1
|
Ye Y, Liu C, Wu R, Kang D, Gao H, Lv H, Feng Z, Shi Y, Liu Z, Chen L. Circadian clock component PER2 negatively regulates CD4 + T cell IFN-γ production in ulcerative colitis. Mucosal Immunol 2024; 17:1161-1173. [PMID: 39097147 DOI: 10.1016/j.mucimm.2024.07.010] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/14/2023] [Revised: 06/24/2024] [Accepted: 07/29/2024] [Indexed: 08/05/2024]
Abstract
Period circadian clock 2 (PER2) is involved in the pathogenesis of various inflammatory and autoimmune diseases. However, there are gaps in our understanding of the role of PER2 in regulating CD4+ T cells beyond its time-keeping function in ulcerative colitis (UC) pathogenesis. Our findings revealed PER2 was predominantly expressed in CD4+ T cells, while it was significantly decreased in the inflamed mucosa and peripheral blood CD4+ T cells of UC patients compared with that in Crohn's disease (CD) patients and healthy controls (HC). Notably, PER2 expression was significantly recovered in UC patients in remission (R-UC) compared to that in active UC patients (A-UC) but not in CD patients. It was negatively correlated with the Ulcerative Colitis Endoscopic Index of Severity (UCEIS), Crohn's Disease Activity Index (CDAI), Simple Endoscopic Score for Crohn's disease (SES-CD), and C-reactive protein (CRP), respectively. Overexpression of PER2 markedly inhibited IFN-γ production in UC CD4+ T cells. RNA-seq analysis showed that overexpression of PER2 could repress the expression of a disintegrin and metalloproteinase 12 (ADAM12), a costimulatory molecule that determines Th1 cell fate. Mechanistically, cleavage under targets and tagmentation (CUT&Tag) analysis revealed that PER2 down-regulated ADAM12 expression by reducing its binding activity, thereby suppressing IFN-γ production in UC CD4+ T cells. Additionally, our data further demonstrated that ADAM12 was upregulated in CD4+ T cells and inflamed mucosa of A-UC patients compared to HC. Our study reveals a critical role of PER2 in regulating CD4+ T cell differentiation and highlights its potential as a therapeutic target for UC treatment.
Collapse
Affiliation(s)
- Yulan Ye
- Center for IBD Research and Department of Gastroenterology, The Shanghai Tenth People's Hospital of Tongji University, Shanghai 200072, China; Department of Gastroenterology, Suzhou Municipal Hospital Affiliated to Nanjing Medical University, Suzhou 215008, China
| | - Changqin Liu
- Center for IBD Research and Department of Gastroenterology, The Shanghai Tenth People's Hospital of Tongji University, Shanghai 200072, China
| | - Ruijin Wu
- Center for IBD Research and Department of Gastroenterology, The Shanghai Tenth People's Hospital of Tongji University, Shanghai 200072, China
| | - Dengfeng Kang
- Center for IBD Research and Department of Gastroenterology, The Shanghai Tenth People's Hospital of Tongji University, Shanghai 200072, China
| | - Han Gao
- Center for IBD Research and Department of Gastroenterology, The Shanghai Tenth People's Hospital of Tongji University, Shanghai 200072, China
| | - Huiying Lv
- Center for IBD Research and Department of Gastroenterology, The Shanghai Tenth People's Hospital of Tongji University, Shanghai 200072, China
| | - Zhongsheng Feng
- Center for IBD Research and Department of Gastroenterology, The Shanghai Tenth People's Hospital of Tongji University, Shanghai 200072, China
| | - Yanhong Shi
- Center for IBD Research and Department of Gastroenterology, The Shanghai Tenth People's Hospital of Tongji University, Shanghai 200072, China
| | - Zhanju Liu
- Center for IBD Research and Department of Gastroenterology, The Shanghai Tenth People's Hospital of Tongji University, Shanghai 200072, China.
| | - Liang Chen
- Center for IBD Research and Department of Gastroenterology, The Shanghai Tenth People's Hospital of Tongji University, Shanghai 200072, China.
| |
Collapse
|
2
|
Checa-Ros A, D’Marco L. Role of Omega-3 Fatty Acids as Non-Photic Zeitgebers and Circadian Clock Synchronizers. Int J Mol Sci 2022; 23:12162. [PMID: 36293015 PMCID: PMC9603208 DOI: 10.3390/ijms232012162] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/06/2022] [Revised: 10/09/2022] [Accepted: 10/10/2022] [Indexed: 10/23/2024] Open
Abstract
Omega-3 fatty acids (ω-3 FAs) are well-known for their actions on immune/inflammatory and neurological pathways, functions that are also under circadian clock regulation. The daily photoperiod represents the primary circadian synchronizer ('zeitgeber'), although diverse studies have pointed towards an influence of dietary FAs on the biological clock. A comprehensive literature review was conducted following predefined selection criteria with the aim of updating the evidence on the molecular mechanisms behind circadian rhythm regulation by ω-3 FAs. We collected preclinical and clinical studies, systematic reviews, and metanalyses focused on the effect of ω-3 FAs on circadian rhythms. Twenty animal (conducted on rodents and piglets) and human trials and one observational study providing evidence on the regulation of neurological, inflammatory/immune, metabolic, reproductive, cardiovascular, and biochemical processes by ω-3 FAs via clock genes were discussed. The evidence suggests that ω-3 FAs may serve as non-photic zeitgebers and prove therapeutically beneficial for circadian disruption-related pathologies. Future work should focus on the role of clock genes as a target for the therapeutic use of ω-3 FAs in inflammatory and neurological disorders, as well as on the bidirectional association between the molecular clock and ω-3 FAs.
