Chem 2018; 293:11527-11536. [PMID: 29899113 DOI: 10.1074/jbc.ra117.000703] [Citation(s) in RCA: 24] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/01/2017] [Revised: 05/23/2018] [Indexed: 01/12/2023] Open
Abstract
Macrophages are essential for innate immunity and inflammatory responses and differentiate into various functional phenotypes. Tribbles homolog 1 (Trib1), a member of the mammalian Tribbles homolog pseudokinase family, has been implicated in regulation of cell differentiation, proliferation, and metabolism, but its role in macrophage biology has not been fully elucidated. Here, we investigated the consequences of Trib1 deficiency on macrophage functions and M1/M2 polarization. Bone marrow-derived macrophages (BMDMs) from Trib1-deficient (Trib1-/-) mice exhibited elevated phagocytic capacity, correlating with up-regulation of several scavenger receptors. Concomitantly, uptake of modified low-density lipoprotein was increased in Trib1-/- BMDMs. Trib1-/- macrophages also exhibited diminished migration in the presence of the chemokine MCP-1, associated with reduced expression of the MCP-1 receptor Ccr2 Furthermore, Trib1 deficiency attenuated the response of BMDMs to both M1 and M2 stimuli; induction of the M1-marker genes Il6, Il1b, and Nos2 upon LPS/IFNγ stimulation and of the M2-marker genes Cd206, Fizz1, and Arg1 upon IL-4 stimulation was reduced. Functionally, Trib1 deficiency decreased secretion of proinflammatory cytokines (IL-6, TNFα, IL-1β, and CXCL1) and reduced nitric oxide and reactive oxygen species production in M1-polarized macrophages. Supporting the attenuated M2 phenotype, IL-4-stimulated Trib1-/- macrophages secreted less IL-10 and TGFβ. Mechanistically, Trib1-/- BMDMs displayed lower levels of Janus kinase 1 (JAK1), resulting in reduced activation of LPS/IFNγ-mediated STAT1 signaling. Likewise, decreased levels of JAK1 along with lower activation of STAT6 and STAT3 were observed in M2-polarized Trib1-/- BMDMs. Our findings suggest that Trib1 extensively controls macrophage M1/M2 polarization via the JAK/STAT signaling pathway.
Collapse
Affiliation(s)
- Lilli Arndt
- Institute of Laboratory Medicine, Clinical Chemistry and Molecular Diagnostics, University Hospital Leipzig, 04103 Leipzig, Germany
| | - Janine Dokas
- Institute of Laboratory Medicine, Clinical Chemistry and Molecular Diagnostics, University Hospital Leipzig, 04103 Leipzig, Germany
| | - Martin Gericke
- Institute of Anatomy, University of Leipzig, 04103 Leipzig, Germany
| | - Carl Elias Kutzner
- Institute of Laboratory Medicine, Clinical Chemistry and Molecular Diagnostics, University Hospital Leipzig, 04103 Leipzig, Germany
| | - Silvana Müller
- Institute of Laboratory Medicine, Clinical Chemistry and Molecular Diagnostics, University Hospital Leipzig, 04103 Leipzig, Germany
| | - Franziska Jeromin
- Institute of Laboratory Medicine, Clinical Chemistry and Molecular Diagnostics, University Hospital Leipzig, 04103 Leipzig, Germany
| | - Joachim Thiery
- Institute of Laboratory Medicine, Clinical Chemistry and Molecular Diagnostics, University Hospital Leipzig, 04103 Leipzig, Germany; LIFE-Leipzig Research Center for Civilization Diseases, University of Leipzig, 04103 Leipzig, Germany
| | - Ralph Burkhardt
- Institute of Laboratory Medicine, Clinical Chemistry and Molecular Diagnostics, University Hospital Leipzig, 04103 Leipzig, Germany; LIFE-Leipzig Research Center for Civilization Diseases, University of Leipzig, 04103 Leipzig, Germany.
| |
Collapse
|
19
|
Gendelman R, Xing H, Mirzoeva OK, Sarde P, Curtis C, Feiler HS, McDonagh P, Gray JW, Khalil I, Korn WM. Bayesian Network Inference Modeling Identifies TRIB1 as a Novel Regulator of Cell-Cycle Progression and Survival in Cancer Cells. Cancer Res 2017; 77:1575-1585. [PMID: 28087598 DOI: 10.1158/0008-5472.can-16-0512] [Citation(s) in RCA: 54] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/06/2016] [Revised: 11/15/2016] [Accepted: 12/13/2016] [Indexed: 12/12/2022]
Abstract
Molecular networks governing responses to targeted therapies in cancer cells are complex dynamic systems that demonstrate nonintuitive behaviors. We applied a novel computational strategy to infer probabilistic causal relationships between network components based on gene expression. We constructed a model comprised of an ensemble of networks using multidimensional data from cell line models of cell-cycle arrest caused by inhibition of MEK1/2. Through simulation of a reverse-engineered Bayesian network model, we generated predictions of G1-S transition. The model identified known components of the cell-cycle machinery, such as CCND1, CCNE2, and CDC25A, as well as revealed novel regulators of G1-S transition, IER2, TRIB1, TRIM27. Experimental validation of model predictions confirmed 10 of 12 predicted genes to have a role in G1-S progression. Further analysis showed that TRIB1 regulated the cyclin D1 promoter via NFκB and AP-1 sites and sensitized cells to TRAIL-induced apoptosis. In clinical specimens of breast cancer, TRIB1 levels correlated with expression of NFκB and its target genes (IL8, CSF2), and TRIB1 copy number and expression were predictive of clinical outcome. Together, our results establish a critical role of TRIB1 in cell cycle and survival that is mediated via the modulation of NFκB signaling. Cancer Res; 77(7); 1575-85. ©2017 AACR.
Collapse
Affiliation(s)
- Rina Gendelman
- Divisions of Gastroenterology and Hematology/Oncology, Department of Medicine, University of California, San Francisco, California
| | - Heming Xing
- Novartis Institutes for BioMedical Research, Inc., Cambridge, Massachusetts
| | - Olga K Mirzoeva
- Divisions of Gastroenterology and Hematology/Oncology, Department of Medicine, University of California, San Francisco, California
| | | | - Christina Curtis
- Departments of Medicine and Genetics, School of Medicine, Stanford University, Stanford, California
| | | | | | - Joe W Gray
- Oregon Health and Sciences University, Portland, Oregon
| | - Iya Khalil
- GNS Healthcare, Cambridge, Massachusetts
| | - W Michael Korn
- Divisions of Gastroenterology and Hematology/Oncology, Department of Medicine, University of California, San Francisco, California. .,Helen Diller Family Comprehensive Cancer Center, University of California San Francisco, California
| |
Collapse
|
20
|
Abstract
The plasma concentration of lipids is a heritable risk factor for the development of atherosclerosis and related coronary artery diseases (CAD). Mammalian tribbles homologue 1 (TRIB1) is a human locus, the downstream linkage disequilibrium (LD) block of which affects plasma low-density lipoprotein (LDL)-associated cholesterol, triglyceride (TG) levels and CAD across multiple ethnic groups. In addition, association of TRIB1 with non-alcoholic fatty liver disease (NAFLD) has also been shown. A regulatory sequence that enhances TRIB1 promoter activity was identified in the LD block and the minor allele of a single nt polymorphism (SNP, rs6982502) in this regulatory sequence reduces the activity of the TRIB1 promoter. The minor allele of rs6982502 is a risk allele for increasing plasma lipid levels and NAFLD. Trib1 deficiency increases plasma cholesterol and TGs in mice and overexpression of TRIB1 in mouse liver reduces these factors. Expression of rate-limiting lipogenic enzymes is increased in Trib1-knockout mouse liver and decreased with overexpression. Recently, carbohydrate-responsive element-binding protein (ChREBP) emerged as a novel binding partner of TRIB1. Furthermore, novel binding partner, Sin3A (Swi-independent 3A)-associated protein, 18 kDa, was identified, which activates microsomal TG transfer protein (MTTP) expression by binding with MTTP regulatory elements in co-ordination with mSin3A and TRIB1. Very recently, a small molecular compound that up-regulates TRIB1 expression in HepG2 cells has been discovered. Further exploration of the binding partners of TRIB1 and their involvement in lipid metabolism may aid discovery of novel pharmacological targets for the management of dyslipidaemia and steatosis.
