1
|
Zeng Y, Luo Y, Zhao K, Liu S, Wu K, Wu Y, Du K, Pan W, Dai Y, Liu Y, Ren M, Tian F, Zhou L, Gu C. m6A-Mediated Induction of 7-Dehydrocholesterol Reductase Stimulates Cholesterol Synthesis and cAMP Signaling to Promote Bladder Cancer Metastasis. Cancer Res 2024; 84:3402-3418. [PMID: 39047230 DOI: 10.1158/0008-5472.can-23-3703] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/22/2023] [Revised: 03/29/2024] [Accepted: 07/16/2024] [Indexed: 07/27/2024]
Abstract
Dysregulation of cholesterol homeostasis occurs in multiple types of tumors and promotes cancer progression. Investigating the specific processes that induce abnormal cholesterol metabolism could identify therapeutic targets to improve cancer treatment. In this investigation, we observed upregulation of 7-dehydrocholesterol reductase (DHCR7), a vital enzyme involved in the synthesis of cholesterol, within bladder cancer tissues in comparison to normal tissues, which was correlated with increased bladder cancer metastasis. Increased expression of DHCR7 in bladder cancer was attributed to decreased mRNA degradation mediated by YTHDF2. Loss or inhibition of DHCR7 reduced bladder cancer cell invasion in vitro and metastasis in vivo. Mechanistically, DHCR7 promoted bladder cancer metastasis by activating the cAMP/protein kinase A/FAK pathway. Specifically, DHCR7 increased cAMP levels by elevating cholesterol content in lipid rafts, thereby facilitating the transduction of signaling pathways mediated by cAMP receptors. DHCR7 additionally enhanced the cAMP signaling pathway by reducing the concentration of 7-dehydrocholesterol and promoting the transcription of the G protein-coupled receptor, namely gastric inhibitory polypeptide receptor. Overall, these findings demonstrate that DHCR7 plays an important role in bladder cancer invasion and metastasis by modulating cholesterol synthesis and cAMP signaling. Furthermore, inhibition of DHCR7 shows promise as a viable therapeutic strategy for suppressing bladder cancer invasion and metastasis. Significance: Inhibiting DHCR7 induces cholesterol metabolism reprogramming and lipid raft remodeling to inactivate the cAMP/protein kinase A/FAK axis and suppress bladder cancer metastasis, indicating the therapeutic potential of targeting DHCR7.
Collapse
Affiliation(s)
- Youmiao Zeng
- Department of Urology, First Affiliated Hospital of Zhengzhou University, Zhengzhou, China
- Department of Urology, Henan Institute of Urology and Zhengzhou Key Laboratory for Molecular Biology of Urological Tumor Research, First Affiliated Hospital of Zhengzhou University, Zhengzhou, China
- Unit of Day Surgery Center, First Affiliated Hospital of Zhengzhou University, Zhengzhou, China
| | - Yongbo Luo
- Department of Urology, First Affiliated Hospital of Zhengzhou University, Zhengzhou, China
- Department of Urology, Henan Institute of Urology and Zhengzhou Key Laboratory for Molecular Biology of Urological Tumor Research, First Affiliated Hospital of Zhengzhou University, Zhengzhou, China
- Unit of Day Surgery Center, First Affiliated Hospital of Zhengzhou University, Zhengzhou, China
| | - Keyuan Zhao
- Department of Urology, Shaoxing People's Hospital, Shaoxing, China
| | - Sheng Liu
- Department of General Surgery, The First Affiliated Hospital of Xinxiang Medical University, Weihui, China
| | - Kaiwen Wu
- Shenyang Medical College, Shenyang, China
| | - Yudong Wu
- Department of Urology, First Affiliated Hospital of Zhengzhou University, Zhengzhou, China
| | - Kaixuan Du
- Department of Urology, First Affiliated Hospital of Zhengzhou University, Zhengzhou, China
- Department of Urology, Henan Institute of Urology and Zhengzhou Key Laboratory for Molecular Biology of Urological Tumor Research, First Affiliated Hospital of Zhengzhou University, Zhengzhou, China
- Unit of Day Surgery Center, First Affiliated Hospital of Zhengzhou University, Zhengzhou, China
| | - Wenbang Pan
- Department of Urology, First Affiliated Hospital of Zhengzhou University, Zhengzhou, China
- Department of Urology, Henan Institute of Urology and Zhengzhou Key Laboratory for Molecular Biology of Urological Tumor Research, First Affiliated Hospital of Zhengzhou University, Zhengzhou, China
- Unit of Day Surgery Center, First Affiliated Hospital of Zhengzhou University, Zhengzhou, China
| | - Yiheng Dai
- Department of Urology, First Affiliated Hospital of Zhengzhou University, Zhengzhou, China
- Department of Urology, Henan Institute of Urology and Zhengzhou Key Laboratory for Molecular Biology of Urological Tumor Research, First Affiliated Hospital of Zhengzhou University, Zhengzhou, China
- Unit of Day Surgery Center, First Affiliated Hospital of Zhengzhou University, Zhengzhou, China
