1
|
Yin M, Wang Y, Han M, Liang R, Li S, Wang G, Gang X. Mechanisms of bariatric surgery for weight loss and diabetes remission. J Diabetes 2023; 15:736-752. [PMID: 37442561 PMCID: PMC10509523 DOI: 10.1111/1753-0407.13443] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/22/2023] [Revised: 06/12/2023] [Accepted: 06/26/2023] [Indexed: 07/15/2023] Open
Abstract
Obesity and type 2 diabetes(T2D) lead to defects in intestinal hormones secretion, abnormalities in the composition of bile acids (BAs), increased systemic and adipose tissue inflammation, defects of branched-chain amino acids (BCAAs) catabolism, and dysbiosis of gut microbiota. Bariatric surgery (BS) has been shown to be highly effective in the treatment of obesity and T2D, which allows us to view BS not simply as weight-loss surgery but as a means of alleviating obesity and its comorbidities, especially T2D. In recent years, accumulating studies have focused on the mechanisms of BS to find out which metabolic parameters are affected by BS through which pathways, such as which hormones and inflammatory processes are altered. The literatures are saturated with the role of intestinal hormones and the gut-brain axis formed by their interaction with neural networks in the remission of obesity and T2D following BS. In addition, BAs, gut microbiota and other factors are also involved in these benefits after BS. The interaction of these factors makes the mechanisms of metabolic improvement induced by BS more complicated. To date, we do not fully understand the exact mechanisms of the metabolic alterations induced by BS and its impact on the disease process of T2D itself. This review summarizes the changes of intestinal hormones, BAs, BCAAs, gut microbiota, signaling proteins, growth differentiation factor 15, exosomes, adipose tissue, brain function, and food preferences after BS, so as to fully understand the actual working mechanisms of BS and provide nonsurgical therapeutic strategies for obesity and T2D.
Collapse
Affiliation(s)
- Mengsha Yin
- Department of Endocrinology and MetabolismThe First Hospital of Jilin UniversityChangchunChina
| | - Yao Wang
- Department of OrthopedicsThe Second Hospital Jilin UniversityChangchunChina
| | - Mingyue Han
- Department of Endocrinology and MetabolismThe First Hospital of Jilin UniversityChangchunChina
| | - Ruishuang Liang
- Department of Endocrinology and MetabolismThe First Hospital of Jilin UniversityChangchunChina
| | - Shanshan Li
- Department of Endocrinology and MetabolismThe First Hospital of Jilin UniversityChangchunChina
| | - Guixia Wang
- Department of Endocrinology and MetabolismThe First Hospital of Jilin UniversityChangchunChina
| | - Xiaokun Gang
- Department of Endocrinology and MetabolismThe First Hospital of Jilin UniversityChangchunChina
| |
Collapse
|
2
|
Fadzeyeva E, Locatelli CA, Trzaskalski NA, Nguyen MA, Capozzi ME, Vulesevic B, Morrow NM, Ghorbani P, Hanson AA, Lorenzen-Schmidt I, Doyle MA, Seymour R, Varin EM, Fullerton MD, Campbell JE, Mulvihill EE. Pancreas-derived DPP4 is not essential for glucose homeostasis under metabolic stress. iScience 2023; 26:106748. [PMID: 37216093 PMCID: PMC10192926 DOI: 10.1016/j.isci.2023.106748] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/11/2022] [Revised: 03/09/2023] [Accepted: 04/21/2023] [Indexed: 05/24/2023] Open
Abstract
Mice systemically lacking dipeptidyl peptidase-4 (DPP4) have improved islet health, glucoregulation, and reduced obesity with high-fat diet (HFD) feeding compared to wild-type mice. Some, but not all, of this improvement can be linked to the loss of DPP4 in endothelial cells (ECs), pointing to the contribution of non-EC types. The importance of intra-islet signaling mediated by α to β cell communication is becoming increasingly clear; thus, our objective was to determine if β cell DPP4 regulates insulin secretion and glucose tolerance in HFD-fed mice by regulating the local concentrations of insulinotropic peptides. Using β cell double incretin receptor knockout mice, β cell- and pancreas-specific Dpp4-/- mice, we reveal that β cell incretin receptors are necessary for DPP4 inhibitor effects. However, although β cell DPP4 modestly contributes to high glucose (16.7 mM)-stimulated insulin secretion in isolated islets, it does not regulate whole-body glucose homeostasis.
Collapse
Affiliation(s)
- Evgenia Fadzeyeva
- The University of Ottawa, Faculty of Medicine, Department of Biochemistry, Microbiology and Immunology, Ottawa, ON K1H 8M5, Canada
- The University of Ottawa Heart Institute, 40 Ruskin Street, Ottawa, ON K1Y4W7, Canada
| | - Cassandra A.A. Locatelli
- The University of Ottawa, Faculty of Medicine, Department of Biochemistry, Microbiology and Immunology, Ottawa, ON K1H 8M5, Canada
- The University of Ottawa Heart Institute, 40 Ruskin Street, Ottawa, ON K1Y4W7, Canada
| | - Natasha A. Trzaskalski
- The University of Ottawa, Faculty of Medicine, Department of Biochemistry, Microbiology and Immunology, Ottawa, ON K1H 8M5, Canada
- The University of Ottawa Heart Institute, 40 Ruskin Street, Ottawa, ON K1Y4W7, Canada
| | - My-Anh Nguyen
- The University of Ottawa, Faculty of Medicine, Department of Biochemistry, Microbiology and Immunology, Ottawa, ON K1H 8M5, Canada
- The University of Ottawa Heart Institute, 40 Ruskin Street, Ottawa, ON K1Y4W7, Canada
| | - Megan E. Capozzi
- Duke Molecular Physiology Institute, 300 North Duke Street, Durham, NC 27701, USA
| | - Branka Vulesevic
- The University of Ottawa, Faculty of Medicine, Department of Biochemistry, Microbiology and Immunology, Ottawa, ON K1H 8M5, Canada
- The University of Ottawa Heart Institute, 40 Ruskin Street, Ottawa, ON K1Y4W7, Canada
| | - Nadya M. Morrow
- The University of Ottawa, Faculty of Medicine, Department of Biochemistry, Microbiology and Immunology, Ottawa, ON K1H 8M5, Canada
- The University of Ottawa Heart Institute, 40 Ruskin Street, Ottawa, ON K1Y4W7, Canada
| | - Peyman Ghorbani
- The University of Ottawa, Faculty of Medicine, Department of Biochemistry, Microbiology and Immunology, Ottawa, ON K1H 8M5, Canada
| | - Antonio A. Hanson
- The University of Ottawa, Faculty of Medicine, Department of Biochemistry, Microbiology and Immunology, Ottawa, ON K1H 8M5, Canada
- The University of Ottawa Heart Institute, 40 Ruskin Street, Ottawa, ON K1Y4W7, Canada
| | - Ilka Lorenzen-Schmidt
- The University of Ottawa Heart Institute, 40 Ruskin Street, Ottawa, ON K1Y4W7, Canada
| | - Mary-Anne Doyle
- Division of Endocrinology & Metabolism, Department of Medicine, University of Ottawa, Ottawa, ON K1H 8L6, Canada
| | - Richard Seymour
- The University of Ottawa Heart Institute, 40 Ruskin Street, Ottawa, ON K1Y4W7, Canada
| | - Elodie M. Varin
- Lunenfeld Tanenbaum Research Institute, Toronto, ON M5G 1X5, Canada
| | - Morgan D. Fullerton
- The University of Ottawa, Faculty of Medicine, Department of Biochemistry, Microbiology and Immunology, Ottawa, ON K1H 8M5, Canada
- Centre for Infection, Immunity and Inflammation, Ottawa, ON K1H 8M5, Canada
| | - Jonathan E. Campbell
- Duke Molecular Physiology Institute, 300 North Duke Street, Durham, NC 27701, USA
| | - Erin E. Mulvihill
- The University of Ottawa, Faculty of Medicine, Department of Biochemistry, Microbiology and Immunology, Ottawa, ON K1H 8M5, Canada
- The University of Ottawa Heart Institute, 40 Ruskin Street, Ottawa, ON K1Y4W7, Canada
- Centre for Infection, Immunity and Inflammation, Ottawa, ON K1H 8M5, Canada
- Montreal Diabetes Research Group, Montreal, QC H2X 0A9, Canada
| |
Collapse
|
3
|
Womble JT, Ihrie MD, McQuade VL, Hegde A, McCravy MS, Phatak S, Tighe RM, Que LG, D’Alessio D, Walker JKL, Ingram JL. Vertical sleeve gastrectomy associates with airway hyperresponsiveness in a murine model of allergic airway disease and obesity. Front Endocrinol (Lausanne) 2023; 14:1092277. [PMID: 36926031 PMCID: PMC10011633 DOI: 10.3389/fendo.2023.1092277] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/07/2022] [Accepted: 02/15/2023] [Indexed: 03/08/2023] Open
Abstract
Introduction Asthma is a chronic airway inflammatory disease marked by airway inflammation, remodeling and hyperresponsiveness to allergens. Allergic asthma is normally well controlled through the use of beta-2-adrenergic agonists and inhaled corticosteroids; however, a subset of patients with comorbid obesity experience resistance to currently available therapeutics. Patients with asthma and comorbid obesity are also at a greater risk for severe disease, contributing to increased risk of hospitalization. Bariatric surgery improves asthma control and airway hyperresponsiveness in patients with asthma and comorbid obesity, however, the underlying mechanisms for these improvements remain to be elucidated. We hypothesized that vertical sleeve gastrectomy (VSG), a model of metabolic surgery in mice, would improve glucose tolerance and airway inflammation, resistance, and fibrosis induced by chronic allergen challenge and obesity. Methods Male C57BL/6J mice were fed a high fat diet (HFD) for 13 weeks with intermittent house dust mite (HDM) allergen administration to induce allergic asthma, or saline as control. At week 11, a subset of mice underwent VSG or Sham surgery with one week recovery. A separate group of mice did not undergo surgery. Mice were then challenged with HDM or saline along with concurrent HFD feeding for 1-1.5 weeks before measurement of lung mechanics and harvesting of tissues, both of which occurred 24 hours after the final HDM challenge. Systemic and pulmonary cytokine profiles, lung histology and gene expression were analyzed. Results High fat diet contributed to increased body weight, serum leptin levels and development of glucose intolerance for both HDM and saline treatment groups. When compared to saline-treated mice, HDM-challenged mice exhibited greater weight gain. VSG improved glucose tolerance in both saline and HDM-challenged mice. HDM-challenged VSG mice exhibited an increase in airway hyperresponsiveness to methacholine when compared to the non-surgery group. Discussion The data presented here indicate increased airway hyperresponsiveness in allergic mice undergoing bariatric surgery.