Collapse
Affiliation(s)
- Ana Checa-Ros
- Department of Medicine and Surgery, Faculty of Health Sciences, Universidad Cardenal Herrera—CEU, CEU Universities, 46115 Valencia, Spain
- Aston Institute of Health and Neurosciences, School of Life & Health Sciences, Aston University, Birmingham B4 7ET, UK
| | - Luis D’Marco
- Department of Medicine and Surgery, Faculty of Health Sciences, Universidad Cardenal Herrera—CEU, CEU Universities, 46115 Valencia, Spain
- Department of Nephrology, Hospital General Universitario de Valencia, 46014 Valencia, Spain
| |
Collapse
|
3
|
Qiu BQ, Lin XH, Lai SQ, Lu F, Lin K, Long X, Zhu SQ, Zou HX, Xu JJ, Liu JC, Wu YB. ITGB1-DT/ARNTL2 axis may be a novel biomarker in lung adenocarcinoma: a bioinformatics analysis and experimental validation. Cancer Cell Int 2021; 21:665. [PMID: 34906142 PMCID: PMC8670189 DOI: 10.1186/s12935-021-02380-2] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/04/2021] [Accepted: 11/30/2021] [Indexed: 12/15/2022] Open
Abstract
BACKGROUND Lung cancer is one of the most lethal malignant tumors that endangers human health. Lung adenocarcinoma (LUAD) has increased dramatically in recent decades, accounting for nearly 40% of all lung cancer cases. Increasing evidence points to the importance of the competitive endogenous RNA (ceRNA) intrinsic mechanism in various human cancers. However, behavioral characteristics of the ceRNA network in lung adenocarcinoma need further study. METHODS Groups based on SLC2A1 expression were used in this study to identify associated ceRNA networks and potential prognostic markers in lung adenocarcinoma. The Cancer Genome Atlas (TCGA) database was used to obtain the patients' lncRNA, miRNA, and mRNA expression profiles, as well as clinical data. Informatics techniques were used to investigate the effect of hub genes on prognosis. The Cox regression analyses were performed to evaluate the prognostic effect of hub genes. The methylation, GSEA, and immune infiltration analyses were utilized to explore the potential mechanisms of the hub gene. The CCK-8, transwell, and colony formation assays were performed to detect the proliferation and invasion of lung cancer cells. RESULTS We eventually identified the ITGB1-DT/ARNTL2 axis as an independent fact may promote lung adenocarcinoma progression. Furthermore, methylation analysis revealed that hypo-methylation may cause the dysregulated ITGB1-DT/ARNTL2 axis, and immune infiltration analysis revealed that the ITGB1-DT/ARNTL2 axis may affect the immune microenvironment and the progression of lung adenocarcinoma. The CCK-8, transwell, and colonu formation assays suggested that ITGB1-DT/ARNTL2 promotes the progression of lung adenocarcinoma. And hsa-miR-30b-3p reversed the ITGB1/ARNTL2-mediated oncogenic processes. CONCLUSION Our study identified the ITGB1-DT/ARNTL2 axis as a novel prognostic biomarker affects the prognosis of lung adenocarcinoma.
Collapse
Affiliation(s)
- Bai-Quan Qiu
- Department of Cardiothoracic Surgery, The Second Affiliated Hospital of Nanchang University, Nanchang, Jiangxi, China
| | - Xia-Hui Lin
- Key Laboratory of Carcinogenesis and Cancer Invasion, Ministry of Education, Shanghai, China
| | - Song-Qing Lai
- Institute of Cardiovascular Disease, Jiangxi Academy of Clinical Medical Sciences, The First Affiliated Hospital of Nanchang University, Nanchang, Jiangxi, China
| | - Feng Lu
- Department of Cardiothoracic Surgery, The Second Affiliated Hospital of Nanchang University, Nanchang, Jiangxi, China
| | - Kun Lin
- Department of Cardiothoracic Surgery, The Second Affiliated Hospital of Nanchang University, Nanchang, Jiangxi, China
| | - Xiang Long
- Department of Cardiothoracic Surgery, The Second Affiliated Hospital of Nanchang University, Nanchang, Jiangxi, China
| | - Shu-Qiang Zhu
- Department of Cardiothoracic Surgery, The Second Affiliated Hospital of Nanchang University, Nanchang, Jiangxi, China
| | - Hua-Xi Zou
- Department of Cardiothoracic Surgery, The Second Affiliated Hospital of Nanchang University, Nanchang, Jiangxi, China
| | - Jian-Jun Xu
- Department of Cardiothoracic Surgery, The Second Affiliated Hospital of Nanchang University, Nanchang, Jiangxi, China
| | - Ji-Chun Liu
- Department of Cardiothoracic Surgery, The Second Affiliated Hospital of Nanchang University, Nanchang, Jiangxi, China.
