1
|
Taylor R. The Whole Human Pancreas: An Understudied Organ in Diabetes. Diabetes 2024; 73:1043-1045. [PMID: 38900955 DOI: 10.2337/dbi23-0021] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/10/2023] [Accepted: 04/20/2024] [Indexed: 06/22/2024]
Affiliation(s)
- Roy Taylor
- Magnetic Resonance Centre, Translational and Clinical Research Institute, Faculty of Medical Sciences, Newcastle University, Newcastle upon Tyne, U.K
| |
Collapse
|
2
|
Salg GA, Steinle V, Labode J, Wagner W, Studier-Fischer A, Reiser J, Farjallah E, Guettlein M, Albers J, Hilgenfeld T, Giese NA, Stiller W, Nickel F, Loos M, Michalski CW, Kauczor HU, Hackert T, Dullin C, Mayer P, Kenngott HG. Multiscale and multimodal imaging for three-dimensional vascular and histomorphological organ structure analysis of the pancreas. Sci Rep 2024; 14:10136. [PMID: 38698049 PMCID: PMC11065985 DOI: 10.1038/s41598-024-60254-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/12/2023] [Accepted: 04/20/2024] [Indexed: 05/05/2024] Open
Abstract
Exocrine and endocrine pancreas are interconnected anatomically and functionally, with vasculature facilitating bidirectional communication. Our understanding of this network remains limited, largely due to two-dimensional histology and missing combination with three-dimensional imaging. In this study, a multiscale 3D-imaging process was used to analyze a porcine pancreas. Clinical computed tomography, digital volume tomography, micro-computed tomography and Synchrotron-based propagation-based imaging were applied consecutively. Fields of view correlated inversely with attainable resolution from a whole organism level down to capillary structures with a voxel edge length of 2.0 µm. Segmented vascular networks from 3D-imaging data were correlated with tissue sections stained by immunohistochemistry and revealed highly vascularized regions to be intra-islet capillaries of islets of Langerhans. Generated 3D-datasets allowed for three-dimensional qualitative and quantitative organ and vessel structure analysis. Beyond this study, the method shows potential for application across a wide range of patho-morphology analyses and might possibly provide microstructural blueprints for biotissue engineering.
Collapse
Affiliation(s)
- Gabriel Alexander Salg
- Clinic for General-, Visceral- and Transplantation Surgery, University Hospital Heidelberg, Im Neuenheimer Feld 420, 69120, Heidelberg, Germany.
- Medical Faculty, Heidelberg University, Heidelberg, Germany.
| | - Verena Steinle
- Clinic for Diagnostic and Interventional Radiology, University Hospital Heidelberg, Im Neuenheimer Feld 420, 69120, Heidelberg, Germany
- Division of Radiology, German Cancer Research Center (DKFZ), Im Neuenheimer Feld 280, 69120, Heidelberg, Germany
| | - Jonas Labode
- Institute of Functional and Applied Anatomy, Hannover Medical School, Carl-Neuberg-Str. 1, 30625, Hannover, Germany
| | - Willi Wagner
- Clinic for Diagnostic and Interventional Radiology, University Hospital Heidelberg, Im Neuenheimer Feld 420, 69120, Heidelberg, Germany
- Translational Lung Research Center, Member of the German Center for Lung Research, University of Heidelberg, Im Neuenheimer Feld 130.3, 69120, Heidelberg, Germany
| | - Alexander Studier-Fischer
- Clinic for General-, Visceral- and Transplantation Surgery, University Hospital Heidelberg, Im Neuenheimer Feld 420, 69120, Heidelberg, Germany
| | - Johanna Reiser
- Clinic for General-, Visceral- and Transplantation Surgery, University Hospital Heidelberg, Im Neuenheimer Feld 420, 69120, Heidelberg, Germany
- Clinic for Diagnostic and Interventional Radiology, University Hospital Heidelberg, Im Neuenheimer Feld 420, 69120, Heidelberg, Germany
| | - Elyes Farjallah
- Clinic for General-, Visceral- and Transplantation Surgery, University Hospital Heidelberg, Im Neuenheimer Feld 420, 69120, Heidelberg, Germany
| | - Michelle Guettlein
- Clinic for Diagnostic and Interventional Radiology, University Hospital Heidelberg, Im Neuenheimer Feld 420, 69120, Heidelberg, Germany
| | - Jonas Albers
- Hamburg Unit, European Molecular Biology Laboratory, c/o Deutsches Elektronen-Synchrotron DESY Hamburg, Notkestr. 85, 22607, Hamburg, Germany
| | - Tim Hilgenfeld
- Department of Neuroradiology, University Hospital Heidelberg, Im Neuenheimer Feld 400, 69120, Heidelberg, Germany
| | - Nathalia A Giese
- Clinic for General-, Visceral- and Transplantation Surgery, University Hospital Heidelberg, Im Neuenheimer Feld 420, 69120, Heidelberg, Germany
| | - Wolfram Stiller
- Clinic for Diagnostic and Interventional Radiology, University Hospital Heidelberg, Im Neuenheimer Feld 420, 69120, Heidelberg, Germany
