1
|
Loid P, Grönroos S, Hurme S, Salminen P, Mäkitie O. Rare gene variants and weight loss at 10 years after sleeve gastrectomy and gastric bypass - a randomized clinical trial. Surg Obes Relat Dis 2025; 21:628-636. [PMID: 39743445 DOI: 10.1016/j.soard.2024.11.021] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/02/2024] [Revised: 10/06/2024] [Accepted: 11/23/2024] [Indexed: 01/04/2025]
Abstract
BACKGROUND Genetic background of severe obesity is inadequately understood. The effect of genetic factors on weight loss after metabolic bariatric surgery (MBS) has shown inconclusive results. OBJECTIVES To determine the prevalence of rare obesity-associated gene variants in a secondary analysis of a randomized clinical trial (RCT) comparing laparoscopic sleeve gastrectomy (LSG) and laparoscopic Roux-en-Y gastric bypass (LRYGB) for the treatment of severe obesity and examine their association with long-term weight loss at 10 years. SETTING University Hospital, Finland. METHODS Targeted sequencing panel was used to examine variants in 79 obesity-associated genes and 16p11.2 copy number variants. Weight loss was evaluated by percentage total weight loss (%TWL). RESULTS Out of 240 patients, 113 patients [mean body mass index 48.4 kg/m2, (6.8 standard deviation [SD]) kg/m2 and median age 49 (range 26-64) years, LSG n = 60, LRYGB n = 53] were available for this post-hoc study. We identified 7 rare heterozygous likely/suspected pathogenic (LP/SP) variants in SH2B1, PCSK1, DNMT3A, BDNF, and AFF4 in 6 patients (5.3%), 5 heterozygous variants of uncertain significance in PLXNA4, PLXNA2, NRP1, and SEMA3D in 5 patients (4.4%), heterozygous Bardet-Biedl syndrome variants in 3 patients (2.7%), and PCKS1 risk allele p.Asn221Asp in 9 patients (8.0%). The patients with LP/SP variants had earlier age of obesity onset (P = .0089) and higher %TWL (P = .0446) compared with patients without LP/SP variants. CONCLUSIONS There were LP/SP pathogenic variants in 5% of the patients supporting the potential benefits of genetic testing to optimize targeted therapies in the future. Despite deleterious gene defects the long-term MBS outcome can be favorable.
Collapse
Affiliation(s)
- Petra Loid
- Folkhälsan Research Center, Genetics Research Program, Helsinki, Finland; Pediatric Research Center, Children's Hospital, University of Helsinki and Helsinki University Hospital, Helsinki, Finland; Research Program for Clinical and Molecular Metabolism, University of Helsinki, Helsinki, Finland.
| | - Sofia Grönroos
- Department of Surgery, University of Turku, Turku, Finland; Division of Digestive Surgery and Urology, Turku University Hospital, Turku, Finland; Department of Surgery, Satasairaala Central Hospital, Pori, Finland
| | - Saija Hurme
- Department of Biostatistics, University of Turku and Turku University Hospital, Turku, Finland
| | - Paulina Salminen
- Department of Surgery, University of Turku, Turku, Finland; Division of Digestive Surgery and Urology, Turku University Hospital, Turku, Finland
| | - Outi Mäkitie
- Folkhälsan Research Center, Genetics Research Program, Helsinki, Finland; Pediatric Research Center, Children's Hospital, University of Helsinki and Helsinki University Hospital, Helsinki, Finland; Research Program for Clinical and Molecular Metabolism, University of Helsinki, Helsinki, Finland; Department of Molecular Medicine and Surgery, Karolinska Institutet, and Clinical Genetics, Karolinska University Hospital, Stockholm, Sweden
| |
Collapse
|
2
|
Lanning NJ, Mancour L, Argetsinger LS, Archer S, Carter-Su C. Identification of βIIΣ1-Spectrin as a Binding Partner of the GH-regulated Human Obesity Scaffold Protein SH2B1. Endocrinology 2025; 166:bqaf003. [PMID: 39801013 PMCID: PMC12053369 DOI: 10.1210/endocr/bqaf003] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/03/2024] [Indexed: 02/07/2025]
Abstract
SH2B1β is a multifunctional scaffold protein that modulates cytoskeletal processes such as cellular motility and neurite outgrowth. To identify novel SH2B1β-interacting proteins involved in these processes, a yeast 2-hybrid assay was performed. The C-terminal 159 residues of the cytoskeleton structural protein, βIIΣ1-spectrin, interacted with the N-terminal 260 residues of SH2B1β, a region implicated in SH2B1β enhancement of cell motility and localization at the plasma membrane. The interaction between SH2B1β and βIIΣ1-spectrin (2205-2363) requires residues 1 through 150 in SH2B1β, with residues 105 through 120 playing a key role. While βIIΣ1-spectrin (2205-2363) was expressed throughout the cell, it colocalized with SH2B1β when coexpressed with SH2B1β mutants with varied intracellular localizations. The SH2B1β-βIIΣ1-spectrin (2205-2363) interaction impaired the ability of SH2B1β to enter the nucleus. A slightly larger βIIΣ1-spectrin fragment (2170-2363) with an intact pleckstrin homology domain localized primarily to the plasma membrane and cytoplasm, similar to SH2B1β. Similarly, full-length βIIΣ1-spectrin colocalized at the plasma membrane and cytoplasm with SH2B1β as well as the SH2B1β-regulated tyrosine kinase, JAK2. Phosphorylation of spectrins has been shown to regulate their localization and function. Coexpression of βIIΣ1-spectrin, JAK2, and SH2B1β resulted in SH2B1β-dependent tyrosyl phosphorylation of βIIΣ1-spectrin. Finally, stimulation with GH induced formation of an endogenous complex containing βII-spectrin, SH2B1, and JAK2 in 3T3-F442A cells and increased tyrosyl phosphorylation of βII-spectrin. Our results identify a novel interaction between SH2B1β, βIIΣ1-spectrin, and JAK2 resulting in JAK2- and SHB1-dependent tyrosyl phosphorylation of βII-spectrin. This raises the possibility that the many other ligand-activated tyrosine kinases that signal through SH2B1 form similar complexes with βIIΣ1-spectrin.
Collapse
Affiliation(s)
- Nathan J Lanning
- Graduate Program in Cellular and Molecular Biology, University of Michigan, Ann Arbor, MI 48109, USA
- Department of Molecular and Integrative Physiology, University of Michigan Medical School, Ann Arbor, MI 48109, USA
| | - Liliya Mancour
- Department of Molecular and Integrative Physiology, University of Michigan Medical School, Ann Arbor, MI 48109, USA
| | - Lawrence S Argetsinger
- Department of Molecular and Integrative Physiology, University of Michigan Medical School, Ann Arbor, MI 48109, USA
| | - Stephen Archer
- Graduate Program in Cellular and Molecular Biology, University of Michigan, Ann Arbor, MI 48109, USA
| | - Christin Carter-Su
- Graduate Program in Cellular and Molecular Biology, University of Michigan, Ann Arbor, MI 48109, USA
- Department of Molecular and Integrative Physiology, University of Michigan Medical School, Ann Arbor, MI 48109, USA
- Department of Internal Medicine, University of Michigan Medical School, Ann Arbor, MI 48109, USA
| |
Collapse
|
3
|
Diakonova M, Carter-Su C, Svitkina T. Endogenous SH2B1 protein localizes to lamellipodia and filopodia: platinum replica electron-microscopy study. MICROPUBLICATION BIOLOGY 2025; 2025:10.17912/micropub.biology.001451. [PMID: 39897164 PMCID: PMC11787627 DOI: 10.17912/micropub.biology.001451] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Figures] [Subscribe] [Scholar Register] [Received: 12/10/2024] [Revised: 01/16/2025] [Accepted: 01/17/2025] [Indexed: 02/04/2025]
Abstract
The widely expressed adapter protein SH2B1 was initially identified as a binding partner and substrate of tyrosine kinase JAK2. SH2B1β potentiates JAK2 activation in response to different ligands, including growth hormone, leptin and prolactin. SH2B1β has been implicated in cell motility and regulation of actin rearrangement in response to growth hormone, prolactin and platelet-derived growth factor. Here we use immunofluorescence and platinum replica electron-microscopy (PREM) technique to study localization of endogenous SH2B1. We show that endogenous SH2B localizes to two actin-rich protrusive organelles in cells: lamellipodia and filopodia. Based on this and previously published data, we suggest that at least some SH2B1 isoforms directly bind to actin filaments in both structures. Additionally, SH2B1 isoforms may work as a partner of filamin A in lamellipodia and VASP in filopodia participating in modulation of the actin cytoskeleton in response to extracellular signals.
