1
|
Chen Y, Wu WJ, Xing LW, Zhang XJ, Wang J, Xia XY, Zhao R, Zhao R. Investigating the role of mitochondrial DNA D-loop variants, haplotypes, and copy number in polycystic ovary syndrome: implications for clinical phenotypes in the Chinese population. Front Endocrinol (Lausanne) 2023; 14:1206995. [PMID: 37745710 PMCID: PMC10512090 DOI: 10.3389/fendo.2023.1206995] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/16/2023] [Accepted: 07/11/2023] [Indexed: 09/26/2023] Open
Abstract
Background The presence of genetic variations in mitochondrial DNA (mtDNA) has been associated with a diverse array of diseases. The objective of this study was to examine the correlations between mtDNA D-loop, its haplotypes, and polycystic ovary syndrome (PCOS) in the Chinese population, and the associations between mtDNA D-loop and symptoms of PCOS. The study also sought to determine whether the mtDNA copy number in Chinese patients with PCOS differed from that of individuals in the control group. Methods Infertile individuals who only had tubal or male factor treatment were the focus of research by The Cancer Genome Atlas (TCGA) and Gene Expression Omnibus (GEO). mtDNA haplotypes were categorized using polymorphic D-loop sites. mtDNA D-loop, PCOS features, and mtDNA haplotypes were analyzed using R software to determine the strength of the association between the three. There are certain DNA haplotypes linked to PCOS. Microdroplet digital polymerase chain reaction (PCR) was used to determine the mtDNA copy number in a convenience sample of 168 PCOS patients and 83 controls. Results Among the research group, the majority of D-loop mutations were infrequent (frequency< 1%), with only 45 variants displaying a minimum allele frequency (MAF) of 5% or higher. No association was found between polymorphism loci in PCOS patients and body mass index (BMI). Noteworthy, C194T, 1A200G, 523delAC, and C16234T showed positive correlations with elevated LH/FSH levels. Additionally, specific polymorphic loci G207A, 16036GGins, and 16049Gins within the D-loop region of mtDNA potentially exerted a protective role in PCOS development. Conversely, no statistical significance was observed in the expression levels of C16291T and T489C. Chinese women with mtDNA haplotype A15 exhibited a decreased risk of developing PCOS. Moreover, a significant difference in mtDNA copy number was detected, with controls averaging 25.87 (21.84, 34.81), while PCOS patients had a mean of 129.91 (99.38, 168.63). Conclusion Certain mtDNA D-loop mutations and haplotypes appear to confer protection against PCOS in Chinese women. In addition, elevated mtDNA copy number may serve as an indicator during early stages of PCOS.
Collapse
Affiliation(s)
- Yang Chen
- Nanjing University of Chinese Medicine, Nanjing, Jiangsu, China
- Department of TCM (Traditional Chinese Medicine), Hainan Women and Children’s Medical Center, Haikou, Hainan, China
| | - Wei-jia Wu
- Department of Scientific Research, Hainan Women and Children’s Medical Center, Haikou, Hainan, China
| | - Li-wei Xing
- Yunnan University of Chinese Medicine, Kunming, Yunnan, China
| | - Xiao-juan Zhang
- Department of TCM (Traditional Chinese Medicine), Hainan Women and Children’s Medical Center, Haikou, Hainan, China
| | - Jing Wang
- Department of TCM (Traditional Chinese Medicine), Hainan Women and Children’s Medical Center, Haikou, Hainan, China
| | - Xiao-yan Xia
- Department of TCM (Traditional Chinese Medicine), Hainan Women and Children’s Medical Center, Haikou, Hainan, China
| | - Rui Zhao
- Department of TCM (Traditional Chinese Medicine), Hainan Women and Children’s Medical Center, Haikou, Hainan, China
| | - Rong Zhao
- Nanjing University of Chinese Medicine, Nanjing, Jiangsu, China
- Yunnan University of Chinese Medicine, Kunming, Yunnan, China
| |
Collapse
|
2
|
Ning P, Jiang X, Yang J, Zhang J, Yang F, Cao H. Mitophagy: A potential therapeutic target for insulin resistance. Front Physiol 2022; 13:957968. [PMID: 36082218 PMCID: PMC9445132 DOI: 10.3389/fphys.2022.957968] [Citation(s) in RCA: 17] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2022] [Accepted: 08/01/2022] [Indexed: 11/29/2022] Open
Abstract
Glucose and lipid metabolism disorders caused by insulin resistance (IR) can lead to metabolic disorders such as diabetes, obesity, and the metabolic syndrome. Early and targeted intervention of IR is beneficial for the treatment of various metabolic disorders. Although significant progress has been made in the development of IR drug therapies, the state of the condition has not improved significantly. There is a critical need to identify novel therapeutic targets. Mitophagy is a type of selective autophagy quality control system that is activated to clear damaged and dysfunctional mitochondria. Mitophagy is highly regulated by various signaling pathways, such as the AMPK/mTOR pathway which is involved in the initiation of mitophagy, and the PINK1/Parkin, BNIP3/Nix, and FUNDC1 pathways, which are involved in mitophagosome formation. Mitophagy is involved in numerous human diseases such as neurological disorders, cardiovascular diseases, cancer, and aging. However, recently, there has been an increasing interest in the role of mitophagy in metabolic disorders. There is emerging evidence that normal mitophagy can improve IR. Unfortunately, few studies have investigated the relationship between mitophagy and IR. Therefore, we set out to review the role of mitophagy in IR and explore whether mitophagy may be a potential new target for IR therapy. We hope that this effort serves to stimulate further research in this area.
Collapse
Affiliation(s)
- Peng Ning
- Department of Endocrine and Metabolism, Geriatric Diseases Institute of Chengdu/Cancer Prevention and Treatment Institute of Chengdu, Chengdu Fifth People’s Hospital(The Second Clinical Medical College, Affiliated Fifth People’s Hospital of Chengdu University of Traditional Chinese Medicine), Chengdu, China
| | - Xiaobo Jiang
- Department of Cardiovascular Medicine, Geriatric Diseases Institute of Chengdu/Cancer Prevention and Treatment Institute of Chengdu, Chengdu Fifth People’s Hospital(The Second Clinical Medical College, Affiliated Fifth People’s Hospital of Chengdu University of Traditional Chinese Medicine), Chengdu, China
| | - Jing Yang
- Department of Endocrine and Metabolism, Geriatric Diseases Institute of Chengdu/Cancer Prevention and Treatment Institute of Chengdu, Chengdu Fifth People’s Hospital(The Second Clinical Medical College, Affiliated Fifth People’s Hospital of Chengdu University of Traditional Chinese Medicine), Chengdu, China
| | - Jiaxing Zhang
- Department of Endocrine and Metabolism, Geriatric Diseases Institute of Chengdu/Cancer Prevention and Treatment Institute of Chengdu, Chengdu Fifth People’s Hospital(The Second Clinical Medical College, Affiliated Fifth People’s Hospital of Chengdu University of Traditional Chinese Medicine), Chengdu, China
| | - Fan Yang
- Department of Endocrine and Metabolism, Geriatric Diseases Institute of Chengdu/Cancer Prevention and Treatment Institute of Chengdu, Chengdu Fifth People’s Hospital(The Second Clinical Medical College, Affiliated Fifth People’s Hospital of Chengdu University of Traditional Chinese Medicine), Chengdu, China
- *Correspondence: Fan Yang, ; Hongyi Cao,
| | - Hongyi Cao
- Department of Endocrine and Metabolism, Geriatric Diseases Institute of Chengdu/Cancer Prevention and Treatment Institute of Chengdu, Chengdu Fifth People’s Hospital(The Second Clinical Medical College, Affiliated Fifth People’s Hospital of Chengdu University of Traditional Chinese Medicine), Chengdu, China
- *Correspondence: Fan Yang, ; Hongyi Cao,
| |
Collapse
|
3
|
Lipke K, Kubis-Kubiak A, Piwowar A. Molecular Mechanism of Lipotoxicity as an Interesting Aspect in the Development of Pathological States-Current View of Knowledge. Cells 2022; 11:cells11050844. [PMID: 35269467 PMCID: PMC8909283 DOI: 10.3390/cells11050844] [Citation(s) in RCA: 59] [Impact Index Per Article: 19.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/21/2022] [Revised: 02/22/2022] [Accepted: 02/25/2022] [Indexed: 02/06/2023] Open
Abstract
Free fatty acids (FFAs) play numerous vital roles in the organism, such as contribution to energy generation and reserve, serving as an essential component of the cell membrane, or as ligands for nuclear receptors. However, the disturbance in fatty acid homeostasis, such as inefficient metabolism or intensified release from the site of storage, may result in increased serum FFA levels and eventually result in ectopic fat deposition, which is unfavorable for the organism. The cells are adjusted for the accumulation of FFA to a limited extent and so prolonged exposure to elevated FFA levels results in deleterious effects referred to as lipotoxicity. Lipotoxicity contributes to the development of diseases such as insulin resistance, diabetes, cardiovascular diseases, metabolic syndrome, and inflammation. The nonobvious organs recognized as the main lipotoxic goal of action are the pancreas, liver, skeletal muscles, cardiac muscle, and kidneys. However, lipotoxic effects to a significant extent are not organ-specific but affect fundamental cellular processes occurring in most cells. Therefore, the wider perception of cellular lipotoxic mechanisms and their interrelation may be beneficial for a better understanding of various diseases’ pathogenesis and seeking new pharmacological treatment approaches.