Collapse
Affiliation(s)
- Jack T. Womble
- Division of Pulmonary, Allergy and Critical Care Medicine, Department of Medicine, Duke University School of Medicine, Durham, NC, United States
| | - Mark D. Ihrie
- Division of Pulmonary, Allergy and Critical Care Medicine, Department of Medicine, Duke University School of Medicine, Durham, NC, United States
| | - Victoria L. McQuade
- Division of Pulmonary, Allergy and Critical Care Medicine, Department of Medicine, Duke University School of Medicine, Durham, NC, United States
| | - Akhil Hegde
- School of Nursing, Duke University, Durham, NC, United States
| | - Matthew S. McCravy
- Division of Pulmonary, Allergy and Critical Care Medicine, Department of Medicine, Duke University School of Medicine, Durham, NC, United States
| | - Sanat Phatak
- Diabetes/Rheumatology Units, King Edward Memorial Hospital, Pune, India
| | - Robert M. Tighe
- Division of Pulmonary, Allergy and Critical Care Medicine, Department of Medicine, Duke University School of Medicine, Durham, NC, United States
| | - Loretta G. Que
- Division of Pulmonary, Allergy and Critical Care Medicine, Department of Medicine, Duke University School of Medicine, Durham, NC, United States
| | - David D’Alessio
- Division of Endocrinology, Metabolism and Nutrition, Department of Medicine, Duke University School of Medicine, Durham, NC, United States
| | | | - Jennifer L. Ingram
- Division of Pulmonary, Allergy and Critical Care Medicine, Department of Medicine, Duke University School of Medicine, Durham, NC, United States
| |
Collapse
|
4
|
Corsello J, Gerola R, Babatope M, Munie S, Nease DB. Do bariatric patient's in rural areas achieve comparative weight loss as national average? single center experience in appalachia west virginia. Surg Endosc 2022; 36:8515-8519. [PMID: 36042042 DOI: 10.1007/s00464-022-09541-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/19/2021] [Accepted: 08/07/2022] [Indexed: 01/06/2023]
Abstract
INTRODUCTION Obesity is one of the leading public health concerns with over half a million Americans being classified as obese and almost two billion classified as overweight. This has an impact on overall health of the individual, with increased comorbidities and premature death, as well as increased economic cost. This study evaluates the weight loss of patients with limited societal support and resources cared for at a single bariatric center of excellence, The Center for Surgical Weight Control, in Cabell County, West Virginia. METHODS Retrospective review of patients that have undergone either a Vertical Sleeve Gastrectomy (VSG) or a Roux-en-Y gastric bypass (RNYGB) between the years of 2017 and 2018 At the Center for Surgical Weight Control. Weight loss was evaluated at 6 months, 1 year, and 2 years. RESULTS There were 290 patients between 2017 and 2018. On average, the VSG group lost 46% of excess body weight (EBW) at 6 months, 57% of EBW at 1 year, and 61% of EBW at 2 years. In the RNYGB group patients lost on average 54% of EBW at 6 months, 65% of EBW at 1 year, and 88% of EBW at 2 years. DISCUSSION A loss of 5-15% of EBW can improve obesity-related comorbidities. These comorbidities include diabetes, hypertension, hyperlipidemia, gastroesophageal reflux disease, and obstructive sleep apnea. Improvement in these comorbidities not only benefits each patient individually, but will also help improve the effects on society as a whole. CONCLUSION Obesity is a debilitating and deadly disease, thus makes it very important to address in order to reduce burden on both patients and society as a whole. There is an expected amount of weight loss a patient should have depending on the type of surgery they undergo. Our patients were successful at meeting and exceeding the expected percentage of EBW loss after both VSG and RNYGB.
Collapse
Affiliation(s)
- Jenalee Corsello
- Marshall University Joan C. Edwards School of Medicine, General Surgery Residency Program, 1600 Medical Center Drive Suite 2500, Huntington, WV, 25701, USA.
| | - Ruth Gerola
- Marshall University Joan C. Edwards School of Medicine, General Surgery Residency Program, 1600 Medical Center Drive Suite 2500, Huntington, WV, 25701, USA
| | - Mercy Babatope
- Marshall University Joan C. Edwards School of Medicine, General Surgery Residency Program, 1600 Medical Center Drive Suite 2500, Huntington, WV, 25701, USA
| | - Semeret Munie
- Marshall University Joan C. Edwards School of Medicine, General Surgery Residency Program, 1600 Medical Center Drive Suite 2500, Huntington, WV, 25701, USA
| | - D Blaine Nease
- Marshall University Joan C. Edwards School of Medicine, General Surgery Residency Program, 1600 Medical Center Drive Suite 2500, Huntington, WV, 25701, USA
| |
Collapse
|
5
|
Barron M, Hayes H, Fernando DG, Geurts AM, Kindel TL. Sleeve Gastrectomy Improves High-Fat Diet-Associated Hepatic Steatosis Independent of the Glucagon-like-Petpide-1 Receptor in Rats. J Gastrointest Surg 2022; 26:1607-1618. [PMID: 35618993 PMCID: PMC9444920 DOI: 10.1007/s11605-022-05361-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/10/2022] [Accepted: 05/14/2022] [Indexed: 01/31/2023]
Abstract
BACKGROUND The gastrointestinal hormone glucagon-like peptide-1 (GLP-1) is increased after sleeve gastrectomy (SG). Rat and clinical studies support, while mouse studies refute, a role for GLP-1R signaling after SG. Therefore, we developed a global GLP-1R knockout (KO) rat to test the hypothesis that a functional GLP-1R is critical to induce weight loss and metabolic disease improvement after SG. METHODOLOGY A 4 bp deletion was created in exon 2 of the GLP-1R gene on a Lewis strain background to create a global GLP-1R KO rat. KO and Lewis rats were placed on a high-fat or low-fat diet and phenotyped followed by SG or Sham surgery and assessed for the effect of GLP-1R KO on surgical and metabolic efficacy. RESULTS Loss of the GLP-1R created an obesity-prone rodent without changes in energy expenditure. Both male and female KO rats had significantly greater insulin concentrations after an oral glucose gavage, augmented by a high-fat diet, compared to Lewis rats despite similar glucose concentrations. GLP-1R KO caused hepatomegaly and increased triglyceride deposition compared to Lewis rats. We found no difference between SG GLP-1R KO and Lewis groups when considering efficacy on body weight, glucose tolerance, and a robustly preserved improvement in fatty liver disease. CONCLUSIONS Loss of the GLP-1R in rats resulted in increased adiposity, insulin resistance, and severe steatosis. A functional GLP-1R is not critical to the metabolic efficacy of SG in Lewis rats, similar to mouse studies, but importantly including steatosis, supporting a GLP-1R-independent mechanism for the improvement in fatty liver disease after SG.
Collapse
Affiliation(s)
- Matthew Barron
- Department of Surgery, Division of Gastrointestinal and Minimally Invasive Surgery, Medical College of Wisconsin, 8900 W. Doyne Avenue, Milwaukee, WI, 53226, USA
| | - Hailey Hayes
- Medical College of Wisconsin School of Medicine, Medical College of Wisconsin, 8900 W. Doyne Avenue, Milwaukee, WI, 53226, USA
| | - Deemantha G Fernando
- Department of Surgery, Division of Gastrointestinal and Minimally Invasive Surgery, Medical College of Wisconsin, 8900 W. Doyne Avenue, Milwaukee, WI, 53226, USA
| | - Aron M Geurts
- Department of Physiology, Medical College of Wisconsin, 8900 W. Doyne Avenue, Milwaukee, WI, 53226, USA
| | - Tammy L Kindel
- Department of Surgery, Division of Gastrointestinal and Minimally Invasive Surgery, Medical College of Wisconsin, 8900 W. Doyne Avenue, Milwaukee, WI, 53226, USA.
| |
Collapse
|
6
|
Chandra R, Aryal DK, Douros JD, Shahid R, Davis SJ, Campbell JE, Ilkayeya O, White PJ, Rodriguez R, Newgard CB, Wetsel WC, Liddle RA. Ildr1 gene deletion protects against diet-induced obesity and hyperglycemia. PLoS One 2022; 17:e0270329. [PMID: 35749484 PMCID: PMC9231709 DOI: 10.1371/journal.pone.0270329] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/25/2022] [Accepted: 06/09/2022] [Indexed: 11/24/2022] Open
Abstract
Objective Immunoglobulin-like Domain-Containing Receptor 1 (ILDR1) is expressed on nutrient sensing cholecystokinin-positive enteroendocrine cells of the gastrointestinal tract and it has the unique ability to induce fat-mediated CCK secretion. However, the role of ILDR1 in CCK-mediated regulation of satiety is unknown. In this study, we examined the effects of ILDR1 on food intake and metabolic activity using mice with genetically-deleted Ildr1. Methods The expression of ILDR1 in murine tissues and the measurement of adipocyte cell size were evaluated by light and fluorescence confocal microscopy. The effects of Ildr1 deletion on mouse metabolism were quantitated using CLAMS chambers and by targeted metabolomics assays of multiple tissues. Hormone levels were measured by ELISA. The effects of Ildr1 gene deletion on glucose and insulin levels were determined using in vivo oral glucose tolerance, meal tolerance, and insulin tolerance tests, as well as ex vivo islet perifusion. Results ILDR1 is expressed in a wide range of tissues. Analysis of metabolic data revealed that although Ildr1-/- mice consumed more food than wild-type littermates, they gained less weight on a high fat diet and exhibited increased metabolic activity. Adipocytes in Ildr1-/- mice were significantly smaller than in wild-type mice fed either low or high fat diets. ILDR1 was expressed in both alpha and beta cells of pancreatic islets. Based on oral glucose and mixed meal tolerance tests, Ildr1-/- mice were more effective at lowering post-prandial glucose levels, had improved insulin sensitivity, and glucose-regulated insulin secretion was enhanced in mice lacking ILDR1. Conclusion Ildr1 loss significantly modified metabolic activity in these mutant mice. While Ildr1 gene deletion increased high fat food intake, it reduced weight gain and improved glucose tolerance. These findings indicate that ILDR1 modulates metabolic responses to feeding in mice.