| | - Yuanhao Liu
- Department of Urology, First Affiliated Hospital of Zhengzhou University, Zhengzhou, China
- Department of Urology, Henan Institute of Urology and Zhengzhou Key Laboratory for Molecular Biology of Urological Tumor Research, First Affiliated Hospital of Zhengzhou University, Zhengzhou, China
- Unit of Day Surgery Center, First Affiliated Hospital of Zhengzhou University, Zhengzhou, China
| | - Mengda Ren
- Department of Urology, First Affiliated Hospital of Zhengzhou University, Zhengzhou, China
- Department of Urology, Henan Institute of Urology and Zhengzhou Key Laboratory for Molecular Biology of Urological Tumor Research, First Affiliated Hospital of Zhengzhou University, Zhengzhou, China
- Unit of Day Surgery Center, First Affiliated Hospital of Zhengzhou University, Zhengzhou, China
| | - Fengyan Tian
- Department of Pediatrics, First Affiliated Hospital of Zhengzhou University, Zhengzhou, China
| | - Lijie Zhou
- Department of Urology, First Affiliated Hospital of Zhengzhou University, Zhengzhou, China
- Department of Urology, Henan Institute of Urology and Zhengzhou Key Laboratory for Molecular Biology of Urological Tumor Research, First Affiliated Hospital of Zhengzhou University, Zhengzhou, China
- Unit of Day Surgery Center, First Affiliated Hospital of Zhengzhou University, Zhengzhou, China
| | - Chaohui Gu
- Department of Urology, First Affiliated Hospital of Zhengzhou University, Zhengzhou, China
- Department of Urology, Henan Institute of Urology and Zhengzhou Key Laboratory for Molecular Biology of Urological Tumor Research, First Affiliated Hospital of Zhengzhou University, Zhengzhou, China
- Unit of Day Surgery Center, First Affiliated Hospital of Zhengzhou University, Zhengzhou, China
| |
Collapse
|
2
|
Lei S, Zhao S, Huang X, Feng Y, Li Z, Chen L, Huang P, Guan H, Zhang H, Wu Q, Chen B. Chaihu Shugan powder alleviates liver inflammation and hepatic steatosis in NAFLD mice: A network pharmacology study and in vivo experimental validation. Front Pharmacol 2022; 13:967623. [PMID: 36172180 PMCID: PMC9512055 DOI: 10.3389/fphar.2022.967623] [Citation(s) in RCA: 14] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/13/2022] [Accepted: 08/25/2022] [Indexed: 12/03/2022] Open
Abstract
Background: Nonalcoholic fatty liver disease (NAFLD) is the most common metabolic disease and is intertwined with cardiovascular disorders and diabetes. Chaihu Shugan powder (CSP) is a traditional Chinese medicine with a significant therapeutic effect on metabolic diseases, such as NAFLD. However, its pharmacological mechanisms remain to be elucidated. Methods: The main compounds of CSP were measured using LC-MS/MS. A network pharmacology study was conducted on CSP. Its potential active ingredients were selected according to oral bioavailability, drug similarity indices, and phytochemical analysis. After obtaining the intersected genes between drug targets and disease-related targets, the component-disease-target network and protein-protein interaction analysis were visualized in Cytoscape. GO and KEGG enrichment analyses were performed using the Metascape database. Six-week-old male C57BL/6 mice fed a high-fat high-fructose diet for 16 weeks plus chronic immobilization stress for 2 weeks, an in vivo model, were administered CSP or saline intragastrically. Liver histology, triglyceride and cholesterol levels, ELISA, and RT-PCR were used to assess hepatic inflammation and steatosis. Immunohistochemistry and western blotting were performed to assess protein levels. Results: A total of 130 potential target genes in CSP that act on NAFLD were identified through network pharmacology assays, including tumor necrosis factor (TNF), interleukin-6 (IL6), interleukin-1β (IL-1β), and peroxisome proliferator-activated receptor γ (PPARG). KEGG enrichment analysis showed that the main pathways were involved in inflammatory pathways, such as the TNF and NF-κB signaling pathways, and metabolism-related pathways, such as the MAPK, HIF-1, FoxO, and AMPK signaling pathways. The results in vivo showed that CSP ameliorated liver inflammation and inhibited hepatic fatty acid synthesis in the hepatocyte steatosis model. More specifically, CSP therapy significantly inhibited the expression of tumor necrosis factor α (TNFα), accompanied by a decrease in TNF receptor 1 (TNFR1) and the ligand availability of TNFR1. Conclusion: Through the combination of network pharmacology and in vivo validation, this study elucidated the therapeutic effect of CSP on NAFLD, decreasing liver inflammation and inhibiting hepatic fatty acid synthesis. More specifically, the anti-inflammatory action of CSP was at least partially mediated by inhibiting the TNFα/TNFR1 signaling pathway.