Collapse
|
4
|
Gigante I, Tutino V, Russo F, De Nunzio V, Coletta S, Armentano R, Crovace A, Caruso MG, Orlando A, Notarnicola M. Cannabinoid Receptors Overexpression in a Rat Model of Irritable Bowel Syndrome (IBS) after Treatment with a Ketogenic Diet. Int J Mol Sci 2021; 22:2880. [PMID: 33809047 PMCID: PMC7999285 DOI: 10.3390/ijms22062880] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/29/2021] [Revised: 03/09/2021] [Accepted: 03/10/2021] [Indexed: 12/12/2022] Open
Abstract
The administration of a ketogenic diet (KD) has been considered therapeutic in subjects with irritable bowel syndrome (IBS). This study aimed to investigate the molecular mechanisms by which a low-carbohydrate diet, such as KD, can improve gastrointestinal symptoms and functions in an animal model of IBS by evaluating possible changes in intestinal tissue expression of endocannabinoid receptors. In rats fed a KD, we detected a significant restoration of cell damage to the intestinal crypt base, a histological feature of IBS condition, and upregulation of CB1 and CB2 receptors. The diet also affected glucose metabolism and intestinal membrane permeability, with an overexpression of the glucose transporter GLUT1 and tight junction proteins in treated rats. The present data suggest that CB receptors represent one of the molecular pathways through which the KD works and support possible cannabinoid-mediated protection at the intestinal level in the IBS rats after dietary treatment.
Collapse
Affiliation(s)
- Isabella Gigante
- Laboratory of Nutritional Biochemistry, National Institute of Gastroenterology, “S. de Bellis” Research Hospital, 70013 Castellana Grotte (BA), Italy; (I.G.); (V.T.); (V.D.N.)
| | - Valeria Tutino
- Laboratory of Nutritional Biochemistry, National Institute of Gastroenterology, “S. de Bellis” Research Hospital, 70013 Castellana Grotte (BA), Italy; (I.G.); (V.T.); (V.D.N.)
| | - Francesco Russo
- Laboratory of Nutritional Pathophysiology, National Institute of Gastroenterology, “S. de Bellis” Research Hospital, 70013 Castellana Grotte (BA), Italy; (F.R.); (A.O.)
| | - Valentina De Nunzio
- Laboratory of Nutritional Biochemistry, National Institute of Gastroenterology, “S. de Bellis” Research Hospital, 70013 Castellana Grotte (BA), Italy; (I.G.); (V.T.); (V.D.N.)
| | - Sergio Coletta
- Histopathology Unit, National Institute of Gastroenterology, “S. de Bellis” Research Hospital, 70013 Castellana Grotte (BA), Italy; (S.C.); (R.A.)
| | - Raffaele Armentano
- Histopathology Unit, National Institute of Gastroenterology, “S. de Bellis” Research Hospital, 70013 Castellana Grotte (BA), Italy; (S.C.); (R.A.)
| | - Alberto Crovace
- Animal Facility, National Institute of Gastroenterology, “S. de Bellis” Research Hospital, 70013 Castellana Grotte (BA), Italy;
| | - Maria Gabriella Caruso
- Ambulatory of Clinical Nutrition, National Institute of Gastroenterology, “S. de Bellis” Research Hospital, 70013 Castellana Grotte (BA), Italy;
| | - Antonella Orlando
- Laboratory of Nutritional Pathophysiology, National Institute of Gastroenterology, “S. de Bellis” Research Hospital, 70013 Castellana Grotte (BA), Italy; (F.R.); (A.O.)
| | - Maria Notarnicola
- Laboratory of Nutritional Biochemistry, National Institute of Gastroenterology, “S. de Bellis” Research Hospital, 70013 Castellana Grotte (BA), Italy; (I.G.); (V.T.); (V.D.N.)
| |
Collapse
|
5
|
Yan J, Song K, Bai Z, Ge RL. WY14643 improves left ventricular myocardial mitochondrial and systolic functions in obese rats under chronic persistent hypoxia via the PPARα pathway. Life Sci 2020; 266:118888. [PMID: 33310031 DOI: 10.1016/j.lfs.2020.118888] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/09/2020] [Revised: 12/04/2020] [Accepted: 12/04/2020] [Indexed: 02/06/2023]
Abstract
AIMS Peroxisome proliferator-activated receptor (PPAR) α, a key regulator of lipid metabolism, plays a role in maintaining the homeostasis of myocardial energy metabolism. Both hypoxia and obesity inhibit the expression of PPARα in the myocardium. In this study, we verified the inhibitory effects of hypoxia and obesity on PPARα and examined whether WY14643 (4-chloro-6-(2,3-xylidino)-2-pyrimidinylthioacetic acid), an agonist of PPARα, ameliorates myocardial mitochondrial dysfunction and protects cardiac function in obese rats under chronic persistent hypoxia. MAIN METHODS Sprague-Dawley rats were randomly divided into six groups: a control group (normal chow diet, normal oxygen), a high-fat diet (HFD) group (normal oxygen), a chronic persistent hypoxia normal chow diet group, a chronic persistent hypoxia HFD group, a chronic persistent hypoxia HFD group with WY14643 treatment, and a chronic persistent hypoxia HFD group with vehicle treatment. KEY FINDINGS Hypoxia and obesity increased myocardial lipid accumulation, mitochondrial dysfunction, and left ventricular systolic dysfunction. Myocardial lipid metabolism-related genes, including those encoding PPARα, PPARγ coactivator 1α (PGC1α), and carnitine palmitoyl transferase 1α (CPT1α), were downregulated, while acetyl-CoA carboxylase 2 (ACC2) was upregulated under a combination of hypoxia and obesity. WY14643 upregulated PPARα, PGC1α, and CPT1α, and downregulated ACC2. WY14643 alleviated hypoxia- and obesity-induced myocardial lipid accumulation and improved mitochondrial and left ventricular systolic functions. SIGNIFICANCE WY14643 improved myocardial mitochondrial and left ventricular systolic functions in obese rats under chronic persistent hypoxia. Thus, WY14643 possibly exerts its effects by regulating the PPARα pathway and shows potential as a therapeutic target for cardiovascular diseases associated with obesity and hypoxia.