Collapse
Affiliation(s)
- Rashmi Chandra
- Department of Medicine, Division of Gastroenterology, Duke University Medical Center, Durham, North Carolina, United States of America
- * E-mail: (RC); (RAL)
| | - Dipendra K. Aryal
- Department of Psychiatry and Behavioral Sciences, Duke University Medical Center, Durham, North Carolina, United States of America
| | - Jonathan D. Douros
- Duke Molecular Physiology Institute, Duke University, Durham, North Carolina, United States of America
| | - Rafiq Shahid
- Department of Medicine, Division of Gastroenterology, Duke University Medical Center, Durham, North Carolina, United States of America
| | - Supriya J. Davis
- Department of Medicine, Division of Gastroenterology, Duke University Medical Center, Durham, North Carolina, United States of America
- Swarthmore College, Swarthmore, Pennsylvania, United States of America
| | - Jonathan E. Campbell
- Duke Molecular Physiology Institute, Duke University, Durham, North Carolina, United States of America
| | - Olga Ilkayeya
- Duke Molecular Physiology Institute, Duke University, Durham, North Carolina, United States of America
- Sarah W. Stedman Nutrition and Metabolism Center, Duke University, Durham, North Carolina, United States of America
| | - Phillip J. White
- Duke Molecular Physiology Institute, Duke University, Durham, North Carolina, United States of America
- Sarah W. Stedman Nutrition and Metabolism Center, Duke University, Durham, North Carolina, United States of America
| | - Ramona Rodriguez
- Department of Psychiatry and Behavioral Sciences, Duke University Medical Center, Durham, North Carolina, United States of America
- Mouse Behavioral and Neuroendocrine Analysis Core Facility, Duke University, Durham, North Carolina, United States of America
| | - Christopher B. Newgard
- Duke Molecular Physiology Institute, Duke University, Durham, North Carolina, United States of America
- Sarah W. Stedman Nutrition and Metabolism Center, Duke University, Durham, North Carolina, United States of America
| | - William C. Wetsel
- Department of Psychiatry and Behavioral Sciences, Duke University Medical Center, Durham, North Carolina, United States of America
- Mouse Behavioral and Neuroendocrine Analysis Core Facility, Duke University, Durham, North Carolina, United States of America
- Department of Cell Biology, Duke University Medical Center, Durham, North Carolina, United States of America
- Department of Neurobiology, Duke University Medical Center, Durham, North Carolina, United States of America
| | - Rodger A. Liddle
- Department of Medicine, Division of Gastroenterology, Duke University Medical Center, Durham, North Carolina, United States of America
- Department of Veterans Affairs Medical Center, Durham, North Carolina, United States of America
- * E-mail: (RC); (RAL)
| |
Collapse
|
7
|
Evans RM, Wei Z. Interorgan crosstalk in pancreatic islet function and pathology. FEBS Lett 2022; 596:607-619. [PMID: 35014695 DOI: 10.1002/1873-3468.14282] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/15/2021] [Revised: 12/16/2021] [Accepted: 12/28/2021] [Indexed: 12/14/2022]
Abstract
Pancreatic β cells secrete insulin in response to glucose, a process that is regulated at multiple levels, including a network of input signals from other organ systems. Impaired islet function contributes to the pathogenesis of type 2 diabetes mellitus (T2DM), and targeting inter-organ communications, such as GLP-1 signalling, to enhance β-cell function has been proven to be a successful therapeutic strategy in the last decade. In this review, we will discuss recent advances in inter-organ communication from the metabolic, immune and neural system to pancreatic islets, their biological implication in normal pancreas endocrine function and their role in the (mal)adaptive responses of islet to nutrition-induced stress.
Collapse
Affiliation(s)
- Ronald M Evans
- Gene Expression Laboratory, Salk Institute for Biological Studies, La Jolla, CA, USA
| | - Zong Wei
- Department of Physiology and Biomedical Engineering, Mayo Clinic Arizona, Scottsdale, AZ, USA
| |
Collapse
|
8
|
Liang Y, Yu R, He R, Sun L, Luo C, Feng L, Chen H, Yin Y, Zhang W. Lower ghrelin levels does not impact the metabolic benefit induced by Roux-en-Y gastric bypass. Front Endocrinol (Lausanne) 2022; 13:891379. [PMID: 36082078 PMCID: PMC9445200 DOI: 10.3389/fendo.2022.891379] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/07/2022] [Accepted: 08/01/2022] [Indexed: 01/19/2023] Open
Abstract
OBJECTIVE Roux-en-Y gastric bypass is an effective intervention for metabolic disorder. We aim to elucidate whether ghrelin contributes to weight reduction, and glycemic and lipid control after Roux-en-Y gastric bypass (RYGB). DESIGN Four-week-old WT and Ghrl-TSC1-/- mice were fed high fat diet for 12 weeks before surgery, and continued to be on the same diet for 3 weeks after surgery. Body weight, food intake, glycemic and lipid metabolism were analyzed before and after surgery. RESULTS Gastric and circulating ghrelin was significantly increased in mice with RYGB surgery. Hypoghrelinemia elicited by deletion of TSC1 to activate mTOR signaling in gastric X/A like cells demonstrated no effect on weight reduction, glycemic and lipid control induced by Roux-en-Y gastric bypass surgery. CONCLUSION Lower ghrelin levels does not impact the metabolic benefit induced by Roux-en-Y gastric bypass.
Collapse
Affiliation(s)
- Yuan Liang
- Department of Physiology and Pathophysiology, School of Basic Medical Sciences, and Key Laboratory of Molecular Cardiovascular Science, Ministry of Education, Peking University, Beijing, China
| | - Ruili Yu
- Department of Physiology and Pathophysiology, School of Basic Medical Sciences, and Key Laboratory of Molecular Cardiovascular Science, Ministry of Education, Peking University, Beijing, China
- Department of Pathology, Henan Provincial People’s Hospital; People’s Hospital of Zhengzhou University, Zhengzhou, China
| | - Rui He
- Department of Physiology and Pathophysiology, School of Basic Medical Sciences, and Key Laboratory of Molecular Cardiovascular Science, Ministry of Education, Peking University, Beijing, China
- Key Laboratory of Fertility Preservation and Maintenance of Ministry of Education, School of Basic Medical Sciences, Ningxia Medical University, Yinchuan, China
| | - Lijun Sun
- Department of Physiology and Pathophysiology, School of Basic Medical Sciences, and Key Laboratory of Molecular Cardiovascular Science, Ministry of Education, Peking University, Beijing, China
| | - Chao Luo
- Department of Physiology and Pathophysiology, School of Basic Medical Sciences, and Key Laboratory of Molecular Cardiovascular Science, Ministry of Education, Peking University, Beijing, China
| | - Lu Feng
- Department of Physiology and Pathophysiology, School of Basic Medical Sciences, and Key Laboratory of Molecular Cardiovascular Science, Ministry of Education, Peking University, Beijing, China
| | - Hong Chen
- Department of Physiology and Pathophysiology, School of Basic Medical Sciences, and Key Laboratory of Molecular Cardiovascular Science, Ministry of Education, Peking University, Beijing, China
| | - Yue Yin
- Department of Physiology and Pathophysiology, School of Basic Medical Sciences, and Key Laboratory of Molecular Cardiovascular Science, Ministry of Education, Peking University, Beijing, China
- *Correspondence: Yue Yin,
| | - Weizhen Zhang
- Department of Physiology and Pathophysiology, School of Basic Medical Sciences, and Key Laboratory of Molecular Cardiovascular Science, Ministry of Education, Peking University, Beijing, China
- Department of Surgery, University of Michigan Medical Center, Ann Arbor, MI, United States
| |
Collapse
|
9
|
Pérez-Arana GM, Fernández-Vivero J, Camacho-Ramírez A, Díaz Gómez A, Bancalero de los Reyes J, Ribelles-García A, Almorza-Gomar D, Carrasco-Molinillo C, Prada-Oliveira JA. Sleeve Gastrectomy and Roux-En-Y Gastric Bypass. Two Sculptors of the Pancreatic Islet. J Clin Med 2021; 10:jcm10184217. [PMID: 34575329 PMCID: PMC8465472 DOI: 10.3390/jcm10184217] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/22/2021] [Revised: 09/10/2021] [Accepted: 09/14/2021] [Indexed: 01/10/2023] Open
Abstract
Several surgical procedures are performed for the treatment of obesity. A main outcome of these procedures is the improvement of type 2 diabetes mellitus. Trying to explain this, gastrointestinal hormone levels and their effect on organs involved in carbohydrate metabolism, such as liver, gut, muscle or fat, have been studied intensively after bariatric surgery. These effects on endocrine-cell populations in the pancreas have been less well studied. We gathered the existing data on these pancreatic-cell populations after the two most common types of bariatric surgery, the sleeve gastrectomy (SG) and the roux-en-Y gastric bypass (RYGB), with the aim to explain the pathophysiological mechanisms underlying these surgeries and to improve their outcome.
Collapse
Affiliation(s)
- Gonzalo-Martín Pérez-Arana
- Department of Human Anatomy and Embryology, Faculty of Medicine, University of Cadiz, 11003 Cadiz, Spain; (J.F.-V.); (A.C.-R.); (A.R.-G.); (C.C.-M.)
- Institute for Biomedical Science Research and Innovation (INIBICA), University of Cadiz, 11003 Cadiz, Spain;
- Asociación Gaditana de Apoyo al Investigador (AGAI), 11012 Cadiz, Spain
- Correspondence: (G.-M.P.-A.); (J.-A.P.-O.)
| | - José Fernández-Vivero
- Department of Human Anatomy and Embryology, Faculty of Medicine, University of Cadiz, 11003 Cadiz, Spain; (J.F.-V.); (A.C.-R.); (A.R.-G.); (C.C.-M.)
| | - Alonso Camacho-Ramírez
- Department of Human Anatomy and Embryology, Faculty of Medicine, University of Cadiz, 11003 Cadiz, Spain; (J.F.-V.); (A.C.-R.); (A.R.-G.); (C.C.-M.)
- Asociación Gaditana de Apoyo al Investigador (AGAI), 11012 Cadiz, Spain
- Surgery Unit, Puerta del Mar Universitary Hospital, University of Cadiz, 11003 Cadiz, Spain
| | | | | | - Antonio Ribelles-García
- Department of Human Anatomy and Embryology, Faculty of Medicine, University of Cadiz, 11003 Cadiz, Spain; (J.F.-V.); (A.C.-R.); (A.R.-G.); (C.C.-M.)
| | - David Almorza-Gomar
- Institute for Biomedical Science Research and Innovation (INIBICA), University of Cadiz, 11003 Cadiz, Spain;
- Operative Statistic and Research Department, University of Cadiz, 11003 Cadiz, Spain
| | - Carmen Carrasco-Molinillo
- Department of Human Anatomy and Embryology, Faculty of Medicine, University of Cadiz, 11003 Cadiz, Spain; (J.F.-V.); (A.C.-R.); (A.R.-G.); (C.C.-M.)
| | - José-Arturo Prada-Oliveira
- Department of Human Anatomy and Embryology, Faculty of Medicine, University of Cadiz, 11003 Cadiz, Spain; (J.F.-V.); (A.C.-R.); (A.R.-G.); (C.C.-M.)