| | - Yong-Bing Wu
- Department of Cardiothoracic Surgery, The Second Affiliated Hospital of Nanchang University, Nanchang, Jiangxi, China.
| |
Collapse
|
4
|
Beam CA, Beli E, Wasserfall CH, Woerner SE, Legge MT, Evans-Molina C, McGrail KM, Silk R, Grant MB, Atkinson MA, DiMeglio LA. Peripheral immune circadian variation, synchronisation and possible dysrhythmia in established type 1 diabetes. Diabetologia 2021; 64:1822-1833. [PMID: 34003304 PMCID: PMC8245361 DOI: 10.1007/s00125-021-05468-6] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/19/2020] [Accepted: 02/10/2021] [Indexed: 12/30/2022]
Abstract
AIMS/HYPOTHESIS The circadian clock influences both diabetes and immunity. Our goal in this study was to characterise more thoroughly the circadian patterns of immune cell populations and cytokines that are particularly relevant to the immune pathology of type 1 diabetes and thus fill in a current gap in our understanding of this disease. METHODS Ten individuals with established type 1 diabetes (mean disease duration 11 years, age 18-40 years, six female) participated in a circadian sampling protocol, each providing six blood samples over a 24 h period. RESULTS Daily ranges of population frequencies were sometimes large and possibly clinically significant. Several immune populations, such as dendritic cells, CD4 and CD8 T cells and their effector memory subpopulations, CD4 regulatory T cells, B cells and cytokine IL-6, exhibited statistically significant circadian rhythmicity. In a comparison with historical healthy control individuals, but using shipped samples, we observed that participants with type 1 diabetes had statistically significant phase shifts occurring in the time of peak occurrence of B cells (+4.8 h), CD4 and CD8 T cells (~ +5 h) and their naive and effector memory subsets (~ +3.3 to +4.5 h), and regulatory T cells (+4.1 h). An independent streptozotocin murine experiment confirmed the phase shifting of CD8 T cells and suggests that circadian dysrhythmia in type 1 diabetes might be an effect and not a cause of the disease. CONCLUSIONS/INTERPRETATION Future efforts investigating this newly described aspect of type 1 diabetes in human participants are warranted. Peripheral immune populations should be measured near the same time of day in order to reduce circadian-related variation.
Collapse
Affiliation(s)
- Craig A Beam
- Department of Biomedical Sciences, Homer Stryker MD School of Medicine, Western Michigan University, Kalamazoo, MI, USA.
| | - Eleni Beli
- Wellcome Wolfson Institute for Experimental Medicine, Queens University Belfast, Belfast, NI, UK.
- Indiana University Center for Diabetes and Metabolic Diseases, Indianapolis, IN, USA.
- Department of Pediatrics, Indiana University School of Medicine, Indianapolis, IN, USA.