Collapse
|
21
|
Abstract
Tribbles (TRIB) proteins, a family of evolutionary conserved psuedokinase proteins, modulate various signalling pathways within the cell. The regulatory roles of TRIB make them an important part of a number of biological processes ranging from cell proliferation to metabolism, immunity, inflammation and carcinogenesis. Innate immune system plays a pivotal role during the regulation of reproductive processes that allows successful creation of an offspring. Its involvement initiates from fertilization of the oocyte by spermatozoon and lasts throughout early embryonic development, pregnancy and labour. Therefore, there is a close cooperation between the reproductive system and the innate immune system. Evidence from our lab has demonstrated that improper activation of the innate immune system can reduce embryo implantation, thus leading to infertility. Therefore, control mechanisms regulating the innate immune system function can be critical for successful reproductive events.
Collapse
|
22
|
Miyajima C, Itoh Y, Inoue Y, Hayashi H. Positive Regulation of Interleukin-2 Expression by a Pseudokinase, Tribbles 1, in Activated T Cells. Biol Pharm Bull 2016; 38:1126-33. [PMID: 26235576 DOI: 10.1248/bpb.b15-00002] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
Tribbles 1 (TRB1), a member of the Tribbles family, is a pseudokinase that is conserved among species and implicated in various human diseases including leukemia, cardiovascular diseases, and metabolic disorders. However, the role of TRB1 in the immune response is not understood. To evaluate this role, we examined regulation of TRB1 expression and the function of TRB1 in interleukin-2 (IL-2) induction in Jurkat cells, a human acute T cell leukemia cell line. We found that TRB1 was strongly induced by phorbol 12-myristate 13-acetate (PMA) and ionomycin in these cells. IL-2 expression was induced in Jurkat cells activated by PMA and ionomycin; however, knockdown of TRB1 resulted in decreased induction of IL-2. TRB1 null Jurkat cells established using the CRISPR/Cas9 system also showed reduction of IL-2 expression on PMA/ionomycin stimulation. TRB1 knockdown also markedly inhibited IL-2 promoter activation. To determine the mechanism of the stimulatory effect on IL-2 induction, we focused on histone deacetylases (HDACs), and found that HDAC1 preferentially interacts with TRB1. TRB1 suppressed the interaction of HDAC1 with nuclear factor of activated T cells 2 (NFAT2), which is a crucial transcription factor for IL-2 induction. These results indicate that TRB1 is a positive regulator of IL-2 induction in activated T cells.
Collapse
Affiliation(s)
- Chiharu Miyajima
- Department of Cell Signaling, Graduate School of Pharmaceutical Sciences, Nagoya City University
| | | | | | | |
Collapse
|
23
|
Zhou T, Ding JW, Wang XA, Zheng XX. Long noncoding RNAs and atherosclerosis. Atherosclerosis 2016; 248:51-61. [PMID: 26987066 DOI: 10.1016/j.atherosclerosis.2016.02.025] [Citation(s) in RCA: 70] [Impact Index Per Article: 7.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/15/2015] [Revised: 02/18/2016] [Accepted: 02/18/2016] [Indexed: 01/13/2023]
Abstract
Atherosclerosis is universally recognized as a chronic lipid-induced inflammation of the vessel wall in response to dyslipidemia and haemodynamic stress involving dysfunction and activation of resident vascular cells as well as infiltration of leukocytes. As members of nonprotein-coding RNAs, the long noncoding RNAs (lncRNAs) are implicated in various biological processes. Accumulating evidences suggest that lncRNAs regulate the function of vascular wall, activation of macrophages, lipid metabolism and immune response. Here, we review the effects of lncRNAs on the progress of atherosclerosis.
Collapse
Affiliation(s)
- Tian Zhou
- Department of Cardiology, The First College of Clinical Medical Science, China Three Gorges University, Yichang 443000, Hubei Province, China; Institute of Cardiovascular Diseases, China Three Gorges University, Yichang 443000, Hubei Province, China
| | - Jia-wang Ding
- Department of Cardiology, The First College of Clinical Medical Science, China Three Gorges University, Yichang 443000, Hubei Province, China; Institute of Cardiovascular Diseases, China Three Gorges University, Yichang 443000, Hubei Province, China.
| | - Xin-an Wang
- Department of Cardiology, The First College of Clinical Medical Science, China Three Gorges University, Yichang 443000, Hubei Province, China; Institute of Cardiovascular Diseases, China Three Gorges University, Yichang 443000, Hubei Province, China
| | - Xia-xia Zheng
- Department of Cardiology, The First College of Clinical Medical Science, China Three Gorges University, Yichang 443000, Hubei Province, China; Institute of Cardiovascular Diseases, China Three Gorges University, Yichang 443000, Hubei Province, China
| |
Collapse
|
24
|
Role of Tribbles Pseudokinase 1 (TRIB1) in human hepatocyte metabolism. Biochim Biophys Acta Mol Basis Dis 2015; 1862:223-32. [PMID: 26657055 DOI: 10.1016/j.bbadis.2015.12.003] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/02/2015] [Revised: 11/18/2015] [Accepted: 12/01/2015] [Indexed: 01/23/2023]
Abstract
Genome-wide association studies for plasma triglycerides and hepatic steatosis identified a risk locus on chromosome 8q24 close to the TRIB1 gene, encoding Tribbles Pseudokinase 1 (TRIB1). In previous studies conducted in murine models, hepatic over-expression of Trib1 was shown to increase fatty acid oxidation and decrease triglyceride synthesis whereas Trib1 knockdown mice exhibited hypertriglyceridemia. Here we have examined the impact of TRIB1 suppression in human and mouse hepatocytes. Examination of a panel of lipid regulator transcripts revealed species-specific effects, prompting us to focus on human models for the remainder of the study. Acute knockdown of TRIB1 in human primary hepatocytes resulted in decreased expression of MTTP and APOB, required for very low density lipoprotein (VLDL) assembly although particle secretion was not significantly affected. A parallel analysis performed in HepG2 revealed reduced MTTP, but not APOB, protein as a result of TRIB1 suppression. Global gene expression changes of human primary hepatocytes upon TRIB1 suppression were analyzed by clustering algorithms and found to be consistent with dysregulation of several pathways fundamental to liver function, including altered CEBPA and B transcript levels and impaired glucose handling. Indeed, TRIB1 expression in HepG2 cells was found to be inversely proportional to glucose concentration. Lastly TRIB1 downregulation in primary hepatocytes was associated with suppression of the HNF4A axis. In HepG2 cells, TRIB1 suppression resulted in reduced HNF4A protein levels while HNF4A suppression increased TRIB1 expression. Taken together these studies reveal an important role for TRIB1 in human hepatocyte biology.