Collapse
Affiliation(s)
- Sisi Lei
- Second Clinical Medical College, Guangzhou University of Chinese Medicine, Guangzhou, China
- Guangdong Provincial Key Laboratory of Research on Emergency in Traditional Chinese Medicine, Clinical Research Team of Prevention and Treatment of Cardiac Emergencies with Traditional Chinese Medicine, Guangzhou, China
| | - Shuai Zhao
- Second Clinical Medical College, Guangzhou University of Chinese Medicine, Guangzhou, China
- Guangdong Provincial Key Laboratory of Research on Emergency in Traditional Chinese Medicine, Clinical Research Team of Prevention and Treatment of Cardiac Emergencies with Traditional Chinese Medicine, Guangzhou, China
- The Second Affiliated Hospital of Guangzhou University of Chinese Medicine, Guangzhou, China
| | - Xiaoyan Huang
- Guangdong Provincial Key Laboratory of Research on Emergency in Traditional Chinese Medicine, Clinical Research Team of Prevention and Treatment of Cardiac Emergencies with Traditional Chinese Medicine, Guangzhou, China
- The Second Affiliated Hospital of Guangzhou University of Chinese Medicine, Guangzhou, China
| | - Yuchao Feng
- Guangdong Provincial Key Laboratory of Research on Emergency in Traditional Chinese Medicine, Clinical Research Team of Prevention and Treatment of Cardiac Emergencies with Traditional Chinese Medicine, Guangzhou, China
- The Second Affiliated Hospital of Guangzhou University of Chinese Medicine, Guangzhou, China
| | - Zhishang Li
- Guangdong Provincial Key Laboratory of Research on Emergency in Traditional Chinese Medicine, Clinical Research Team of Prevention and Treatment of Cardiac Emergencies with Traditional Chinese Medicine, Guangzhou, China
- The Second Affiliated Hospital of Guangzhou University of Chinese Medicine, Guangzhou, China
| | - Li Chen
- Guangdong Provincial Key Laboratory of Research on Emergency in Traditional Chinese Medicine, Clinical Research Team of Prevention and Treatment of Cardiac Emergencies with Traditional Chinese Medicine, Guangzhou, China
- The Second Affiliated Hospital of Guangzhou University of Chinese Medicine, Guangzhou, China
| | - Peiying Huang
- Second Clinical Medical College, Guangzhou University of Chinese Medicine, Guangzhou, China
- Guangdong Provincial Key Laboratory of Research on Emergency in Traditional Chinese Medicine, Clinical Research Team of Prevention and Treatment of Cardiac Emergencies with Traditional Chinese Medicine, Guangzhou, China
| | - Hansu Guan
- The Third Affiliated Hospital of Guangzhou University of Chinese Medicine, Guangzhou, China
| | - Haobo Zhang
- Second Clinical Medical College, Guangzhou University of Chinese Medicine, Guangzhou, China
- Guangdong Provincial Key Laboratory of Research on Emergency in Traditional Chinese Medicine, Clinical Research Team of Prevention and Treatment of Cardiac Emergencies with Traditional Chinese Medicine, Guangzhou, China
| | - Qihua Wu
- Second Clinical Medical College, Guangzhou University of Chinese Medicine, Guangzhou, China
- Guangdong Provincial Key Laboratory of Research on Emergency in Traditional Chinese Medicine, Clinical Research Team of Prevention and Treatment of Cardiac Emergencies with Traditional Chinese Medicine, Guangzhou, China
| | - Bojun Chen
- Guangdong Provincial Key Laboratory of Research on Emergency in Traditional Chinese Medicine, Clinical Research Team of Prevention and Treatment of Cardiac Emergencies with Traditional Chinese Medicine, Guangzhou, China
- The Second Affiliated Hospital of Guangzhou University of Chinese Medicine, Guangzhou, China
- *Correspondence: Bojun Chen,
| |
Collapse
|
3
|
Killion EA, Chen M, Falsey JR, Sivits G, Hager T, Atangan L, Helmering J, Lee J, Li H, Wu B, Cheng Y, Véniant MM, Lloyd DJ. Chronic glucose-dependent insulinotropic polypeptide receptor (GIPR) agonism desensitizes adipocyte GIPR activity mimicking functional GIPR antagonism. Nat Commun 2020; 11:4981. [PMID: 33020469 PMCID: PMC7536395 DOI: 10.1038/s41467-020-18751-8] [Citation(s) in RCA: 97] [Impact Index Per Article: 19.4] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/18/2019] [Accepted: 09/09/2020] [Indexed: 12/30/2022] Open
Abstract
Antagonism or agonism of the glucose-dependent insulinotropic polypeptide (GIP) receptor (GIPR) prevents weight gain and leads to dramatic weight loss in combination with glucagon-like peptide-1 receptor agonists in preclinical models. Based on the genetic evidence supporting GIPR antagonism, we previously developed a mouse anti-murine GIPR antibody (muGIPR-Ab) that protected diet-induced obese (DIO) mice against body weight gain and improved multiple metabolic parameters. This work reconciles the similar preclinical body weight effects of GIPR antagonists and agonists in vivo, and here we show that chronic GIPR agonism desensitizes GIPR activity in primary adipocytes, both differentiated in vitro and adipose tissue in vivo, and functions like a GIPR antagonist. Additionally, GIPR activity in adipocytes is partially responsible for muGIPR-Ab to prevent weight gain in DIO mice, demonstrating a role of adipocyte GIPR in the regulation of adiposity in vivo.