| | - Clive H Wasserfall
- Department of Pathology, Immunology and Laboratory Medicine, University of Florida, Gainesville, FL, USA
- University of Florida Diabetes Institute, Gainesville, FL, USA
| | - Stephanie E Woerner
- Indiana University Center for Diabetes and Metabolic Diseases, Indianapolis, IN, USA
- Department of Pediatrics, Indiana University School of Medicine, Indianapolis, IN, USA
| | - Megan T Legge
- Indiana University Center for Diabetes and Metabolic Diseases, Indianapolis, IN, USA
- Department of Pediatrics, Indiana University School of Medicine, Indianapolis, IN, USA
| | - Carmella Evans-Molina
- Indiana University Center for Diabetes and Metabolic Diseases, Indianapolis, IN, USA
- Department of Pediatrics, Indiana University School of Medicine, Indianapolis, IN, USA
- Richard L. Roudebush VA Medical Center, Indianapolis, IN, USA
| | - Kieran M McGrail
- Department of Pathology, Immunology and Laboratory Medicine, University of Florida, Gainesville, FL, USA
- University of Florida Diabetes Institute, Gainesville, FL, USA
| | - Ryan Silk
- Wellcome Wolfson Institute for Experimental Medicine, Queens University Belfast, Belfast, NI, UK
| | - Maria B Grant
- Department of Ophthalmology, University of Alabama, Birmingham, AL, USA
| | - Mark A Atkinson
- Department of Pathology, Immunology and Laboratory Medicine, University of Florida, Gainesville, FL, USA
- University of Florida Diabetes Institute, Gainesville, FL, USA
| | - Linda A DiMeglio
- Indiana University Center for Diabetes and Metabolic Diseases, Indianapolis, IN, USA
- Department of Pediatrics, Indiana University School of Medicine, Indianapolis, IN, USA
- Richard L. Roudebush VA Medical Center, Indianapolis, IN, USA
| |
Collapse
|
5
|
Xiang K, Xu Z, Hu YQ, He YS, Wu GC, Li TY, Wang XR, Ding LH, Zhang Q, Tao SS, Ye DQ, Pan HF, Wang DG. Circadian clock genes as promising therapeutic targets for autoimmune diseases. Autoimmun Rev 2021; 20:102866. [PMID: 34118460 DOI: 10.1016/j.autrev.2021.102866] [Citation(s) in RCA: 34] [Impact Index Per Article: 8.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/22/2021] [Accepted: 03/30/2021] [Indexed: 12/31/2022]
Abstract
Circadian rhythm is a natural, endogenous process whose physiological functions are controlled by a set of clock genes. Disturbance of the clock genes have detrimental effects on both innate and adaptive immunity, which significantly enhance pro-inflammatory responses and susceptibility to autoimmune diseases via strictly controlling the individual cellular components of the immune system that initiate and perpetuate the inflammation pathways. Autoimmune diseases, especially rheumatoid arthritis (RA), often exhibit substantial circadian oscillations, and circadian rhythm is involved in the onset and progression of autoimmune diseases. Mounting evidence indicate that the synthetic ligands of circadian clock genes have the property of reducing the susceptibility and clinical severity of subjects. This review supplies an overview of the roles of circadian clock genes in the pathology of autoimmune diseases, including BMAL1, CLOCK, PER, CRY, REV-ERBα, and ROR. Furthermore, summarized some circadian clock genes as candidate genes for autoimmune diseases and current advancement on therapy of autoimmune diseases with synthetic ligands of circadian clock genes. The existing body of knowledge demonstrates that circadian clock genes are inextricably linked to autoimmune diseases. Future research should pay attention to improve the quality of life of patients with autoimmune diseases and reduce the effects of drug preparation on the normal circadian rhythms.
Collapse
Affiliation(s)
- Kun Xiang
- Department of Epidemiology and Biostatistics, School of Public Health, Anhui Medical University, 81 Meishan Road, Hefei, Anhui, China; Inflammation and Immune Mediated Diseases Laboratory of Anhui Province, 81 Meishan Road, Hefei, Anhui, China
| | - Zhiwei Xu
- School of Public Health, Faculty of Medicine, University of Queensland, 288 Herston Road, Herston, QLD, 4006, Brisbane, Australia
| | - Yu-Qian Hu
- Department of Epidemiology and Biostatistics, School of Public Health, Anhui Medical University, 81 Meishan Road, Hefei, Anhui, China; Inflammation and Immune Mediated Diseases Laboratory of Anhui Province, 81 Meishan Road, Hefei, Anhui, China
| | - Yi-Sheng He
- Department of Epidemiology and Biostatistics, School of Public Health, Anhui Medical University, 81 Meishan Road, Hefei, Anhui, China; Inflammation and Immune Mediated Diseases Laboratory of Anhui Province, 81 Meishan Road, Hefei, Anhui, China
| | - Guo-Cui Wu
- School of Nursing, Anhui Medical University, 81 Meishan Road, Hefei, Anhui, China
| | - Tian-Yu Li
- Department of Nephrology, The Second Affiliated Hospital of Anhui Medical University, Hefei, Anhui, China
| | - Xue-Rong Wang
- Department of Nephrology, The Second Affiliated Hospital of Anhui Medical University, Hefei, Anhui, China
| | - Li-Hong Ding
- Department of Nephrology, The Second Affiliated Hospital of Anhui Medical University, Hefei, Anhui, China
| | - Qin Zhang
- Department of Epidemiology and Biostatistics, School of Public Health, Anhui Medical University, 81 Meishan Road, Hefei, Anhui, China; Inflammation and Immune Mediated Diseases Laboratory of Anhui Province, 81 Meishan Road, Hefei, Anhui, China
| | - Sha-Sha Tao
- Department of Epidemiology and Biostatistics, School of Public Health, Anhui Medical University, 81 Meishan Road, Hefei, Anhui, China; Inflammation and Immune Mediated Diseases Laboratory of Anhui Province, 81 Meishan Road, Hefei, Anhui, China
| | - Dong-Qing Ye
- Department of Epidemiology and Biostatistics, School of Public Health, Anhui Medical University, 81 Meishan Road, Hefei, Anhui, China; Inflammation and Immune Mediated Diseases Laboratory of Anhui Province, 81 Meishan Road, Hefei, Anhui, China
| | - Hai-Feng Pan
- Department of Epidemiology and Biostatistics, School of Public Health, Anhui Medical University, 81 Meishan Road, Hefei, Anhui, China; Inflammation and Immune Mediated Diseases Laboratory of Anhui Province, 81 Meishan Road, Hefei, Anhui, China.