Collapse
|
25
|
Abstract
Inflammation is part of the physiological innate immune response to invading pathogens and tissue injury. However, unresolved inflammation leads to human disease. The tribbles (TRIB) family of pseudokinase proteins has been shown to modulate key inflammatory signalling pathways, including the MAPK (mitogen-activated protein kinase) and PI3K (phosphoinositide 3-kinase) networks. This review summarizes our current knowledge on TRIBs in the context of inflammation, both at the level of molecular mechanisms and in disease development.
Collapse
|
26
|
Douvris A, Soubeyrand S, Naing T, Martinuk A, Nikpay M, Williams A, Buick J, Yauk C, McPherson R. Functional analysis of the TRIB1 associated locus linked to plasma triglycerides and coronary artery disease. J Am Heart Assoc 2014; 3:e000884. [PMID: 24895164 PMCID: PMC4309087 DOI: 10.1161/jaha.114.000884] [Citation(s) in RCA: 39] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Abstract
Background The TRIB1 locus has been linked to hepatic triglyceride metabolism in mice and to plasma triglycerides and coronary artery disease in humans. The lipid‐associated single nucleotide polymorphisms (SNPs), identified by genome‐wide association studies, are located ≈30 kb downstream from TRIB1, suggesting complex regulatory effects on genes or pathways relevant to hepatic triglyceride metabolism. The goal of this study was to investigate the functional relationship between common SNPs at the TRIB1 locus and plasma lipid traits. Methods and Results Characterization of the risk locus reveals that it encompasses a gene, TRIB1‐associated locus (TRIBAL), composed of a well‐conserved promoter region and an alternatively spliced transcript. Bioinformatic analysis and resequencing identified a single SNP, rs2001844, within the promoter region that associates with increased plasma triglycerides and reduced high‐density lipoprotein cholesterol and coronary artery disease risk. Further, correction for triglycerides as a covariate indicated that the genome‐wide association studies association is largely dependent on triglycerides. In addition, we show that rs2001844 is an expression trait locus (eQTL) for TRIB1 expression in blood and alters TRIBAL promoter activity in a reporter assay model. The TRIBAL transcript has features typical of long noncoding RNAs, including poor sequence conservation. Modulation of TRIBAL expression had limited impact on either TRIB1 or lipid regulatory genes mRNA levels in human hepatocyte models. In contrast, TRIB1 knockdown markedly increased TRIBAL expression in HepG2 cells and primary human hepatocytes. Conclusions These studies demonstrate an interplay between a novel locus, TRIBAL, and TRIB1. TRIBAL is located in the genome‐wide association studies identified risk locus, responds to altered expression of TRIB1, harbors a risk SNP that is an eQTL for TRIB1 expression, and associates with plasma triglyceride concentrations.
Collapse
Affiliation(s)
- Adrianna Douvris
- Atherogenomics Laboratory, University of Ottawa Heart Institute, Ottawa, Canada (A.D., S., T.N., A.M., M.N., R.M.P.)
| | - Sébastien Soubeyrand
- Atherogenomics Laboratory, University of Ottawa Heart Institute, Ottawa, Canada (A.D., S., T.N., A.M., M.N., R.M.P.)
| | - Thet Naing
- Atherogenomics Laboratory, University of Ottawa Heart Institute, Ottawa, Canada (A.D., S., T.N., A.M., M.N., R.M.P.)
| | - Amy Martinuk
- Atherogenomics Laboratory, University of Ottawa Heart Institute, Ottawa, Canada (A.D., S., T.N., A.M., M.N., R.M.P.)
| | - Majid Nikpay
- Atherogenomics Laboratory, University of Ottawa Heart Institute, Ottawa, Canada (A.D., S., T.N., A.M., M.N., R.M.P.)
| | - Andrew Williams
- Environmental Health Science and Research Bureau, Ottawa, Canada (A.W., J.B., C.Y.)
| | - Julie Buick
- Environmental Health Science and Research Bureau, Ottawa, Canada (A.W., J.B., C.Y.)
| | - Carole Yauk
- Environmental Health Science and Research Bureau, Ottawa, Canada (A.W., J.B., C.Y.)
| | - Ruth McPherson
- Atherogenomics Laboratory, University of Ottawa Heart Institute, Ottawa, Canada (A.D., S., T.N., A.M., M.N., R.M.P.) Division of Cardiology, University of Ottawa Heart Institute, Ottawa, Canada (R.M.P.)
| |
Collapse
|
27
|
Ishizuka Y, Nakayama K, Ogawa A, Makishima S, Boonvisut S, Hirao A, Iwasaki Y, Yada T, Yanagisawa Y, Miyashita H, Takahashi M, Iwamoto S. TRIB1 downregulates hepatic lipogenesis and glycogenesis via multiple molecular interactions. J Mol Endocrinol 2014; 52:145-58. [PMID: 24389359 DOI: 10.1530/jme-13-0243] [Citation(s) in RCA: 42] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
Abstract
Mammalian tribbles homolog 1 (TRIB1) regulates hepatic lipogenesis and is genetically associated with plasma triglyceride (TG) levels and cholesterol, but the molecular mechanisms remain obscure. We explored these mechanisms in mouse livers transfected with a TRIB1 overexpression, a shRNA template or a control (LacZ) adenovirus vector. The overexpression of TRIB1 reduced, whereas induction of the shRNA template increased, plasma glucose, TG, and cholesterol and simultaneously hepatic TG and glycogen levels. The involvement of TRIB1 in hepatic lipid accumulation was supported by the findings of a human SNP association study. A TRIB1 SNP, rs6982502, was identified in an enhancer sequence, modulated enhancer activity in reporter gene assays, and was significantly (P=9.39 × 10(-7)) associated with ultrasonographically diagnosed non-alcoholic fatty liver disease in a population of 5570 individuals. Transcriptome analyses of mouse livers revealed significant modulation of the gene sets involved in glycogenolysis and lipogenesis. Enforced TRIB1 expression abolished CCAAT/enhancer binding protein A (CEBPA), CEBPB, and MLXIPL proteins, whereas knockdown increased the protein level. Levels of TRIB1 expression simultaneously affected MKK4 (MAP2K4), MEK1 (MAP2K1), and ERK1/2 (MAPK1/3) protein levels and the phosphorylation of JNK, but not of ERK1/2. Pull-down and mammalian two-hybrid analyses revealed novel molecular interaction between TRIB1 and a hepatic lipogenic master regulator, MLXIPL. Co-expression of TRIB1 and CEBPA or MLXIPL reduced their protein levels and proteasome inhibitors attenuated the reduction. These data suggested that the modulation of TRIB1 expression affects hepatic lipogenesis and glycogenesis through multiple molecular interactions.