Collapse
Affiliation(s)
- Maria Diakonova
- Biological Sciences, University of Toledo, Toledo, Ohio, USA
| | | | | |
Collapse
|
4
|
Gonse A, Gajić J, Daguer JP, Barluenga S, Loewith R, Winssinger N. Small Molecule Modulator of the mTORC2 Pathway Discovered from a DEL Library Designed to Bind to Pleckstrin Homology Domains. ACS Chem Biol 2024; 19:2502-2514. [PMID: 39530383 PMCID: PMC11667669 DOI: 10.1021/acschembio.4c00597] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/09/2024] [Revised: 10/20/2024] [Accepted: 10/28/2024] [Indexed: 11/16/2024]
Abstract
Pleckstrin homology (PH) domains are structural motifs critical for cellular processes, such as signal transduction and cytoskeletal organization. Due to their involvement in various diseases, PH domains are promising therapeutic targets, yet their highly charged and hydrophobic binding sites are not ideal for traditional small drugs. In this study, we designed a DNA-encoded library (DEL) mimicking phospholipids to identify novel modulators targeting PH domains with uncharted chemical properties. Screening against several PH domains led to the discovery of 2DII, a small molecule that selectively binds to mSin1PH. This compound can modulate mTORC2 activity by impairing mTORC2's membrane interactions, resulting in reduced AKT1 phosphorylation. A micromapping via Dexter energy transfer based on 2DII bearing an iridium catalyst (2DII-Ir), along with a biotin-diazirine small molecule was used for target identification by proteomics, which confirmed mSin1 as the primary intracellular target of 2DII, demonstrating its potential for selective mTORC2 pathway modulation. These findings introduce a novel strategy for targeting PH domains and provide a foundation for the development of therapeutic interventions that modulate PH-domain-dependent signaling pathways.
Collapse
Affiliation(s)
- Arthur Gonse
- Department
of Organic Chemistry, Faculty of Sciences, University of Geneva, Geneva 12004, Switzerland
| | - Jelena Gajić
- Department
of Organic Chemistry, Faculty of Sciences, University of Geneva, Geneva 12004, Switzerland
- Department
of Molecular and Cellular Biology, Faculty of Sciences, University of Geneva, Geneva 1204, Switzerland
| | - Jean-Pierre Daguer
- Department
of Organic Chemistry, Faculty of Sciences, University of Geneva, Geneva 12004, Switzerland
| | - Sofia Barluenga
- Department
of Organic Chemistry, Faculty of Sciences, University of Geneva, Geneva 12004, Switzerland
| | - Robbie Loewith
- Department
of Molecular and Cellular Biology, Faculty of Sciences, University of Geneva, Geneva 1204, Switzerland
| | - Nicolas Winssinger
- Department
of Organic Chemistry, Faculty of Sciences, University of Geneva, Geneva 12004, Switzerland
| |
Collapse
|
5
|
Chermon D, Birk R. Gene-Environment Interactions Significantly Alter the Obesity Risk of SH2B1 rs7498665 Carriers. J Obes Metab Syndr 2024; 33:251-260. [PMID: 39098052 PMCID: PMC11443330 DOI: 10.7570/jomes23066] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/26/2023] [Revised: 12/01/2023] [Accepted: 03/25/2024] [Indexed: 08/06/2024] Open
Abstract
Background Src homology 2 B adaptor protein 1 (SH2B1) gene and variants have been found to be associated with common obesity. We aimed to investigate the association between the common missense variant SH2B1 rs7498665 and common obesity risk as well as interactions with lifestyle variables in an Israeli population. Methods An adult cohort (n=3,070; ≥18 years) with the SH2B1 rs7498665 variant and lifestyle, behavior (online questionnaire), and blood glucose data was analyzed. Associations between this variant, obesity risk (body mass index [BMI] ≥25 and ≥30 kg/m2), and interactions with behavioral and lifestyle factors (stress levels, eating habits score [EHS], physical activity [PA], and wine consumption) were investigated. Association and gene-environment interactions were analyzed using binary logistic regressions with interaction. Results SH2B1 rs7498665 carriers were significantly (P<0.05) more likely to be overweight (BMI ≥25 kg/m2) or obese (BMI ≥30 kg/m2) in recessive (odds ratio [OR], 1.90 and 1.36, respectively), additive (OR, 1.24 and 1.14, respectively), and codominant (OR, 2.00 and 1.41, respectively) genetic models. SH2B1 rs7498665 interacted with lifestyle and behavioral factors as well as glucose levels. PA and moderate wine consumption (1 to 3 drinks/week) reduced obesity risk (OR, 0.35 and 0.71, respectively). Conversely, carriers of two risk alleles who reported high stress levels, had ≥median EHS, and who had a fasting glucose level ≥90 mg/dL had a significantly increased obesity risk (OR, 3.63 and 5.82, respectively). Conclusion Carrying SH2B1 rs7498665 significantly elevates the risk of obesity. Actionable lifestyle and behavioral factors significantly modulate the rs7498665 genetic predisposition to obesity; PA and moderate wine consumption attenuate the risk, while high stress, EHS, and fasting glucose level increase the obesity risk.
Collapse
Affiliation(s)
- Danyel Chermon
- Nutrition Department, Health Sciences Faculty, Ariel University, Ariel, Israel
| | - Ruth Birk
- Nutrition Department, Health Sciences Faculty, Ariel University, Ariel, Israel
| |
Collapse
|
6
|
Li Y, Kim M, Jiang L, Baron L, Faulkner LD, Olson DP, Li X, Gannot N, Li P, Rui L. SH2B1 Defends Against Energy Imbalance, Obesity, and Metabolic Disease via a Paraventricular Hypothalamus→Dorsal Raphe Nucleus Neurocircuit. ADVANCED SCIENCE (WEINHEIM, BADEN-WURTTEMBERG, GERMANY) 2024; 11:e2400437. [PMID: 38885417 PMCID: PMC11336965 DOI: 10.1002/advs.202400437] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/11/2024] [Revised: 05/01/2024] [Indexed: 06/20/2024]
Abstract
SH2B1 mutations are associated with obesity, type 2 diabetes, and metabolic dysfunction-associated steatotic liver disease (MASLD) in humans. Global deletion of Sh2b1 results in severe obesity, type 2 diabetes, and MASLD in mice. Neuron-specific restoration of SH2B1 rescues the obesity phenotype of Sh2b1-null mice, indicating that the brain is a main SH2B1 target. However, SH2B1 neurocircuits remain elusive. SH2B1-expressing neurons in the paraventricular hypothalamus (PVHSH2B1) and a PVHSH2B1→dorsal raphe nucleus (DRN) neurocircuit are identified here. PVHSH2B1 axons monosynaptically innervate DRN neurons. Optogenetic stimulation of PVHSH2B1 axonal fibers in the DRN suppresses food intake. Chronic inhibition of PVHSH2B1 neurons causes obesity. In male and female mice, either embryonic-onset or adult-onset deletion of Sh2b1 in PVH neurons causes energy imbalance, obesity, insulin resistance, glucose intolerance, and MASLD. Ablation of Sh2b1 in the DRN-projecting PVHSH2B1 subpopulation also causes energy imbalance, obesity, and metabolic disorders. Conversely, SH2B1 overexpression in either total or DRN-projecting PVHSH2B1 neurons protects against diet-induced obesity. SH2B1 binds to TrkB and enhances brain-derived neurotrophic factor (BDNF) signaling. Ablation of Sh2b1 in PVHSH2B1 neurons induces BDNF resistance in the PVH, contributing to obesity. In conclusion, these results unveil a previously unrecognized PVHSH2B1→DRN neurocircuit through which SH2B1 defends against obesity by enhancing BDNF/TrkB signaling.