| | - De-Guang Wang
- Department of Nephrology, The Second Affiliated Hospital of Anhui Medical University, Hefei, Anhui, China.
| |
Collapse
|
6
|
Devarbhavi P, Telang L, Vastrad B, Tengli A, Vastrad C, Kotturshetti I. Identification of key pathways and genes in polycystic ovary syndrome via integrated bioinformatics analysis and prediction of small therapeutic molecules. Reprod Biol Endocrinol 2021; 19:31. [PMID: 33622336 PMCID: PMC7901211 DOI: 10.1186/s12958-021-00706-3] [Citation(s) in RCA: 17] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/17/2020] [Accepted: 01/28/2021] [Indexed: 02/06/2023] Open
Abstract
To enhance understanding of polycystic ovary syndrome (PCOS) at the molecular level; this investigation intends to examine the genes and pathways associated with PCOS by using an integrated bioinformatics analysis. Based on the expression profiling by high throughput sequencing data GSE84958 derived from the Gene Expression Omnibus (GEO) database, the differentially expressed genes (DEGs) between PCOS samples and normal controls were identified. We performed a functional enrichment analysis. A protein-protein interaction (PPI) network, miRNA- target genes and TF - target gene networks, were constructed and visualized, with which the hub gene nodes were identified. Validation of hub genes was performed by using receiver operating characteristic (ROC) and RT-PCR. Small drug molecules were predicted by using molecular docking. A total of 739 DEGs were identified, of which 360 genes were up regulated and 379 genes were down regulated. GO enrichment analysis revealed that up regulated genes were mainly involved in peptide metabolic process, organelle envelope and RNA binding and the down regulated genes were significantly enriched in plasma membrane bounded cell projection organization, neuron projection and DNA-binding transcription factor activity, RNA polymerase II-specific. REACTOME pathway enrichment analysis revealed that the up regulated genes were mainly enriched in translation and respiratory electron transport and the down regulated genes were mainly enriched in generic transcription pathway and transmembrane transport of small molecules. The top 10 hub genes (SAA1, ADCY6, POLR2K, RPS15, RPS15A, CTNND1, ESR1, NEDD4L, KNTC1 and NGFR) were identified from PPI network, miRNA - target gene network and TF - target gene network. The modules analysis showed that genes in modules were mainly associated with the transport of respiratory electrons and signaling NGF, respectively. We find a series of crucial genes along with the pathways that were most closely related with PCOS initiation and advancement. Our investigations provide a more detailed molecular mechanism for the progression of PCOS, detail information on the potential biomarkers and therapeutic targets.
Collapse
Affiliation(s)
- Praveenkumar Devarbhavi
- Department of Endocrinology and Metabolism, Subbaiah Institute of Medical Sciences and Research Centre, Shimoga, Karnataka, 577201, India
| | - Lata Telang
- Department of Gynaecology and Obstetrics, Subbaiah Institute of Medical Sciences and Research Centre, Shimoga, Karnataka, 577201, India
| | - Basavaraj Vastrad
- Department of Biochemistry, Basaveshwar College of Pharmacy, Gadag, Karnataka, 582103, India
| | - Anandkumar Tengli
- Department of Pharmaceutical Chemistry, JSS College of Pharmacy, Mysuru and JSS Academy of Higher Education & Research, Mysuru, Karnataka, 570015, India
| | - Chanabasayya Vastrad
- Biostatistics and Bioinformatics, Chanabasava Nilaya, Bharthinagar, Dharwad, Karanataka, 580001, India.
| | - Iranna Kotturshetti
- Department of Ayurveda, Rajiv Gandhi Education Society's Ayurvedic Medical College, Ron, Karanataka, 562209, India
| |
Collapse
|
7
|
Kocak M, Mozhui K. An Application of the Bayesian Periodicity Test to Identify Diurnal Rhythm Genes in the Brain. IEEE/ACM TRANSACTIONS ON COMPUTATIONAL BIOLOGY AND BIOINFORMATICS 2020; 17:47-55. [PMID: 30047896 DOI: 10.1109/tcbb.2018.2859971] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/08/2023]
Abstract
Biological systems are extremely dynamic and many aspects of cellular processes show rhythmic circadian patterns. Extracting such information from large expression data is challenging. In this work, we present a modified application of the Empirical Bayes periodicity test to identify genes with diurnal rhythmic behavior in two brain regions. The hypothalamus and amygdala gene expression data were generated from 100 BXD recombinant inbred mice during the day hours. Brain samples were collected over the course of two days. We first filtered the transcripts based on rank correlation at matched time points between day-1 and day-2. We then applied the proposed test of periodicity to identify diurnal rhythm genes in the full cohort and gender-specific sub-cohorts. In hypothalamus, at a Benjamini-Hochberg false discovery rate (BH-FDR) of 0.01, we identified 15 transcripts with cyclic behavior in the full cohort, none, and 53 transcripts in the female and male cohort, respectively. Similarly, in amygdala, we identified 58 diurnal rhythm genes in the full cohort, and 1 and 28 in the female and male cohorts, respectively. In conclusion, we present a modified version of the empirical Bayes periodicity test to detect periodic expression patterns. Our results demonstrate that this approach can capture cyclic patterns from relatively noisy expression data sets.