- Translational Lung Research Center, Member of the German Center for Lung Research, University of Heidelberg, Im Neuenheimer Feld 130.3, 69120, Heidelberg, Germany
| | - Felix Nickel
- Clinic for General-, Visceral- and Transplantation Surgery, University Hospital Heidelberg, Im Neuenheimer Feld 420, 69120, Heidelberg, Germany
- Clinic for General-, Visceral- and Thoracic Surgery, University Medical Center Hamburg-Eppendorf, Martinistr. 52, 20246, Hamburg, Germany
| | - Martin Loos
- Clinic for General-, Visceral- and Transplantation Surgery, University Hospital Heidelberg, Im Neuenheimer Feld 420, 69120, Heidelberg, Germany
| | - Christoph W Michalski
- Clinic for General-, Visceral- and Transplantation Surgery, University Hospital Heidelberg, Im Neuenheimer Feld 420, 69120, Heidelberg, Germany
| | - Hans-Ulrich Kauczor
- Clinic for Diagnostic and Interventional Radiology, University Hospital Heidelberg, Im Neuenheimer Feld 420, 69120, Heidelberg, Germany
- Translational Lung Research Center, Member of the German Center for Lung Research, University of Heidelberg, Im Neuenheimer Feld 130.3, 69120, Heidelberg, Germany
| | - Thilo Hackert
- Clinic for General-, Visceral- and Transplantation Surgery, University Hospital Heidelberg, Im Neuenheimer Feld 420, 69120, Heidelberg, Germany
- Clinic for General-, Visceral- and Thoracic Surgery, University Medical Center Hamburg-Eppendorf, Martinistr. 52, 20246, Hamburg, Germany
| | - Christian Dullin
- Clinic for Diagnostic and Interventional Radiology, University Hospital Heidelberg, Im Neuenheimer Feld 420, 69120, Heidelberg, Germany
- Translational Lung Research Center, Member of the German Center for Lung Research, University of Heidelberg, Im Neuenheimer Feld 130.3, 69120, Heidelberg, Germany
- Institute for Diagnostic and Interventional Radiology, University Medical Center Goettingen, Robert-Koch-Str. 40, Goettingen, Germany
- Translational Molecular Imaging, Max Planck Institute for Multidisciplinary Sciences, Hermann-Rein-Str. 3, Göttingen, Germany
| | - Philipp Mayer
- Clinic for Diagnostic and Interventional Radiology, University Hospital Heidelberg, Im Neuenheimer Feld 420, 69120, Heidelberg, Germany
| | - Hannes Goetz Kenngott
- Clinic for General-, Visceral- and Transplantation Surgery, University Hospital Heidelberg, Im Neuenheimer Feld 420, 69120, Heidelberg, Germany
| |
Collapse
|
3
|
Chen QD, Liu L, Zhao XH, Liang JB, Li SW. Challenges and opportunities in the islet transplantation microenvironment: a comprehensive summary of inflammatory cytokine, immune cells, and vascular endothelial cells. Front Immunol 2023; 14:1293762. [PMID: 38111575 PMCID: PMC10725940 DOI: 10.3389/fimmu.2023.1293762] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/13/2023] [Accepted: 11/20/2023] [Indexed: 12/20/2023] Open
Abstract
It is now understood that islet transplantation serves as a β-cell replacement therapy for type 1 diabetes. Many factors impact the survival of transplanted islets, especially those related to the microenvironment. This review explored microenvironmental components, including vascular endothelial cells, inflammatory cytokines, and immune cells, and their profound effects on post-islet transplantation survival rates. Furthermore, it revealed therapeutic strategies aimed at targeting these elements. Current evidence suggests that vascular endothelial cells are pivotal in facilitating vascularization and nutrient supply and establishing a new microcirculation network for transplanted islets. Consequently, preserving the functionality of vascular endothelial cells emerges as a crucial strategy to enhance the survival of islet transplantation. Release of cytokines will lead to activation of immune cells and production and release of further cytokines. While immune cells hold undeniable significance in regulating immune responses, their activation can result in rejection reactions. Thus, establishing immunological tolerance within the recipient's body is essential for sustaining graft functionality. Indeed, future research endeavors should be directed toward developing precise strategies for modulating the microenvironment to achieve higher survival rates and more sustained transplantation outcomes. While acknowledging certain limitations inherent to this review, it provides valuable insights that can guide further exploration in the field of islet transplantation. In conclusion, the microenvironment plays a paramount role in islet transplantation. Importantly, we discuss novel perspectives that could lead to broader clinical applications and improved patient outcomes in islet transplantation.