Collapse
Affiliation(s)
- Jun Yan
- Research Center for High Altitude Medicine, Qinghai University Medical College, Xining 810001, PR China; Key Laboratory of Persistent medicine (Qinghai University), Ministry of Education, Xining 810001, PR China; Key Laboratory for Application of Persistent Medicine in Qinghai Province, Xining 810001, PR China; Cardiovascular Medicine Department, Xuzhou Medical University affiliated hospital, Xuzhou 221006, PR China
| | - Kang Song
- Endocrinology Department, Qinghai Provincial People's Hospital, Xining 810000, PR China
| | - Zhenzhong Bai
- Research Center for High Altitude Medicine, Qinghai University Medical College, Xining 810001, PR China; Key Laboratory of Persistent medicine (Qinghai University), Ministry of Education, Xining 810001, PR China; Key Laboratory for Application of Persistent Medicine in Qinghai Province, Xining 810001, PR China
| | - Ri-Li Ge
- Research Center for High Altitude Medicine, Qinghai University Medical College, Xining 810001, PR China; Key Laboratory of Persistent medicine (Qinghai University), Ministry of Education, Xining 810001, PR China; Key Laboratory for Application of Persistent Medicine in Qinghai Province, Xining 810001, PR China.
| |
Collapse
|
6
|
Ye Y, Abu El Haija M, Morgan DA, Guo D, Song Y, Frank A, Tian L, Riedl RA, Burnett CML, Gao Z, Zhu Z, Shahi SK, Zarei K, Couvelard A, Poté N, Ribeiro-Parenti L, Bado A, Noureddine L, Bellizzi A, Kievit P, Mangalam AK, Zingman LV, Le Gall M, Grobe JL, Kaplan LM, Clegg D, Rahmouni K, Mokadem M. Endocannabinoid Receptor-1 and Sympathetic Nervous System Mediate the Beneficial Metabolic Effects of Gastric Bypass. Cell Rep 2020; 33:108270. [PMID: 33113371 PMCID: PMC7660289 DOI: 10.1016/j.celrep.2020.108270] [Citation(s) in RCA: 31] [Impact Index Per Article: 6.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/17/2019] [Revised: 05/18/2020] [Accepted: 09/23/2020] [Indexed: 12/27/2022] Open
Abstract
The exact mechanisms underlying the metabolic effects of bariatric surgery remain unclear. Here, we demonstrate, using a combination of direct and indirect calorimetry, an increase in total resting metabolic rate (RMR) and specifically anaerobic RMR after Roux-en-Y gastric bypass (RYGB), but not sleeve gastrectomy (SG). We also show an RYGB-specific increase in splanchnic sympathetic nerve activity and "browning" of visceral mesenteric fat. Consequently, selective splanchnic denervation abolishes all beneficial metabolic outcomes of gastric bypass that involve changes in the endocannabinoid signaling within the small intestine. Furthermore, we demonstrate that administration of rimonabant, an endocannabinoid receptor-1 (CB1) inverse agonist, to obese mice mimics RYGB-specific effects on energy balance and splanchnic nerve activity. On the other hand, arachidonoylethanolamide (AEA), a CB1 agonist, attenuates the weight loss and metabolic signature of this procedure. These findings identify CB1 as a key player in energy regulation post-RYGB via a pathway involving the sympathetic nervous system.
Collapse
Affiliation(s)
- Yuanchao Ye
- Department of Internal Medicine, University of Iowa Carver College of Medicine, Iowa City, IA 52242, USA
| | - Marwa Abu El Haija
- Department of Pediatrics, Division of Gastroenterology, Hepatology, and Nutrition, Stanford University School of Medicine, Palo Alto, CA 94304, USA
| | - Donald A Morgan
- Department of Neuroscience and Pharmacology, University of Iowa Carver College of Medicine, Iowa City, IA 52242, USA
| | - Deng Guo
- Department of Neuroscience and Pharmacology, University of Iowa Carver College of Medicine, Iowa City, IA 52242, USA
| | - Yang Song
- College of Pharmacy, China Medical University, 77 Puhe Rd., Liaoning 110122, P.R. China
| | - Aaron Frank
- The Biomedical Research Department, Diabetes and Obesity Research Division, Cedars Sinai Medical Center, Beverly Hills, CA 90048, USA
| | - Liping Tian
- Department of Clinical Pharmacy, School of Basic Medicine and Clinical Pharmacy, China Pharmaceutical University, Nanjing, Jiangsu 211198, P.R. China
| | - Ruth A Riedl
- Department of Neuroscience and Pharmacology, University of Iowa Carver College of Medicine, Iowa City, IA 52242, USA
| | - Colin M L Burnett
- Department of Internal Medicine, University of Iowa Carver College of Medicine, Iowa City, IA 52242, USA; Department of Neuroscience and Pharmacology, University of Iowa Carver College of Medicine, Iowa City, IA 52242, USA
| | - Zhan Gao
- Department of Internal Medicine, University of Iowa Carver College of Medicine, Iowa City, IA 52242, USA
| | - Zhiyong Zhu
- Department of Internal Medicine, University of Iowa Carver College of Medicine, Iowa City, IA 52242, USA
| | - Shailesh K Shahi
- Department of Pathology, University of Iowa Carver College of Medicine, Iowa City, IA 52242, USA
| | - Kasra Zarei
- Medical Scientist Training Program, University of Iowa Carver College of Medicine, Iowa City, IA 52242, USA
| | - Anne Couvelard
- INSERM U1149, Centre de Recherche sur l'Inflammation, Université de Paris, Paris 75018, France; Department of Pathology, Bichat Hospital, AP-HP, Paris 75018, France
| | - Nicolas Poté
- INSERM U1149, Centre de Recherche sur l'Inflammation, Université de Paris, Paris 75018, France; Department of Pathology, Bichat Hospital, AP-HP, Paris 75018, France
| | - Lara Ribeiro-Parenti
- INSERM U1149, Centre de Recherche sur l'Inflammation, Université de Paris, Paris 75018, France; Department of General and Digestive Surgery, Bichat Hospital, AP-HP, Paris 75018, France
| | - André Bado
- INSERM U1149, Centre de Recherche sur l'Inflammation, Université de Paris, Paris 75018, France
| | - Lama Noureddine
- Department of Internal Medicine, University of Iowa Carver College of Medicine, Iowa City, IA 52242, USA
| | - Andrew Bellizzi
- Department of Pathology, University of Iowa Carver College of Medicine, Iowa City, IA 52242, USA
| | - Paul Kievit
- Division of Diabetes, Obesity and Metabolism, Oregon National Primate Research Center, Oregon Health and Science University, Beaverton, OR 97006, USA
| | - Ashutosh K Mangalam
- Department of Pathology, University of Iowa Carver College of Medicine, Iowa City, IA 52242, USA; Interdisciplinary Graduate Program in Immunology and Molecular Medicine, University of Iowa Carver College of Medicine, Iowa City, IA 52242, USA
| | - Leonid V Zingman
- Department of Internal Medicine, University of Iowa Carver College of Medicine, Iowa City, IA 52242, USA; Fraternal Orders of Eagles Diabetes Research Center, Iowa City, IA 52242, USA; Veterans Affairs Health Care System, Iowa City, IA 52242, USA; Obesity Research & Education Initiative, University of Iowa, Iowa City, IA 52242, USA
| | - Maude Le Gall
- INSERM U1149, Centre de Recherche sur l'Inflammation, Université de Paris, Paris 75018, France
| | - Justin L Grobe
- Departments of Physiology and Biomedical Engineering, Medical College of Wisconsin, Milwaukee, MI 53226, USA
| | - Lee M Kaplan
- Department of Medicine, Harvard Medical School, Boston, MA 02115, USA; Obesity, Metabolism, and Nutrition Institute, Massachusetts General Hospital, Boston, MA 02114, USA
| | - Deborah Clegg
- College of Nursing and Health Professions, Drexel University, 1601 Cherry Street, Philadelphia, PA 19102, USA
| | - Kamal Rahmouni
- Department of Internal Medicine, University of Iowa Carver College of Medicine, Iowa City, IA 52242, USA; Department of Neuroscience and Pharmacology, University of Iowa Carver College of Medicine, Iowa City, IA 52242, USA; Medical Scientist Training Program, University of Iowa Carver College of Medicine, Iowa City, IA 52242, USA; Fraternal Orders of Eagles Diabetes Research Center, Iowa City, IA 52242, USA; Veterans Affairs Health Care System, Iowa City, IA 52242, USA; Obesity Research & Education Initiative, University of Iowa, Iowa City, IA 52242, USA
| | - Mohamad Mokadem
- Department of Internal Medicine, University of Iowa Carver College of Medicine, Iowa City, IA 52242, USA; Department of Neuroscience and Pharmacology, University of Iowa Carver College of Medicine, Iowa City, IA 52242, USA; Fraternal Orders of Eagles Diabetes Research Center, Iowa City, IA 52242, USA; Veterans Affairs Health Care System, Iowa City, IA 52242, USA; Obesity Research & Education Initiative, University of Iowa, Iowa City, IA 52242, USA.