- Institute for Biomedical Science Research and Innovation (INIBICA), University of Cadiz, 11003 Cadiz, Spain;
- Asociación Gaditana de Apoyo al Investigador (AGAI), 11012 Cadiz, Spain
- Correspondence: (G.-M.P.-A.); (J.-A.P.-O.)
| |
Collapse
|
10
|
Akalestou E, Suba K, Lopez-Noriega L, Georgiadou E, Chabosseau P, Gallie A, Wretlind A, Legido-Quigley C, Leclerc I, Salem V, Rutter GA. Intravital imaging of islet Ca 2+ dynamics reveals enhanced β cell connectivity after bariatric surgery in mice. Nat Commun 2021; 12:5165. [PMID: 34453049 PMCID: PMC8397709 DOI: 10.1038/s41467-021-25423-8] [Citation(s) in RCA: 20] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/15/2020] [Accepted: 08/06/2021] [Indexed: 11/25/2022] Open
Abstract
Bariatric surgery improves both insulin sensitivity and secretion and can induce diabetes remission. However, the mechanisms and time courses of these changes, particularly the impact on β cell function, are difficult to monitor directly. In this study, we investigated the effect of Vertical Sleeve Gastrectomy (VSG) on β cell function in vivo by imaging Ca2+ dynamics in islets engrafted into the anterior eye chamber. Mirroring its clinical utility, VSG in mice results in significantly improved glucose tolerance, and enhanced insulin secretion. We reveal that these benefits are underpinned by augmented β cell function and coordinated activity across the islet. These effects involve changes in circulating GLP-1 levels which may act both directly and indirectly on the β cell, in the latter case through changes in body weight. Thus, bariatric surgery leads to time-dependent increases in β cell function and intra-islet connectivity which are likely to contribute to diabetes remission.
Collapse
Affiliation(s)
- Elina Akalestou
- grid.413629.b0000 0001 0705 4923Section of Cell Biology and Functional Genomics, Imperial College London, Hammersmith Hospital Campus, London, UK
| | - Kinga Suba
- grid.413629.b0000 0001 0705 4923Section of Cell Biology and Functional Genomics, Imperial College London, Hammersmith Hospital Campus, London, UK
| | - Livia Lopez-Noriega
- grid.413629.b0000 0001 0705 4923Section of Cell Biology and Functional Genomics, Imperial College London, Hammersmith Hospital Campus, London, UK
| | - Eleni Georgiadou
- grid.413629.b0000 0001 0705 4923Section of Cell Biology and Functional Genomics, Imperial College London, Hammersmith Hospital Campus, London, UK
| | - Pauline Chabosseau
- grid.413629.b0000 0001 0705 4923Section of Cell Biology and Functional Genomics, Imperial College London, Hammersmith Hospital Campus, London, UK
| | - Alasdair Gallie
- grid.413629.b0000 0001 0705 4923Central Biological Services (CBS) Hammersmith Hospital Campus, London, UK
| | - Asger Wretlind
- grid.419658.70000 0004 0646 7285Systems Medicine, Steno Diabetes Center, Gentofte, Copenhagen, Denmark
| | - Cristina Legido-Quigley
- grid.419658.70000 0004 0646 7285Systems Medicine, Steno Diabetes Center, Gentofte, Copenhagen, Denmark
| | - Isabelle Leclerc
- grid.413629.b0000 0001 0705 4923Section of Cell Biology and Functional Genomics, Imperial College London, Hammersmith Hospital Campus, London, UK
| | - Victoria Salem
- grid.413629.b0000 0001 0705 4923Section of Cell Biology and Functional Genomics, Imperial College London, Hammersmith Hospital Campus, London, UK ,grid.413629.b0000 0001 0705 4923Section of Investigative Medicine, Division of Diabetes, Endocrinology and Metabolism, Department of Metabolism, Digestion and Reproduction, Imperial College London, Hammersmith Hospital Campus, London, UK
| | - Guy A. Rutter
- grid.413629.b0000 0001 0705 4923Section of Cell Biology and Functional Genomics, Imperial College London, Hammersmith Hospital Campus, London, UK ,grid.59025.3b0000 0001 2224 0361Lee Kong Chian Imperial Medical School, Nanyang Technological University, Singapore, Singapore ,grid.14848.310000 0001 2292 3357Centre de Recherches du CHUM, University of Montreal, Montreal, QC Canada
| |
Collapse
|
11
|
Vertical sleeve gastrectomy confers metabolic improvements by reducing intestinal bile acids and lipid absorption in mice. Proc Natl Acad Sci U S A 2021; 118:2019388118. [PMID: 33526687 DOI: 10.1073/pnas.2019388118] [Citation(s) in RCA: 30] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023] Open
Abstract
Vertical sleeve gastrectomy (VSG) is one of the most effective and durable therapies for morbid obesity and its related complications. Although bile acids (BAs) have been implicated as downstream mediators of VSG, the specific mechanisms through which BA changes contribute to the metabolic effects of VSG remain poorly understood. Here, we confirm that high fat diet-fed global farnesoid X receptor (Fxr) knockout mice are resistant to the beneficial metabolic effects of VSG. However, the beneficial effects of VSG were retained in high fat diet-fed intestine- or liver-specific Fxr knockouts, and VSG did not result in Fxr activation in the liver or intestine of control mice. Instead, VSG decreased expression of positive hepatic Fxr target genes, including the bile salt export pump (Bsep) that delivers BAs to the biliary pathway. This reduced small intestine BA levels in mice, leading to lower intestinal fat absorption. These findings were verified in sterol 27-hydroxylase (Cyp27a1) knockout mice, which exhibited low intestinal BAs and fat absorption and did not show metabolic improvements following VSG. In addition, restoring small intestinal BA levels by dietary supplementation with taurocholic acid (TCA) partially blocked the beneficial effects of VSG. Altogether, these findings suggest that reductions in intestinal BAs and lipid absorption contribute to the metabolic benefits of VSG.
Collapse
|
12
|
Mosleh E, Ou K, Haemmerle MW, Tembo T, Yuhas A, Carboneau BA, Townsend SE, Bosma KJ, Gannon M, O’Brien RM, Stoffers DA, Golson ML. Ins1-Cre and Ins1-CreER Gene Replacement Alleles Are Susceptible To Silencing By DNA Hypermethylation. Endocrinology 2020; 161:5817889. [PMID: 32267917 PMCID: PMC7354059 DOI: 10.1210/endocr/bqaa054] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/30/2020] [Accepted: 04/07/2020] [Indexed: 12/14/2022]
Abstract
Targeted gene ablation studies of the endocrine pancreas have long suffered from suboptimal Cre deleter strains. In many cases, Cre lines purportedly specific for beta cells also displayed expression in other islet endocrine cells or in a subset of neurons in the brain. Several pancreas and endocrine Cre lines have experienced silencing or mosaicism over time. In addition, many Cre transgenic constructs were designed to include the hGH mini-gene, which by itself increases beta-cell replication and decreases beta-cell function. More recently, driver lines with Cre or CreER inserted into the Ins1 locus were generated, with the intent of producing β cell-specific Cre lines with faithful recapitulation of insulin expression. These lines were bred in multiple labs to several different mouse lines harboring various lox alleles. In our hands, the ability of the Ins1-Cre and Ins1-CreER lines to delete target genes varied from that originally reported, with both alleles displaying low levels of expression, increased levels of methylation compared to the wild-type allele, and ultimately inefficient or absent target deletion. Thus, caution is warranted in the interpretation of results obtained with these genetic tools, and Cre expression and activity should be monitored regularly when using these lines.