Collapse
Affiliation(s)
- Qi-dong Chen
- Taizhou Hospital, Zhejiang University School of Medicine, Taizhou, Zhejiang, China
| | - Long Liu
- Department of Hepatobiliary and Pancreatic Surgery, Second Affiliated Hospital, School of Medicine, Zhejiang University, Hangzhou, Zhejiang, China
| | - Xiao-hong Zhao
- Department of Pharmacy, Taizhou Hospital, Zhejiang University , Taizhou, Zhejiang, China
| | - Jun-bo Liang
- Taizhou Hospital, Zhejiang University School of Medicine, Taizhou, Zhejiang, China
| | - Shao-wei Li
- Department of Gastroenterology, Taizhou Hospital of Zhejiang Province affiliated to Wenzhou Medical University, Linhai, Zhejiang, China
- Key Laboratory of Minimally Invasive Techniques & Rapid Rehabilitation of Digestive System Tumor of Zhejiang Province, Taizhou Hospital Affiliated to Wenzhou Medical University, Linhai, Zhejiang, China
| |
Collapse
|
4
|
Rizk AA, Dybala MP, Rodriguez KC, Slak Rupnik M, Hara M. Pancreatic regional blood flow links the endocrine and exocrine diseases. J Clin Invest 2023; 133:e166185. [PMID: 37338995 PMCID: PMC10378168 DOI: 10.1172/jci166185] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/17/2022] [Accepted: 06/16/2023] [Indexed: 06/22/2023] Open
Abstract
An increasing number of studies have demonstrated that disease states of the endocrine or exocrine pancreas aggravate one another, which implies bidirectional blood flow between islets and exocrine cells. However, this is inconsistent with the current model of unidirectional blood flow, which is strictly from islets to exocrine tissues. This conventional model was first proposed in 1932, and it has never to our knowledge been revisited to date. Here, large-scale image capture was used to examine the spatial relationship between islets and blood vessels in the following species: human, monkey, pig, rabbit, ferret, and mouse. While some arterioles passed by or traveled through islets, the majority of islets had no association with them. Islets with direct contact with the arteriole were significantly larger in size and fewer in number than those without contact. Unique to the pancreas, capillaries directly branched out from the arterioles and have been labeled as "small arterioles" in past studies. Overall, the arterioles emerged to feed the pancreas regionally, not specifically targeting individual islets. Vascularizing the pancreas in this way may allow an entire downstream region of islets and acinar cells to be simultaneously exposed to changes in the blood levels of glucose, hormones, and other circulating factors.