| |
Collapse
|
7
|
Nisr RB, Shah DS, Ganley IG, Hundal HS. Proinflammatory NFkB signalling promotes mitochondrial dysfunction in skeletal muscle in response to cellular fuel overloading. Cell Mol Life Sci 2019; 76:4887-4904. [PMID: 31101940 PMCID: PMC6881256 DOI: 10.1007/s00018-019-03148-8] [Citation(s) in RCA: 86] [Impact Index Per Article: 14.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/28/2019] [Revised: 05/08/2019] [Accepted: 05/13/2019] [Indexed: 11/29/2022]
Abstract
Sustained nutrient (fuel) excess, as occurs during obesity and diabetes, has been linked to increased inflammation, impaired mitochondrial homeostasis, lipotoxicity, and insulin resistance in skeletal muscle. Precisely how mitochondrial dysfunction is initiated and whether it contributes to insulin resistance in this tissue remains a poorly resolved issue. Herein, we examine the contribution that an increase in proinflammatory NFkB signalling makes towards regulation of mitochondrial bioenergetics, morphology, and dynamics and its impact upon insulin action in skeletal muscle cells subject to chronic fuel (glucose and palmitate) overloading. We show sustained nutrient excess of L6 myotubes promotes activation of the IKKβ-NFkB pathway (as judged by a six-fold increase in IL-6 mRNA expression; an NFkB target gene) and that this was associated with a marked reduction in mitochondrial respiratory capacity (>50%), a three-fold increase in mitochondrial fragmentation and 2.5-fold increase in mitophagy. Under these circumstances, we also noted a reduction in the mRNA and protein abundance of PGC1α and that of key mitochondrial components (SDHA, ANT-1, UCP3, and MFN2) as well as an increase in cellular ROS and impaired insulin action in myotubes. Strikingly, pharmacological or genetic repression of NFkB activity ameliorated disturbances in mitochondrial respiratory function/morphology, attenuated loss of SDHA, ANT-1, UCP3, and MFN2 and mitigated the increase in ROS and the associated reduction in myotube insulin sensitivity. Our findings indicate that sustained oversupply of metabolic fuel to skeletal muscle cells induces heightened NFkB signalling and that this serves as a critical driver for disturbances in mitochondrial function and morphology, redox status, and insulin signalling.
Collapse
Affiliation(s)
- Raid B Nisr
- Division of Cell Signalling and Immunology, Sir James Black Centre, School of Life Sciences, University of Dundee, Dundee, DD1 5EH, UK
| | - Dinesh S Shah
- Division of Cell Signalling and Immunology, Sir James Black Centre, School of Life Sciences, University of Dundee, Dundee, DD1 5EH, UK
| | - Ian G Ganley
- MRC Protein Phosphorylation and Ubiquitylation Unit, Sir James Black Centre, School of Life Sciences, University of Dundee, Dundee, DD1 5EH, UK
| | - Harinder S Hundal
- Division of Cell Signalling and Immunology, Sir James Black Centre, School of Life Sciences, University of Dundee, Dundee, DD1 5EH, UK.
| |
Collapse
|
8
|
Wang J, Gao Y, Lin F, Han K, Wang X. Omentin-1 attenuates lipopolysaccharide (LPS)-induced U937 macrophages activation by inhibiting the TLR4/MyD88/NF-κB signaling. Arch Biochem Biophys 2019; 679:108187. [PMID: 31706880 DOI: 10.1016/j.abb.2019.108187] [Citation(s) in RCA: 50] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/10/2019] [Revised: 10/20/2019] [Accepted: 11/05/2019] [Indexed: 01/29/2023]
Abstract
Macrophages play a pivotal role in the defense response against harmful pathogens and stimuli by releasing various pro-inflammatory mediators. However, overproduction of pro-inflammatory mediators will do harm to the organism and cause inflammation-associated diseases. Omentin-1, which is a newly discovered adipokine, is specifically expressed in omental adipose tissue. Recent studies have found correlations between omentin-1 and insulin resistance, diabetes, obesity, inflammation, atherosclerosis, bone metabolism, and tumor cell proliferation. Some studies have shown that the association between omentin-1, insulin resistance, and inflammation might suggest that omentin-1 plays an important role in chronic inflammatory diseases. In this study, we found that omentin-1 inhibited LPS-induced expression of inflammatory mediators and pro-inflammatory cytokines in macrophages. Furthermore, omentin-1 inhibited activation of the NF-κB pathway by suppressing both nuclear p65 accumulation and transfected NFκB promoter activity. Importantly, omentin-1 increased nuclear translocation of Nrf2. Our findings demonstrate that omentin-1 exerts anti-inflammatory effects on LPS-induced macrophages and has potential implication in the treatment of inflammation-associated diseases.
Collapse
Affiliation(s)
- Jinzhong Wang
- Department of Critical Care Medicine, The Second Affiliated Hospital of Hainan Medical University, Haikou City, Hainan province, China
| | - Yi Gao
- Department of Infectious Disease, The Affiliated Hainan Hospital of Hainan Medical University, Haikou City, Hainan province, China
| | - Feng Lin
- Department of Infectious Disease, The Affiliated Hainan Hospital of Hainan Medical University, Haikou City, Hainan province, China
| | - Kui Han
- Department of Critical Care Medicine, The Second Affiliated Hospital of Hainan Medical University, Haikou City, Hainan province, China
| | - Xiaozhi Wang
- Department of Critical Care Medicine, The Second Affiliated Hospital of Hainan Medical University, Haikou City, Hainan province, China.
| |
Collapse
|
9
|
Botteri G, Salvadó L, Gumà A, Lee Hamilton D, Meakin PJ, Montagut G, Ashford MLJ, Ceperuelo-Mallafré V, Fernández-Veledo S, Vendrell J, Calderón-Dominguez M, Serra D, Herrero L, Pizarro J, Barroso E, Palomer X, Vázquez-Carrera M. The BACE1 product sAPPβ induces ER stress and inflammation and impairs insulin signaling. Metabolism 2018. [PMID: 29526536 DOI: 10.1016/j.metabol.2018.03.005] [Citation(s) in RCA: 27] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Abstract
OBJECTIVE β-secretase/β-site amyloid precursor protein (APP)-cleaving enzyme 1 (BACE1) is a key enzyme involved in Alzheimer's disease that has recently been implicated in insulin-independent glucose uptake in myotubes. However, it is presently unknown whether BACE1 and the product of its activity, soluble APPβ (sAPPβ), contribute to lipid-induced inflammation and insulin resistance in skeletal muscle cells. MATERIALS/METHODS Studies were conducted in mouse C2C12 myotubes, skeletal muscle from Bace1-/-mice and mice treated with sAPPβ and adipose tissue and plasma from obese and type 2 diabetic patients. RESULTS We show that BACE1 inhibition or knockdown attenuates palmitate-induced endoplasmic reticulum (ER) stress, inflammation, and insulin resistance and prevents the reduction in Peroxisome Proliferator-Activated Receptor γ Co-activator 1α (PGC-1α) and fatty acid oxidation caused by palmitate in myotubes. The effects of palmitate on ER stress, inflammation, insulin resistance, PGC-1α down-regulation, and fatty acid oxidation were mimicked by soluble APPβ in vitro. BACE1 expression was increased in subcutaneous adipose tissue of obese and type 2 diabetic patients and this was accompanied by a decrease in PGC-1α mRNA levels and by an increase in sAPPβ plasma levels of obese type 2 diabetic patients compared to obese non-diabetic subjects. Acute sAPPβ administration to mice reduced PGC-1α levels and increased inflammation in skeletal muscle and decreased insulin sensitivity. CONCLUSIONS Collectively, these findings indicate that the BACE1 product sAPPβ is a key determinant in ER stress, inflammation and insulin resistance in skeletal muscle and gluconeogenesis in liver.