Collapse
Affiliation(s)
- Yuumi Ishizuka
- Division of Human Genetics, Center for Molecular Medicine, Jichi Medical University, 3311-1 Yakushiji, Shimotsuke, Tochigi 329-0498, Japan Department of Anatomy Division of Integrative Physiology, Department of Physiology, Jichi Medical University, Tochigi 329-0498, Japan Health Care Food Research, Human Health Care Research, Research and Development, Kao Corporation, Sumida-ku, Tokyo 131-8501, Japan Jichi Medical University Health Care Center, Shimotsuke-shi, Tochigi 329-0498, Japan Division of Inflammation Research, Center for Molecular Medicine, Jichi Medical University, Tochigi 329-0498, Japan Division of Community and Family Medicine, Center for Community Medicine, Jichi Medical University, 3311-1 Yakushiji, Shimotsuke, Tochigi 329-0498, Japan
| | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
28
|
Mega C, Vala H, Rodrigues-Santos P, Oliveira J, Teixeira F, Fernandes R, Reis F, de Lemos ET. Sitagliptin prevents aggravation of endocrine and exocrine pancreatic damage in the Zucker Diabetic Fatty rat - focus on amelioration of metabolic profile and tissue cytoprotective properties. Diabetol Metab Syndr 2014; 6:42. [PMID: 24650557 PMCID: PMC3998187 DOI: 10.1186/1758-5996-6-42] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/30/2014] [Accepted: 03/05/2014] [Indexed: 02/06/2023] Open
Abstract
BACKGROUND The purpose of this study was to investigate some of the possible mechanisms underlying the protective effects of a dipeptidyl peptidase IV (DPP-IV) inhibitor, sitagliptin, on pancreatic tissue in an animal model of type 2 diabetes mellitus (T2DM), the Zucker Diabetic Fatty (ZDF) rat, focusing on glycaemic, insulinic and lipidic profiles, as well as, on apoptosis, inflammation, angiogenesis and proliferation mediators. METHODS Male obese diabetic ZDF (fa/fa) rats, aged 20 weeks, were treated with sitagliptin (10 mg/kg bw/day) during 6 weeks and compared to untreated diabetic and lean control littermates. Metabolic data was evaluated at the beginning and at the end of the treatment, including glycaemia, HbA1c, insulinaemia, HOMA-beta and TGs. Endocrine and exocrine pancreas lesions were assessed semiquantitatively by histopathological methods. Pancreas gene (mRNA) and protein expression of mediators of apoptotic machinery, inflammation and angiogenesis/proliferation (Bax, Bcl2, IL-1β, VEGF, PCNA and TRIB3) were analyzed by RT-qPCR and/or by immunohistochemistry. RESULTS Sitagliptin treatment for 6 weeks (between 20 and 26 week-old) was able to significantly (p < 0.001) ameliorate all the metabolic parameters, by preventing the increase in blood glucose and in serum TGs contents (16.54% and 37.63%, respectively, vs untreated), as well as, by preventing the decrease in serum insulin levels and in the functional beta cells capacity accessed via HOMA-beta index (156.28% and 191.74%, respectively, vs untreated). Sitagliptin-treated diabetic rats presented a reduced pancreas Bax/Bcl2 ratio, suggestive of an antiapoptotic effect; in addition, sitagliptin was able to completely reduce (p < 0.001) the pancreas overexpression of IL-1β and TRIB3 found in the untreated diabetic animals; and promoted a significant (p < 0.001) overexpression of VEGF and PCNA. CONCLUSION In this animal model of obese T2DM (the ZDF rat), sitagliptin prevented β-cell dysfunction and evolution of pancreatic damage. The protective effects afforded by this DPP-IV inhibitor may derive from improvement of the metabolic profile (viewed by the amelioration of glucose and TGs levels and of insulin resistance) and from cytoprotective properties, such as antiapoptotic, anti-inflammatory, pro-angiogenic and pro-proliferative.
Collapse
Affiliation(s)
- Cristina Mega
- Laboratory of Pharmacology & Experimental Therapeutics, IBILI, Faculty of Medicine, Sub-Unit 1 (Polo III), University of Coimbra, 3000-548 Coimbra, Portugal
- ESAV, Polytechnic Institute of Viseu, Viseu, Portugal
| | - Helena Vala
- ESAV, Polytechnic Institute of Viseu, Viseu, Portugal
- Center for Studies in Education, Technologies and Health (CI&DETS), Polytechnic Institute of Viseu, Viseu, Portugal
| | - Paulo Rodrigues-Santos
- Institute of Immunology, Faculty of Medicine, University of Coimbra, Coimbra, Portugal
- Immunology and Oncology Laboratory, Center for Neurosciences and Cell Biology, Coimbra, Portugal
| | - Jorge Oliveira
- ESAV, Polytechnic Institute of Viseu, Viseu, Portugal
- Center for Studies in Education, Technologies and Health (CI&DETS), Polytechnic Institute of Viseu, Viseu, Portugal
| | - Frederico Teixeira
- Laboratory of Pharmacology & Experimental Therapeutics, IBILI, Faculty of Medicine, Sub-Unit 1 (Polo III), University of Coimbra, 3000-548 Coimbra, Portugal
| | - Rosa Fernandes
- Laboratory of Pharmacology & Experimental Therapeutics, IBILI, Faculty of Medicine, Sub-Unit 1 (Polo III), University of Coimbra, 3000-548 Coimbra, Portugal
| | - Flávio Reis
- Laboratory of Pharmacology & Experimental Therapeutics, IBILI, Faculty of Medicine, Sub-Unit 1 (Polo III), University of Coimbra, 3000-548 Coimbra, Portugal
| | - Edite Teixeira de Lemos
- Laboratory of Pharmacology & Experimental Therapeutics, IBILI, Faculty of Medicine, Sub-Unit 1 (Polo III), University of Coimbra, 3000-548 Coimbra, Portugal
- ESAV, Polytechnic Institute of Viseu, Viseu, Portugal
| |
Collapse
|
29
|
Soubeyrand S, Naing T, Martinuk A, McPherson R. ERK1/2 regulates hepatocyte Trib1 in response to mitochondrial dysfunction. BIOCHIMICA ET BIOPHYSICA ACTA-MOLECULAR CELL RESEARCH 2013; 1833:3405-3414. [PMID: 24161842 DOI: 10.1016/j.bbamcr.2013.10.001] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/05/2013] [Revised: 09/13/2013] [Accepted: 10/02/2013] [Indexed: 01/10/2023]
Abstract
The TRIB1 locus (8q24.13) is a novel locus identified and replicated by several genome-wide association studies for associations with plasma triglycerides, apolipoprotein B and coronary artery disease. The TRIB1 protein product, tribbles-like protein 1 (Trib1), regulates MAPK activity. MAP kinases transduce a large variety of external signals, leading to a wide range of cellular responses, including growth, differentiation, inflammation and apoptosis. Importantly, Trib1 has been shown to regulate hepatic lipogenesis and very low density lipoprotein production. Despite the relevance of hepatocyte Trib1 to lipid metabolism and atherosclerosis, little is known about the mechanisms regulating Trib1 itself. Here, we identify the mitochondria axis as a regulator of Trib1. Treatment of HepG2 cells with a short pulse of a low oligomycin concentration led to a potent and prolonged increase in the Trib1 mRNA, an effect that was shared with other mitochondria stressors. HuH7 cells as well murine hepatocytes were also responsive albeit to a weaker extent. The upregulation appeared largely independent of reactive oxygen species generation or metabolic stress and was mainly under transcriptional control, with ERK1/2 playing an important regulating role in the process. While the presence of the Trib1 protein could be inferred, attempts to correlate the increased mRNA to changes in protein level were unsuccessful due to the lack of recognizable Trib1 signal. Our data enrich the current paradigm of Trib1 as an activator of the MAPK pathway by uncovering a role for MAPK in regulating Trib1.