Collapse
Affiliation(s)
- Adam A. Rizk
- Department of Medicine, The University of Chicago, Chicago, Illinois, USA
| | - Michael P. Dybala
- Department of Medicine, The University of Chicago, Chicago, Illinois, USA
| | | | - Marjan Slak Rupnik
- Center for Physiology and Pharmacology, Medical University of Vienna, Vienna, Austria
| | - Manami Hara
- Department of Medicine, The University of Chicago, Chicago, Illinois, USA
| |
Collapse
|
5
|
Yazici ZMC, Bilge B, Bolkent S. Anti-inflammatory potential of delta-9-tetrahydrocannabinol in hyperinsulinemia: an experimental study. Mol Biol Rep 2022; 49:11891-11899. [PMID: 36239881 DOI: 10.1007/s11033-022-07996-9] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/17/2022] [Accepted: 09/29/2022] [Indexed: 10/17/2022]
Abstract
BACKGROUND Hyperinsulinemia (HI) means that the amount of insulin in the blood is higher than normal and is often associated with type 2 diabetes. It is known that delta-9-tetrahydrocannabinol (THC) obtained from a medicinal plant, Cannabis sativa, has therapeutic effects on many diseases. OBJECTIVE This study aimed to investigate the effects of THC on inflammatory and oxidant status in rat pancreas with HI. METHODS Rats were divided into groups; Control, HI, THC and HI + THC. Each group consists of 8 animals. HI and HI + THC groups were given 10% fructose in the drinking water for 12 weeks. In the last four weeks of the experiment, 1.5 mg kg-1 THC was injected intraperitoneally daily into THC and HI + THC groups. The expression of tumor necrosis factor-alpha (TNF-α), interleukin-6 (IL-6), and nuclear factor-kappa B (NF-κB) were detected. JNK/SAPK and Grap2/p38 levels, total antioxidant and oxidant capacities (TAC and TOC) were analyzed in the pancreas. RESULTS Levels of IL-6, NF-κβ, and TNF-α mRNA expression were higher in the pancreas with HI than in the control (p < 0.001 for all). THC treatment reduced the expression of IL-6, NF-κβ, and TNF-α mRNAs in the HI + THC group compared to the HI group (p < 0.001 for all). TOC increased in the HI group compared to the control group (p < 0.001). However, THC treatment reduced TOC levels in the HI + THC group compared to the HI group (p < 0.001). CONCLUSION According to the results, the THC treatment may regulate inflammation and TOC in rats with hyperinsulinemia. Thus, we can say that THC may have anti-inflammatory and antioxidant potential in metabolic disorders.
Collapse
Affiliation(s)
- Zeynep Mine Coskun Yazici
- Department of Molecular Biology and Genetics, Faculty of Arts and Sciences, Demiroglu Bilim University, Istanbul, Turkey
| | - Bilgenur Bilge
- Department of Medical Biology, Faculty of Cerrahpasa Medicine, Istanbul University-Cerrahpasa, 34098, Cerrahpasa, Istanbul, Turkey
| | - Sema Bolkent
- Department of Medical Biology, Faculty of Cerrahpasa Medicine, Istanbul University-Cerrahpasa, 34098, Cerrahpasa, Istanbul, Turkey.
| |
Collapse
|
6
|
Li BW, Li Y, Zhang X, Fu SJ, Wang B, Zhang XY, Liu XT, Wang Q, Li AL, Liu MM. Role of insulin in pancreatic microcirculatory oxygen profile and bioenergetics. World J Diabetes 2022; 13:765-775. [PMID: 36188151 PMCID: PMC9521437 DOI: 10.4239/wjd.v13.i9.765] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/29/2022] [Revised: 06/09/2022] [Accepted: 08/25/2022] [Indexed: 02/05/2023] Open
Abstract
BACKGROUND The pancreatic islet microcirculation adapts its metabolism to cope with limited oxygen availability and nutrient delivery. In diabetes, the balance between oxygen delivery and consumption is impaired. Insulin has been proven to exert complex actions promoting the maintenance of homeostasis of the pancreas under glucotoxicity. AIM To test the hypothesis that insulin administration can improve the integrated pancreatic microcirculatory oxygen profile and bioenergetics. METHODS The pancreatic microcirculatory partial oxygen pressure (PO2), relative hemoglobin (rHb) and hemoglobin oxygen saturation (SO2) were evaluated in nondiabetic, type 1 diabetes mellitus (T1DM), and insulin-treated mice. A three-dimensional framework was generated to visualize the microcirculatory oxygen profile. Ultrastructural changes in the microvasculature were examined using transmission electron microscopy. An Extracellular Flux Analyzer was used to detect the real-time changes in bioenergetics by measuring the oxygen consumption rate and extracellular acidification rate in islet microvascular endothelial cells (IMECs). RESULTS Significantly lower PO2, rHb, and SO2 values were observed in T1DM mice than in nondiabetic controls. Insulin administration ameliorated the streptozotocin-induced decreases in these microcirculatory oxygen parameters and improved the mitochondrial ultrastructural abnormalities in IMECs. Bioenergetic profiling revealed that the IMECs did not have spare respiratory capacity. Insulin-treated IMECs exhibited significantly greater basal respiration than glucotoxicity-exposed IMECs (P < 0.05). An energy map revealed increased energetic metabolism in insulin-treated IMECs, with significantly increased ATP production, non-mitochondrial respiration, and oxidative metabolism (all P < 0.05). Significant negative correlations were revealed between microcirculatory SO2 and bioenergetic parameters. CONCLUSION Glucotoxicity deteriorates the integrated pancreatic microcirculatory oxygen profile and bioenergetics, but this deterioration can be reversed by insulin administration.