Collapse
Affiliation(s)
- Yuan Li
- Department of Molecular & Integrative PhysiologyUniversity of Michigan Medical SchoolAnn ArborMI48109USA
| | - Min‐Hyun Kim
- Department of Molecular & Integrative PhysiologyUniversity of Michigan Medical SchoolAnn ArborMI48109USA
- College of Health SolutionsArizona State UniversityPhoenixAZ85004USA
| | - Lin Jiang
- Department of Molecular & Integrative PhysiologyUniversity of Michigan Medical SchoolAnn ArborMI48109USA
| | - Lorelei Baron
- Department of Molecular & Integrative PhysiologyUniversity of Michigan Medical SchoolAnn ArborMI48109USA
| | - Latrice D. Faulkner
- Department of PediatricsUniversity of Michigan Medical SchoolAnn ArborMI48109USA
| | - David P. Olson
- Department of Molecular & Integrative PhysiologyUniversity of Michigan Medical SchoolAnn ArborMI48109USA
- Department of PediatricsUniversity of Michigan Medical SchoolAnn ArborMI48109USA
- Elizabeth Weiser Caswell Diabetes InstituteUniversity of MichiganAnn ArborMI48109USA
| | - Xingyu Li
- Life Sciences InstituteUniversity of MichiganAnn ArborMI48109USA
| | - Noam Gannot
- Life Sciences InstituteUniversity of MichiganAnn ArborMI48109USA
- Department of Biologic and Materials SciencesSchool of DentistryUniversity of MichiganAnn ArborMI48109USA
| | - Peng Li
- Department of Molecular & Integrative PhysiologyUniversity of Michigan Medical SchoolAnn ArborMI48109USA
- Life Sciences InstituteUniversity of MichiganAnn ArborMI48109USA
- Department of Biologic and Materials SciencesSchool of DentistryUniversity of MichiganAnn ArborMI48109USA
| | - Liangyou Rui
- Department of Molecular & Integrative PhysiologyUniversity of Michigan Medical SchoolAnn ArborMI48109USA
- Elizabeth Weiser Caswell Diabetes InstituteUniversity of MichiganAnn ArborMI48109USA
- Division of Gastroenterology and HepatologyDepartment of Internal MedicineUniversity of Michigan Medical SchoolAnn ArborMI48109USA
| |
Collapse
|
7
|
Lin H, Qiao J, Li L, Zhou Y, Lu L, Zhang C, Cheng Y. A prediction model based on high serum SH2B1 in patients with non-small cell lung cancer. Asian J Surg 2024:S1015-9584(24)01462-3. [PMID: 39054150 DOI: 10.1016/j.asjsur.2024.07.092] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/25/2024] [Revised: 05/09/2024] [Accepted: 07/05/2024] [Indexed: 07/27/2024] Open
Abstract
BACKGROUND Identifying a specific biomarker will facilitate the diagnosis and prediction of non-small cell lung cancer (NSCLC). The aim of this study was to investigate the serum SH2B1 in patients with NSCLC and healthy volunteers and establish a novel prediction model. METHODS A total 103 NSCLC patients and 108 healthy volunteers were selected from December 2019 to December 2020. Their serum and important clinical data were collected. Serum SH2B1 concentration was determined by ELISA. A novel prediction model for NSCLC was established according to these significant factors. RESULTS Multivariate logistic regression analysis indicated that the chronic pulmonary diseases; NLR ≥ 2.07; hemoglobin level ≥ 136.56 g/L; albumin level ≥ 42.59 g/L and serum SH2B1 concentration ≥615.28 pg/mL were considered as statistically significant difference (p < 0.05). A comprehensive nomogram was established based on serum SH2B1 concentration combined with significant clinical indicators to predict an individual's probability of NSCLC. CONCLUSION The serum SH2B1 concentration ≥ 615.28 pg/mL is a significant predictive factor for NSCLC. Significantly, the prediction model based on serum SH2B1 has good stability and accuracy, which provides new insights of prediction assessment for NSCLC.
Collapse
Affiliation(s)
- Hang Lin
- Department of Thoracic Surgery, Xiangya Hospital, Central South University, Changsha, China; Department of Oncology, NHC Key Laboratory of Cancer Proteomics, Laboratory of Structural Biology, Xiangya Hospital, Central South University, Changsha, China
| | - Jiangnan Qiao
- Emergency Department, Zhungeer Banner Dalu Hospital, Erdos, China
| | - Linfeng Li
- Department of Thoracic Surgery, Xiangya Hospital, Central South University, Changsha, China; Xiangya Lung Cancer Center, Xiangya Hospital, Central South University, Changsha, China; Human Engineering Research Center for Pulmonary Nodules Precise Diagnosis and Treatment, Xiangya Hospital, Central South University, Changsha, China; National Clinical Research Center for Geriatric Disorders, Xiangya Hospital, Central South University, Changsha, China
| | - Yuxuan Zhou
- Department of Thoracic Surgery, Xiangya Hospital, Central South University, Changsha, China
| | - Liqing Lu
- Department of Thoracic Surgery, Xiangya Hospital, Central South University, Changsha, China; Xiangya Lung Cancer Center, Xiangya Hospital, Central South University, Changsha, China; Human Engineering Research Center for Pulmonary Nodules Precise Diagnosis and Treatment, Xiangya Hospital, Central South University, Changsha, China; National Clinical Research Center for Geriatric Disorders, Xiangya Hospital, Central South University, Changsha, China
| | - Chunfang Zhang
- Department of Thoracic Surgery, Xiangya Hospital, Central South University, Changsha, China; Xiangya Lung Cancer Center, Xiangya Hospital, Central South University, Changsha, China; Human Engineering Research Center for Pulmonary Nodules Precise Diagnosis and Treatment, Xiangya Hospital, Central South University, Changsha, China; National Clinical Research Center for Geriatric Disorders, Xiangya Hospital, Central South University, Changsha, China
| | - Yuanda Cheng
- Department of Thoracic Surgery, Xiangya Hospital, Central South University, Changsha, China; Xiangya Lung Cancer Center, Xiangya Hospital, Central South University, Changsha, China; Human Engineering Research Center for Pulmonary Nodules Precise Diagnosis and Treatment, Xiangya Hospital, Central South University, Changsha, China; National Clinical Research Center for Geriatric Disorders, Xiangya Hospital, Central South University, Changsha, China.
| |
Collapse
|
8
|
Huang T, Zhang X, Li Q, Li X, Yao J, Song J, Chen Y, Ye L, Li C, Xiran P, Wen Y. The Association between Obesity Susceptibility and Polymorphisms of MC4R, SH2B1, and NEGR1 in Tibetans. Genet Test Mol Biomarkers 2024; 28:267-274. [PMID: 39034913 DOI: 10.1089/gtmb.2023.0546] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 07/23/2024] Open
Abstract
Background: A high-altitude environment has inhibitory effects on obesity. Tibetans are not a high-risk population for obesity, but there are still obese individuals within that population. Obesity has become a worldwide health problem, and previous studies have found that obesity is closely associated with hereditary factors. Few studies have investigated obesity in Tibetans, and the association between gene polymorphisms and obesity in Tibetans remains unclear. Methods: Our study investigated the fat mass of 140 native Tibetan individuals (70 men and 70 women) from Lhasa and analyzed the associations between polymorphisms of melanocortin 4 receptor (MC4R), Src homology 2B adapter protein 1 (SH2B1), and neuronal growth regulator 1 (NEGR1) and obesity. Result: Among Tibetan individuals, there were differences in genotype and allele frequencies between those in the obesity group and those in the healthy group at MC4R (rs17782313) and SH2B1 (rs7359397). The polymorphisms of MC4R (rs17782313) were associated with fat mass and obesity in Tibetan men and women, and there was an association between SH2B1 (rs7359397) polymorphisms and fat mass and obesity in Tibetan men. However, polymorphisms of NEGR1 (rs3101336) were not associated with fat mass or obesity in Tibetan individuals. Conclusion: Among Tibetan individuals, polymorphisms of MC4R (rs17782313) and SH2B1 (rs7359397) were associated with obesity, but NEGR1 (rs3101336) polymorphisms were not associated with obesity.
Collapse
Affiliation(s)
- Ting Huang
- Institute of Biological Anthropology, Jinzhou Medical University, Jinzhou, China
| | - Xianpeng Zhang
- Institute of Biological Anthropology, Jinzhou Medical University, Jinzhou, China
| | - Qiang Li
- Institute of Biological Anthropology, Jinzhou Medical University, Jinzhou, China
- Department of Anatomy, Wuwei Occupational College, Wuwei, China
| | - Xin Li
- Institute of Biological Anthropology, Jinzhou Medical University, Jinzhou, China
| | - Jie Yao
- Institute of Biological Anthropology, Jinzhou Medical University, Jinzhou, China
| | - Jia Song
- Institute of Biological Anthropology, Jinzhou Medical University, Jinzhou, China
| | - Ying Chen
- Institute of Biological Anthropology, Jinzhou Medical University, Jinzhou, China
| | - Liping Ye
- Department of Radiology, Nagqu District People's Hospital, Nagqu, China
| | - Chunshan Li
- Department of Radiology, Nagqu District People's Hospital, Nagqu, China
| | - Pingcuo Xiran
- Maternal and Children Health Care Hospital of Ali District, Ali, China
| | - Youfeng Wen
- Institute of Biological Anthropology, Jinzhou Medical University, Jinzhou, China
| |
Collapse
|
9
|
Carter-Su C, Argetsinger LS, Svezhova N. 2022 Cannon lecture: an ode to signal transduction: how the growth hormone pathway revealed insight into height, malignancy, and obesity. Am J Physiol Endocrinol Metab 2023; 325:E425-E437. [PMID: 37672248 PMCID: PMC10874654 DOI: 10.1152/ajpendo.00265.2023] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/21/2023] [Accepted: 08/21/2023] [Indexed: 09/07/2023]
Abstract
Walter Cannon was a highly regarded American neurologist and physiologist with extremely broad interests. In the tradition of Cannon and his broad interests, we discuss our laboratory's multifaceted work in signal transduction over the past 40+ years. We show how our questioning of how growth hormone (GH) in the blood communicates with cells throughout the body to promote body growth and regulate body metabolism led to insight into not only body height but also important regulators of malignancy and body weight. Highlights include finding that 1) A critical initiating step in GH signal transduction is GH activating the GH receptor-associated tyrosine kinase JAK2; 2) GH activation of JAK2 leads to activation of a number of signaling proteins, including STAT transcription factors; 3) JAK2 is autophosphorylated on multiple tyrosines that regulate the activity of JAK2 and recruit signaling proteins to GH/GH receptor/JAK2 complexes; 4) Constitutively activated STAT proteins are associated with cancer; 5) GH activation of JAK2 recruits the adapter protein SH2B1 to GH/GH receptor/JAK2 complexes where it facilitates GH regulation of the actin cytoskeleton and motility; and 6) SH2B1 is recruited to other receptors in the brain, where it enhances satiety, most likely in part by regulating leptin action and neuronal connections of appetite-regulating neurons. These findings have led to increased understanding of how GH functions, as well as therapeutic interventions for certain cancer and obese individuals, thereby reinforcing the great importance of supporting basic research since one never knows ahead of time what important insight it can provide.