Collapse
Affiliation(s)
- Gaia Botteri
- Pharmacology Unit, Department of Pharmacology, Toxicology and Therapeutic Chemistry, Faculty of Pharmacy and Food Sciences, University of Barcelona, Spain; Institut de Biomedicina de la Universitat de Barcelona (IBUB), Spain; Centro de Investigación Biomédica en Red de Diabetes y Enfermedades Metabólicas Asociadas (CIBERDEM), Instituto de Salud Carlos III, Barcelona, Spain; Institut de Recerca Sant Joan de Déu (IR-SJD), Esplugues de Llobregat, Barcelona, Spain
| | - Laia Salvadó
- Pharmacology Unit, Department of Pharmacology, Toxicology and Therapeutic Chemistry, Faculty of Pharmacy and Food Sciences, University of Barcelona, Spain; Institut de Biomedicina de la Universitat de Barcelona (IBUB), Spain; Centro de Investigación Biomédica en Red de Diabetes y Enfermedades Metabólicas Asociadas (CIBERDEM), Instituto de Salud Carlos III, Barcelona, Spain; Institut de Recerca Sant Joan de Déu (IR-SJD), Esplugues de Llobregat, Barcelona, Spain
| | - Anna Gumà
- Institut de Biomedicina de la Universitat de Barcelona (IBUB), Spain; Centro de Investigación Biomédica en Red de Diabetes y Enfermedades Metabólicas Asociadas (CIBERDEM), Instituto de Salud Carlos III, Barcelona, Spain; Department of Biochemistry and Molecular Biology, Faculty of Biology, University of Barcelona, Barcelona, Spain
| | - D Lee Hamilton
- Division of Molecular and Clinical Medicine, School of Medicine, Ninewells Hospital & Medical School, University of Dundee, Dundee, UK
| | - Paul J Meakin
- Division of Molecular and Clinical Medicine, School of Medicine, Ninewells Hospital & Medical School, University of Dundee, Dundee, UK
| | - Gemma Montagut
- Division of Molecular and Clinical Medicine, School of Medicine, Ninewells Hospital & Medical School, University of Dundee, Dundee, UK
| | - Michael L J Ashford
- Division of Molecular and Clinical Medicine, School of Medicine, Ninewells Hospital & Medical School, University of Dundee, Dundee, UK
| | - Victoria Ceperuelo-Mallafré
- Centro de Investigación Biomédica en Red de Diabetes y Enfermedades Metabólicas Asociadas (CIBERDEM), Instituto de Salud Carlos III, Barcelona, Spain; Hospital Universitari de Tarragona Joan XXIII, Institut d'Investigació Sanitària Pere Virgili, Universitat Rovira i Virgili, Tarragona, Spain
| | - Sonia Fernández-Veledo
- Centro de Investigación Biomédica en Red de Diabetes y Enfermedades Metabólicas Asociadas (CIBERDEM), Instituto de Salud Carlos III, Barcelona, Spain; Hospital Universitari de Tarragona Joan XXIII, Institut d'Investigació Sanitària Pere Virgili, Universitat Rovira i Virgili, Tarragona, Spain
| | - Joan Vendrell
- Centro de Investigación Biomédica en Red de Diabetes y Enfermedades Metabólicas Asociadas (CIBERDEM), Instituto de Salud Carlos III, Barcelona, Spain; Hospital Universitari de Tarragona Joan XXIII, Institut d'Investigació Sanitària Pere Virgili, Universitat Rovira i Virgili, Tarragona, Spain
| | - María Calderón-Dominguez
- Institut de Biomedicina de la Universitat de Barcelona (IBUB), Spain; Department of Biochemistry and Physiology, Faculty of Pharmacy and Food Sciences, University of Barcelona, Spain; Centro de Investigación Biomédica en Red de Fisiopatología de la Obesidad y la Nutrición (CIBEROBN), Instituto de Salud Carlos III, Barcelona, Spain
| | - Dolors Serra
- Institut de Biomedicina de la Universitat de Barcelona (IBUB), Spain; Department of Biochemistry and Physiology, Faculty of Pharmacy and Food Sciences, University of Barcelona, Spain; Centro de Investigación Biomédica en Red de Fisiopatología de la Obesidad y la Nutrición (CIBEROBN), Instituto de Salud Carlos III, Barcelona, Spain
| | - Laura Herrero
- Institut de Biomedicina de la Universitat de Barcelona (IBUB), Spain; Department of Biochemistry and Physiology, Faculty of Pharmacy and Food Sciences, University of Barcelona, Spain; Centro de Investigación Biomédica en Red de Fisiopatología de la Obesidad y la Nutrición (CIBEROBN), Instituto de Salud Carlos III, Barcelona, Spain
| | - Javier Pizarro
- Pharmacology Unit, Department of Pharmacology, Toxicology and Therapeutic Chemistry, Faculty of Pharmacy and Food Sciences, University of Barcelona, Spain; Institut de Biomedicina de la Universitat de Barcelona (IBUB), Spain; Centro de Investigación Biomédica en Red de Diabetes y Enfermedades Metabólicas Asociadas (CIBERDEM), Instituto de Salud Carlos III, Barcelona, Spain; Institut de Recerca Sant Joan de Déu (IR-SJD), Esplugues de Llobregat, Barcelona, Spain
| | - Emma Barroso
- Pharmacology Unit, Department of Pharmacology, Toxicology and Therapeutic Chemistry, Faculty of Pharmacy and Food Sciences, University of Barcelona, Spain; Institut de Biomedicina de la Universitat de Barcelona (IBUB), Spain; Centro de Investigación Biomédica en Red de Diabetes y Enfermedades Metabólicas Asociadas (CIBERDEM), Instituto de Salud Carlos III, Barcelona, Spain; Institut de Recerca Sant Joan de Déu (IR-SJD), Esplugues de Llobregat, Barcelona, Spain
| | - Xavier Palomer
- Pharmacology Unit, Department of Pharmacology, Toxicology and Therapeutic Chemistry, Faculty of Pharmacy and Food Sciences, University of Barcelona, Spain; Institut de Biomedicina de la Universitat de Barcelona (IBUB), Spain; Centro de Investigación Biomédica en Red de Diabetes y Enfermedades Metabólicas Asociadas (CIBERDEM), Instituto de Salud Carlos III, Barcelona, Spain; Institut de Recerca Sant Joan de Déu (IR-SJD), Esplugues de Llobregat, Barcelona, Spain
| | - Manuel Vázquez-Carrera
- Pharmacology Unit, Department of Pharmacology, Toxicology and Therapeutic Chemistry, Faculty of Pharmacy and Food Sciences, University of Barcelona, Spain; Institut de Biomedicina de la Universitat de Barcelona (IBUB), Spain; Centro de Investigación Biomédica en Red de Diabetes y Enfermedades Metabólicas Asociadas (CIBERDEM), Instituto de Salud Carlos III, Barcelona, Spain; Institut de Recerca Sant Joan de Déu (IR-SJD), Esplugues de Llobregat, Barcelona, Spain.
| |
Collapse
|
10
|
Martins AR, Crisma AR, Masi LN, Amaral CL, Marzuca-Nassr GN, Bomfim LH, Teodoro BG, Queiroz AL, Serdan TD, Torres RP, Mancini-Filho J, Rodrigues AC, Alba-Loureiro TC, Pithon-Curi TC, Gorjao R, Silveira LR, Curi R, Newsholme P, Hirabara SM. Attenuation of obesity and insulin resistance by fish oil supplementation is associated with improved skeletal muscle mitochondrial function in mice fed a high-fat diet. J Nutr Biochem 2018; 55:76-88. [DOI: 10.1016/j.jnutbio.2017.11.012] [Citation(s) in RCA: 40] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/26/2017] [Revised: 09/28/2017] [Accepted: 11/14/2017] [Indexed: 12/14/2022]
|
11
|
Gabriel BM, Al-Tarrah M, Alhindi Y, Kilikevicius A, Venckunas T, Gray SR, Lionikas A, Ratkevicius A. H55N polymorphism is associated with low citrate synthase activity which regulates lipid metabolism in mouse muscle cells. PLoS One 2017; 12:e0185789. [PMID: 29095821 PMCID: PMC5667803 DOI: 10.1371/journal.pone.0185789] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/09/2017] [Accepted: 09/19/2017] [Indexed: 11/18/2022] Open
Abstract
The H55N polymorphism in the Cs gene of A/J mice has been linked to low activity of the enzyme in skeletal muscles. The aim of the study was to test this hypothesis and examine effects of low citrate synthase (CS) activity on palmitate metabolism in muscle cells. Results of the study showed that carriers of the wild type (WT) Cs (C57BL/6J and Balb/cByJ mouse strains) had higher CS activity (p < 0.01) than carriers of the A/J variant (B6.A-(rs3676616-D10Utsw1)/KjnB6 and A/J mouse strains) in the heart, liver and gastrocnemius muscle. Furthermore, the recombinant CS protein of WT showed higher CS activity than the A/J variant. In C2C12 muscle cells the shRNA mediated 47% knockdown of CS activity reduced the rate of fatty acid oxidation compared to the control cells. In summary, our results are consistent with the hypothesis that H55N substitution causes a reduction in CS activity. Furthermore, low CS activity interferes with metabolic flexibility of muscle cells.