Collapse
Affiliation(s)
- Bing-Wei Li
- Institute of Microcirculation, Diabetes Research Center, Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing 100005, China
| | - Yuan Li
- Institute of Microcirculation, Diabetes Research Center, Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing 100005, China
| | - Xu Zhang
- Laboratory of Electron Microscopy, Ultrastructural Pathology Center, Peking University First Hospital, Beijing 100005, China
| | - Sun-Jing Fu
- Institute of Microcirculation, Diabetes Research Center, Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing 100005, China
| | - Bing Wang
- Institute of Microcirculation, Diabetes Research Center, Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing 100005, China
| | - Xiao-Yan Zhang
- Institute of Microcirculation, Diabetes Research Center, Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing 100005, China
| | - Xue-Ting Liu
- Institute of Microcirculation, Diabetes Research Center, Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing 100005, China
| | - Qin Wang
- Institute of Microcirculation, Diabetes Research Center, Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing 100005, China
| | - Ai-Ling Li
- Institute of Microcirculation, Diabetes Research Center, Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing 100005, China
| | - Ming-Ming Liu
- Institute of Microcirculation, Diabetes Research Center, Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing 100005, China
| |
Collapse
|
7
|
Faraj N, Duinkerken BHP, Carroll EC, Giepmans BNG. Microscopic modulation and analysis of islets of Langerhans in living zebrafish larvae. FEBS Lett 2022; 596:2497-2512. [DOI: 10.1002/1873-3468.14411] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/09/2022] [Revised: 04/22/2022] [Accepted: 05/20/2022] [Indexed: 11/08/2022]
Affiliation(s)
- Noura Faraj
- Department of Biomedical Sciences of Cells and Systems, University of Groningen University Medical Center Groningen Groningen 9713AV The Netherlands
| | - B. H. Peter Duinkerken
- Department of Biomedical Sciences of Cells and Systems, University of Groningen University Medical Center Groningen Groningen 9713AV The Netherlands
| | - Elizabeth C. Carroll
- Department of Imaging Physics Delft University of Technology Delft, 2628 CJ The Netherlands
| | - Ben N. G. Giepmans
- Department of Biomedical Sciences of Cells and Systems, University of Groningen University Medical Center Groningen Groningen 9713AV The Netherlands
| |
Collapse
|
8
|
Patel SN, Mathews CE, Chandler R, Stabler CL. The Foundation for Engineering a Pancreatic Islet Niche. Front Endocrinol (Lausanne) 2022; 13:881525. [PMID: 35600597 PMCID: PMC9114707 DOI: 10.3389/fendo.2022.881525] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/22/2022] [Accepted: 03/30/2022] [Indexed: 12/01/2022] Open
Abstract
Progress in diabetes research is hindered, in part, by deficiencies in current experimental systems to accurately model human pathophysiology and/or predict clinical outcomes. Engineering human-centric platforms that more closely mimic in vivo physiology, however, requires thoughtful and informed design. Summarizing our contemporary understanding of the unique and critical features of the pancreatic islet can inform engineering design criteria. Furthermore, a broad understanding of conventional experimental practices and their current advantages and limitations ensures that new models address key gaps. Improving beyond traditional cell culture, emerging platforms are combining diabetes-relevant cells within three-dimensional niches containing dynamic matrices and controlled fluidic flow. While highly promising, islet-on-a-chip prototypes must evolve their utility, adaptability, and adoptability to ensure broad and reproducible use. Here we propose a roadmap for engineers to craft biorelevant and accessible diabetes models. Concurrently, we seek to inspire biologists to leverage such tools to ask complex and nuanced questions. The progenies of such diabetes models should ultimately enable investigators to translate ambitious research expeditions from benchtop to the clinic.