Collapse
|
8
|
Fiala M, Lau YCC, Aghajani A, Bhargava S, Aminpour E, Elżbieta Kaczor-Urbanowicz K, Mirzoyan H, Nichols I, Ko MW, Morselli M, Santana J, Dang J, Sayre J, Paul K, Pellegrini M. Omega-3 Fatty Acids Increase Amyloid-β Immunity, Energy, and Circadian Rhythm for Cognitive Protection of Alzheimer's Disease Patients Beyond Cholinesterase Inhibitors. J Alzheimers Dis 2020; 75:993-1002. [PMID: 32390637 PMCID: PMC10190202 DOI: 10.3233/jad-200252] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/15/2022]
Abstract
BACKGROUND The cholinesterase inhibitor therapeutics (CI) approved for use in Alzheimer's disease (AD) are palliative for a limited time. OBJECTIVE To examine the outcome of AD patients with add-on therapy of the omega-3 fatty acid drink Smartfish. METHODS We performed a prospective study using Mini-Mental State Examination, amyloid-β (Aβ) phagocytosis blood assay, and RNA-seq of peripheral blood mononuclear cells in 28 neurodegenerative patients who had failed their therapies, including 8 subjective cognitive impairment (SCI), 8 mild cognitive impairment (MCI), 2 AD dementia, 1 frontotemporal dementia (FTD), 2 vascular cognitive impairment, and 3 dementia with Lewy bodies (DLB) patients. RESULTS MCI, FTD, and DLB patients patients volunteered for the addition of a ω-3 fatty acid drink Smartfish protected by anti-oxidants to failing CI therapy. On this therapy, all MCI patients improved in the first year energy transcripts, Aβ phagocytosis, cognition, and activities of daily living; in the long term, they remained in MCI status two to 4.5 years. All FTD and DLB patients rapidly progressed to dementia. On in vivo or in vitroω-3 treatments, peripheral blood mononuclear cells of MCI patients upregulated energy enzymes for glycolysis and citric acid cycle, as well as the anti-inflammatory circadian genes CLOCK and ARNTL2. CONCLUSION Add-on ω-3 therapy to CI may delay dementia in certain patients who had failed single CI therapy.
Collapse
Affiliation(s)
- Milan Fiala
- Division of Oral Biology and Oral Medicine, UCLA School of Dentistry and Medicine, Los Angeles, CA, USA
- Department of Molecular, Cell, and Developmental Biology, UCLA School of Life Sciences, Los Angeles, CA, USA
| | - Yik Chai Charles Lau
- Division of Oral Biology and Oral Medicine, UCLA School of Dentistry and Medicine, Los Angeles, CA, USA
- Department of Molecular, Cell, and Developmental Biology, UCLA School of Life Sciences, Los Angeles, CA, USA
| | - Anthony Aghajani
- Division of Oral Biology and Oral Medicine, UCLA School of Dentistry and Medicine, Los Angeles, CA, USA
- Department of Molecular, Cell, and Developmental Biology, UCLA School of Life Sciences, Los Angeles, CA, USA
| | - Sneha Bhargava
- Division of Oral Biology and Oral Medicine, UCLA School of Dentistry and Medicine, Los Angeles, CA, USA
- Department of Molecular, Cell, and Developmental Biology, UCLA School of Life Sciences, Los Angeles, CA, USA
| | - Eli Aminpour
- Division of Oral Biology and Oral Medicine, UCLA School of Dentistry and Medicine, Los Angeles, CA, USA
- Department of Molecular, Cell, and Developmental Biology, UCLA School of Life Sciences, Los Angeles, CA, USA
| | - Karolina Elżbieta Kaczor-Urbanowicz
- Division of Oral Biology and Oral Medicine, UCLA School of Dentistry and Medicine, Los Angeles, CA, USA
- UCLA Institute for Quantitative and Computational Biosciences, Los Angeles, CA, USA
| | - Hayk Mirzoyan
- Division of Oral Biology and Oral Medicine, UCLA School of Dentistry and Medicine, Los Angeles, CA, USA
- Department of Molecular, Cell, and Developmental Biology, UCLA School of Life Sciences, Los Angeles, CA, USA
| | - India Nichols
- Department of Integrative Biology and Physiology, UCLA School of Life Sciences, Los Angeles, CA, USA
| | - Meng-Wei Ko
- Division of Oral Biology and Oral Medicine, UCLA School of Dentistry and Medicine, Los Angeles, CA, USA
| | - Marco Morselli
- Department of Molecular, Cell, and Developmental Biology, UCLA School of Life Sciences, Los Angeles, CA, USA
| | - Joslyn Santana
- Division of Oral Biology and Oral Medicine, UCLA School of Dentistry and Medicine, Los Angeles, CA, USA
- Department of Molecular, Cell, and Developmental Biology, UCLA School of Life Sciences, Los Angeles, CA, USA
| | - Johnny Dang
- Division of Oral Biology and Oral Medicine, UCLA School of Dentistry and Medicine, Los Angeles, CA, USA
- Department of Molecular, Cell, and Developmental Biology, UCLA School of Life Sciences, Los Angeles, CA, USA
| | - James Sayre
- UCLA School of Public Health, Los Angeles, CA, USA