Collapse
Affiliation(s)
- Christin Carter-Su
- University of Michigan Medical School, Ann Arbor, Michigan, United States
| | | | - Nadezhda Svezhova
- University of Michigan Medical School, Ann Arbor, Michigan, United States
| |
Collapse
|
10
|
Hanssen R, Auwerx C, Jõeloo M, Sadler MC, Henning E, Keogh J, Bounds R, Smith M, Firth HV, Kutalik Z, Farooqi IS, Reymond A, Lawler K. Chromosomal deletions on 16p11.2 encompassing SH2B1 are associated with accelerated metabolic disease. Cell Rep Med 2023; 4:101155. [PMID: 37586323 PMCID: PMC10439272 DOI: 10.1016/j.xcrm.2023.101155] [Citation(s) in RCA: 15] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/21/2023] [Revised: 06/08/2023] [Accepted: 07/18/2023] [Indexed: 08/18/2023]
Abstract
New approaches are needed to treat people whose obesity and type 2 diabetes (T2D) are driven by specific mechanisms. We investigate a deletion on chromosome 16p11.2 (breakpoint 2-3 [BP2-3]) encompassing SH2B1, a mediator of leptin and insulin signaling. Phenome-wide association scans in the UK (N = 502,399) and Estonian (N = 208,360) biobanks show that deletion carriers have increased body mass index (BMI; p = 1.3 × 10-10) and increased rates of T2D. Compared with BMI-matched controls, deletion carriers have an earlier onset of T2D, with poorer glycemic control despite higher medication usage. Cystatin C, a biomarker of kidney function, is significantly elevated in deletion carriers, suggesting increased risk of renal impairment. In a Mendelian randomization study, decreased SH2B1 expression increases T2D risk (p = 8.1 × 10-6). We conclude that people with 16p11.2 BP2-3 deletions have early, complex obesity and T2D and may benefit from therapies that enhance leptin and insulin signaling.
Collapse
Affiliation(s)
- Ruth Hanssen
- University of Cambridge Metabolic Research Laboratories, Wellcome-MRC Institute of Metabolic Science and NIHR Cambridge Biomedical Research Centre, Addenbrooke's Hospital, Cambridge CB2 0QQ, UK
| | - Chiara Auwerx
- Center for Integrative Genomics, University of Lausanne, 1015 Lausanne, Switzerland; Department of Computational Biology, University of Lausanne, 1015 Lausanne, Switzerland; Swiss Institute of Bioinformatics, 1015 Lausanne, Switzerland; University Center for Primary Care and Public Health, 1010 Lausanne, Switzerland
| | - Maarja Jõeloo
- Institute of Molecular and Cell Biology, University of Tartu, 51010 Tartu, Estonia; Estonian Genome Centre, Institute of Genomics, University of Tartu, 51010 Tartu, Estonia
| | - Marie C Sadler
- Department of Computational Biology, University of Lausanne, 1015 Lausanne, Switzerland; Swiss Institute of Bioinformatics, 1015 Lausanne, Switzerland; University Center for Primary Care and Public Health, 1010 Lausanne, Switzerland
| | - Elana Henning
- University of Cambridge Metabolic Research Laboratories, Wellcome-MRC Institute of Metabolic Science and NIHR Cambridge Biomedical Research Centre, Addenbrooke's Hospital, Cambridge CB2 0QQ, UK
| | - Julia Keogh
- University of Cambridge Metabolic Research Laboratories, Wellcome-MRC Institute of Metabolic Science and NIHR Cambridge Biomedical Research Centre, Addenbrooke's Hospital, Cambridge CB2 0QQ, UK
| | - Rebecca Bounds
- University of Cambridge Metabolic Research Laboratories, Wellcome-MRC Institute of Metabolic Science and NIHR Cambridge Biomedical Research Centre, Addenbrooke's Hospital, Cambridge CB2 0QQ, UK
| | - Miriam Smith
- University of Cambridge Metabolic Research Laboratories, Wellcome-MRC Institute of Metabolic Science and NIHR Cambridge Biomedical Research Centre, Addenbrooke's Hospital, Cambridge CB2 0QQ, UK
| | - Helen V Firth
- Department of Clinical Genetics, Cambridge University Hospitals NHS Foundation Trust & Wellcome Sanger Institute, Cambridge, UK
| | - Zoltán Kutalik
- Department of Computational Biology, University of Lausanne, 1015 Lausanne, Switzerland; Swiss Institute of Bioinformatics, 1015 Lausanne, Switzerland; University Center for Primary Care and Public Health, 1010 Lausanne, Switzerland
| | - I Sadaf Farooqi
- University of Cambridge Metabolic Research Laboratories, Wellcome-MRC Institute of Metabolic Science and NIHR Cambridge Biomedical Research Centre, Addenbrooke's Hospital, Cambridge CB2 0QQ, UK.
| | - Alexandre Reymond
- Center for Integrative Genomics, University of Lausanne, 1015 Lausanne, Switzerland.
| | - Katherine Lawler
- University of Cambridge Metabolic Research Laboratories, Wellcome-MRC Institute of Metabolic Science and NIHR Cambridge Biomedical Research Centre, Addenbrooke's Hospital, Cambridge CB2 0QQ, UK.
| |
Collapse
|
11
|
Becetti I, Bwenyi EL, de Araujo IE, Ard J, Cryan JF, Farooqi IS, Ferrario CR, Gluck ME, Holsen LM, Kenny PJ, Lawson EA, Lowell BB, Schur EA, Stanley TL, Tavakkoli A, Grinspoon SK, Singhal V. The Neurobiology of Eating Behavior in Obesity: Mechanisms and Therapeutic Targets: A Report from the 23rd Annual Harvard Nutrition Obesity Symposium. Am J Clin Nutr 2023; 118:314-328. [PMID: 37149092 PMCID: PMC10375463 DOI: 10.1016/j.ajcnut.2023.05.003] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/23/2022] [Revised: 04/03/2023] [Accepted: 05/01/2023] [Indexed: 05/08/2023] Open
Abstract
Obesity is increasing at an alarming rate. The effectiveness of currently available strategies for the treatment of obesity (including pharmacologic, surgical, and behavioral interventions) is limited. Understanding the neurobiology of appetite and the important drivers of energy intake (EI) can lead to the development of more effective strategies for the prevention and treatment of obesity. Appetite regulation is complex and is influenced by genetic, social, and environmental factors. It is intricately regulated by a complex interplay of endocrine, gastrointestinal, and neural systems. Hormonal and neural signals generated in response to the energy state of the organism and the quality of food eaten are communicated by paracrine, endocrine, and gastrointestinal signals to the nervous system. The central nervous system integrates homeostatic and hedonic signals to regulate appetite. Although there has been an enormous amount of research over many decades regarding the regulation of EI and body weight, research is only now yielding potentially effective treatment strategies for obesity. The purpose of this article is to summarize the key findings presented in June 2022 at the 23rd annual Harvard Nutrition Obesity Symposium entitled "The Neurobiology of Eating Behavior in Obesity: Mechanisms and Therapeutic Targets." Findings presented at the symposium, sponsored by NIH P30 Nutrition Obesity Research Center at Harvard, enhance our current understanding of appetite biology, including innovative techniques used to assess and systematically manipulate critical hedonic processes, which will shape future research and the development of therapeutics for obesity prevention and treatment.