Collapse
Affiliation(s)
- Elizabeth A Killion
- Amgen Research, Department of Cardiometabolic Disorders, Amgen Inc., One Amgen Center Dr, Thousand Oaks, CA, 91320, USA
| | - Michelle Chen
- Amgen Research, Department of Cardiometabolic Disorders, Amgen Inc., One Amgen Center Dr, Thousand Oaks, CA, 91320, USA
| | - James R Falsey
- Amgen Research, Department of Selection and Modality Engineering, Amgen Inc., One Amgen Center Dr, Thousand Oaks, CA, 91320, USA
| | - Glenn Sivits
- Amgen Research, Department of Cardiometabolic Disorders, Amgen Inc., One Amgen Center Dr, Thousand Oaks, CA, 91320, USA
| | - Todd Hager
- Amgen Research, Department of Translational Safety & Bioanalytical Sciences, Amgen Inc., One Amgen Center Dr, Thousand Oaks, CA, 91320, USA
| | - Larissa Atangan
- Amgen Research, Department of Cardiometabolic Disorders, Amgen Inc., One Amgen Center Dr, Thousand Oaks, CA, 91320, USA
| | - Joan Helmering
- Amgen Research, Department of Cardiometabolic Disorders, Amgen Inc., One Amgen Center Dr, Thousand Oaks, CA, 91320, USA
| | - Jae Lee
- Amgen Research, Department of Cardiometabolic Disorders, Amgen Inc., One Amgen Center Dr, Thousand Oaks, CA, 91320, USA
| | - Hongyan Li
- Amgen Research, Department of Translational Safety & Bioanalytical Sciences, Amgen Inc., One Amgen Center Dr, Thousand Oaks, CA, 91320, USA
| | - Bin Wu
- Amgen Research, Department of Selection and Modality Engineering, Amgen Inc., One Amgen Center Dr, Thousand Oaks, CA, 91320, USA
| | - Yuan Cheng
- Amgen Research, Department of Selection and Modality Engineering, Amgen Inc., One Amgen Center Dr, Thousand Oaks, CA, 91320, USA
| | - Murielle M Véniant
- Amgen Research, Department of Cardiometabolic Disorders, Amgen Inc., One Amgen Center Dr, Thousand Oaks, CA, 91320, USA
| | - David J Lloyd
- Amgen Research, Department of Cardiometabolic Disorders, Amgen Inc., One Amgen Center Dr, Thousand Oaks, CA, 91320, USA.
| |
Collapse
|
4
|
Li B, Fang J, He T, Yin S, Yang M, Cui H, Ma X, Deng J, Ren Z, Hu Y, Ye G, Zhang M, Geng Y, Gou L, Zuo Z. Resistin up-regulates LPL expression through the PPARγ-dependent PI3K/AKT signaling pathway impacting lipid accumulation in RAW264.7 macrophages. Cytokine 2019; 119:168-174. [PMID: 30925325 DOI: 10.1016/j.cyto.2019.03.016] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/11/2018] [Revised: 03/17/2019] [Accepted: 03/21/2019] [Indexed: 12/19/2022]
Abstract
Resistin is a cysteine-rich cytokine, which has been indicated as a mediator of insulin resistance and inflammation. Previous studies demonstrated that lipoprotein lipase (LPL) was an important enzyme that could mediate lipid accumulation in macrophages. Additionally, the intracellular molecules phosphatidylinositol 3-kinase (PI3K)/serine-threonine protein kinase (AKT)/peroxisome proliferator-activated receptor (PPARγ) were supposed to be involved in the lipid accumulation process in cells. However, it remains unclear whether resistin was correlated with the dysregulation of lipid metabolism in macrophages. The present study investigated that resistin could up-regulate the expression of LPL and increase the contents of intracellular triglyceride (TG) and total cholesterol (TC) in RAW264.7 macrophages. In addition, intracellular molecules PI3K, AKT and PPARγ were significantly up-regulated and activated in resitin-stimulated RAW264.7 macrophages (P < 0.05). In contrast, the effects of resistin on RAW264.7 macrophages could be abrogated by specific inhibitors for LPL (LPL-siRNA) and PI3K/AKT signaling pathway (LY294002). All together, this study demonstrated that resistin could up-regulate the expression of LPL and induce lipid accumulation in RAW264.7 macrophages. More importantly, the PPARγ-dependent PI3K/AKT signaling pathway was relevant to the lipid accumulation process in resistin-stimulated macrophages.