| | - Ketema Paul
- Department of Integrative Biology and Physiology, UCLA School of Life Sciences, Los Angeles, CA, USA
| | - Matteo Pellegrini
- Department of Molecular, Cell, and Developmental Biology, UCLA School of Life Sciences, Los Angeles, CA, USA
| |
Collapse
|
9
|
Torres-Ruiz J, Sulli A, Cutolo M, Shoenfeld Y. Air Travel, Circadian Rhythms/Hormones, and Autoimmunity. Clin Rev Allergy Immunol 2018; 53:117-125. [PMID: 28244020 DOI: 10.1007/s12016-017-8599-2] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Abstract
Biological rhythms are fundamental for homeostasis and have recently been involved in the regulatory processes of various organs and systems. Circadian cycle proteins and hormones have a direct effect on the inflammatory response and have shown pro- or anti-inflammatory effects in animal models of autoimmune diseases. The cells of the immune system have their own circadian rhythm, and the light-dark cycle directly influences the inflammatory response. On the other hand, patients with autoimmune diseases characteristically have sleep disorders and fatigue, and in certain disease, such as rheumatoid arthritis (RA), a frank periodicity in the signs and symptoms is recognized. The joint symptoms predominate in the morning, and apparently, subjects with RA have relative adrenal insufficiency, with a cortisol peak unable to control the late night load of pro-inflammatory cytokines. Transatlantic flights represent a challenge in the adjustment of biological rhythms, since they imply sleep deprivation, time zone changes, and potential difficulties for drug administration. In patients with autoimmune diseases, the use of DMARDs and prednisone at night is probably best suited to lessen morning symptoms. It is also essential to sleep during the trip to improve adaptation to the new time zone and to avoid, as far as possible, works involving flexible or nocturnal shifts. The study of proteins and hormones related to biological rhythms will demonstrate new pathophysiological pathways of autoimmune diseases, which will emphasize the use of general measures for sleep respect and methods for drug administration at key daily times to optimize their anti-inflammatory and immune modulatory effects.
Collapse
Affiliation(s)
- J Torres-Ruiz
- Department of Immunology and Rheumatology, Instituto Nacional de Ciencias Médicas y Nutrición Salvador Zubirán, Mexico city, Mexico
| | - A Sulli
- Research Laboratories and Academic Division of Clinical Rheumatology, Director Postgraduate School on Rheumatology-Department of Internal Medicine, University of Genoa, Genoa, Italy.,IRCCS San Martino AOU, Genoa, Italy
| | - M Cutolo
- Research Laboratories and Academic Division of Clinical Rheumatology, Director Postgraduate School on Rheumatology-Department of Internal Medicine, University of Genoa, Genoa, Italy.,IRCCS San Martino AOU, Genoa, Italy
| | - Y Shoenfeld
- The Zabludowicz Center for Autoimmune Diseases, Sheba Medical Center, 5265601, Tel-Hashomer, Israel.
| |
Collapse
|
10
|
Lebailly B, Langa F, Boitard C, Avner P, Rogner UC. The circadian gene Arntl2 on distal mouse chromosome 6 controls thymocyte apoptosis. Mamm Genome 2016; 28:1-12. [DOI: 10.1007/s00335-016-9665-4] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/25/2016] [Accepted: 09/11/2016] [Indexed: 10/20/2022]
|
11
|
Lebailly B, Boitard C, Rogner UC. Circadian rhythm-related genes: implication in autoimmunity and type 1 diabetes. Diabetes Obes Metab 2015; 17 Suppl 1:134-8. [PMID: 26332978 DOI: 10.1111/dom.12525] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/10/2015] [Accepted: 05/05/2015] [Indexed: 01/11/2023]
Abstract
Recent gene association and functional studies have proven the implication of several circadian rhythm-related genes in diabetes. Diabetes has been related to variation in central circadian regulation and peripheral oscillation. Different transcriptional regulators have been identified. Circadian genes are clearly implicated in metabolic pathways, pancreatic function and in type 2 diabetes. Much less evidence has been shown for the link between circadian regulation and type 1 diabetes. The hypothesis that circadian genes are involved in type 1 diabetes is reinforced by findings that the immune system undergoes circadian variation and that several autoimmune diseases are associated with circadian genes. Recent findings in the non-obese diabetic mouse model pinpoint to specific mechanisms controlling type 1 diabetes by the clock-related gene Arntl2 in the immune system.