Collapse
Affiliation(s)
- Imen Becetti
- Division of Pediatric Endocrinology, Massachusetts General Hospital for Children and Harvard Medical School, Boston, MA, United States.
| | - Esther L Bwenyi
- Metabolism Unit, Massachusetts General Hospital, Boston, MA, United States; Nutrition Obesity Research Center at Harvard Medical School, Massachusetts General Hospital, Boston, MA, United States
| | - Ivan E de Araujo
- Nash Family Department of Neuroscience, Icahn School of Medicine at Mount Sinai, New York City, NY, United States; Diabetes, Obesity, and Metabolism Institute, Icahn School of Medicine at Mount Sinai, New York City, NY, United States
| | - Jamy Ard
- Epidemiology and Prevention, Wake Forest University School of Medicine, Winston-Salem, NC, United States; Bariatric and Weight Management Center, Wake Forest Baptist Health, Winston-Salem, NC, United States; Center on Diabetes, Obesity, and Metabolism, Wake Forest University School of Medicine, Winston-Salem, NC, United States; Sticht Center for Healthy Aging and Alzheimer's Prevention, Wake Forest University School of Medicine, Winston-Salem, NC, United States; Hypertension and Vascular Research Center, Cardiovascular Sciences Center, Wake Forest University School of Medicine, Winston-Salem, NC, United States; Maya Angelou Center for Healthy Equity, Wake Forest University School of Medicine, Winston-Salem, NC, United States
| | - John F Cryan
- Department of Anatomy and Neuroscience, University College Cork, Cork, Ireland; APC Microbiome Ireland, University College Cork, Cork, Ireland
| | - Ismaa Sadaf Farooqi
- University of Cambridge Metabolic Research Laboratories and National Institute for Health and Care Research (NIHR) Cambridge Biomedical Research Centre, University of Cambridge, Cambridge, United Kingdom; Wellcome-Medical Research Council (MRC) Institute of Metabolic Science, University of Cambridge, Cambridge, United Kingdom; Addenbrooke's Hospital, Cambridge University Hospitals, Cambridge, United Kingdom
| | - Carrie R Ferrario
- Department of Pharmacology, Psychology Department (Biopsychology Area), University of Michigan, Ann Arbor, MI, United States
| | - Marci E Gluck
- National Institutes of Health, Phoenix, AZ, United States; National Institute of Diabetes and Digestive and Kidney Disease, Obesity and Diabetes Clinical Research Section, Phoenix Epidemiology and Clinical Research Branch, Phoenix, AZ, United States
| | - Laura M Holsen
- Harvard Medical School, Boston, MA, United States; Division of Women's Health, Department of Medicine, Brigham and Women's Hospital, Boston, MA, United States; Department of Psychiatry, Brigham and Women's Hospital, Boston, MA, United States
| | - Paul J Kenny
- Nash Family Department of Neuroscience, Icahn School of Medicine at Mount Sinai, New York City, NY, United States; Diabetes, Obesity, and Metabolism Institute, Icahn School of Medicine at Mount Sinai, New York City, NY, United States
| | - Elizabeth A Lawson
- Nutrition Obesity Research Center at Harvard Medical School, Massachusetts General Hospital, Boston, MA, United States; Department of Medicine, Harvard Medical School, Boston, MA, United States; Neuroendocrine Unit, Massachusetts General Hospital, Boston, MA, United States
| | - Bradford B Lowell
- Department of Medicine, Division of Endocrinology, Diabetes and Metabolism, Beth Israel Deaconess Medical Center and Harvard Medical School, Boston, MA, United States
| | - Ellen A Schur
- Division of General Internal Medicine, University of Washington, Seattle, WA, United States; Univeristy of Washington Medicine Diabetes Institute, University of Washington, Seattle, WA, United States; Univeristy of Washington Nutrition and Obesity Research Center, University of Washington, Seattle, WA, United States; Clinical and Translational Research Services Core, University of Washington, Seattle, WA, United States
| | - Takara L Stanley
- Division of Pediatric Endocrinology, Massachusetts General Hospital for Children and Harvard Medical School, Boston, MA, United States; Metabolism Unit, Massachusetts General Hospital, Boston, MA, United States; Nutrition Obesity Research Center at Harvard Medical School, Massachusetts General Hospital, Boston, MA, United States; Harvard Medical School, Boston, MA, United States
| | - Ali Tavakkoli
- Division of General and Gastrointestinal (GI) Surgery, Center for Weight Management and Wellness, Advanced Minimally Invasive Fellowship, Harvard Medical School, Boston, MA, United States
| | - Steven K Grinspoon
- Metabolism Unit, Massachusetts General Hospital, Boston, MA, United States; Nutrition Obesity Research Center at Harvard Medical School, Massachusetts General Hospital, Boston, MA, United States; Harvard Medical School, Boston, MA, United States; Department of Medicine, Harvard Medical School, Boston, MA, United States
| | - Vibha Singhal
- Division of Pediatric Endocrinology, Massachusetts General Hospital for Children and Harvard Medical School, Boston, MA, United States; Harvard Medical School, Boston, MA, United States; Pediatric Endocrinology and Obesity Medicine, Massachusetts General Hospital, Boston, MA, United States; Pediatric Program MGH Weight Center, Massachusetts General Hospital, Boston, MA, United States
| |
Collapse
|
12
|
Argetsinger LS, Flores A, Svezhova N, Ellis M, Reynolds C, Cote JL, Cline JM, Myers MG, Carter-Su C. Role of the Beta and Gamma Isoforms of the Adapter Protein SH2B1 in Regulating Energy Balance. Endocrinology 2023; 164:bqad032. [PMID: 36799031 PMCID: PMC10282918 DOI: 10.1210/endocr/bqad032] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/05/2023] [Revised: 02/03/2023] [Accepted: 02/15/2023] [Indexed: 02/18/2023]
Abstract
Human variants of the adapter protein SH2B1 are associated with severe childhood obesity, hyperphagia, and insulin resistance-phenotypes mimicked by mice lacking Sh2b1. SH2B1β and γ isoforms are expressed ubiquitously, whereas SH2B1α and δ isoforms are expressed primarily in the brain. Restoring SH2B1β driven by the neuron-specific enolase promoter largely reverses the metabolic phenotype of Sh2b1-null mice, suggesting crucial roles for neuronal SH2B1β in energy balance control. Here we test this hypothesis by using CRISPR/Cas9 gene editing to delete the β and γ isoforms from the neurons of mice (SH2B1βγ neuron-specific knockout [NKO] mice) or throughout the body (SH2B1βγ knockout [KO] mice). While parameters of energy balance were normal in both male and female SH2B1βγ NKO mice, food intake, body weight, and adiposity were increased in male (but not female) SH2B1βγ KO mice. Analysis of long-read single-cell RNA seq data from wild-type mouse brain revealed that neurons express almost exclusively the α and δ isoforms, whereas neuroglial cells express almost exclusively the β and γ isoforms. Our work suggests that neuronal SH2B1β and γ are not primary regulators of energy balance. Rather, non-neuronal SH2B1β and γ in combination with neuronal SH2B1α and δ suffice for body weight maintenance. While SH2B1β/γ and SH2B1α/δ share some functionality, SH2B1β/γ appears to play a larger role in promoting leanness.
Collapse
Affiliation(s)
- Lawrence S Argetsinger
- Department of Molecular and Integrative Physiology, University of Michigan Medical School, Ann Arbor, MI, 48109, USA
| | - Anabel Flores
- Department of Molecular and Integrative Physiology, University of Michigan Medical School, Ann Arbor, MI, 48109, USA
| | - Nadezhda Svezhova
- Department of Molecular and Integrative Physiology, University of Michigan Medical School, Ann Arbor, MI, 48109, USA
| | - Michael Ellis
- Department of Molecular and Integrative Physiology, University of Michigan Medical School, Ann Arbor, MI, 48109, USA
| | - Caitlin Reynolds
- Department of Molecular and Integrative Physiology, University of Michigan Medical School, Ann Arbor, MI, 48109, USA
| | - Jessica L Cote
- Department of Molecular and Integrative Physiology, University of Michigan Medical School, Ann Arbor, MI, 48109, USA
- Neuroscience Graduate Program, University of Michigan, Ann Arbor, MI, 48109, USA
| | - Joel M Cline
- Department of Molecular and Integrative Physiology, University of Michigan Medical School, Ann Arbor, MI, 48109, USA
| | - Martin G Myers
- Department of Molecular and Integrative Physiology, University of Michigan Medical School, Ann Arbor, MI, 48109, USA
- Neuroscience Graduate Program, University of Michigan, Ann Arbor, MI, 48109, USA
- Department of Internal Medicine, University of Michigan Medical School, Ann Arbor, MI, 48109, USA
| | - Christin Carter-Su
- Department of Molecular and Integrative Physiology, University of Michigan Medical School, Ann Arbor, MI, 48109, USA
- Neuroscience Graduate Program, University of Michigan, Ann Arbor, MI, 48109, USA
- Department of Internal Medicine, University of Michigan Medical School, Ann Arbor, MI, 48109, USA
| |
Collapse
|
13
|
SH2B1 variants as potential causes of non-syndromic monogenic obesity in a Brazilian cohort. Eat Weight Disord 2022; 27:3665-3674. [PMID: 36436143 DOI: 10.1007/s40519-022-01506-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/02/2022] [Accepted: 10/29/2022] [Indexed: 11/28/2022] Open
Abstract
PURPOSE SH2B1 gene encodes an important adaptor protein to receptor tyrosine kinases or cytokine receptors associated with Janus kinases. This gene has been associated with the structural and functional modulation of neurons and other cells, and impacts on energy and glucose homeostasis. Several studies suggested that alterations in this gene are strong candidates for the development of obesity. However, only a few studies have screened SH2B1 point variants in individuals with obesity. Therefore, the aim of this study was to investigate the prevalence of SH2B1 variants in a Brazilian cohort of patients with severe obesity and candidates to bariatric surgery. METHODS The cohort comprised 122 individuals with severe obesity, who developed this phenotype during childhood. As controls, 100 normal-weight individuals were included. The coding region of SH2B1 gene was screened by Sanger sequencing. RESULTS A total of eight variants were identified in SH2B1, of which p.(Val345Met) and p.(Arg630Gln) variants were rare and predicted as potentially pathogenic by the in the silico algorithms used in this study. The p.(Val345Met) was not found in either the control group or in publicly available databases. This variant was identified in a female patient with severe obesity, metabolic syndrome and hyperglycemia. The p.(Arg630Gln) was also absent in our control group, but it was reported in gnomAD with an extremely low frequency. This variant was observed in a female patient with morbid obesity, metabolic syndrome, hypertension and severe binge-eating disorder. CONCLUSION Our study reported for the first time two rare and potentially pathogenic variants in Brazilian patients with severe obesity. Further functional studies will be necessary to confirm and elucidate the impact of these variants on SH2B1 protein function and stability, and their impact on energetic metabolism. LEVEL OF EVIDENCE Level V, cross-sectional descriptive study.