Collapse
Affiliation(s)
| | - Thet Naing
- Atherogenomics Laboratory, University of Ottawa Heart Institute, Ottawa, Canada
| | - Amy Martinuk
- Atherogenomics Laboratory, University of Ottawa Heart Institute, Ottawa, Canada
| | - Ruth McPherson
- Atherogenomics Laboratory, University of Ottawa Heart Institute, Ottawa, Canada; Division of Cardiology, University of Ottawa Heart Institute, Ottawa, Canada.
| |
Collapse
|
30
|
Ruchat SM, Houde AA, Voisin G, St-Pierre J, Perron P, Baillargeon JP, Gaudet D, Hivert MF, Brisson D, Bouchard L. Gestational diabetes mellitus epigenetically affects genes predominantly involved in metabolic diseases. Epigenetics 2013; 8:935-43. [PMID: 23975224 PMCID: PMC3883770 DOI: 10.4161/epi.25578] [Citation(s) in RCA: 197] [Impact Index Per Article: 16.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/06/2013] [Revised: 06/25/2013] [Accepted: 06/28/2013] [Indexed: 12/11/2022] Open
Abstract
Offspring exposed to gestational diabetes mellitus (GDM) have an increased risk for chronic diseases, and one promising mechanism for fetal metabolic programming is epigenetics. Therefore, we postulated that GDM exposure impacts the offspring's methylome and used an epigenomic approach to explore this hypothesis. Placenta and cord blood samples were obtained from 44 newborns, including 30 exposed to GDM. Women were recruited at first trimester of pregnancy and followed until delivery. GDM was assessed after a 75-g oral glucose tolerance test at 24-28 weeks of pregnancy. DNA methylation was measured at>485,000 CpG sites (Infinium HumanMethylation450 BeadChips). Ingenuity Pathway Analysis was conducted to identify metabolic pathways epigenetically affected by GDM. Our results showed that 3,271 and 3,758 genes in placenta and cord blood, respectively, were potentially differentially methylated between samples exposed or not to GDM (p-values down to 1 × 10(-06); none reached the genome-wide significance levels), with more than 25% (n = 1,029) being common to both tissues. Mean DNA methylation differences between groups were 5.7 ± 3.2% and 3.4 ± 1.9% for placenta and cord blood, respectively. These genes were likely involved in the metabolic diseases pathway (up to 115 genes (11%), p-values for pathways = 1.9 × 10(-13)
Collapse
Affiliation(s)
- Stephanie-May Ruchat
- Department of Biochemistry; Université de Sherbrooke; Sherbrooke, QC Canada
- ECOGENE-21 Laboratory and Lipid Clinic; Chicoutimi Hospital; Saguenay, QC Canada
| | - Andrée-Anne Houde
- Department of Biochemistry; Université de Sherbrooke; Sherbrooke, QC Canada
- ECOGENE-21 Laboratory and Lipid Clinic; Chicoutimi Hospital; Saguenay, QC Canada
| | | | - Julie St-Pierre
- ECOGENE-21 Laboratory and Lipid Clinic; Chicoutimi Hospital; Saguenay, QC Canada
- Department of Pediatrics; Chicoutimi Hospital; Saguenay, QC Canada
| | - Patrice Perron
- ECOGENE-21 Laboratory and Lipid Clinic; Chicoutimi Hospital; Saguenay, QC Canada
- Department of Medicine; Division of Endocrinology; Université de Sherbrooke; Sherbrooke, QC Canada
| | - Jean-Patrice Baillargeon
- Department of Medicine; Division of Endocrinology; Université de Sherbrooke; Sherbrooke, QC Canada
| | - Daniel Gaudet
- ECOGENE-21 Laboratory and Lipid Clinic; Chicoutimi Hospital; Saguenay, QC Canada
- Department of Medicine; Université de Montréal; Montreal, QC Canada
| | - Marie-France Hivert
- Department of Medicine; Division of Endocrinology; Université de Sherbrooke; Sherbrooke, QC Canada
- General Medicine Division; Massachusetts General Hospital; Boston, MA USA
| | - Diane Brisson
- ECOGENE-21 Laboratory and Lipid Clinic; Chicoutimi Hospital; Saguenay, QC Canada
- Department of Medicine; Université de Montréal; Montreal, QC Canada
| | - Luigi Bouchard
- Department of Biochemistry; Université de Sherbrooke; Sherbrooke, QC Canada
- ECOGENE-21 Laboratory and Lipid Clinic; Chicoutimi Hospital; Saguenay, QC Canada
| |
Collapse
|
31
|
Liu YH, Tan KAL, Morrison IW, Lamb JR, Argyle DJ. Macrophage migration is controlled by Tribbles 1 through the interaction between C/EBPβ and TNF-α. Vet Immunol Immunopathol 2013; 155:67-75. [PMID: 23810419 DOI: 10.1016/j.vetimm.2013.06.001] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/05/2013] [Revised: 05/23/2013] [Accepted: 06/03/2013] [Indexed: 01/21/2023]
Abstract
In mammals, three Tribbles gene family members have been identified, Tribbles 1, 2 and 3 (Trib1, Trib2 and Trib3). All family members are considered to be pseudokinases in that they contain domains homologous to serine/threonine kinase catalytic cores, but they lack several conserved residues in the ATP-binding pocket. Trib1 is implicated in the inflammatory response pathway through its ability to regulate mitogen-activated protein kinase (MAPK), nuclear factor kappa B (NF-κB) and CCAAT Enhancer Binding Protein (C/EBP). However, its role in macrophages function is unknown. Here, we investigated the functional role of Trib1 in Toll-like receptor-mediated inflammatory responses to IFN-γ in RAW264.7 cells. In gene knock-down experiments in macrophages using small interfering RNAs targeted to Trib1, it was observed that TNF-α production was increased following treatment with IFN-γ and/or TLR2 ligands. Finally, Trib1-silenced macrophages failed to show MCP-1 induced chemokinesis and indicating involvement of Trib1 in controlling of macrophage migration. This work demonstrates that Trib1 contributes to the pro-inflammatory response caused by TLR2 ligands and controls macrophage migration as well as being a biomarker in macrophage-related diseases in both human and veterinary medicine.
Collapse
Affiliation(s)
- Yi-Hsia Liu
- Royal (Dick) School of Veterinary Studies and Roslin Institute, The University of Edinburgh, Easter Bush, Midlothian EH25 9RG, UK.
| | | | | | | | | |
Collapse
|
32
|
Rohm M, Sommerfeld A, Strzoda D, Jones A, Sijmonsma TP, Rudofsky G, Wolfrum C, Sticht C, Gretz N, Zeyda M, Leitner L, Nawroth PP, Stulnig TM, Berriel Diaz M, Vegiopoulos A, Herzig S. Transcriptional cofactor TBLR1 controls lipid mobilization in white adipose tissue. Cell Metab 2013; 17:575-85. [PMID: 23499424 DOI: 10.1016/j.cmet.2013.02.010] [Citation(s) in RCA: 36] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/22/2012] [Revised: 12/14/2012] [Accepted: 02/05/2013] [Indexed: 11/30/2022]
Abstract
Lipid mobilization (lipolysis) in white adipose tissue (WAT) critically controls lipid turnover and adiposity in humans. While the acute regulation of lipolysis has been studied in detail, the transcriptional determinants of WAT lipolytic activity remain still largely unexplored. Here we show that the genetic inactivation of transcriptional cofactor transducin beta-like-related 1(TBLR1) blunts the lipolytic response of white adipocytes through the impairment of cAMP-dependent signal transduction. Indeed, mice lacking TBLR1 in adipocytes are defective in fasting-induced lipid mobilization and, when placed on a high-fat-diet, show aggravated adiposity, glucose intolerance, and insulin resistance. TBLR1 levels are found to increase under lipolytic conditions in WAT of both human patients and mice, correlating with serum free fatty acids (FFAs). As a critical regulator of WAT cAMP signaling and lipid mobilization, proper activity of TBLR1 in adipocytes might thus represent a critical molecular checkpoint for the prevention of metabolic dysfunction in subjects with obesity-related disorders.