Collapse
Affiliation(s)
- B Lebailly
- Institut Cochin (INSERM U1016, CNRS UMR-S8104, Département "Endocrinologie, Métabolisme et Diabètes), Paris, France
- Cellule Pasteur, University Pierre and Marie Curie, Paris, France
| | - C Boitard
- Institut Cochin (INSERM U1016, CNRS UMR-S8104, Département "Endocrinologie, Métabolisme et Diabètes), Paris, France
| | - U C Rogner
- Institut Cochin (INSERM U1016, CNRS UMR-S8104, Département "Endocrinologie, Métabolisme et Diabètes), Paris, France
| |
Collapse
|
12
|
Berry GJ, Frielle C, Luu T, Salzberg AC, Rainbow DB, Wicker LS, Waldner H. Genome-wide transcriptional analyses of islet-specific CD4+ T cells identify Idd9 genes controlling diabetogenic T cell function. THE JOURNAL OF IMMUNOLOGY 2015; 194:2654-63. [PMID: 25672752 DOI: 10.4049/jimmunol.1401288] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/19/2022]
Abstract
Type 1 diabetes (T1D) is a polygenic disease with multiple insulin-dependent diabetes (Idd) loci predisposing humans and NOD mice to disease. NOD.B10 Idd9 congenic mice, in which the NOD Idd9 chromosomal region is replaced by the Idd9 from T1D-resistant C57BL/10 mice, are significantly protected from T1D development. However, the genes and pathways conferring T1D development or protection by Idd9 remain to be fully elucidated. We have developed novel NOD.B10-Idd9 (line 905) congenic mice that predominantly harbor islet-reactive CD4(+) T cells expressing the BDC2.5 TCR (BDC-Idd9.905 mice). To establish functional links between the Idd9 genotype and its phenotype, we used microarray analyses to investigate the gene expression profiles of ex vivo and Ag-activated CD4(+) T cells from these mice and BDC2.5 (BDC) NOD controls. Among the differentially expressed genes, those located within the Idd9 region were greatly enriched in islet-specific CD4(+) T cells. Bioinformatics analyses of differentially expressed genes between BDC-Idd9.905 and BDC CD4(+) T cells identified Eno1, Rbbp4, and Mtor, all of which are encoded by Idd9 and part of gene networks involved in cellular growth and development. As predicted, proliferation and Th1/Th17 responses of islet-specific CD4(+) T cells from BDC-Idd9.905 mice following Ag stimulation in vitro were reduced compared with BDC mice. Furthermore, proliferative responses to endogenous autoantigen and diabetogenic function were impaired in BDC-Idd9.905 CD4(+) T cells. These findings suggest that differential expression of the identified Idd9 genes contributed to Idd9-dependent T1D susceptibility by controlling the diabetogenic function of islet-specific CD4(+) T cells.
Collapse
Affiliation(s)
- Gregory J Berry
- Department of Microbiology and Immunology, College of Medicine, Pennsylvania State University, Hershey, PA 17033
| | - Christine Frielle
- Department of Microbiology and Immunology, College of Medicine, Pennsylvania State University, Hershey, PA 17033
| | - Thaiphi Luu
- Department of Microbiology and Immunology, College of Medicine, Pennsylvania State University, Hershey, PA 17033
| | - Anna C Salzberg
- Department of Public Health Sciences, College of Medicine, Pennsylvania State University, Hershey, PA 17033; and
| | - Daniel B Rainbow
- Juvenile Diabetes Research Foundation/Wellcome Trust Diabetes and Inflammation Laboratory, Department of Medical Genetics, Cambridge Institute for Medical Research, University of Cambridge, Cambridge CB2 0XY, United Kingdom
| | - Linda S Wicker
- Juvenile Diabetes Research Foundation/Wellcome Trust Diabetes and Inflammation Laboratory, Department of Medical Genetics, Cambridge Institute for Medical Research, University of Cambridge, Cambridge CB2 0XY, United Kingdom
| | - Hanspeter Waldner
- Department of Microbiology and Immunology, College of Medicine, Pennsylvania State University, Hershey, PA 17033;
| |
Collapse
|
13
|
Li G, Xu R, Cao Y, Xie X, Zheng Z. Interleukin-21 Polymorphism Affects Gene Expression and is Associated with Risk of Ischemic Stroke. Inflammation 2014; 37:2030-9. [DOI: 10.1007/s10753-014-9935-9] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
|