Collapse
Affiliation(s)
- Brendan M. Gabriel
- School of Medicine, Medical Sciences and Nutrition, University of Aberdeen, Aberdeen, Scotland, United Kingdom
- Integrative Physiology, Department of Physiology and Pharmacology, Karolinska Institutet, Stockholm, Sweden
| | - Mustafa Al-Tarrah
- School of Medicine, Medical Sciences and Nutrition, University of Aberdeen, Aberdeen, Scotland, United Kingdom
| | - Yosra Alhindi
- School of Medicine, Medical Sciences and Nutrition, University of Aberdeen, Aberdeen, Scotland, United Kingdom
| | - Audrius Kilikevicius
- Department of Applied Biology and Rehabilitation, Lithuanian Sports University, Kaunas, Lithuania
| | - Tomas Venckunas
- Department of Applied Biology and Rehabilitation, Lithuanian Sports University, Kaunas, Lithuania
| | - Stuart R. Gray
- Institute of Cardiovascular and Medical Sciences, University of Glasgow, Glasgow, Scotland, United Kingdom
| | - Arimantas Lionikas
- School of Medicine, Medical Sciences and Nutrition, University of Aberdeen, Aberdeen, Scotland, United Kingdom
| | - Aivaras Ratkevicius
- Department of Applied Biology and Rehabilitation, Lithuanian Sports University, Kaunas, Lithuania
- * E-mail:
| |
Collapse
|
12
|
Long-term treatment with nicotinamide induces glucose intolerance and skeletal muscle lipotoxicity in normal chow-fed mice: compared to diet-induced obesity. J Nutr Biochem 2016; 36:31-41. [PMID: 27567590 DOI: 10.1016/j.jnutbio.2016.07.005] [Citation(s) in RCA: 24] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/22/2016] [Revised: 05/06/2016] [Accepted: 07/05/2016] [Indexed: 12/11/2022]
Abstract
Nicotinamide (NAM), or vitamin B3, is an essential coenzyme for ATP synthesis and an inhibitor of sirtuin 1. Recently, conflicting results were reported regarding the treatment of NAM in type 2 diabetes and obesity. The aim of this study was to determine whether and how long-term treatment with NAM at lower dose would affect insulin sensitivity in mice fed chow diet. We treated mice with NAM (100 mg/kg/day) and normal chow for 8 weeks. Strikingly, NAM induced glucose intolerance and skeletal muscle lipid accumulation in nonobese mice. NAM impaired mitochondrial respiration capacity and energy production in skeletal muscle, in combination with increased expression of the mediators for mitophagy (p62, PINK1, PARK2 and NIX) and autophagy (FOXO3, Bnip3, CTSL, Beclin1 and LC-3b). Next, we treated mice with high-fat diet (HFD) and resveratrol (RSV; 100 mg/kg/day) for 8 weeks. RSV protected against HFD-induced insulin resistance and obesity. HFD increased skeletal muscle lipid content as well as NAM, but this increase was attenuated by RSV. In contrast to NAM, HFD enhanced fatty acid oxidative capacity. Muscle transcript levels of genes for mitophagy and autophagy were largely suppressed by HFD, whereas RSV did not rescue these effects. These differences suggest that skeletal muscle autophagy may represent adaptive response to NAM-induced lipotoxicity, whereas reduced autophagy in skeletal muscle may promote HFD-induced lipotoxicity. Our results demonstrate that chronic NAM supplementation in healthy individuals, although at lower dose than previously reported, is still detrimental to glucose homeostasis and skeletal muscle lipid metabolism.
Collapse
|
13
|
Affourtit C. Mitochondrial involvement in skeletal muscle insulin resistance: A case of imbalanced bioenergetics. BIOCHIMICA ET BIOPHYSICA ACTA-BIOENERGETICS 2016; 1857:1678-93. [PMID: 27473535 DOI: 10.1016/j.bbabio.2016.07.008] [Citation(s) in RCA: 46] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/03/2016] [Revised: 06/19/2016] [Accepted: 07/23/2016] [Indexed: 12/16/2022]
Abstract
Skeletal muscle insulin resistance in obesity associates with mitochondrial dysfunction, but the causality of this association is controversial. This review evaluates mitochondrial models of nutrient-induced muscle insulin resistance. It transpires that all models predict that insulin resistance arises as a result of imbalanced cellular bioenergetics. The nature and precise origin of the proposed insulin-numbing molecules differ between models but all species only accumulate when metabolic fuel supply outweighs energy demand. This observation suggests that mitochondrial deficiency in muscle insulin resistance is not merely owing to intrinsic functional defects, but could instead be an adaptation to nutrient-induced changes in energy expenditure. Such adaptive effects are likely because muscle ATP supply is fully driven by energy demand. This market-economic control of myocellular bioenergetics offers a mechanism by which insulin-signalling deficiency can cause apparent mitochondrial dysfunction, as insulin resistance lowers skeletal muscle anabolism and thus dampens ATP demand and, consequently, oxidative ATP synthesis.
Collapse
Affiliation(s)
- Charles Affourtit
- School of Biomedical and Healthcare Sciences, Plymouth University Peninsula Schools of Medicine and Dentistry, Plymouth University, Drake Circus, PL4 8AA Plymouth, UK.
| |
Collapse
|
14
|
Zhang X, Li ZL, Eirin A, Ebrahimi B, Pawar AS, Zhu XY, Lerman A, Lerman LO. Cardiac metabolic alterations in hypertensive obese pigs. Hypertension 2015; 66:430-6. [PMID: 26077566 DOI: 10.1161/hypertensionaha.115.05478] [Citation(s) in RCA: 28] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/14/2015] [Accepted: 05/21/2015] [Indexed: 01/15/2023]
Abstract
Obesity and hypertension are major risk factors for cardiovascular diseases, and their growing coexistence accounts for an increase in adverse cardiac events, but the mechanisms are yet to be determined. We hypothesized that obesity exacerbates mitochondrial dysregulation imposed by hypertension and augments left ventricular dysfunction. Obesity-prone Ossabaw pigs were randomized to lean (standard diet) and obese (high-fat diet), without (Lean-sham and Obese-sham) or with renovascular hypertension (Lean-hypertension and Obese-hypertension), induced after 12 weeks of diet (n=7 each). Cardiac function, myocardial perfusion and oxygenation, and microvascular remodeling were assessed 4 weeks later. Mitochondrial biogenesis signals and structural proteins, respiratory chain complex activities, and mitochondrial self-degradation were examined, as was fibrosis. Obesity alone exerted no apparent effect on mitochondrial dynamics, but aggravated in hypertensive hearts the reduction of mitochondrial proteins, deoxyribonucleic acid content, and respiratory chain complex IV subunits activity, and amplified mitochondrial self-degradation. Synergistic interaction of obesity with hypertension also exacerbated myocardial fibrosis and left ventricular diastolic dysfunction. Mitochondrial content, respiratory chain complex IV subunits activity, and mitophagy were correlated with myocardial fibrosis. These findings suggest that obesity aggravates in renovascular hypertension cardiac mitochondrial aberrations. Mitochondrial function may regulate the progression of cardiac injury and functional deterioration in hypertension concomitant with obesity.