Collapse
Affiliation(s)
- Maria Rohm
- Joint Division Molecular Metabolic Control, DKFZ-ZMBH Alliance and Network Aging Research, German Cancer Research Center (DKFZ) Heidelberg, Center for Molecular Biology (ZMBH) and University Hospital, Heidelberg University, 69120 Heidelberg, Germany
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
33
|
Dugast E, Kiss-Toth E, Docherty L, Danger R, Chesneau M, Pichard V, Judor JP, Pettré S, Conchon S, Soulillou JP, Brouard S, Ashton-Chess J. Identification of tribbles-1 as a novel binding partner of Foxp3 in regulatory T cells. J Biol Chem 2013; 288:10051-10060. [PMID: 23417677 DOI: 10.1074/jbc.m112.448654] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/12/2023] Open
Abstract
In a previous study, we identified TRIB1, a serine-threonine kinase-like molecule, as a biomarker of chronic antibody-mediated rejection of human kidneys when measured in peripheral blood mononuclear cells. Here, we focused our analysis on a specific subset of peripheral blood mononuclear cells that play a dominant role in regulating immune responses in health and disease, so-called CD4(+)CD25(+)Foxp3(+) regulatory T cells (Tregs). We isolated both human and murine Treg and non-Treg counterparts and analyzed TRIB1 and Foxp3 mRNA expression by quantitative PCR on the freshly isolated cells or following 24 h of activation. Physical interaction between the human TRIB1 and Foxp3 proteins was analyzed in live cell lines by protein complementation assay using both flow cytometry and microscopy and confirmed in primary freshly isolated human CD4(+)CD25(hi)CD127(-) Tregs by co-immunoprecipitation. Both TRIB1 and Foxp3 were expressed at significantly higher levels in Tregs than in their CD4(+)CD25(-) counterparts (p < 0.001). Moreover, TRIB1 and Foxp3 mRNA levels correlated tightly in Tregs (Spearman r = 1.0; p < 0.001, n = 7), but not in CD4(+)CD25(-) T cells. The protein complementation assay revealed a direct physical interaction between TRIB1 and Foxp3 in live cells. This interaction was impaired upon deletion of the TRIB1 N-terminal but not the C-terminal domain, suggesting an interaction in the nucleus. This direct interaction within the nucleus was confirmed in primary human Tregs by co-immunoprecipitation. These data show a direct relationship between TRIB1 and Foxp3 in terms of their expression and physical interaction and highlight Tribbles-1 as a novel binding partner of Foxp3 in Tregs.
Collapse
Affiliation(s)
- Emilie Dugast
- UMR1064, Institut National de la Santé et de la Recherche Médicale, Nantes 44000, France; Faculté de Médecine Université de Nantes, Nantes 44000, France; TcLand Expression, 21 rue de la Noue Bras de Fer, 44200 Nantes, France; Institut de Recherche en Transplantation, Institut de Transplantation Urologie-Néphrologie, Nantes 44000, France
| | - Endre Kiss-Toth
- Department of Cardiovascular Science, University of Sheffield, Sheffield S10 2TN, United Kingdom
| | - Louise Docherty
- Department of Cardiovascular Science, University of Sheffield, Sheffield S10 2TN, United Kingdom
| | - Richard Danger
- UMR1064, Institut National de la Santé et de la Recherche Médicale, Nantes 44000, France; Faculté de Médecine Université de Nantes, Nantes 44000, France; Institut de Recherche en Transplantation, Institut de Transplantation Urologie-Néphrologie, Nantes 44000, France
| | - Mélanie Chesneau
- UMR1064, Institut National de la Santé et de la Recherche Médicale, Nantes 44000, France; Faculté de Médecine Université de Nantes, Nantes 44000, France; Institut de Recherche en Transplantation, Institut de Transplantation Urologie-Néphrologie, Nantes 44000, France
| | - Virginie Pichard
- UMR1064, Institut National de la Santé et de la Recherche Médicale, Nantes 44000, France; Faculté de Médecine Université de Nantes, Nantes 44000, France; Institut de Recherche en Transplantation, Institut de Transplantation Urologie-Néphrologie, Nantes 44000, France
| | - Jean-Paul Judor
- UMR1064, Institut National de la Santé et de la Recherche Médicale, Nantes 44000, France; Faculté de Médecine Université de Nantes, Nantes 44000, France; Institut de Recherche en Transplantation, Institut de Transplantation Urologie-Néphrologie, Nantes 44000, France
| | - Ségolène Pettré
- UMR1064, Institut National de la Santé et de la Recherche Médicale, Nantes 44000, France; Faculté de Médecine Université de Nantes, Nantes 44000, France; Institut de Recherche en Transplantation, Institut de Transplantation Urologie-Néphrologie, Nantes 44000, France
| | - Sophie Conchon
- UMR1064, Institut National de la Santé et de la Recherche Médicale, Nantes 44000, France; Faculté de Médecine Université de Nantes, Nantes 44000, France; Institut de Recherche en Transplantation, Institut de Transplantation Urologie-Néphrologie, Nantes 44000, France
| | - Jean-Paul Soulillou
- UMR1064, Institut National de la Santé et de la Recherche Médicale, Nantes 44000, France; Institut de Recherche en Transplantation, Institut de Transplantation Urologie-Néphrologie, Nantes 44000, France; Centre Hospitalier Universitaire de Nantes, Nantes 44000, France
| | - Sophie Brouard
- UMR1064, Institut National de la Santé et de la Recherche Médicale, Nantes 44000, France; Institut de Recherche en Transplantation, Institut de Transplantation Urologie-Néphrologie, Nantes 44000, France; Centre Hospitalier Universitaire de Nantes, Nantes 44000, France.
| | | |
Collapse
|
34
|
Cunard R. Mammalian tribbles homologs at the crossroads of endoplasmic reticulum stress and Mammalian target of rapamycin pathways. SCIENTIFICA 2013; 2013:750871. [PMID: 24490110 PMCID: PMC3892554 DOI: 10.1155/2013/750871] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/07/2013] [Accepted: 11/20/2013] [Indexed: 05/03/2023]
Abstract
In 2000, investigators discovered Tribbles, a Drosophila protein that coordinates morphogenesis by inhibiting mitosis. Further work has delineated Xenopus (Xtrb2), Nematode (Nipi-3), and mammalian homologs of Drosophila tribbles, which include TRB1, TRB2, and TRB3. The sequences of tribbles homologs are highly conserved, and despite their protein kinase structure, to date they have not been shown to have kinase activity. TRB family members play a role in the differentiation of macrophages, lymphocytes, muscle cells, adipocytes, and osteoblasts. TRB isoforms also coordinate a number of critical cellular processes including glucose and lipid metabolism, inflammation, cellular stress, survival, apoptosis, and tumorigenesis. TRB family members modulate multiple complex signaling networks including mitogen activated protein kinase cascades, protein kinase B/AKT signaling, mammalian target of rapamycin, and inflammatory pathways. The following review will discuss metazoan homologs of Drosophila tribbles, their structure, expression patterns, and functions. In particular, we will focus on TRB3 function in the kidney in podocytes. This review will also discuss the key signaling pathways with which tribbles proteins interact and provide a rationale for developing novel therapeutics that exploit these interactions to provide better treatment options for both acute and chronic kidney disease.