Collapse
Affiliation(s)
- Bi Li
- Key Laboratory of Animal Disease and Human Health of Sichuan Province, College of Veterinary Medicine, Sichuan Agricultural University, Huimin road 211, 611130, China; Sichuan Key Laboratory of Conservation Biology for Endangered Wildlife, Chengdu Research Base of Giant Panda Breeding, Chengdu, Sichuan 610081, China
| | - Jing Fang
- Key Laboratory of Animal Disease and Human Health of Sichuan Province, College of Veterinary Medicine, Sichuan Agricultural University, Huimin road 211, 611130, China
| | - Tingting He
- Key Laboratory of Animal Disease and Human Health of Sichuan Province, College of Veterinary Medicine, Sichuan Agricultural University, Huimin road 211, 611130, China
| | - Sirui Yin
- Key Laboratory of Animal Disease and Human Health of Sichuan Province, College of Veterinary Medicine, Sichuan Agricultural University, Huimin road 211, 611130, China
| | - Mingxian Yang
- Key Laboratory of Animal Disease and Human Health of Sichuan Province, College of Veterinary Medicine, Sichuan Agricultural University, Huimin road 211, 611130, China; Sichuan Key Laboratory of Conservation Biology for Endangered Wildlife, Chengdu Research Base of Giant Panda Breeding, Chengdu, Sichuan 610081, China
| | - Hengmin Cui
- Key Laboratory of Animal Disease and Human Health of Sichuan Province, College of Veterinary Medicine, Sichuan Agricultural University, Huimin road 211, 611130, China
| | - Xiaoping Ma
- Key Laboratory of Animal Disease and Human Health of Sichuan Province, College of Veterinary Medicine, Sichuan Agricultural University, Huimin road 211, 611130, China
| | - Junliang Deng
- Key Laboratory of Animal Disease and Human Health of Sichuan Province, College of Veterinary Medicine, Sichuan Agricultural University, Huimin road 211, 611130, China
| | - Zhihua Ren
- Key Laboratory of Animal Disease and Human Health of Sichuan Province, College of Veterinary Medicine, Sichuan Agricultural University, Huimin road 211, 611130, China
| | - Yanchun Hu
- Key Laboratory of Animal Disease and Human Health of Sichuan Province, College of Veterinary Medicine, Sichuan Agricultural University, Huimin road 211, 611130, China
| | - Gang Ye
- Key Laboratory of Animal Disease and Human Health of Sichuan Province, College of Veterinary Medicine, Sichuan Agricultural University, Huimin road 211, 611130, China
| | - Ming Zhang
- College of Animal Science & Technology, Sichuan Agricultural University, Huimin road 211, 611130, China
| | - Yi Geng
- Key Laboratory of Animal Disease and Human Health of Sichuan Province, College of Veterinary Medicine, Sichuan Agricultural University, Huimin road 211, 611130, China
| | - Liping Gou
- Key Laboratory of Animal Disease and Human Health of Sichuan Province, College of Veterinary Medicine, Sichuan Agricultural University, Huimin road 211, 611130, China
| | - Zhicai Zuo
- Key Laboratory of Animal Disease and Human Health of Sichuan Province, College of Veterinary Medicine, Sichuan Agricultural University, Huimin road 211, 611130, China.
| |
Collapse
|
5
|
An Update on the Emerging Role of Resistin on the Pathogenesis of Osteoarthritis. Mediators Inflamm 2019; 2019:1532164. [PMID: 30809105 PMCID: PMC6369476 DOI: 10.1155/2019/1532164] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/14/2018] [Accepted: 12/19/2018] [Indexed: 12/19/2022] Open
Abstract
Background Resistin may be involved in the pathogenesis of osteoarthritis (OA), but a systematic understanding of the role of resistin in OA is lacking. Methods We reviewed studies that evaluated the role of resistin in OA. The expression levels of resistin in vitro experiments and OA/rheumatoid arthritis (RA) patients were analyzed. We also studied potential resistin receptors and the signaling pathways that these receptors activate, ultimately leading to cartilage degeneration. Results Resistin levels in both the serum and synovial fluid were higher in OA and RA patients than in healthy subjects. Overall, resistin levels are much higher in serum than in synovial fluid. In human cartilage, resistin induces the expression of proinflammatory factors such as degradative enzymes, leading to the inhibition of cartilage matrix synthesis, perhaps by binding to Toll-like receptor 4 and the adenylyl cyclase-associated protein 1 receptor, which then activates the p38-mitogen-activated phosphate kinase, protein kinase A–cyclic AMP, nuclear factor-κB, and C/enhancer-binding protein β signaling pathways. Conclusion Resistin levels are higher in OA patients than in healthy controls; however, the precise role of resistin in the pathogenesis of OA needs to be studied further. Resistin may be a novel therapeutic target in OA in the future.