Collapse
Affiliation(s)
- Xin Zhang
- From the Divisions of Nephrology and Hypertension (X.Z., Z.-L.L., A.E., B.E., A.S.P., X.-Y.Z., L.O.L.) and Cardiovascular Diseases (A.L., L.O.L.), Mayo Clinic, Rochester, MN; and Division of Vascular Surgery, The First Affiliated Hospital, Sun Yat-sen University, Guangzhou, China (Z.-L.L.)
| | - Zi-Lun Li
- From the Divisions of Nephrology and Hypertension (X.Z., Z.-L.L., A.E., B.E., A.S.P., X.-Y.Z., L.O.L.) and Cardiovascular Diseases (A.L., L.O.L.), Mayo Clinic, Rochester, MN; and Division of Vascular Surgery, The First Affiliated Hospital, Sun Yat-sen University, Guangzhou, China (Z.-L.L.)
| | - Alfonso Eirin
- From the Divisions of Nephrology and Hypertension (X.Z., Z.-L.L., A.E., B.E., A.S.P., X.-Y.Z., L.O.L.) and Cardiovascular Diseases (A.L., L.O.L.), Mayo Clinic, Rochester, MN; and Division of Vascular Surgery, The First Affiliated Hospital, Sun Yat-sen University, Guangzhou, China (Z.-L.L.)
| | - Behzad Ebrahimi
- From the Divisions of Nephrology and Hypertension (X.Z., Z.-L.L., A.E., B.E., A.S.P., X.-Y.Z., L.O.L.) and Cardiovascular Diseases (A.L., L.O.L.), Mayo Clinic, Rochester, MN; and Division of Vascular Surgery, The First Affiliated Hospital, Sun Yat-sen University, Guangzhou, China (Z.-L.L.)
| | - Aditya S Pawar
- From the Divisions of Nephrology and Hypertension (X.Z., Z.-L.L., A.E., B.E., A.S.P., X.-Y.Z., L.O.L.) and Cardiovascular Diseases (A.L., L.O.L.), Mayo Clinic, Rochester, MN; and Division of Vascular Surgery, The First Affiliated Hospital, Sun Yat-sen University, Guangzhou, China (Z.-L.L.)
| | - Xiang-Yang Zhu
- From the Divisions of Nephrology and Hypertension (X.Z., Z.-L.L., A.E., B.E., A.S.P., X.-Y.Z., L.O.L.) and Cardiovascular Diseases (A.L., L.O.L.), Mayo Clinic, Rochester, MN; and Division of Vascular Surgery, The First Affiliated Hospital, Sun Yat-sen University, Guangzhou, China (Z.-L.L.)
| | - Amir Lerman
- From the Divisions of Nephrology and Hypertension (X.Z., Z.-L.L., A.E., B.E., A.S.P., X.-Y.Z., L.O.L.) and Cardiovascular Diseases (A.L., L.O.L.), Mayo Clinic, Rochester, MN; and Division of Vascular Surgery, The First Affiliated Hospital, Sun Yat-sen University, Guangzhou, China (Z.-L.L.)
| | - Lilach O Lerman
- From the Divisions of Nephrology and Hypertension (X.Z., Z.-L.L., A.E., B.E., A.S.P., X.-Y.Z., L.O.L.) and Cardiovascular Diseases (A.L., L.O.L.), Mayo Clinic, Rochester, MN; and Division of Vascular Surgery, The First Affiliated Hospital, Sun Yat-sen University, Guangzhou, China (Z.-L.L.).
| |
Collapse
|
15
|
Lipina C, Nardi F, Grace H, Hundal HS. NEU3 sialidase as a marker of insulin sensitivity: Regulation by fatty acids. Cell Signal 2015; 27:1742-50. [PMID: 26022181 DOI: 10.1016/j.cellsig.2015.05.010] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/04/2015] [Revised: 05/05/2015] [Accepted: 05/18/2015] [Indexed: 12/27/2022]
Abstract
The plasma membrane-associated enzyme NEU3 sialidase functions to cleave sialic acid residues from the ganglioside GM3 thereby promoting its degradation, and has been implicated in the modulation of insulin action. Herein, we report for the first time that impaired insulin sensitivity in skeletal muscle and liver of obese Zucker fatty rats and aged C57BL/6 mice coincides with reduced NEU3 protein abundance. In addition, high fat feeding was found to significantly reduce NEU3 protein in white adipose tissue of rats. Notably, we also demonstrate the ability of the fatty acids palmitate and oleate to repress and induce NEU3 protein in L6 myotubes, concomitant with their insulin desensitising and enhancing effects, respectively. Moreover, we show that the palmitate-driven loss in NEU3 protein is mediated, at least in part, by intracellular ceramide synthesis but does not involve the proteasomal pathway. Strikingly, we further reveal that protein kinase B (PKB/Akt) acts as a key positive modulator of NEU3 protein abundance. Together, our findings implicate NEU3 as a potential biomarker of insulin sensitivity, and provide novel mechanistic insight into the regulation of NEU3 expression.
Collapse
Affiliation(s)
- Christopher Lipina
- Division of Cell Signalling and Immunology, Sir James Black Centre, College of Life Sciences, University of Dundee, Dundee DD1 5EH, UK
| | - Francesca Nardi
- Division of Cell Signalling and Immunology, Sir James Black Centre, College of Life Sciences, University of Dundee, Dundee DD1 5EH, UK
| | - Helen Grace
- Division of Cell Signalling and Immunology, Sir James Black Centre, College of Life Sciences, University of Dundee, Dundee DD1 5EH, UK
| | - Harinder S Hundal
- Division of Cell Signalling and Immunology, Sir James Black Centre, College of Life Sciences, University of Dundee, Dundee DD1 5EH, UK.
| |
Collapse
|
16
|
McCann JC, Shigenaga MK, Mietus-Snyder ML, Lal A, Suh JH, Krauss RM, Gildengorin GL, Goldrich AM, Block DS, Shenvi SV, McHugh TH, Olson DA, Ames BN. A multicomponent nutrient bar promotes weight loss and improves dyslipidemia and insulin resistance in the overweight/obese: chronic inflammation blunts these improvements. FASEB J 2015; 29:3287-301. [PMID: 25900806 DOI: 10.1096/fj.15-271833] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/24/2015] [Accepted: 03/31/2015] [Indexed: 12/12/2022]
Abstract
This study determined if twice-daily consumption of a nutrient-dense bar intended to fill gaps in Western diets, without other dietary/lifestyle requirements, favorably shifted metabolic/anthropometric indicators of dysregulation in a healthy direction. Three 8-wk clinical trials in 43 healthy lean and overweight/obese (OW/OB) adults, who served as their own controls, were pooled for analysis. In less inflamed OW/OB [high-sensitivity C-reactive protein (hsCRP) <1.5], statistically significant decreases occurred in weight (-1.1 ± 0.5 kg), waist circumference (-3.1 ± 1.4 cm), diastolic blood pressure (-4.1 ± 1.6 mmHg), heart rate [HR; -4.0 ± 1.7 beats per minute (bpm)], triglycerides (-72 ± 38.2 mg/dl), insulin resistance (homeostatic model of insulin resistance) (-0.72 ± 0.3), and insulin (-2.8 ± 1.3 mU/L); an increase in HDL-2b (+303 ± 116 nM) and realignment of LDL lipid subfractions toward a less atherogenic profile [decreased small LDL IIIb (-44 ± 23.5 nM), LDL IIIa (-99 ± 43.7 nM), and increased large LDL I (+66 ± 28.0 nM)]. In the more inflamed OW/OB (hsCRP >1.5), inflammation was reduced at 2 wk (-0.66 mg/L), and HR at 8 wk (-3.4 ± 1.3 bpm). The large HDL subfraction (10.5-14.5 nm) increased at 8 wk (+346 ± 126 nM). Metabolic improvements were also observed in lean participants. Thus, favorable changes in measures of cardiovascular health, insulin resistance, inflammation, and obesity were initiated within 8 wk in the OW/OB by replacing deficiencies in Western diets without requiring other dietary or lifestyle modifications; chronic inflammation blunted most improvements.