Collapse
Affiliation(s)
- Robyn Cunard
- Research Service and Division of Nephrology-Hypertension, Veterans Affairs San Diego Healthcare System, Veterans Medical Research Foundation, Mail Code 151, 3350 La Jolla Village Drive, San Diego, CA 92161, USA
- Department of Medicine, University of California San Diego, La Jolla, CA 92093, USA
- *Robyn Cunard:
| |
Collapse
|
35
|
Jennissen K, Haas B, Mitschke MM, Siegel F, Pfeifer A. Analysis of cGMP signaling in adipocytes. Methods Mol Biol 2013; 1020:175-92. [PMID: 23709033 DOI: 10.1007/978-1-62703-459-3_11] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/31/2023]
Abstract
Obesity has reached pandemic dimensions with more than half a billion adults affected worldwide. Detailed knowledge of adipose biology is required for the development of urgently needed novel therapies directed against obesity. Two types of adipose tissue can be distinguished in humans and mice: white adipose tissue (WAT), which primarily stores energy in the form of lipids and has endocrine functions. In contrast, brown adipose tissue (BAT) dissipates energy in the form of heat (thermogenesis). Recent studies in humans demonstrated that BAT not only plays a role for non-shivering thermogenesis in newborns but is also metabolically active in adults. Here, we describe protocols for the generation of cellular models for the analysis of adipogenesis as well as function of brown and white fat. These models are based on the in vitro differentiation of mesenchymal stem cells (MSCs) isolated from adipose tissues. Using specific differentiation protocols, the role of cGMP signaling in both brown as well as white adipocytes can be studied.
Collapse
Affiliation(s)
- Katja Jennissen
- Institute of Pharmacology and Toxicology, Universität Bonn, Bonn, Germany
| | | | | | | | | |
Collapse
|
36
|
Dobens LL, Bouyain S. Developmental roles of tribbles protein family members. Dev Dyn 2012; 241:1239-48. [PMID: 22711497 DOI: 10.1002/dvdy.23822] [Citation(s) in RCA: 29] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 06/11/2012] [Indexed: 12/15/2022] Open
Abstract
The gene tribbles (trbl), identified 12 years ago in genetic screens for mutations that control both cell division and cell migration during embryonic Drosophila development, is the founding member of the Tribbles (Trib) family of kinase-like proteins that have diverse roles in cell signaling, tissue homeostasis, and cancer. Trib proteins share three motifs: (1) a divergent kinase region (Trib domain) with undetermined catalytic activity, (2) a COP1 site used to direct key target proteins to the proteosome for degradation, and (3) a MEK1 site that binds and modulates MAPKK kinase activity. The notion that Tribs act as scaffolding proteins to balance signaling levels in multiple pathways retains an attractive simplicity, but given recent data showing that divergent kinases act by means of novel catalytic mechanisms, the enzymatic activity of Tribs remains untested. Here, we focus on the role of Tribs during development. Developmental analysis of Drosophila trbl phenotypes reveals tissue-specific, sometimes contradictory roles. In mammals, multiple Trib isoforms exhibit overlapping and tissue-specific functions. Recent data indicate the mechanism of Trib activity is conserved and requires the Trib domain. Finally, we discuss the connections between Tribs in disease and cancer that have implications for their normal roles during organogenesis.
Collapse
Affiliation(s)
- Leonard L Dobens
- Division of Molecular Biology and Biochemistry, School of Biological Sciences, University of Missouri-Kansas City, Kansas City, Missouri, USA.
| | | |
Collapse
|
37
|
Fox CS, White CC, Lohman K, Heard-Costa N, Cohen P, Zhang Y, Johnson AD, Emilsson V, Liu CT, Chen YDI, Taylor KD, Allison M, Budoff M, The CARDIoGRAM Consortium, Rotter JI, Carr JJ, Hoffmann U, Ding J, Cupples LA, Liu Y. Genome-wide association of pericardial fat identifies a unique locus for ectopic fat. PLoS Genet 2012; 8:e1002705. [PMID: 22589742 PMCID: PMC3349742 DOI: 10.1371/journal.pgen.1002705] [Citation(s) in RCA: 46] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/29/2011] [Accepted: 03/27/2012] [Indexed: 12/18/2022] Open
Abstract
Pericardial fat is a localized fat depot associated with coronary artery calcium and myocardial infarction. We hypothesized that genetic loci would be associated with pericardial fat independent of other body fat depots. Pericardial fat was quantified in 5,487 individuals of European ancestry from the Framingham Heart Study (FHS) and the Multi-Ethnic Study of Atherosclerosis (MESA). Genotyping was performed using standard arrays and imputed to ∼2.5 million Hapmap SNPs. Each study performed a genome-wide association analysis of pericardial fat adjusted for age, sex, weight, and height. A weighted z-score meta-analysis was conducted, and validation was obtained in an additional 3,602 multi-ethnic individuals from the MESA study. We identified a genome-wide significant signal in our primary meta-analysis at rs10198628 near TRIB2 (MAF 0.49, p = 2.7×10-08). This SNP was not associated with visceral fat (p = 0.17) or body mass index (p = 0.38), although we observed direction-consistent, nominal significance with visceral fat adjusted for BMI (p = 0.01) in the Framingham Heart Study. Our findings were robust among African ancestry (n = 1,442, p = 0.001), Hispanic (n = 1,399, p = 0.004), and Chinese (n = 761, p = 0.007) participants from the MESA study, with a combined p-value of 5.4E-14. We observed TRIB2 gene expression in the pericardial fat of mice. rs10198628 near TRIB2 is associated with pericardial fat but not measures of generalized or visceral adiposity, reinforcing the concept that there are unique genetic underpinnings to ectopic fat distribution. Pericardial fat is a localized fat depot associated with coronary artery calcium and myocardial infarction. To test whether genetic loci are associated with pericardial fat independent of other body fat depots, we measured pericardial fat in 5,487 individuals of European ancestry. After performing an unbiased screen using genome-wide association, we identified a genome-wide significant signal in our primary meta-analysis at rs10198628 near TRIB2 (MAF 0.49, p = 2.7×10-08). This SNP was not associated with visceral fat (p = 0.17) or body mass index (p = 0.38). Our findings were robust among multi-ethnic participants from the MESA study, with a combined p-value of 5.4E-14. We observed TRIB2 gene expression in the pericardial fat of mice. rs10198628 near TRIB2 is associated with pericardial fat but not measures of generalized or visceral adiposity, reinforcing the concept that there are unique genetic underpinnings to ectopic fat distribution.