Collapse
|
14
|
Giannopoulou EZ, Zorn S, Schirmer M, Herrmann G, Heger S, Reinehr T, Denzer C, Rabenstein H, Hillmer M, Sowada N, Siebert R, von Schnurbein J, Wabitsch M. Genetic Obesity in Children: Overview of Possible Diagnoses with a Focus on SH2B1 Deletion. Horm Res Paediatr 2022; 95:137-148. [PMID: 34689140 DOI: 10.1159/000520402] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/29/2021] [Accepted: 10/21/2021] [Indexed: 11/19/2022] Open
Abstract
INTRODUCTION Genetic obesity is rare and quite challenging for pediatricians in terms of early identification. Src-homology-2 (SH2) B adapter protein 1 (SH2B1) is an important component in the leptin-melanocortin pathway and is found to play an important role in leptin and insulin signaling and therefore in the pathogenesis of obesity and diabetes. Microdeletions in chromosome 16p11.2, encompassing the SH2B1 gene, are known to be associated with obesity, insulin resistance, hyperphagia, and developmental delay. The aim of our study is to report on a case series of young individuals with 16p11.2 microdeletions, including the SH2B1 gene, and provide detailed information on body mass index (BMI) development and obesity-associated comorbidities. In this way, we want to raise awareness of this syndromic form of obesity as a differential diagnosis of genetic obesity. METHODS We describe the phenotype of 7 children (3 male; age range: 2.8-18.0 years) with 16p11.2 microdeletions, encompassing the SH2B1 gene, and present their BMI trajectories from birth onward. Screening for obesity-associated comorbidities was performed at the time of genetic diagnosis. RESULTS All children presented with severe, early-onset obesity already at the age of 5 years combined with variable developmental delay. Five patients presented with elevated fasting insulin levels, 1 patient developed diabetes mellitus type 2, 4 patients had dyslipidemia, and 4 developed nonalcoholic fatty-liver disease. DISCUSSION/CONCLUSION Chromosomal microdeletions in 16p11.2, including the SH2B1 gene, in children are associated with severe, early-onset obesity and comorbidities associated with insulin resistance. Early genetic testing in suspicious patients and early screening for comorbidities are recommended.
Collapse
Affiliation(s)
- Eleni Z Giannopoulou
- Division of Pediatric Endocrinology and Diabetes, Department of Pediatrics and Adolescent Medicine, University Medical Center Ulm, Ulm, Germany
| | - Stefanie Zorn
- Division of Pediatric Endocrinology and Diabetes, Department of Pediatrics and Adolescent Medicine, University Medical Center Ulm, Ulm, Germany
| | - Melanie Schirmer
- Division of Pediatric Endocrinology and Diabetes, Department of Pediatrics and Adolescent Medicine, University Medical Center Ulm, Ulm, Germany
| | - Gloria Herrmann
- Division of Pediatric Endocrinology and Diabetes, Department of Pediatrics and Adolescent Medicine, University Medical Center Ulm, Ulm, Germany
| | - Sabine Heger
- Department of Pediatric Endocrinology, Children's Hospital Auf der Bult, Hannover, Germany
| | - Thomas Reinehr
- Department of Pediatric Endocrinology, Diabetes and Nutrition Medicine, Vestische Hospital for Children and Adolescents Datteln, University of Witten/Herdecke, Datteln, Germany
| | - Christian Denzer
- Division of Pediatric Endocrinology and Diabetes, Department of Pediatrics and Adolescent Medicine, University Medical Center Ulm, Ulm, Germany
| | - Hannah Rabenstein
- Institute of Human Genetics, Ulm University & Ulm University Medical Center, Ulm, Germany
| | - Morten Hillmer
- Institute of Human Genetics, Ulm University & Ulm University Medical Center, Ulm, Germany
| | - Nadine Sowada
- Institute of Human Genetics, Ulm University & Ulm University Medical Center, Ulm, Germany
| | - Reiner Siebert
- Institute of Human Genetics, Ulm University & Ulm University Medical Center, Ulm, Germany
| | - Julia von Schnurbein
- Division of Pediatric Endocrinology and Diabetes, Department of Pediatrics and Adolescent Medicine, University Medical Center Ulm, Ulm, Germany
| | - Martin Wabitsch
- Division of Pediatric Endocrinology and Diabetes, Department of Pediatrics and Adolescent Medicine, University Medical Center Ulm, Ulm, Germany
| |
Collapse
|
15
|
Farooqi IS. Monogenic Obesity Syndromes Provide Insights Into the Hypothalamic Regulation of Appetite and Associated Behaviors. Biol Psychiatry 2022; 91:856-859. [PMID: 35369984 DOI: 10.1016/j.biopsych.2022.01.018] [Citation(s) in RCA: 18] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/08/2021] [Revised: 01/11/2022] [Accepted: 01/30/2022] [Indexed: 11/17/2022]
Abstract
Neuronal circuits within the hypothalamus play a critical role in the homeostatic regulation of body weight. By disrupting the development or function of these circuits, human monogenic disorders cause hyperphagia (increased food intake), neuroendocrine abnormalities, impaired sympathetic nervous system activation, and obesity. Some genetic disorders also cause maladaptive behaviors such as anxiety, autism, emotional lability, and aggression, highlighting the role of the specific molecules expressed by these hypothalamic neurons in the regulation of innate behaviors that are essential to survival. These findings inform understanding of a wide range of clinical disorders and highlight the challenges associated with targeting these hypothalamic pathways for weight loss therapy.
Collapse
Affiliation(s)
- I Sadaf Farooqi
- Wellcome-MRC Institute of Metabolic Science, Addenbrooke's Hospital, Cambridge, United Kingdom.
| |
Collapse
|
16
|
Nutrient-Response Pathways in Healthspan and Lifespan Regulation. Cells 2022; 11:cells11091568. [PMID: 35563873 PMCID: PMC9102925 DOI: 10.3390/cells11091568] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/23/2022] [Revised: 05/02/2022] [Accepted: 05/05/2022] [Indexed: 02/01/2023] Open
Abstract
Cellular, small invertebrate and vertebrate models are a driving force in biogerontology studies. Using various models, such as yeasts, appropriate tissue culture cells, Drosophila, the nematode Caenorhabditis elegans and the mouse, has tremendously increased our knowledge around the relationship between diet, nutrient-response signaling pathways and lifespan regulation. In recent years, combinatorial drug treatments combined with mutagenesis, high-throughput screens, as well as multi-omics approaches, have provided unprecedented insights in cellular metabolism, development, differentiation, and aging. Scientists are, therefore, moving towards characterizing the fine architecture and cross-talks of growth and stress pathways towards identifying possible interventions that could lead to healthy aging and the amelioration of age-related diseases in humans. In this short review, we briefly examine recently uncovered knowledge around nutrient-response pathways, such as the Insulin Growth Factor (IGF) and the mechanistic Target of Rapamycin signaling pathways, as well as specific GWAS and some EWAS studies on lifespan and age-related disease that have enhanced our current understanding within the aging and biogerontology fields. We discuss what is learned from the rich and diverse generated data, as well as challenges and next frontiers in these scientific disciplines.