Collapse
Affiliation(s)
- Elham Mosleh
- Department of Genetics, Perelman School of Medicine, University of Pennsylvania, Philadelphia, Pennsylvania
- Institute for Diabetes, Obesity, and Metabolism, Perelman School of Medicine, University of Pennsylvania, Philadelphia, Pennsylvania
| | - Kristy Ou
- Department of Genetics, Perelman School of Medicine, University of Pennsylvania, Philadelphia, Pennsylvania
- Institute for Diabetes, Obesity, and Metabolism, Perelman School of Medicine, University of Pennsylvania, Philadelphia, Pennsylvania
| | - Matthew W Haemmerle
- Institute for Diabetes, Obesity, and Metabolism, Perelman School of Medicine, University of Pennsylvania, Philadelphia, Pennsylvania
| | - Teguru Tembo
- Department of Genetics, Perelman School of Medicine, University of Pennsylvania, Philadelphia, Pennsylvania
- Institute for Diabetes, Obesity, and Metabolism, Perelman School of Medicine, University of Pennsylvania, Philadelphia, Pennsylvania
| | - Andrew Yuhas
- Department of Genetics, Perelman School of Medicine, University of Pennsylvania, Philadelphia, Pennsylvania
- Institute for Diabetes, Obesity, and Metabolism, Perelman School of Medicine, University of Pennsylvania, Philadelphia, Pennsylvania
| | - Bethany A Carboneau
- Department of Molecular Physiology and Biophysics, Vanderbilt University, Nashville, Tennessee
| | - Shannon E Townsend
- Department of Molecular Physiology and Biophysics, Vanderbilt University, Nashville, Tennessee
| | - Karin J Bosma
- Department of Molecular Physiology and Biophysics, Vanderbilt University, Nashville, Tennessee
| | - Maureen Gannon
- Department of Molecular Physiology and Biophysics, Vanderbilt University, Nashville, Tennessee
- Department of Medicine, Vanderbilt University Medical Center, Nashville, Tennessee
- United States Department of Veteran Affairs, Nashville, Tennessee
| | - Richard M O’Brien
- Department of Molecular Physiology and Biophysics, Vanderbilt University, Nashville, Tennessee
| | - Doris A Stoffers
- Institute for Diabetes, Obesity, and Metabolism, Perelman School of Medicine, University of Pennsylvania, Philadelphia, Pennsylvania
- Department of Medicine, Perelman School of Medicine, University of Pennsylvania, Philadelphia, Pennsylvania
| | - Maria L Golson
- Department of Genetics, Perelman School of Medicine, University of Pennsylvania, Philadelphia, Pennsylvania
- Institute for Diabetes, Obesity, and Metabolism, Perelman School of Medicine, University of Pennsylvania, Philadelphia, Pennsylvania
- Department of Medicine, Johns Hopkins School of Medicine, Baltimore, Maryland
- Correspondence: Maria L. Golson, PhD, 5501 Hopkins Bayview Circle, Baltimore, MD 21224. E-mail:
| |
Collapse
|
13
|
Amouyal C, Castel J, Guay C, Lacombe A, Denom J, Migrenne-Li S, Rouault C, Marquet F, Georgiadou E, Stylianides T, Luquet S, Le Stunff H, Scharfmann R, Clément K, Rutter GA, Taboureau O, Magnan C, Regazzi R, Andreelli F. A surrogate of Roux-en-Y gastric bypass (the enterogastro anastomosis surgery) regulates multiple beta-cell pathways during resolution of diabetes in ob/ob mice. EBioMedicine 2020; 58:102895. [PMID: 32739864 PMCID: PMC7393530 DOI: 10.1016/j.ebiom.2020.102895] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/04/2020] [Revised: 06/26/2020] [Accepted: 06/30/2020] [Indexed: 02/06/2023] Open
Abstract
BACKGROUND Bariatric surgery is an effective treatment for type 2 diabetes. Early post-surgical enhancement of insulin secretion is key for diabetes remission. The full complement of mechanisms responsible for improved pancreatic beta cell functionality after bariatric surgery is still unclear. Our aim was to identify pathways, evident in the islet transcriptome, that characterize the adaptive response to bariatric surgery independently of body weight changes. METHODS We performed entero-gastro-anastomosis (EGA) with pyloric ligature in leptin-deficient ob/ob mice as a surrogate of Roux-en-Y gastric bypass (RYGB) in humans. Multiple approaches such as determination of glucose tolerance, GLP-1 and insulin secretion, whole body insulin sensitivity, ex vivo glucose-stimulated insulin secretion (GSIS) and functional multicellular Ca2+-imaging, profiling of mRNA and of miRNA expression were utilized to identify significant biological processes involved in pancreatic islet recovery. FINDINGS EGA resolved diabetes, increased pancreatic insulin content and GSIS despite a persistent increase in fat mass, systemic and intra-islet inflammation, and lipotoxicity. Surgery differentially regulated 193 genes in the islet, most of which were involved in the regulation of glucose metabolism, insulin secretion, calcium signaling or beta cell viability, and these were normalized alongside changes in glucose metabolism, intracellular Ca2+ dynamics and the threshold for GSIS. Furthermore, 27 islet miRNAs were differentially regulated, four of them hubs in a miRNA-gene interaction network and four others part of a blood signature of diabetes resolution in ob/ob mice and in humans. INTERPRETATION Taken together, our data highlight novel miRNA-gene interactions in the pancreatic islet during the resolution of diabetes after bariatric surgery that form part of a blood signature of diabetes reversal. FUNDING European Union's Horizon 2020 research and innovation programme via the Innovative Medicines Initiative 2 Joint Undertaking (RHAPSODY), INSERM, Société Francophone du Diabète, Institut Benjamin Delessert, Wellcome Trust Investigator Award (212625/Z/18/Z), MRC Programme grants (MR/R022259/1, MR/J0003042/1, MR/L020149/1), Diabetes UK (BDA/11/0004210, BDA/15/0005275, BDA 16/0005485) project grants, National Science Foundation (310030-188447), Fondation de l'Avenir.
Collapse
Affiliation(s)
- Chloé Amouyal
- Sorbonne Université, INSERM, Nutrition and Obesities; Systemic approaches (NutriOmics), Paris, France; AP-HP, Pitié-Salpêtrière Hospital, Diabetology department, F-75013 Paris, France
| | - Julien Castel
- Université de Paris, BFA, UMR 8251, CNRS, F-75013 Paris, France
| | - Claudiane Guay
- Department of Fundamental Neurosciences, University of Lausanne, Rue du Bugnon 9, CH-1005, Lausanne, Switzerland
| | - Amélie Lacombe
- PreclinICAN, Institute of Cardiometabolism and Nutrition, Paris, France
| | - Jessica Denom
- Université de Paris, BFA, UMR 8251, CNRS, F-75013 Paris, France
| | | | - Christine Rouault
- Sorbonne Université, INSERM, Nutrition and Obesities; Systemic approaches (NutriOmics), Paris, France
| | - Florian Marquet
- Sorbonne Université, INSERM, Nutrition and Obesities; Systemic approaches (NutriOmics), Paris, France
| | - Eleni Georgiadou
- Section of Cell Biology and Functional Genomics, Division of Diabetes, Endocrinology and Metabolism, Department of Metabolism, Digestion and Reproduction, Imperial College London, London, UK
| | | | - Serge Luquet
- Université de Paris, BFA, UMR 8251, CNRS, F-75013 Paris, France
| | - Hervé Le Stunff
- Université de Paris, BFA, UMR 8251, CNRS, F-75013 Paris, France
| | - Raphael Scharfmann
- Université de Paris, Cochin Institute, Inserm U1016, Paris 75014, France
| | - Karine Clément
- Sorbonne Université, INSERM, Nutrition and Obesities; Systemic approaches (NutriOmics), Paris, France; APHP, Pitié-Salpêtrière Hospital, Nutrition department, F-75013 Paris, France
| | - Guy A Rutter
- Section of Cell Biology and Functional Genomics, Division of Diabetes, Endocrinology and Metabolism, Department of Metabolism, Digestion and Reproduction, Imperial College London, London, UK; Lee Kong Chian School of Medicine, Nan Yang Technological University, Singapore
| | - Olivier Taboureau
- Université de Paris, BFA, Team CMPLI, Inserm U1133, CNRS UMR 8251, Paris, France
| | | | - Romano Regazzi
- Department of Fundamental Neurosciences, University of Lausanne, Rue du Bugnon 9, CH-1005, Lausanne, Switzerland; Department of Biomedical Sciences, University of Lausanne, Rue du Bugnon 7, CH-1005 Lausanne, Switzerland
| | - Fabrizio Andreelli
- Sorbonne Université, INSERM, Nutrition and Obesities; Systemic approaches (NutriOmics), Paris, France; AP-HP, Pitié-Salpêtrière Hospital, Diabetology department, F-75013 Paris, France.
| |
Collapse
|
14
|
Gimeno RE, Briere DA, Seeley RJ. Leveraging the Gut to Treat Metabolic Disease. Cell Metab 2020; 31:679-698. [PMID: 32187525 PMCID: PMC7184629 DOI: 10.1016/j.cmet.2020.02.014] [Citation(s) in RCA: 54] [Impact Index Per Article: 10.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/15/2019] [Revised: 11/23/2019] [Accepted: 02/20/2020] [Indexed: 02/07/2023]
Abstract
25 years ago, the future of treating obesity and diabetes focused on end organs known to be involved in energy balance and glucose regulation, including the brain, muscle, adipose tissue, and pancreas. Today, the most effective therapies are focused around the gut. This includes surgical options, such as vertical sleeve gastrectomy and Roux-en-Y gastric bypass, that can produce sustained weight loss and diabetes remission but also extends to pharmacological treatments that simulate or amplify various signals that come from the gut. The purpose of this Review is to discuss the wealth of approaches currently under development that seek to further leverage the gut as a source of novel therapeutic opportunities with the hope that we can achieve the effects of surgical interventions with less invasive and more scalable solutions.
Collapse
Affiliation(s)
- Ruth E Gimeno
- Lilly Research Laboratories, Eli Lilly and Company, Indianapolis, IN 46225, USA
| | - Daniel A Briere
- Lilly Research Laboratories, Eli Lilly and Company, Indianapolis, IN 46225, USA
| | - Randy J Seeley
- Department of Surgery, University of Michigan, Ann Arbor, MI 48109, USA.
| |
Collapse
|
15
|
Davis EM, Sandoval DA. Glucagon‐Like Peptide‐1: Actions and Influence on Pancreatic Hormone Function. Compr Physiol 2020; 10:577-595. [DOI: 10.1002/cphy.c190025] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
|
16
|
Kim KS, Hutch CR, Wood L, Magrisso IJ, Seeley RJ, Sandoval DA. Glycemic effect of pancreatic preproglucagon in mouse sleeve gastrectomy. JCI Insight 2019; 4:129452. [PMID: 31619587 PMCID: PMC6824314 DOI: 10.1172/jci.insight.129452] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/09/2019] [Accepted: 09/18/2019] [Indexed: 02/06/2023] Open
Abstract
Intestinally derived glucagon-like peptide-1 (GLP-1), encoded by the preproglucagon (Gcg) gene, is believed to function as an incretin. However, our previous work questioned this dogma and demonstrated that pancreatic peptides rather than intestinal Gcg peptides, including GLP-1, are a primary regulator of glucose homeostasis in normal mice. The objective of these experiments was to determine whether changes in nutrition or alteration of gut hormone secretion by bariatric surgery would result in a larger role for intestinal GLP-1 in the regulation of insulin secretion and glucose homeostasis. Multiple transgenic models, including mouse models with intestine- or pancreas tissue-specific Gcg expression and a whole-body Gcg-null mouse model, were generated to study the role of organ-specific GLP-1 production on glucose homeostasis under dietary-induced obesity and after weight loss from bariatric surgery (vertical sleeve gastrectomy; VSG). Our findings indicated that the intestine is a major source of circulating GLP-1 after various nutrient and surgical stimuli. However, even with the 4-fold increase in intestinally derived GLP-1 with VSG, it is pancreatic peptides, not intestinal Gcg peptides, that are necessary for surgery-induced improvements in glucose homeostasis.