Collapse
Affiliation(s)
- Caroline S. Fox
- Framingham Heart Study, National Heart, Lung, and Blood Institute, Framingham, Massachusetts, United States of America
- Center for Population Studies, National Heart, Lung, and Blood Institute, Framingham, Massachusetts, United States of America
- Division of Endocrinology, Brigham and Women's Hospital and Harvard Medical School, Boston, Massachusetts, United States of America
- * E-mail: (CSF); (YL)
| | - Charles C. White
- Framingham Heart Study, National Heart, Lung, and Blood Institute, Framingham, Massachusetts, United States of America
- Department of Biostatistics, Boston University School of Public Health, Boston, Massachusetts, United States of America
| | - Kurt Lohman
- Department of Epidemiology and Prevention, Public Health Sciences, Wake Forest School of Medicine, Winston-Salem, North Carolina, United States of America
| | - Nancy Heard-Costa
- Department of Neurology, Boston University School of Medicine, Boston, Massachusetts, United States of America
| | - Paul Cohen
- Division of Cardiovascular Medicine and Department of Cancer Biology, Brigham and Women's Hospital and Dana Farber Cancer Institute, Boston, Massachusetts, United States of America
| | - Yingying Zhang
- Department of Cancer Biology, Dana Farber Cancer Institute, Boston, Massachusetts, United States of America
| | - Andrew D. Johnson
- Framingham Heart Study, National Heart, Lung, and Blood Institute, Framingham, Massachusetts, United States of America
- Center for Population Studies, National Heart, Lung, and Blood Institute, Framingham, Massachusetts, United States of America
| | | | - Ching-Ti Liu
- Framingham Heart Study, National Heart, Lung, and Blood Institute, Framingham, Massachusetts, United States of America
- Department of Biostatistics, Boston University School of Public Health, Boston, Massachusetts, United States of America
| | - Y.-D. Ida Chen
- Medical Genetics Institute, Cedars-Sinai Medical Center, Los Angeles, California, United States of America
| | - Kent D. Taylor
- Medical Genetics Institute, Cedars-Sinai Medical Center, Los Angeles, California, United States of America
| | - Matthew Allison
- Department of Preventive Medicine, University of California San Diego, La Jolla, California, United States of America
| | - Matthew Budoff
- Los Angeles Biomedical Research Institute, Torrance, California, United States of America
| | | | - Jerome I. Rotter
- Medical Genetics Institute, Cedars-Sinai Medical Center, Los Angeles, California, United States of America
| | - J. Jeffrey Carr
- Departments of Radiologic Sciences, Internal Medicine-Cardiology, and Public Health Sciences, Wake Forest University School of Medicine, Winston-Salem, North Carolina, United States of America
| | - Udo Hoffmann
- Cardiac MR, PET, CT Program and the Department of Radiology, Massachusetts General Hospital, Boston, Massachusetts, United States of America
| | - Jingzhong Ding
- Department of Internal Medicine/Geriatrics, Wake Forest School of Medicine, Winston-Salem, North Carolina, United States of America
| | - L. Adrienne Cupples
- Framingham Heart Study, National Heart, Lung, and Blood Institute, Framingham, Massachusetts, United States of America
- Department of Biostatistics, Boston University School of Public Health, Boston, Massachusetts, United States of America
| | - Yongmei Liu
- Department of Epidemiology and Prevention, Public Health Sciences, Wake Forest School of Medicine, Winston-Salem, North Carolina, United States of America
- * E-mail: (CSF); (YL)
| |
Collapse
|
38
|
Sung HY, Francis SE, Arnold ND, Holland K, Ernst V, Angyal A, Kiss-Toth E. Enhanced macrophage tribbles-1 expression in murine experimental atherosclerosis. BIOLOGY 2012; 1:43-57. [PMID: 24832046 PMCID: PMC4011034 DOI: 10.3390/biology1010043] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 03/01/2012] [Revised: 03/13/2012] [Accepted: 03/31/2012] [Indexed: 02/04/2023]
Abstract
Development of the atherosclerotic plaque involves a complex interplay between a number of cell types and an extensive inter-cellular communication via cell bound as well as soluble mediators. The family of tribbles proteins has recently been identified as novel controllers of pro-inflammatory signal transduction. The objective of this study was to address the expression pattern of all three tribbles proteins in atherosclerotic plaques from a mouse model of atherosclerosis. Each tribbles were expressed in vascular smooth muscle cells, endothelial cells as well as in resident macrophages of mouse atherosclerotic plaques. The role of IL-1 mediated inflammatory events in controlling tribbles expression was also addressed by inducing experimental atherosclerosis in ApoE−/−IL1R1−/− (double knockout) mice. Immunohistochemical analysis of these mice showed a selective decrease in the percentage of trb-1 expressing macrophages, compared to the ApoE−/− cohort (14.7% ± 1.55 vs. 26.3% ± 1.19). The biological significance of this finding was verified in vitro where overexpression of trb-1 in macrophages led to a significant attenuation (~70%) of IL-6 production as well as a suppressed IL-12 expression induced by a proinflammatory stimulus. In this in vitro setting, expression of truncated trb-1 mutants suggests that the kinase domain of this protein is sufficient to exert this inhibitory action.
Collapse
Affiliation(s)
- Hye Youn Sung
- Department of Cardiovascular Science, University of Sheffield, Sheffield, S10 2RX, UK.
| | - Sheila E Francis
- Department of Cardiovascular Science, University of Sheffield, Sheffield, S10 2RX, UK.
| | - Nadine D Arnold
- Department of Cardiovascular Science, University of Sheffield, Sheffield, S10 2RX, UK.
| | - Karen Holland
- Department of Cardiovascular Science, University of Sheffield, Sheffield, S10 2RX, UK.
| | - Vanessa Ernst
- Department of Cardiovascular Science, University of Sheffield, Sheffield, S10 2RX, UK.
| | - Adrienn Angyal
- Department of Cardiovascular Science, University of Sheffield, Sheffield, S10 2RX, UK.
| | - Endre Kiss-Toth
- Department of Cardiovascular Science, University of Sheffield, Sheffield, S10 2RX, UK.
| |
Collapse
|
39
|
Abstract
PURPOSE OF REVIEW The success of high throughput sequencing programmes, including the Human Genome Project led to the 'identification' of a large number of novel genes of completely unknown function. Since then, many of these genes have been subject to functional studies focussed on uncovering their biological importance. Recent advances in genome-wide screening of DNA sequence variants as well as focussed genetic studies identified a number of candidate loci contributing to the development of complex diseases, including those affecting lipid homeostasis. An excellent example for the convergence of genetics and experimental biology is the tribbles gene family which was among those identified both in recent genetic studies and were implicated in dysregulation of lipid levels experimentally. Thus, there is a need now to take a step back and reconcile these findings accumulated over recent years. RECENT FINDINGS Allelic variants of tribbles proteins have been associated with the control of fatty acid synthesis and insulin resistance as well as regulating plasma triglyceride and HDL cholesterol levels. Several mechanisms of molecular action have been proposed for the tribbles mediated control of these processes, including the regulation of signalling events, protein turnover and transcription, sometimes with conflicting evidence emerging. SUMMARY This review attempts to synthesize knowledge obtained on the biology of the tribbles protein family in the context of lipid metabolism as well as discussing the recently emerging genetic evidence for the importance of these proteins in human disease.
Collapse
Affiliation(s)
- Adrienn Angyal
- Department of Cardiovascular Science, University of Sheffield, Sheffield, UK
| | | |
Collapse
|
40
|
Yokoyama T, Nakamura T. Tribbles in disease: Signaling pathways important for cellular function and neoplastic transformation. Cancer Sci 2011; 102:1115-22. [PMID: 21338441 DOI: 10.1111/j.1349-7006.2011.01914.x] [Citation(s) in RCA: 119] [Impact Index Per Article: 8.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022] Open
Abstract
The tribbles family of genes encodes pseudokinase proteins that are highly conserved in evolution. Instead of direct phosphorylation of target proteins, tribbles act as adaptors in signaling pathways for important cellular processes. These include mitogen-activated protein kinase kinase (MAPKK), CCAAT/enhancer-binding protein (C/EBP), activating transcription factor 4 (ATF4) and C/EBP-homologous protein (CHOP). Trib1 and Trib2 have been identified as myeloid oncogenes, and both may be involved in human leukemia. Tribbles proteins are also involved in a series of non-neoplastic disorders including metabolic and neurological diseases. The RAS/mitogen-activated protein kinase (MAPK) pathway molecules (in particular MAPK/ERK kinase 1 (MEK1) and C/EBP transcription factors) include tribbles-binding proteins that are involved in leukemogenesis, and the role of Trib1 as a linker between MAPK signaling and C/EBP degradation is proposed. Although the molecular function of tribbles is still under investigation, the research on tribbles in cellular processes, homeostasis of organisms and human diseases will provide valuable information for therapy of cancer as well as non-neoplastic disorders.
Collapse
Affiliation(s)
- Takashi Yokoyama
- Division of Carcinogenesis, The Cancer Institute, Japanese Foundation for Cancer Research, Tokyo, Japan
| | | |
Collapse
|