Collapse
|
17
|
Cote JL, Vander PB, Ellis M, Cline JM, Svezhova N, Doche ME, Maures TJ, Choudhury TA, Kong S, Klaft OGJ, Joe RM, Argetsinger LS, Carter-Su C. The nucleolar δ isoform of adapter protein SH2B1 enhances morphological complexity and function of cultured neurons. J Cell Sci 2022; 135:jcs259179. [PMID: 35019135 PMCID: PMC8918807 DOI: 10.1242/jcs.259179] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/28/2021] [Accepted: 12/22/2021] [Indexed: 11/20/2022] Open
Abstract
The adapter protein SH2B1 is recruited to neurotrophin receptors, including TrkB (also known as NTRK2), the receptor for brain-derived neurotrophic factor (BDNF). Herein, we demonstrate that the four alternatively spliced isoforms of SH2B1 (SH2B1α-SH2B1δ) are important determinants of neuronal architecture and neurotrophin-induced gene expression. Primary hippocampal neurons from Sh2b1-/- [knockout (KO)] mice exhibit decreased neurite complexity and length, and BDNF-induced expression of the synapse-related immediate early genes Egr1 and Arc. Reintroduction of each SH2B1 isoform into KO neurons increases neurite complexity; the brain-specific δ isoform also increases total neurite length. Human obesity-associated variants, when expressed in SH2B1δ, alter neurite complexity, suggesting that a decrease or increase in neurite branching may have deleterious effects that contribute to the severe childhood obesity and neurobehavioral abnormalities associated with these variants. Surprisingly, in contrast to SH2B1α, SH2B1β and SH2B1γ, which localize primarily in the cytoplasm and plasma membrane, SH2B1δ resides primarily in nucleoli. Some SH2B1δ is also present in the plasma membrane and nucleus. Nucleolar localization, driven by two highly basic regions unique to SH2B1δ, is required for SH2B1δ to maximally increase neurite complexity and BDNF-induced expression of Egr1, Arc and FosL1.
Collapse
Affiliation(s)
- Jessica L. Cote
- Department of Molecular and Integrative Physiology, University of Michigan Medical School, Ann Arbor, MI 48109, USA
- Neuroscience Graduate Program, University of Michigan Medical School, Ann Arbor, MI 48109, USA
| | - Paul B. Vander
- Department of Molecular and Integrative Physiology, University of Michigan Medical School, Ann Arbor, MI 48109, USA
| | - Michael Ellis
- Department of Molecular and Integrative Physiology, University of Michigan Medical School, Ann Arbor, MI 48109, USA
| | - Joel M. Cline
- Department of Molecular and Integrative Physiology, University of Michigan Medical School, Ann Arbor, MI 48109, USA
| | - Nadezhda Svezhova
- Department of Molecular and Integrative Physiology, University of Michigan Medical School, Ann Arbor, MI 48109, USA
| | - Michael E. Doche
- Department of Molecular and Integrative Physiology, University of Michigan Medical School, Ann Arbor, MI 48109, USA
| | - Travis J. Maures
- Department of Molecular and Integrative Physiology, University of Michigan Medical School, Ann Arbor, MI 48109, USA
| | - Tahrim A. Choudhury
- Department of Molecular and Integrative Physiology, University of Michigan Medical School, Ann Arbor, MI 48109, USA
| | - Seongbae Kong
- Department of Molecular and Integrative Physiology, University of Michigan Medical School, Ann Arbor, MI 48109, USA
| | - Olivia G. J. Klaft
- Department of Molecular and Integrative Physiology, University of Michigan Medical School, Ann Arbor, MI 48109, USA
| | - Ray M. Joe
- Department of Molecular and Integrative Physiology, University of Michigan Medical School, Ann Arbor, MI 48109, USA
| | - Lawrence S. Argetsinger
- Department of Molecular and Integrative Physiology, University of Michigan Medical School, Ann Arbor, MI 48109, USA
| | - Christin Carter-Su
- Department of Molecular and Integrative Physiology, University of Michigan Medical School, Ann Arbor, MI 48109, USA
- Neuroscience Graduate Program, University of Michigan Medical School, Ann Arbor, MI 48109, USA
- Department of Internal Medicine, University of Michigan Medical School, Ann Arbor, MI 48109, USA
| |
Collapse
|
18
|
Cote JL, Argetsinger LS, Flores A, Rupp AC, Cline JM, DeSantis LC, Bedard AH, Bagchi DP, Vander PB, Cacciaglia AM, Clutter ES, Chandrashekar G, MacDougald OA, Myers MG, Carter-Su C. Deletion of the Brain-Specific α and δ Isoforms of Adapter Protein SH2B1 Protects Mice From Obesity. Diabetes 2021; 70:400-414. [PMID: 33214137 PMCID: PMC7881872 DOI: 10.2337/db20-0687] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/30/2020] [Accepted: 11/12/2020] [Indexed: 11/13/2022]
Abstract
Mice lacking SH2B1 and humans with variants of SH2B1 display severe obesity and insulin resistance. SH2B1 is an adapter protein that is recruited to the receptors of multiple hormones and neurotrophic factors. Of the four known alternatively spliced SH2B1 isoforms, SH2B1β and SH2B1γ exhibit ubiquitous expression, whereas SH2B1α and SH2B1δ are essentially restricted to the brain. To understand the roles for SH2B1α and SH2B1δ in energy balance and glucose metabolism, we generated mice lacking these brain-specific isoforms (αδ knockout [αδKO] mice). αδKO mice exhibit decreased food intake, protection from weight gain on standard and high-fat diets, and an adiposity-dependent improvement in glucose homeostasis. SH2B1 has been suggested to impact energy balance via the modulation of leptin action. However, αδKO mice exhibit leptin sensitivity that is similar to that of wild-type mice by multiple measures. Thus, decreasing the abundance of SH2B1α and/or SH2B1δ relative to the other SH2B1 isoforms likely shifts energy balance toward a lean phenotype via a primarily leptin-independent mechanism. Our findings suggest that the different alternatively spliced isoforms of SH2B1 perform different functions in vivo.
Collapse
Affiliation(s)
- Jessica L Cote
- Neuroscience Program, University of Michigan Medical School, Ann Arbor, MI
| | - Lawrence S Argetsinger
- Department of Molecular and Integrative Physiology, University of Michigan Medical School, Ann Arbor, MI
| | - Anabel Flores
- Cell and Molecular Biology Program, University of Michigan Medical School, Ann Arbor, MI
| | - Alan C Rupp
- Department of Internal Medicine, University of Michigan Medical School, Ann Arbor, MI
| | - Joel M Cline
- Department of Molecular and Integrative Physiology, University of Michigan Medical School, Ann Arbor, MI
| | - Lauren C DeSantis
- Department of Molecular and Integrative Physiology, University of Michigan Medical School, Ann Arbor, MI
| | - Alexander H Bedard
- Department of Molecular and Integrative Physiology, University of Michigan Medical School, Ann Arbor, MI
| | - Devika P Bagchi
- Department of Molecular and Integrative Physiology, University of Michigan Medical School, Ann Arbor, MI
| | - Paul B Vander
- Department of Molecular and Integrative Physiology, University of Michigan Medical School, Ann Arbor, MI
| | - Abrielle M Cacciaglia
- Department of Molecular and Integrative Physiology, University of Michigan Medical School, Ann Arbor, MI
| | - Erik S Clutter
- Department of Molecular and Integrative Physiology, University of Michigan Medical School, Ann Arbor, MI
| | - Gowri Chandrashekar
- Department of Molecular and Integrative Physiology, University of Michigan Medical School, Ann Arbor, MI
| | - Ormond A MacDougald
- Department of Molecular and Integrative Physiology, University of Michigan Medical School, Ann Arbor, MI
- Cell and Molecular Biology Program, University of Michigan Medical School, Ann Arbor, MI
- Department of Internal Medicine, University of Michigan Medical School, Ann Arbor, MI
| | - Martin G Myers
- Neuroscience Program, University of Michigan Medical School, Ann Arbor, MI
- Department of Molecular and Integrative Physiology, University of Michigan Medical School, Ann Arbor, MI
- Cell and Molecular Biology Program, University of Michigan Medical School, Ann Arbor, MI
- Department of Internal Medicine, University of Michigan Medical School, Ann Arbor, MI
| | - Christin Carter-Su
- Neuroscience Program, University of Michigan Medical School, Ann Arbor, MI
- Department of Molecular and Integrative Physiology, University of Michigan Medical School, Ann Arbor, MI
- Cell and Molecular Biology Program, University of Michigan Medical School, Ann Arbor, MI
- Department of Internal Medicine, University of Michigan Medical School, Ann Arbor, MI
| |
Collapse
|
19
|
Perez-Diaz-Del-Campo N, Marin-Alejandre BA, Cantero I, Monreal JI, Elorz M, Herrero JI, Benito-Boillos A, Riezu-Boj JI, Milagro FI, Tur JA, Martinez JA, Abete I, Zulet MA. Differential response to a 6-month energy-restricted treatment depending on SH2B1 rs7359397 variant in NAFLD subjects: Fatty Liver in Obesity (FLiO) Study. Eur J Nutr 2021; 60:3043-3057. [PMID: 33474638 DOI: 10.1007/s00394-020-02476-x] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/27/2020] [Accepted: 12/21/2020] [Indexed: 12/12/2022]
Abstract
PURPOSE Non-alcoholic fatty liver disease (NAFLD) is worldwide recognized as the most common cause of chronic liver disease. Current NAFLD clinical management relies on lifestyle change, nevertheless, the importance of the genetic make-up on liver damage and the possible interactions with diet are still poorly understood. The aim of the study was to evaluate the influence of the SH2B1 rs7359397 genetic variant on changes in body composition, metabolic status and liver health after 6-month energy-restricted treatment in overweight/obese subjects with NAFLD. In addition, gene-treatment interactions over the course of the intervention were examined. METHODS The SH2B1 genetic variant was genotyped in 86 overweight/obese subjects with NAFLD from the FLiO study (Fatty Liver in Obesity study). Subjects were metabolically evaluated at baseline and at 6-months. Liver assessment included ultrasonography, Magnetic Resonance Imaging, elastography, a lipidomic test (OWL®-test) and specific blood liver biomarkers. Additionally, body composition, general biochemical markers and dietary intake were determined. RESULTS Both genotypes significantly improved their body composition, general metabolic status and liver health after following an energy-restricted strategy. Liver imaging techniques showed a greater decrease in liver fat content (- 44.3%, p < 0.001) and in serum ferritin levels (p < 0.001) in the carriers of the T allele after the intervention. Moreover, lipidomic analysis, revealed a higher improvement in liver status when comparing risk vs. no-risk genotype (p = 0.006 vs. p = 0.926, respectively). Gene-treatment interactions showed an increase in fiber intake and omega-3 fatty acid in risk genotype (p interaction = 0.056 and p interaction = 0.053, respectively), while a significant increase in MedDiet score was observed in both genotype groups (p = 0.020). Moreover, no-risk genotype presented a relevant decrease in hepatic iron as well as in MUFA intake (p = 0.047 and p = 0.034, respectively). CONCLUSION Subjects carrying the T allele of the rs7359397 polymorphism may benefit more in terms of hepatic health and liver status when prescribed an energy-restricted treatment, where a Mediterranean dietary pattern rich in fiber and other components such as omega-3 fatty acids might boost the benefits. TRIAL REGISTRATION The Fatty Liver in Obesity was approved by the Research Ethics Committee of the University of Navarra and retrospectively registered (NCT03183193; www.clinicaltrials.gov ); June 2017.