Collapse
|
17
|
Douros JD, Tong J, D’Alessio DA. The Effects of Bariatric Surgery on Islet Function, Insulin Secretion, and Glucose Control. Endocr Rev 2019; 40:1394-1423. [PMID: 31241742 PMCID: PMC6749890 DOI: 10.1210/er.2018-00183] [Citation(s) in RCA: 58] [Impact Index Per Article: 9.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/01/2018] [Accepted: 04/23/2019] [Indexed: 01/19/2023]
Abstract
Although bariatric surgery was developed primarily to treat morbid obesity, evidence from the earliest clinical observations to the most recent clinical trials consistently demonstrates that these procedures have substantial effects on glucose metabolism. A large base of research indicates that bariatric surgeries such as Roux-en-Y gastric bypass (RYGB), vertical sleeve gastrectomy (VSG), and biliopancreatic diversion (BPD) improve diabetes in most patients, with effects frequently evident prior to substantial weight reduction. There is now unequivocal evidence from randomized controlled trials that the efficacy of surgery is superior to intensive life-style/medical management. Despite advances in the clinical understanding and application of bariatric surgery, there remains only limited knowledge of the mechanisms by which these procedures confer such large changes to metabolic physiology. The improvement of insulin sensitivity that occurs with weight loss (e.g., the result of diet, illness, physical training) also accompanies bariatric surgery. However, there is evidence to support specific effects of surgery on insulin clearance, hepatic glucose production, and islet function. Understanding the mechanisms by which surgery affects these parameters of glucose regulation has the potential to identify new targets for therapeutic discovery. Studies to distinguish among bariatric surgeries on key parameters of glucose metabolism are limited but would be of considerable value to assist clinicians in selecting specific procedures and investigators in delineating the resulting physiology. This review is based on literature related to factors governing glucose metabolism and insulin secretion after the commonly used RYGB and VSG, and the less frequently used BPD and adjustable gastric banding.
Collapse
Affiliation(s)
- Jonathan D Douros
- Division of Endocrinology, Duke Molecular Physiology Institute, Duke University, Durham, North Carolina
| | - Jenny Tong
- Division of Endocrinology, Duke Molecular Physiology Institute, Duke University, Durham, North Carolina
| | - David A D’Alessio
- Division of Endocrinology, Duke Molecular Physiology Institute, Duke University, Durham, North Carolina
| |
Collapse
|
18
|
Tomas A, Jones B, Leech C. New Insights into Beta-Cell GLP-1 Receptor and cAMP Signaling. J Mol Biol 2019; 432:1347-1366. [PMID: 31446075 DOI: 10.1016/j.jmb.2019.08.009] [Citation(s) in RCA: 54] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/01/2019] [Revised: 08/06/2019] [Accepted: 08/13/2019] [Indexed: 12/14/2022]
Abstract
Harnessing the translational potential of the GLP-1/GLP-1R system in pancreatic beta cells has led to the development of established GLP-1R-based therapies for the long-term preservation of beta cell function. In this review, we discuss recent advances in the current research on the GLP-1/GLP-1R system in beta cells, including the regulation of signaling by endocytic trafficking as well as the application of concepts such as signal bias, allosteric modulation, dual agonism, polymorphic receptor variants, spatial compartmentalization of cAMP signaling and new downstream signaling targets involved in the control of beta cell function.
Collapse
Affiliation(s)
- Alejandra Tomas
- Section of Cell Biology and Functional Genomics, Division of Diabetes, Endocrinology and Metabolism, Department of Medicine, Imperial College London, London, W12 0NN, UK.
| | - Ben Jones
- Section of Investigative Medicine, Division of Diabetes, Endocrinology and Metabolism, Department of Medicine, Imperial College London, London, W12 0NN, UK
| | - Colin Leech
- Department of Surgery, State University of New York, Upstate Medical University, Syracuse, NY, 13210, USA
| |
Collapse
|
19
|
Temporal plasticity of insulin and incretin secretion and insulin sensitivity following sleeve gastrectomy contribute to sustained improvements in glucose control. Mol Metab 2019; 28:144-150. [PMID: 31326351 PMCID: PMC6822258 DOI: 10.1016/j.molmet.2019.07.003] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/14/2019] [Revised: 06/19/2019] [Accepted: 07/02/2019] [Indexed: 12/25/2022] Open
Abstract
Objective Bariatric surgery acutely improves glucose control, an effect that is generally sustained for years in most patients. The acute postoperative glycemic reduction is at least partially mediated by enhanced incretin secretion and islet function, and occurs independent of caloric restriction, whereas the sustained improvement in glucose control is associated with increased insulin sensitivity. However, studies in humans with bariatric surgery suggest that these elevations are not static but undergo coordinated regulation throughout the postoperative time course. The studies described here test the hypothesis that incretin secretion, islet function, and peripheral insulin sensitivity undergo temporal regulation following bariatric surgery as a means to regulate glucose homeostasis. Methods Incretin secretion, islet function, and insulin sensitivity in mice with vertical sleeve gastrectomy (VSG) were compared to sham-operated controls that were pair-fed for 90d, matching food consumption and body-weight between groups. Results Glucose clearance and insulin secretion were enhanced in VSG mice compared to controls during mixed-meal tolerance tests (MMTT) at 12 and 80 days postoperatively, as were prandial GLP-1, GIP, and glucagon levels. Insulin sensitivity was comparable between groups 14d after surgery, but significantly greater in the VSG group at day 75, despite similar body-weight gain between groups. Glucose stimulated insulin secretion was greater in VSG mice compared to controls in vivo (I.P. glucose injection) and ex vivo (islet perifusion) indicating a rapid and sustained enhancement of β-cell function after surgery. Notably, glycemia following a MMTT was progressively higher over time in the control animals but improved in the VSG mice at 80d despite weight regain. However, meal-stimulated incretin secretion decreased in VSG mice from 10 to 80 days postoperative, as did meal-stimulated and I.P. glucose-stimulated insulin secretion. This occurred over the same time period that insulin sensitivity was enhanced in VSG mice, suggesting postoperative islet output is tightly regulated by insulin demand. Conclusions These data demonstrate a dynamic, multifactorial physiology for improved glucose control after VSG, whereby rapidly elevated insulin secretion is complimented by later enhancements in insulin sensitivity. Critically, the glucose lowering effect of VSG is demonstrably larger than that of caloric-restriction, suggesting these adaptations are mediated by surgical modification of gastrointestinal anatomy and not weight-loss per se. β-cell glucose sensitivity is enhanced 90d after VSG compared to controls, coincident with improved glucose tolerance. Prandial GLP-1 and GIP are elevated 12d following VSG but return to preoperative levels 80d after VSG. Insulin sensitivity is enhanced 75d after surgery, but not 14d after surgery, in mice with VSG compared to controls. Mixed-meal glucose control is improved from 12d to 80d in VSG mice, but worsens in controls despite similar body-weight.
Collapse
|
20
|
Douros JD, Campbell JE. Reg3 Proteins as Gut Hormones? Don't Be Hasty. Endocrinology 2019; 160:1677-1678. [PMID: 31099826 PMCID: PMC6760333 DOI: 10.1210/en.2019-00356] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/08/2019] [Accepted: 05/12/2019] [Indexed: 11/19/2022]
Affiliation(s)
- Jonathan D Douros
- Duke Molecular Physiology Institute, Duke University, Durham, North Carolina
| | - Jonathan E Campbell
- Duke Molecular Physiology Institute, Duke University, Durham, North Carolina
- Department of Medicine, Duke University, Durham, North Carolina
- Department of Pharmacology and Cancer Biology, Duke University, Durham, North Carolina
- Correspondence: Jonathan E. Campbell, PhD, 300 North Duke Street, Durham, North Carolina 27701. E-mail:
| |
Collapse
|
21
|
Sandoval DA. Mechanisms for the metabolic success of bariatric surgery. J Neuroendocrinol 2019; 31:e12708. [PMID: 30882956 PMCID: PMC9205614 DOI: 10.1111/jne.12708] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/14/2018] [Revised: 03/11/2019] [Accepted: 03/13/2019] [Indexed: 12/14/2022]
Abstract
To date, bariatric surgery remains the most effective strategy for the treatment of obesity and its comorbidities. However, given the enormity of the obesity epidemic, and sometimes variable results, it is not a feasible strategy for the treatment of all obese patients. A simple PubMed search for 'bariatric surgery' reveals over 28 000 papers that have been published since the 1940s when the first bariatric surgeries were performed. However, there is still an incomplete understanding of the mechanisms for the weight loss and metabolic success of surgery. An understanding of the mechanisms is important because it may lead to greater understanding of the pathophysiology of obesity and thus surgery-alternative strategies for the treatment of all obese patients. In this review, the potential mechanisms that underlie the success of surgery are discussed, with a focus on the potential endocrine, neural and other circulatory factors (eg, bile acids) that have been proposed to play a role.
Collapse
|
22
|
Douros JD, Niu J, Sdao S, Gregg T, Fisher-Wellman K, Bharadwaj M, Molina A, Arumugam R, Martin M, Petretto E, Merrins MJ, Herman MA, Tong J, Campbell J, D’Alessio D. Sleeve gastrectomy rapidly enhances islet function independently of body weight. JCI Insight 2019; 4:126688. [PMID: 30777938 PMCID: PMC6483064 DOI: 10.1172/jci.insight.126688] [Citation(s) in RCA: 21] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/07/2018] [Accepted: 02/11/2019] [Indexed: 12/14/2022] Open
Abstract
Bariatric surgeries including vertical sleeve gastrectomy (VSG) ameliorate obesity and diabetes. Weight loss and accompanying increases to insulin sensitivity contribute to improved glycemia after surgery; however, studies in humans also suggest weight-independent actions of bariatric procedures to lower blood glucose, possibly by improving insulin secretion. To evaluate this hypothesis, we compared VSG-operated mice with pair-fed, sham-surgical controls (PF-Sham) 2 weeks after surgery. This paradigm yielded similar postoperative body weight and insulin sensitivity between VSG and calorically restricted PF-Sham animals. However, VSG improved glucose tolerance and markedly enhanced insulin secretion during oral nutrient and i.p. glucose challenges compared with controls. Islets from VSG mice displayed a unique transcriptional signature enriched for genes involved in Ca2+ signaling and insulin secretion pathways. This finding suggests that bariatric surgery leads to intrinsic changes within the islet that alter function. Indeed, islets isolated from VSG mice had increased glucose-stimulated insulin secretion and a left-shifted glucose sensitivity curve compared with islets from PF-Sham mice. Isolated islets from VSG animals showed corresponding increases in the pulse duration of glucose-stimulated Ca2+ oscillations. Together, these findings demonstrate a weight-independent improvement in glycemic control following VSG, which is, in part, driven by improved insulin secretion and associated with substantial changes in islet gene expression. These results support a model in which β cells play a key role in the adaptation to bariatric surgery and the improved glucose tolerance that is typical of these procedures.