Collapse
Affiliation(s)
- Smit N. Patel
- J. Crayton Pruitt Family Department of Biomedical Engineering, University of Florida, Gainesville, FL, United States
| | - Clayton E. Mathews
- Department of Pathology, Immunology, and Laboratory Medicine, University of Florida, Gainesville, FL, United States
- Diabetes Institute, University of Florida, Gainesville, FL, United States
| | - Rachel Chandler
- J. Crayton Pruitt Family Department of Biomedical Engineering, University of Florida, Gainesville, FL, United States
| | - Cherie L. Stabler
- J. Crayton Pruitt Family Department of Biomedical Engineering, University of Florida, Gainesville, FL, United States
- Diabetes Institute, University of Florida, Gainesville, FL, United States
| |
Collapse
|
9
|
Pankreasarchitektur: Konzept der einsamen Inseln hat ausgedient. DIABETOL STOFFWECHS 2021. [DOI: 10.1055/a-1332-6394] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/21/2022]
|
10
|
Li Y, Li B, Wang B, Liu M, Zhang X, Li A, Zhang J, Zhang H, Xiu R. Integrated pancreatic microcirculatory profiles of streptozotocin-induced and insulin-administrated type 1 diabetes mellitus. Microcirculation 2021; 28:e12691. [PMID: 33655585 PMCID: PMC8365673 DOI: 10.1111/micc.12691] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/01/2020] [Revised: 02/17/2021] [Accepted: 02/24/2021] [Indexed: 12/12/2022]
Abstract
OBJECTIVE As an integrated system, pancreatic microcirculatory disturbance plays a vital role in the pathogenesis of type 1 diabetes mellitus (T1DM), which involves changes in microcirculatory oxygen and microhemodynamics. Therefore, we aimed to release type 1 diabetic and insulin-administrated microcirculatory profiles of the pancreas. METHODS BALB/c mice were assigned to control, T1DM, and insulin-administrated groups randomly. T1DM was induced by intraperitoneal injection of streptozotocin (STZ). 1.5 IU insulin was administrated subcutaneously to keep the blood glucose within the normal range. After anesthetizing by isoflurane, the raw data set of pancreatic microcirculation was collected by the multimodal device- and computer algorithm-based microcirculatory evaluating system. After adjusting outliers and normalization, pancreatic microcirculatory oxygen and microhemodynamic data sets were imported into the three-dimensional module and compared. RESULTS Microcirculatory profiles of the pancreas in T1DM exhibited a loss of microhemodynamic coherence (significantly decreased microvascular blood perfusion) accompanied by an impaired oxygen balance (significantly decreased PO2 , SO2 , and rHb). More importantly, with insulin administration, the pathological microcirculatory profiles were partially restored. Meanwhile, there were correlations between pancreatic microcirculatory blood perfusion and PO2 levels. CONCLUSIONS Our findings establish the first integrated three-dimensional pancreatic microcirculatory profiles of STZ-induced and insulin-administrated T1DM.
Collapse
Affiliation(s)
- Yuan Li
- Institute of Microcirculation, Key Laboratory of Microcirculation, Ministry of Health, Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing, China
| | - Bingwei Li
- Institute of Microcirculation, Key Laboratory of Microcirculation, Ministry of Health, Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing, China
| | - Bing Wang
- Institute of Microcirculation, Key Laboratory of Microcirculation, Ministry of Health, Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing, China
| | - Mingming Liu
- Institute of Microcirculation, Key Laboratory of Microcirculation, Ministry of Health, Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing, China.,Diabetes Research Center, Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing, China
| | - Xiaoyan Zhang
- Institute of Microcirculation, Key Laboratory of Microcirculation, Ministry of Health, Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing, China
| | - Ailing Li
- Institute of Microcirculation, Key Laboratory of Microcirculation, Ministry of Health, Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing, China
| | - Jian Zhang
- Institute of Microcirculation, Key Laboratory of Microcirculation, Ministry of Health, Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing, China.,Diabetes Research Center, Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing, China
| | - Honggang Zhang
- Institute of Microcirculation, Key Laboratory of Microcirculation, Ministry of Health, Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing, China
| | - Ruijuan Xiu
- Institute of Microcirculation, Key Laboratory of Microcirculation, Ministry of Health, Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing, China
| |
Collapse
|