Collapse
Affiliation(s)
- Joyce C McCann
- *Nutrition and Metabolism Center, Children's Hospital Oakland Research Institute, Oakland, California, USA; Children's National Medical Center, Washington, DC, USA; and Processed Foods Research Unit, U.S. Department of Agriculture-Agricultural Research Service-Western Regional Research Center, Albany, California, USA
| | - Mark K Shigenaga
- *Nutrition and Metabolism Center, Children's Hospital Oakland Research Institute, Oakland, California, USA; Children's National Medical Center, Washington, DC, USA; and Processed Foods Research Unit, U.S. Department of Agriculture-Agricultural Research Service-Western Regional Research Center, Albany, California, USA
| | - Michele L Mietus-Snyder
- *Nutrition and Metabolism Center, Children's Hospital Oakland Research Institute, Oakland, California, USA; Children's National Medical Center, Washington, DC, USA; and Processed Foods Research Unit, U.S. Department of Agriculture-Agricultural Research Service-Western Regional Research Center, Albany, California, USA
| | - Ashutosh Lal
- *Nutrition and Metabolism Center, Children's Hospital Oakland Research Institute, Oakland, California, USA; Children's National Medical Center, Washington, DC, USA; and Processed Foods Research Unit, U.S. Department of Agriculture-Agricultural Research Service-Western Regional Research Center, Albany, California, USA
| | - Jung H Suh
- *Nutrition and Metabolism Center, Children's Hospital Oakland Research Institute, Oakland, California, USA; Children's National Medical Center, Washington, DC, USA; and Processed Foods Research Unit, U.S. Department of Agriculture-Agricultural Research Service-Western Regional Research Center, Albany, California, USA
| | - Ronald M Krauss
- *Nutrition and Metabolism Center, Children's Hospital Oakland Research Institute, Oakland, California, USA; Children's National Medical Center, Washington, DC, USA; and Processed Foods Research Unit, U.S. Department of Agriculture-Agricultural Research Service-Western Regional Research Center, Albany, California, USA
| | - Ginny L Gildengorin
- *Nutrition and Metabolism Center, Children's Hospital Oakland Research Institute, Oakland, California, USA; Children's National Medical Center, Washington, DC, USA; and Processed Foods Research Unit, U.S. Department of Agriculture-Agricultural Research Service-Western Regional Research Center, Albany, California, USA
| | - Alisa M Goldrich
- *Nutrition and Metabolism Center, Children's Hospital Oakland Research Institute, Oakland, California, USA; Children's National Medical Center, Washington, DC, USA; and Processed Foods Research Unit, U.S. Department of Agriculture-Agricultural Research Service-Western Regional Research Center, Albany, California, USA
| | - Devan S Block
- *Nutrition and Metabolism Center, Children's Hospital Oakland Research Institute, Oakland, California, USA; Children's National Medical Center, Washington, DC, USA; and Processed Foods Research Unit, U.S. Department of Agriculture-Agricultural Research Service-Western Regional Research Center, Albany, California, USA
| | - Swapna V Shenvi
- *Nutrition and Metabolism Center, Children's Hospital Oakland Research Institute, Oakland, California, USA; Children's National Medical Center, Washington, DC, USA; and Processed Foods Research Unit, U.S. Department of Agriculture-Agricultural Research Service-Western Regional Research Center, Albany, California, USA
| | - Tara H McHugh
- *Nutrition and Metabolism Center, Children's Hospital Oakland Research Institute, Oakland, California, USA; Children's National Medical Center, Washington, DC, USA; and Processed Foods Research Unit, U.S. Department of Agriculture-Agricultural Research Service-Western Regional Research Center, Albany, California, USA
| | - Don A Olson
- *Nutrition and Metabolism Center, Children's Hospital Oakland Research Institute, Oakland, California, USA; Children's National Medical Center, Washington, DC, USA; and Processed Foods Research Unit, U.S. Department of Agriculture-Agricultural Research Service-Western Regional Research Center, Albany, California, USA
| | - Bruce N Ames
- *Nutrition and Metabolism Center, Children's Hospital Oakland Research Institute, Oakland, California, USA; Children's National Medical Center, Washington, DC, USA; and Processed Foods Research Unit, U.S. Department of Agriculture-Agricultural Research Service-Western Regional Research Center, Albany, California, USA
| |
Collapse
|
17
|
Chen CC, Lee TY, Kwok CF, Hsu YP, Shih KC, Lin YJ, Ho LT. Major urinary protein 1 interacts with cannabinoid receptor type 1 in fatty acid-induced hepatic insulin resistance in a mouse hepatocyte model. Biochem Biophys Res Commun 2015; 460:1063-8. [PMID: 25843798 DOI: 10.1016/j.bbrc.2015.03.155] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/20/2015] [Accepted: 03/26/2015] [Indexed: 12/11/2022]
Abstract
Hepatic insulin resistance (HIR) is a metabolic abnormality characterized by increased gluconeogenesis which usually contributes from an elevation of free fatty acids. Cannabinoid receptor type 1 (CB1R) and major urinary protein 1 (MUP1) are thought to play pivotal roles in mitochondrial dysfunction, liver steatosis and insulin resistance. The aim of this study was to explore the role of MUP1 in CB1R-mediated HIR through the dysregulation of mitochondrial function in AML12 mouse hepatocytes challenged with high concentration of free fatty acids (HFFA). Firstly we observed that treatment of AM251, a selective CB1R antagonist, obviously reversed the HFFA-induced reduction of MUP1 protein expression both in vivo and in vitro. Additionally, our results revealed that AM251 also reverted HFFA-mediated decrease of the mRNA level of mitochondrial biogenesis-related factors, mtDNA amount, ATP production, mitochondrial respiratory complexes-I and -III, and mitochondrial membrane potential, thus consequently might correlate with a parallel reduction of ROS production. Meanwhile, AM251 attenuated HFFA-induced impairment of insulin signaling phosphorylation and elevation of phosphoenolpyrvate carboxykinase (PEPCK) and glucose 6-phosphatase (G6Pase), two key enzymes of gluconeogenesis. Silence of MUP1 gene abolished the inhibitory effect of AM251 on HFFA-mediated elevation of PEPCK and G6Pase expression, whereas the suppression of insulin signaling and mRNA level of mitochondrial biogenesis-related factors were only partially recovered. Altogether, these findings suggest that the anti-HIR effect of AM251 via improvement of mitochondrial functions might occur in a MUP1-dependent manner.
Collapse
Affiliation(s)
- Chin-Chang Chen
- Institute of Physiology, National Yang-Ming University, Taipei, Taiwan
| | - Tzung-Yan Lee
- Graduate Institute of Traditional Chinese Medicine, Chang Gung University, Tao-Yuan, Taiwan
| | - Ching-Fai Kwok
- Division of Endocrinology and Metabolism, Department of Medicine, Taipei Veterans General Hospital, Taipei, Taiwan
| | - Yung-Pei Hsu
- Department of Medical Research, Taipei Veterans General Hospital, Taipei, Taiwan
| | - Kuang-Chung Shih
- Division of Endocrinology and Metabolism, Department of Medicine, Taipei Veterans General Hospital, Taipei, Taiwan
| | - Yan-Jie Lin
- Institute of Physiology, National Yang-Ming University, Taipei, Taiwan; Department of Medical Research, Taipei Veterans General Hospital, Taipei, Taiwan
| | - Low-Tone Ho
- Institute of Physiology, National Yang-Ming University, Taipei, Taiwan; Division of Endocrinology and Metabolism, Department of Medicine, Taipei Veterans General Hospital, Taipei, Taiwan; Department of Medical Research, Taipei Veterans General Hospital, Taipei, Taiwan; School of Medicine, National Yang-Ming University, Taipei, Taiwan.
| |
Collapse
|
18
|
Lipina C, Irving AJ, Hundal HS. Mitochondria: a possible nexus for the regulation of energy homeostasis by the endocannabinoid system? Am J Physiol Endocrinol Metab 2014; 307:E1-13. [PMID: 24801388 DOI: 10.1152/ajpendo.00100.2014] [Citation(s) in RCA: 31] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/09/2023]
Abstract
The endocannabinoid system (ECS) regulates numerous cellular and physiological processes through the activation of receptors targeted by endogenously produced ligands called endocannabinoids. Importantly, this signaling system is known to play an important role in modulating energy balance and glucose homeostasis. For example, current evidence indicates that the ECS becomes overactive during obesity whereby its central and peripheral stimulation drives metabolic processes that mimic the metabolic syndrome. Herein, we examine the role of the ECS in modulating the function of mitochondria, which play a pivotal role in maintaining cellular and systemic energy homeostasis, in large part due to their ability to tightly coordinate glucose and lipid utilization. Because of this, mitochondrial dysfunction is often associated with peripheral insulin resistance and glucose intolerance as well as the manifestation of excess lipid accumulation in the obese state. This review aims to highlight the different ways through which the ECS may impact upon mitochondrial abundance and/or oxidative capacity and, where possible, relate these findings to obesity-induced perturbations in metabolic function. Furthermore, we explore the potential implications of these findings in terms of the pathogenesis of metabolic disorders and how these may be used to strategically develop therapies targeting the ECS.
Collapse
Affiliation(s)
- Christopher Lipina
- Division of Cell Signalling and Immunology, Sir James Black Centre, College of Life Sciences, University of Dundee, Dundee, Scotland, United Kingdom
| | - Andrew J Irving
- Division of Cell Signalling and Immunology, Sir James Black Centre, College of Life Sciences, University of Dundee, Dundee, Scotland, United Kingdom
| | - Harinder S Hundal
- Division of Cell Signalling and Immunology, Sir James Black Centre, College of Life Sciences, University of Dundee, Dundee, Scotland, United Kingdom
| |
Collapse
|