Collapse
Affiliation(s)
- Jonathan D. Douros
- Division of Endocrinology, Duke Molecular Physiology Institute, Duke University, Durham, North Carolina, USA
| | - Jingjing Niu
- Division of Endocrinology, Duke Molecular Physiology Institute, Duke University, Durham, North Carolina, USA
| | - Sophia Sdao
- Department of Medicine, Division of Endocrinology, Diabetes, and Metabolism, University of Wisconsin-Madison, Madison, Wisconsin, USA
| | - Trillian Gregg
- Department of Medicine, Division of Endocrinology, Diabetes, and Metabolism, University of Wisconsin-Madison, Madison, Wisconsin, USA
| | - Kelsey Fisher-Wellman
- Division of Endocrinology, Duke Molecular Physiology Institute, Duke University, Durham, North Carolina, USA
| | - Manish Bharadwaj
- Center for Diabetes Research, Wake Forest School of Medicine, Winston-Salem, North Carolina, USA
| | - Anthony Molina
- Center for Diabetes Research, Wake Forest School of Medicine, Winston-Salem, North Carolina, USA
| | - Ramamani Arumugam
- Division of Endocrinology, Duke Molecular Physiology Institute, Duke University, Durham, North Carolina, USA
| | - MacKenzie Martin
- Division of Endocrinology, Duke Molecular Physiology Institute, Duke University, Durham, North Carolina, USA
| | - Enrico Petretto
- Centre for Computational Biology, Duke-NUS Medical School, Singapore
| | - Matthew J. Merrins
- Department of Medicine, Division of Endocrinology, Diabetes, and Metabolism, University of Wisconsin-Madison, Madison, Wisconsin, USA
| | - Mark A. Herman
- Division of Endocrinology, Duke Molecular Physiology Institute, Duke University, Durham, North Carolina, USA
| | - Jenny Tong
- Division of Endocrinology, Duke Molecular Physiology Institute, Duke University, Durham, North Carolina, USA
| | - Jonathan Campbell
- Division of Endocrinology, Duke Molecular Physiology Institute, Duke University, Durham, North Carolina, USA
| | - David D’Alessio
- Division of Endocrinology, Duke Molecular Physiology Institute, Duke University, Durham, North Carolina, USA
| |
Collapse
|
23
|
Capozzi ME, Svendsen B, Encisco SE, Lewandowski SL, Martin MD, Lin H, Jaffe JL, Coch RW, Haldeman JM, MacDonald PE, Merrins MJ, D'Alessio DA, Campbell JE. β Cell tone is defined by proglucagon peptides through cAMP signaling. JCI Insight 2019; 4:126742. [PMID: 30720465 DOI: 10.1172/jci.insight.126742] [Citation(s) in RCA: 174] [Impact Index Per Article: 29.0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/10/2018] [Accepted: 01/29/2019] [Indexed: 01/05/2023] Open
Abstract
Paracrine interactions between pancreatic islet cells have been proposed as a mechanism to regulate hormone secretion and glucose homeostasis. Here, we demonstrate the importance of proglucagon-derived peptides (PGDPs) for α to β cell communication and control of insulin secretion. Signaling through this system occurs through both the glucagon-like peptide receptor (Glp1r) and glucagon receptor (Gcgr). Loss of PGDPs, or blockade of their receptors, decreases insulin secretion in response to both metabolic and nonmetabolic stimulation of mouse and human islets. This effect is due to reduced β cell cAMP and affects the quantity but not dynamics of insulin release, indicating that PGDPs dictate the magnitude of insulin output in an isolated islet. In healthy mice, additional factors that stimulate cAMP can compensate for loss of PGDP signaling; however, input from α cells is essential to maintain glucose tolerance during the metabolic stress induced by high-fat feeding. These findings demonstrate an essential role for α cell regulation of β cells, raising the possibility that abnormal paracrine signaling contributes to impaired insulin secretion in diabetes. Moreover, these findings support reconsideration of the role for α cells in postprandial glucose control.
Collapse
Affiliation(s)
- Megan E Capozzi
- Duke Molecular Physiology Institute, Duke University, Durham, North Carolina, USA
| | - Berit Svendsen
- Duke Molecular Physiology Institute, Duke University, Durham, North Carolina, USA
| | - Sara E Encisco
- Duke Molecular Physiology Institute, Duke University, Durham, North Carolina, USA
| | - Sophie L Lewandowski
- Department of Medicine, Division of Endocrinology, Diabetes & Metabolism, University of Wisconsin-Madison, Madison, Wisconsin, USA
| | - Mackenzie D Martin
- Duke Molecular Physiology Institute, Duke University, Durham, North Carolina, USA
| | - Haopeng Lin
- Department of Pharmacology and Alberta Diabetes Institute, University of Alberta, Alberta, Canada
| | - Justin L Jaffe
- Duke Molecular Physiology Institute, Duke University, Durham, North Carolina, USA
| | - Reilly W Coch
- Duke Molecular Physiology Institute, Duke University, Durham, North Carolina, USA.,Department of Medicine and
| | - Jonathan M Haldeman
- Duke Molecular Physiology Institute, Duke University, Durham, North Carolina, USA.,Department of Pharmacology and Cancer Biology, Duke University, Durham, North Carolina, USA
| | - Patrick E MacDonald
- Department of Pharmacology and Alberta Diabetes Institute, University of Alberta, Alberta, Canada
| | - Matthew J Merrins
- Department of Medicine, Division of Endocrinology, Diabetes & Metabolism, University of Wisconsin-Madison, Madison, Wisconsin, USA
| | - David A D'Alessio
- Duke Molecular Physiology Institute, Duke University, Durham, North Carolina, USA.,Department of Medicine and
| | - Jonathan E Campbell
- Duke Molecular Physiology Institute, Duke University, Durham, North Carolina, USA.,Department of Medicine and.,Department of Pharmacology and Cancer Biology, Duke University, Durham, North Carolina, USA
| |
Collapse
|
24
|
Li P, Rao Z, Laing B, Bunner WP, Landry T, Prete A, Yuan Y, Zhang ZT, Huang H. Vertical sleeve gastrectomy improves liver and hypothalamic functions in obese mice. J Endocrinol 2019; 241:JOE-18-0658.R2. [PMID: 30875680 DOI: 10.1530/joe-18-0658] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/26/2018] [Accepted: 03/14/2019] [Indexed: 12/27/2022]
Abstract
Vertical sleeve gastrectomy (VSG) is an effective surgery to treat obesity and diabetes. However, the direct effect of VSG on metabolic functions is not fully understood. We aimed to investigate if alterations in hypothalamic neurons were linked with perturbations in liver metabolism after VSG in an energy intake-controlled obese mouse model. C57BL/6 and hrNPY-GFP reporter mice received HFD for 12 weeks and were then divided into three groups: Sham (ad lib), sham (pair-fed) with VSG, and VSG. Food intake was measured daily, and blood glucose levels were measured before and after the study. Energy expenditure and body composition were determined. Serum parameters, liver lipid and glycogen contents were measured, and gene/protein expression were analyzed. Hypothalamic POMC, AgRP/NPY, and tyrosine hydroxylase expressing neurons were counted. As results, we found that VSG reduced body weight gain and adiposity induced by HFD, increased energy expenditure independent of energy intake. Fed and fasted blood glucose levels were reduced in the VSG group. While serum active GLP-1 level was increased, the active ghrelin and triglycerides levels were decreased along with improved insulin resistance in VSG group. Liver lipid accumulation, glycogen content, and gluconeogenic gene expression were reduced in the VSG group. In the hypothalamus, TH expressing neuron population was decreased, and the POMC-expressing neuron population was increased in the VSG group. Our data suggests that VSG improves metabolic symptoms by increasing energy expenditure and lowering lipid and glycogen contents in the liver. These physiological alterations are possibly related to changes in hypothalamic neuron populations.
Collapse
Affiliation(s)
- Peixin Li
- P Li, Department of Comprehensive Surgery, Medical and Health Center, Beijing Friendship Hospital, Capital Medical University, Beijing, P.R. China, Beijing, China
| | - Zhijian Rao
- Z Rao, Department of Kinesiology, East Carolina University, Greenville, North Carolina USA, East Carolina Diabetes and Obesity Institute, East Carolina University, Greenville, North Carolina, USA , Greenville, United States
| | - Brenton Laing
- B Laing, Department of Kinesiology, East Carolina Diabetes and Obesity Institute, East Carolina University, Greenville, 27858, United States
| | - Wyatt Paul Bunner
- W Bunner, Department of Kinesiology, East Carolina Diabetes and Obesity Institute, East Carolina University, Greenville, United States
| | - Taylor Landry
- T Landry, Department of Kinesiology, East Carolina University, Greenville, North Carolina USA, . East Carolina Diabetes and Obesity Institute, East Carolina University, Greenville, North Carolina, USA , Greenville, United States
| | - Amber Prete
- A Prete, Department of Psychology, East Carolina Diabetes and Obesity Institute, East Carolina University, Greenville, North Carolina, USA , Greenville, United States
| | - Yuan Yuan
- Y Yuan, Department of Kinesiology, East Carolina University, Greenville, North Carolina USA, . East Carolina Diabetes and Obesity Institute, East Carolina University, Greenville, North Carolina, USA , Greenville, United States
| | - Zhong-Tao Zhang
- Z Zhang, Department of General Surgery, Beijing Friendship Hospital, Capital Medical University, Beijing, China
| | - Hu Huang
- H Huang, Department of Kinesiology, East Carolina University, Greenville, North Carolina USA, Human Performance Laboratory, College of Health and Human Performance, East Carolina University, Greenville, North Carolina, USA, Greenville, United States
| |
Collapse
|
25
|
Larraufie P, Roberts GP, McGavigan AK, Kay RG, Li J, Leiter A, Melvin A, Biggs EK, Ravn P, Davy K, Hornigold DC, Yeo GSH, Hardwick RH, Reimann F, Gribble FM. Important Role of the GLP-1 Axis for Glucose Homeostasis after Bariatric Surgery. Cell Rep 2019; 26:1399-1408.e6. [PMID: 30726726 PMCID: PMC6367566 DOI: 10.1016/j.celrep.2019.01.047] [Citation(s) in RCA: 112] [Impact Index Per Article: 18.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/29/2018] [Revised: 12/14/2018] [Accepted: 01/11/2019] [Indexed: 02/07/2023] Open
Abstract
Bariatric surgery is widely used to treat obesity and improves type 2 diabetes beyond expectations from the degree of weight loss. Elevated post-prandial concentrations of glucagon-like peptide 1 (GLP-1), peptide YY (PYY), and insulin are widely reported, but the importance of GLP-1 in post-bariatric physiology remains debated. Here, we show that GLP-1 is a major driver of insulin secretion after bariatric surgery, as demonstrated by blocking GLP-1 receptors (GLP1Rs) post-gastrectomy in lean humans using Exendin-9 or in mice using an anti-GLP1R antibody. Transcriptomics and peptidomics analyses revealed that human and mouse enteroendocrine cells were unaltered post-surgery; instead, we found that elevated plasma GLP-1 and PYY correlated with increased nutrient delivery to the distal gut in mice. We conclude that increased GLP-1 secretion after bariatric surgery arises from rapid nutrient delivery to the distal gut and is a key driver of enhanced insulin secretion.