Collapse
|
6
|
Pine GM, Batugedara HM, Nair MG. Here, there and everywhere: Resistin-like molecules in infection, inflammation, and metabolic disorders. Cytokine 2018; 110:442-451. [PMID: 29866514 DOI: 10.1016/j.cyto.2018.05.014] [Citation(s) in RCA: 69] [Impact Index Per Article: 9.9] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/07/2018] [Revised: 05/13/2018] [Accepted: 05/15/2018] [Indexed: 02/07/2023]
Abstract
The Resistin-Like Molecules (RELM) α, β, and γ and their namesake, resistin, share structural and sequence homology but exhibit significant diversity in expression and function within their mammalian host. RELM proteins are expressed in a wide range of diseases, such as: microbial infections (eg. bacterial and helminth), inflammatory diseases (eg. asthma, fibrosis) and metabolic disorders (eg. diabetes). While the expression pattern and molecular regulation of RELM proteins are well characterized, much controversy remains over their proposed functions, with evidence of host-protective and pathogenic roles. Moreover, the receptors for RELM proteins are unclear, although three receptors for resistin, decorin, adenylyl cyclase-associated protein 1 (CAP1), and Toll-like Receptor 4 (TLR4) have recently been proposed. In this review, we will first summarize the molecular regulation of the RELM gene family, including transcription regulation and tissue expression in humans and mouse disease models. Second, we will outline the function and receptor-mediated signaling associated with RELM proteins. Finally, we will discuss recent studies suggesting that, despite early misconceptions that these proteins are pathogenic, RELM proteins have a more nuanced and potentially beneficial role for the host in certain disease settings.
Collapse
Affiliation(s)
- Gabrielle M Pine
- Division of Biomedical Sciences, School of Medicine, University of California Riverside, Riverside, CA, United States
| | - Hashini M Batugedara
- Division of Biomedical Sciences, School of Medicine, University of California Riverside, Riverside, CA, United States
| | - Meera G Nair
- Division of Biomedical Sciences, School of Medicine, University of California Riverside, Riverside, CA, United States.
| |
Collapse
|
7
|
Skuratovskaia D, Vulf M, Kirienkova E, Mironyuk N, Zatolokin P, Litvinova L. The role of single nucleotide polymorphisms in GIPR gene in the changes of secretion in hormones and adipokines in patients with obesity with type 2 diabetes. ACTA ACUST UNITED AC 2018; 64:208-216. [DOI: 10.18097/pbmc20186402208] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/23/2022]
Abstract
The relationship between the rs2302382, rs8111428 and Glu354Gln (rs1800437) polymorphisms in GIPR (glucosedependent insulinotropic polypeptide receptor) gene and plasma levels of mediators involved in the regulation of carbohydrate metabolism in obese patients with type 2 diabetes (before and after a test breakfast) was investigated. The contribution of polymorphic variants of rs2302382, rs8111428 in GIPR gene in the predisposition to type 2 diabetes in individuals belonging to the Slavic population of Russia was found. Polymorphisms rs2302382 and rs8111428 in the GIPR gene were characterized by the nonequilibrium cohesion. The decrease in the level of expression of the GIPR gene in adipose tissue of the small intestine mesentery in the carriers of the CC genotype rs2302382 and AA rs8111428 was associated with the increase in the plasma leptin level, whereas during normal expression, the plasma content of insulin, and GIP (in persons with the genotype of the polymorphism rs2302382 and AG polymorphism rs8111428), resistin and ghrelin (in individuals with the genotype of the polymorphism rs2302382) increased. We propose the stimulating effect of GIP on the secretion of resistin, leptin and ghrelin, with an increase in insulin production in obese patients with type 2 diabetes.
Collapse
Affiliation(s)
| | - M.A. Vulf
- Immanuel Kant Baltic Federal University, Kaliningrad, Russia
| | - E.V. Kirienkova
- Immanuel Kant Baltic Federal University, Kaliningrad, Russia
| | - N.I. Mironyuk
- Regional Clinical Hospital of the Kaliningrad Region, Kaliningrad, Russia
| | - P.A. Zatolokin
- Immanuel Kant Baltic Federal University, Kaliningrad, Russia; Regional Clinical Hospital of the Kaliningrad Region, Kaliningrad, Russia
| | - L.S. Litvinova
- Immanuel Kant Baltic Federal University, Kaliningrad, Russia
| |
Collapse
|
8
|
Sitagliptin decreases ventricular arrhythmias by attenuated glucose-dependent insulinotropic polypeptide (GIP)-dependent resistin signalling in infarcted rats. Biosci Rep 2016; 36:BSR20150139. [PMID: 26811539 PMCID: PMC4793300 DOI: 10.1042/bsr20150139] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/01/2015] [Accepted: 01/19/2016] [Indexed: 11/17/2022] Open
Abstract
Myocardial infarction (MI) was associated with insulin resistance, in which resistin acts as a critical mediator. We aimed to determine whether sitagliptin, a dipeptidyl peptidase-4 (DPP-4) inhibitor, can attenuate arrhythmias by regulating resistin-dependent nerve growth factor (NGF) expression in postinfarcted rats. Normoglycaemic male Wistar rats after ligating coronary artery were randomized to either vehicle or sitagliptin for 4 weeks starting 24 h after operation. Post-infarction was associated with increased myocardial noradrenaline [norepinephrine (NE)] levels and sympathetic hyperinnervation. Compared with vehicle, sympathetic innervation was blunted after administering sitagliptin, as assessed by immunofluorescent analysis of tyrosine hydroxylase, growth-associated factor 43 and neurofilament and western blotting and real-time quantitative RT-PCR of NGF. Arrhythmic scores in the sitagliptin-treated infarcted rats were significantly lower than those in vehicle. Furthermore, sitagliptin was associated with reduced resistin expression and increased Akt activity. Ex vivo studies showed that glucose-dependent insulinotropic polypeptide (GIP) infusion, but not glucagon-like peptide-1 (GLP-1), produced similar reduction in resistin levels to sitagliptin in postinfarcted rats. Furthermore, the attenuated effects of sitagliptin on NGF levels can be reversed by wortmannin (a phosphatidylinositol 3-kinase antagonist) and exogenous resistin infusion. Sitagliptin protects ventricular arrhythmias by attenuating sympathetic innervation in the non-diabetic infarcted rats. Sitagliptin attenuated resistin expression via the GIP-dependent pathway, which inhibited sympathetic innervation through a signalling pathway involving phosphatidylinositol 3-kinase (PI3K) and Akt protein.