Collapse
Affiliation(s)
- Nuria Perez-Diaz-Del-Campo
- Department of Nutrition, Food Sciences and Physiology, Faculty of Pharmacy and Nutrition, University of Navarra, 31008, Pamplona, Spain
- Centre for Nutrition Research, Faculty of Pharmacy and Nutrition, University of Navarra, 31008, Pamplona, Spain
| | - Bertha Araceli Marin-Alejandre
- Department of Nutrition, Food Sciences and Physiology, Faculty of Pharmacy and Nutrition, University of Navarra, 31008, Pamplona, Spain
- Centre for Nutrition Research, Faculty of Pharmacy and Nutrition, University of Navarra, 31008, Pamplona, Spain
| | - Irene Cantero
- Department of Nutrition, Food Sciences and Physiology, Faculty of Pharmacy and Nutrition, University of Navarra, 31008, Pamplona, Spain
- Centre for Nutrition Research, Faculty of Pharmacy and Nutrition, University of Navarra, 31008, Pamplona, Spain
| | - J Ignacio Monreal
- Navarra Institute for Health Research (IdiSNA), 31008, Pamplona, Spain
- Clinical Chemistry Department, Clínica Universidad de Navarra, 31008, Pamplona, Spain
| | - Mariana Elorz
- Navarra Institute for Health Research (IdiSNA), 31008, Pamplona, Spain
- Department of Radiology, Clínica Universidad de Navarra, 31008, Pamplona, Spain
| | - José Ignacio Herrero
- Navarra Institute for Health Research (IdiSNA), 31008, Pamplona, Spain
- Liver Unit, Clínica Universidad de Navarra, 31008, Pamplona, Spain
- Centro de Investigación Biomédica en Red de Enfermedades Hepáticas y Digestivas (CIBERehd), 28029, Madrid, Spain
| | - Alberto Benito-Boillos
- Navarra Institute for Health Research (IdiSNA), 31008, Pamplona, Spain
- Department of Radiology, Clínica Universidad de Navarra, 31008, Pamplona, Spain
| | - Jose I Riezu-Boj
- Department of Nutrition, Food Sciences and Physiology, Faculty of Pharmacy and Nutrition, University of Navarra, 31008, Pamplona, Spain
- Centre for Nutrition Research, Faculty of Pharmacy and Nutrition, University of Navarra, 31008, Pamplona, Spain
- Navarra Institute for Health Research (IdiSNA), 31008, Pamplona, Spain
| | - Fermín I Milagro
- Department of Nutrition, Food Sciences and Physiology, Faculty of Pharmacy and Nutrition, University of Navarra, 31008, Pamplona, Spain
- Centre for Nutrition Research, Faculty of Pharmacy and Nutrition, University of Navarra, 31008, Pamplona, Spain
- Navarra Institute for Health Research (IdiSNA), 31008, Pamplona, Spain
- Biochemical Research Centre Network in Physiopathology of Obesity and Nutrition (CIBERobn), Instituto de Salud Carlos III, 28029, Madrid, Spain
| | - Josep A Tur
- Biochemical Research Centre Network in Physiopathology of Obesity and Nutrition (CIBERobn), Instituto de Salud Carlos III, 28029, Madrid, Spain
- Research Group on Community Nutrition and Oxidative Stress, University of Balearic Islands & Balearic Islands Institute for Health Research (IDISBA), 07122, Palma, Spain
| | - J Alfredo Martinez
- Department of Nutrition, Food Sciences and Physiology, Faculty of Pharmacy and Nutrition, University of Navarra, 31008, Pamplona, Spain
- Centre for Nutrition Research, Faculty of Pharmacy and Nutrition, University of Navarra, 31008, Pamplona, Spain
- Navarra Institute for Health Research (IdiSNA), 31008, Pamplona, Spain
- Biochemical Research Centre Network in Physiopathology of Obesity and Nutrition (CIBERobn), Instituto de Salud Carlos III, 28029, Madrid, Spain
| | - Itziar Abete
- Department of Nutrition, Food Sciences and Physiology, Faculty of Pharmacy and Nutrition, University of Navarra, 31008, Pamplona, Spain.
- Centre for Nutrition Research, Faculty of Pharmacy and Nutrition, University of Navarra, 31008, Pamplona, Spain.
- Navarra Institute for Health Research (IdiSNA), 31008, Pamplona, Spain.
- Biochemical Research Centre Network in Physiopathology of Obesity and Nutrition (CIBERobn), Instituto de Salud Carlos III, 28029, Madrid, Spain.
| | - M Angeles Zulet
- Department of Nutrition, Food Sciences and Physiology, Faculty of Pharmacy and Nutrition, University of Navarra, 31008, Pamplona, Spain.
- Centre for Nutrition Research, Faculty of Pharmacy and Nutrition, University of Navarra, 31008, Pamplona, Spain.
- Navarra Institute for Health Research (IdiSNA), 31008, Pamplona, Spain.
- Biochemical Research Centre Network in Physiopathology of Obesity and Nutrition (CIBERobn), Instituto de Salud Carlos III, 28029, Madrid, Spain.
| |
Collapse
|
20
|
Abstract
Neural circuits in the hypothalamus play a key role in the regulation of human energy homeostasis. A critical circuit involves leptin-responsive neurons in the hypothalamic arcuate nucleus (the infundibular nucleus in humans) expressing the appetite-suppressing neuropeptide proopiomelanocortin (POMC) and the appetite-stimulating Agouti-related peptide. In the fed state, the POMC-derived melanocortin peptide α-melanocyte-stimulating hormone stimulates melanocortin-4 receptors (MC4Rs) expressed on second-order neurons in the paraventricular nucleus of the hypothalamus (PVN). Agonism of MC4R leads to reduced food intake and increased energy expenditure. Disruption of this hypothalamic circuit by inherited mutations in the genes encoding leptin, the leptin receptor, POMC, and MC4R can lead to severe obesity in humans. The characterization of these and closely related genetic obesity syndromes has informed our understanding of the neural pathways by which leptin regulates energy balance, neuroendocrine function, and the autonomic nervous system. A broader understanding of these neural and molecular mechanisms has paved the way for effective mechanism-based therapies for patients whose severe obesity is driven by disruption of these pathways.
Collapse
Affiliation(s)
- I Sadaf Farooqi
- Wellcome-MRC Institute of Metabolic Science, University of Cambridge, Cambridge, United Kingdom.
| |
Collapse
|