Collapse
Affiliation(s)
- Pierre Larraufie
- Metabolic Research Laboratories, Wellcome Trust MRC Institute of Metabolic Science, Addenbrooke's Hospital, Hills Road, Cambridge CB2 0QQ, UK
| | - Geoffrey P Roberts
- Metabolic Research Laboratories, Wellcome Trust MRC Institute of Metabolic Science, Addenbrooke's Hospital, Hills Road, Cambridge CB2 0QQ, UK
| | - Anne K McGavigan
- Metabolic Research Laboratories, Wellcome Trust MRC Institute of Metabolic Science, Addenbrooke's Hospital, Hills Road, Cambridge CB2 0QQ, UK
| | - Richard G Kay
- Metabolic Research Laboratories, Wellcome Trust MRC Institute of Metabolic Science, Addenbrooke's Hospital, Hills Road, Cambridge CB2 0QQ, UK
| | - Joyce Li
- Department of Medicine, University of Massachusetts Medical School, Worcester, MA, USA
| | - Andrew Leiter
- Department of Medicine, University of Massachusetts Medical School, Worcester, MA, USA
| | - Audrey Melvin
- Metabolic Research Laboratories, Wellcome Trust MRC Institute of Metabolic Science, Addenbrooke's Hospital, Hills Road, Cambridge CB2 0QQ, UK
| | - Emma K Biggs
- Metabolic Research Laboratories, Wellcome Trust MRC Institute of Metabolic Science, Addenbrooke's Hospital, Hills Road, Cambridge CB2 0QQ, UK
| | - Peter Ravn
- Department of Antibody Discovery and Protein Engineering, MedImmune, Granta Park, Cambridge CB21 6GH, UK
| | - Kathleen Davy
- Department of Cardiovascular and Metabolic Disease, MedImmune, Granta Park, Cambridge, UK
| | - David C Hornigold
- Department of Cardiovascular and Metabolic Disease, MedImmune, Granta Park, Cambridge, UK
| | - Giles S H Yeo
- Metabolic Research Laboratories, Wellcome Trust MRC Institute of Metabolic Science, Addenbrooke's Hospital, Hills Road, Cambridge CB2 0QQ, UK
| | - Richard H Hardwick
- Cambridge Oesophago-gastric Centre, Addenbrooke's Hospital, Cambridge, UK
| | - Frank Reimann
- Metabolic Research Laboratories, Wellcome Trust MRC Institute of Metabolic Science, Addenbrooke's Hospital, Hills Road, Cambridge CB2 0QQ, UK
| | - Fiona M Gribble
- Metabolic Research Laboratories, Wellcome Trust MRC Institute of Metabolic Science, Addenbrooke's Hospital, Hills Road, Cambridge CB2 0QQ, UK.
| |
Collapse
|
26
|
Arble DM, Schwartz AR, Polotsky VY, Sandoval DA, Seeley RJ. Vertical sleeve gastrectomy improves ventilatory drive through a leptin-dependent mechanism. JCI Insight 2019; 4:124469. [PMID: 30626748 DOI: 10.1172/jci.insight.124469] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/24/2018] [Accepted: 11/29/2018] [Indexed: 12/18/2022] Open
Abstract
Obesity hypoventilation syndrome (OHS) is a serious disorder characterized by daytime hypercapnia, disordered breathing, and a reduction in chemosensitivity. Vertical sleeve gastrectomy (VSG), a bariatric surgical procedure resulting in weight loss and weight-independent improvements in glucose metabolism, has been observed to substantially improve sleep-disordered breathing. However, it is unclear if the ventilatory effects of VSG are secondary to weight loss or the marked change in metabolic physiology. Using preclinical mouse models, we found that VSG leads to an improvement in the hypercapnic ventilatory response (HCVR) and reductions in circulating leptin levels independent of reductions in body mass, fat mass, and caloric intake. In the absence of leptin, VSG continues to improve body mass, fat mass, and glucose tolerance in ob/ob mice but no longer affects HCVR. However, the HCVR of ob/ob mice can be returned to wild-type levels with leptin treatment. These data demonstrate that VSG improves chemosensitivity and ventilatory drive via a leptin-dependent mechanism. Clinically, these data downgrade the relative contribution of physical, mechanical load in the pathogenesis of OHS, and instead point to physiological components of obesity, including alterations in leptin signaling, as key drivers in OHS.
Collapse
Affiliation(s)
- Deanna M Arble
- Department of Biological Sciences, Marquette University, Milwaukee, Wisconsin, USA.,Department of Surgery, University of Michigan, Ann Arbor, Michigan, USA
| | - Alan R Schwartz
- Division of Pulmonary and Critical Care and Sleep Medicine, Department of Medicine, School of Medicine, Johns Hopkins University, Baltimore, Maryland, USA
| | - Vsevolod Y Polotsky
- Division of Pulmonary and Critical Care and Sleep Medicine, Department of Medicine, School of Medicine, Johns Hopkins University, Baltimore, Maryland, USA
| | | | - Randy J Seeley
- Department of Surgery, University of Michigan, Ann Arbor, Michigan, USA
| |
Collapse
|
27
|
Ding L, Fang Z, Liu Y, Zhang E, Huang T, Yang L, Wang Z, Huang W. Targeting Bile Acid-Activated Receptors in Bariatric Surgery. Handb Exp Pharmacol 2019; 256:359-378. [PMID: 31144046 DOI: 10.1007/164_2019_229] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Abstract
Bariatric surgical procedures, including Roux-en-Y gastric bypass and vertical sleeve gastrectomy, are currently the most effective clinical approaches to achieve a significant and sustainable weight loss. Bariatric surgery also concomitantly improves type 2 diabetes and other metabolic diseases such as nonalcoholic steatohepatitis, cardiovascular diseases, and hyperlipidemia. However, despite the recent exciting progress in the understanding how bariatric surgery works, the underlying molecular mechanisms of bariatric surgery remain largely unknown. Interestingly, bile acids are emerging as potential signaling molecules to mediate the beneficial effects of bariatric surgery. In this review, we summarize the recent findings on bile acids and their activated receptors in mediating the beneficial metabolic effects of bariatric surgery. We also discuss the potential to target bile acid-activated receptors in order to treat obesity and other metabolic diseases.
Collapse
Affiliation(s)
- Lili Ding
- Department of Diabetes Complications and Metabolism, Diabetes & Metabolism Research Institute of City of Hope, Beckman Research Institute of City of Hope, Duarte, CA, USA.,Shanghai Key Laboratory of Compound Chinese Medicines and The Ministry of Education (MOE) Key Laboratory of Standardization of Chinese Medicines, Institute of Chinese Materia Medica, Shanghai University of Traditional Chinese Medicine, Shanghai, China
| | - Zhipeng Fang
- Department of Diabetes Complications and Metabolism, Diabetes & Metabolism Research Institute of City of Hope, Beckman Research Institute of City of Hope, Duarte, CA, USA
| | - Yanjun Liu
- Department of Diabetes Complications and Metabolism, Diabetes & Metabolism Research Institute of City of Hope, Beckman Research Institute of City of Hope, Duarte, CA, USA
| | - Eryun Zhang
- Department of Diabetes Complications and Metabolism, Diabetes & Metabolism Research Institute of City of Hope, Beckman Research Institute of City of Hope, Duarte, CA, USA.,Shanghai Key Laboratory of Compound Chinese Medicines and The Ministry of Education (MOE) Key Laboratory of Standardization of Chinese Medicines, Institute of Chinese Materia Medica, Shanghai University of Traditional Chinese Medicine, Shanghai, China
| | - Tracy Huang
- Eugene and Roth Roberts Summer Student Academy, City of Hope, Duarte, CA, USA
| | - Li Yang
- Shanghai Key Laboratory of Compound Chinese Medicines and The Ministry of Education (MOE) Key Laboratory of Standardization of Chinese Medicines, Institute of Chinese Materia Medica, Shanghai University of Traditional Chinese Medicine, Shanghai, China
| | - Zhengtao Wang
- Shanghai Key Laboratory of Compound Chinese Medicines and The Ministry of Education (MOE) Key Laboratory of Standardization of Chinese Medicines, Institute of Chinese Materia Medica, Shanghai University of Traditional Chinese Medicine, Shanghai, China
| | - Wendong Huang
- Department of Diabetes Complications and Metabolism, Diabetes & Metabolism Research Institute of City of Hope, Beckman Research Institute of City of Hope, Duarte, CA, USA.
| |
Collapse
|
28
|
Ma J, Vella A. What Has Bariatric Surgery Taught Us About the Role of the Upper Gastrointestinal Tract in the Regulation of Postprandial Glucose Metabolism? Front Endocrinol (Lausanne) 2018; 9:324. [PMID: 29997575 PMCID: PMC6028568 DOI: 10.3389/fendo.2018.00324] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/19/2018] [Accepted: 05/31/2018] [Indexed: 02/06/2023] Open
Abstract
The interaction between the upper gastrointestinal tract and the endocrine system is important in the regulation of metabolism and of weight. The gastrointestinal tract has a heterogeneous cellular content and comprises a variety of cells that elaborate paracrine and endocrine mediators that collectively form the entero-endocrine system. The advent of therapy that utilizes these pathways as well as the association of bariatric surgery with diabetes remission has (re-)kindled interest in the role of the gastrointestinal tract in glucose homeostasis. In this review, we will use the changes wrought by bariatric surgery to provide insights into the various gut-pancreas interactions that maintain weight, regulate satiety, and limit glucose excursions after meal ingestion.
Collapse
Affiliation(s)
- Jing Ma
- Division of Endocrinology and Metabolism, Shanghai Renji Hospital, School of Medicine, Shanghai Jiaotong University, Shanghai, China
- Division of Endocrinology, Diabetes and Metabolism, Mayo Clinic College of Medicine, Rochester, NY, United States
| | - Adrian Vella
- Division of Endocrinology, Diabetes and Metabolism, Mayo Clinic College of Medicine, Rochester, NY, United States
| |
Collapse
|