Collapse
|
9
|
Razvi SS, Richards JB, Malik F, Cromar KR, Price RE, Bell CS, Weng T, Atkins CL, Spencer CY, Cockerill KJ, Alexander AL, Blackburn MR, Alcorn JL, Haque IU, Johnston RA. Resistin deficiency in mice has no effect on pulmonary responses induced by acute ozone exposure. Am J Physiol Lung Cell Mol Physiol 2015; 309:L1174-85. [PMID: 26386120 DOI: 10.1152/ajplung.00270.2015] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/05/2015] [Accepted: 09/14/2015] [Indexed: 01/10/2023] Open
Abstract
Acute exposure to ozone (O3), an air pollutant, causes pulmonary inflammation, airway epithelial desquamation, and airway hyperresponsiveness (AHR). Pro-inflammatory cytokines-including IL-6 and ligands of chemokine (C-X-C motif) receptor 2 [keratinocyte chemoattractant (KC) and macrophage inflammatory protein (MIP)-2], TNF receptor 1 and 2 (TNF), and type I IL-1 receptor (IL-1α and IL-1β)-promote these sequelae. Human resistin, a pleiotropic hormone and cytokine, induces expression of IL-1α, IL-1β, IL-6, IL-8 (the human ortholog of murine KC and MIP-2), and TNF. Functional differences exist between human and murine resistin; yet given the aforementioned observations, we hypothesized that murine resistin promotes O3-induced lung pathology by inducing expression of the same inflammatory cytokines as human resistin. Consequently, we examined indexes of O3-induced lung pathology in wild-type and resistin-deficient mice following acute exposure to either filtered room air or O3. In wild-type mice, O3 increased bronchoalveolar lavage fluid (BALF) resistin. Furthermore, O3 increased lung tissue or BALF IL-1α, IL-6, KC, TNF, macrophages, neutrophils, and epithelial cells in wild-type and resistin-deficient mice. With the exception of KC, which was significantly greater in resistin-deficient compared with wild-type mice, no genotype-related differences in the other indexes existed following O3 exposure. O3 caused AHR to acetyl-β-methylcholine chloride (methacholine) in wild-type and resistin-deficient mice. However, genotype-related differences in airway responsiveness to methacholine were nonexistent subsequent to O3 exposure. Taken together, these data demonstrate that murine resistin is increased in the lungs of wild-type mice following acute O3 exposure but does not promote O3-induced lung pathology.
Collapse
Affiliation(s)
- Shehla S Razvi
- Division of Critical Care Medicine, Department of Pediatrics, The University of Texas Medical School at Houston, Houston, Texas
| | - Jeremy B Richards
- Division of Pulmonary, Critical Care, and Sleep Medicine, Department of Medicine, Medical University of South Carolina, Charleston, South Carolina
| | - Farhan Malik
- Division of Critical Care Medicine, Department of Pediatrics, The University of Texas Medical School at Houston, Houston, Texas
| | - Kevin R Cromar
- Department of Environmental Medicine, New York University School of Medicine, Tuxedo, New York
| | - Roger E Price
- Comparative Pathology Laboratory, Center for Comparative Medicine, Baylor College of Medicine, Houston, Texas
| | - Cynthia S Bell
- Division of Nephrology, Department of Pediatrics, The University of Texas Medical School at Houston, Houston, Texas
| | - Tingting Weng
- Department of Biochemistry and Molecular Biology, The University of Texas Medical School at Houston, Houston, Texas
| | - Constance L Atkins
- Division of Pulmonary Medicine, Department of Pediatrics, The University of Texas Medical School at Houston, Houston, Texas
| | - Chantal Y Spencer
- Pediatric Pulmonary Section, Department of Pediatrics, Baylor College of Medicine, Houston, Texas
| | - Katherine J Cockerill
- Pediatric Research Center, Department of Pediatrics, The University of Texas Medical School at Houston, Houston, Texas
| | - Amy L Alexander
- Pediatric Research Center, Department of Pediatrics, The University of Texas Medical School at Houston, Houston, Texas
| | - Michael R Blackburn
- Department of Biochemistry and Molecular Biology, The University of Texas Medical School at Houston, Houston, Texas
| | - Joseph L Alcorn
- Department of Biochemistry and Molecular Biology, The University of Texas Medical School at Houston, Houston, Texas; Pediatric Research Center, Department of Pediatrics, The University of Texas Medical School at Houston, Houston, Texas; Division of Neonatal-Perinatal Medicine, Department of Pediatrics, The University of Texas Medical School at Houston, Houston, Texas; and
| | - Ikram U Haque
- Division of Critical Care Medicine, Department of Pediatrics, The University of Texas Medical School at Houston, Houston, Texas
| | - Richard A Johnston
- Division of Critical Care Medicine, Department of Pediatrics, The University of Texas Medical School at Houston, Houston, Texas; Pediatric Research Center, Department of Pediatrics, The University of Texas Medical School at Houston, Houston, Texas; Department of Integrative Biology and Pharmacology, The University of Texas Medical School at Houston, Houston, Texas
| |
Collapse
|
10
|
Stinkens R, Goossens GH, Jocken JWE, Blaak EE. Targeting fatty acid metabolism to improve glucose metabolism. Obes Rev 2015; 16:715-57. [PMID: 26179344 DOI: 10.1111/obr.12298] [Citation(s) in RCA: 110] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/02/2015] [Revised: 04/23/2015] [Accepted: 05/10/2015] [Indexed: 12/15/2022]
Abstract
Disturbances in fatty acid metabolism in adipose tissue, liver, skeletal muscle, gut and pancreas play an important role in the development of insulin resistance, impaired glucose metabolism and type 2 diabetes mellitus. Alterations in diet composition may contribute to prevent and/or reverse these disturbances through modulation of fatty acid metabolism. Besides an increased fat mass, adipose tissue dysfunction, characterized by an altered capacity to store lipids and an altered secretion of adipokines, may result in lipid overflow, systemic inflammation and excessive lipid accumulation in non-adipose tissues like liver, skeletal muscle and the pancreas. These impairments together promote the development of impaired glucose metabolism, insulin resistance and type 2 diabetes mellitus. Furthermore, intrinsic functional impairments in either of these organs may contribute to lipotoxicity and insulin resistance. The present review provides an overview of fatty acid metabolism-related pathways in adipose tissue, liver, skeletal muscle, pancreas and gut, which can be targeted by diet or food components, thereby improving glucose metabolism.
Collapse
Affiliation(s)
- R Stinkens
- Department of Human Biology, NUTRIM School of Nutrition and Translational Research in Metabolism, Maastricht University Medical Center+, Maastricht, The Netherlands
| | - G H Goossens
- Department of Human Biology, NUTRIM School of Nutrition and Translational Research in Metabolism, Maastricht University Medical Center+, Maastricht, The Netherlands
| | - J W E Jocken
- Department of Human Biology, NUTRIM School of Nutrition and Translational Research in Metabolism, Maastricht University Medical Center+, Maastricht, The Netherlands
| | - E E Blaak
- Department of Human Biology, NUTRIM School of Nutrition and Translational Research in Metabolism, Maastricht University Medical Center+, Maastricht, The Netherlands
| |
Collapse
|
11
|
Kersten S. Physiological regulation of lipoprotein lipase. Biochim Biophys Acta Mol Cell Biol Lipids 2014; 1841:919-33. [PMID: 24721265 DOI: 10.1016/j.bbalip.2014.03.013] [Citation(s) in RCA: 363] [Impact Index Per Article: 33.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/14/2014] [Revised: 03/27/2014] [Accepted: 03/30/2014] [Indexed: 01/01/2023]
Abstract
The enzyme lipoprotein lipase (LPL), originally identified as the clearing factor lipase, hydrolyzes triglycerides present in the triglyceride-rich lipoproteins VLDL and chylomicrons. LPL is primarily expressed in tissues that oxidize or store fatty acids in large quantities such as the heart, skeletal muscle, brown adipose tissue and white adipose tissue. Upon production by the underlying parenchymal cells, LPL is transported and attached to the capillary endothelium by the protein GPIHBP1. Because LPL is rate limiting for plasma triglyceride clearance and tissue uptake of fatty acids, the activity of LPL is carefully controlled to adjust fatty acid uptake to the requirements of the underlying tissue via multiple mechanisms at the transcriptional and post-translational level. Although various stimuli influence LPL gene transcription, it is now evident that most of the physiological variation in LPL activity, such as during fasting and exercise, appears to be driven via post-translational mechanisms by extracellular proteins. These proteins can be divided into two main groups: the liver-derived apolipoproteins APOC1, APOC2, APOC3, APOA5, and APOE, and the angiopoietin-like proteins ANGPTL3, ANGPTL4 and ANGPTL8, which have a broader expression profile. This review will summarize the available literature on the regulation of LPL activity in various tissues, with an emphasis on the response to diverse physiological stimuli.
Collapse
Affiliation(s)
- Sander Kersten
- Nutrition, Metabolism and Genomics Group, Division of Human Nutrition, Wageningen University, Bomenweg 2, 6703HD Wageningen, The Netherlands
| |
Collapse
|