1
|
Al-Bazz DY, Nelson AJ, Burgess J, Petropoulos IN, Nizza J, Marshall A, Brown E, Cuthbertson DJ, Marshall AG, Malik RA, Alam U. Is Nerve Electrophysiology a Robust Primary Endpoint in Clinical Trials of Treatments for Diabetic Peripheral Neuropathy? Diagnostics (Basel) 2022; 12:731. [PMID: 35328284 PMCID: PMC8947384 DOI: 10.3390/diagnostics12030731] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/04/2022] [Revised: 03/10/2022] [Accepted: 03/11/2022] [Indexed: 12/10/2022] Open
Abstract
There is currently no FDA-approved disease-modifying therapy for diabetic peripheral neuropathy (DPN). Nerve conduction velocity (NCV) is an established primary endpoint of disease-modifying therapies in DPN and clinical trials have been powered with an assumed decline of 0.5 m/s/year. This paper sought to establish the time-dependent change in NCV associated with a placebo, compared to that observed in the active intervention group. A literature search identified twenty-one double-blind, randomised controlled trials in DPN of ≥1 year duration conducted between 1971 and 2021. We evaluated changes in neurophysiology, with a focus on peroneal motor and sural sensory NCV and amplitude in the placebo and treatment groups. There was significant variability in the change and direction of change (reduction/increase) in NCV in the placebo arm, as well as variability influenced by the anatomical site of neurophysiological measurement within a given clinical trial. A critical re-evaluation of efficacy trials should consider placebo-adjusted effects and present the placebo-subtracted change in NCV rather than assume a universal annual decline of 0.5 m/s/year. Importantly, endpoints such as corneal confocal microscopy (CCM) have demonstrated early nerve repair, whilst symptoms and NCV have not changed, and should thus be considered as a viable alternative.
Collapse
Affiliation(s)
- Dalal Y. Al-Bazz
- Institute of Life Course and Medical Sciences and the Pain Research Institute, University of Liverpool and Liverpool University Hospital NHS Foundation Trust, Liverpool L9 7AL, UK; (A.J.N.); (J.B.); (J.N.); (A.M.); (A.G.M.)
| | - Andrew J. Nelson
- Institute of Life Course and Medical Sciences and the Pain Research Institute, University of Liverpool and Liverpool University Hospital NHS Foundation Trust, Liverpool L9 7AL, UK; (A.J.N.); (J.B.); (J.N.); (A.M.); (A.G.M.)
| | - Jamie Burgess
- Institute of Life Course and Medical Sciences and the Pain Research Institute, University of Liverpool and Liverpool University Hospital NHS Foundation Trust, Liverpool L9 7AL, UK; (A.J.N.); (J.B.); (J.N.); (A.M.); (A.G.M.)
| | - Ioannis N. Petropoulos
- Research Division, Weill Cornell Medicine-Qatar, Qatar Foundation, Education City, Doha 24144, Qatar; (I.N.P.); (R.A.M.)
| | - Jael Nizza
- Institute of Life Course and Medical Sciences and the Pain Research Institute, University of Liverpool and Liverpool University Hospital NHS Foundation Trust, Liverpool L9 7AL, UK; (A.J.N.); (J.B.); (J.N.); (A.M.); (A.G.M.)
| | - Anne Marshall
- Institute of Life Course and Medical Sciences and the Pain Research Institute, University of Liverpool and Liverpool University Hospital NHS Foundation Trust, Liverpool L9 7AL, UK; (A.J.N.); (J.B.); (J.N.); (A.M.); (A.G.M.)
| | - Emily Brown
- Obesity and Endocrinology Research Group, Institute of Life Course and Medical Sciences, University of Liverpool and Liverpool University Hospital NHS Foundation Trust, Liverpool L9 7AL, UK; (E.B.); (D.J.C.)
| | - Daniel J. Cuthbertson
- Obesity and Endocrinology Research Group, Institute of Life Course and Medical Sciences, University of Liverpool and Liverpool University Hospital NHS Foundation Trust, Liverpool L9 7AL, UK; (E.B.); (D.J.C.)
| | - Andrew G. Marshall
- Institute of Life Course and Medical Sciences and the Pain Research Institute, University of Liverpool and Liverpool University Hospital NHS Foundation Trust, Liverpool L9 7AL, UK; (A.J.N.); (J.B.); (J.N.); (A.M.); (A.G.M.)
- Institute of Cardiovascular Sciences, Cardiac Centre, Faculty of Medical and Human Sciences, University of Manchester and NIHR/Wellcome Trust Clinical Research Facility, Manchester M13 9WL, UK
| | - Rayaz A. Malik
- Research Division, Weill Cornell Medicine-Qatar, Qatar Foundation, Education City, Doha 24144, Qatar; (I.N.P.); (R.A.M.)
- Institute of Cardiovascular Sciences, Cardiac Centre, Faculty of Medical and Human Sciences, University of Manchester and NIHR/Wellcome Trust Clinical Research Facility, Manchester M13 9WL, UK
| | - Uazman Alam
- Institute of Life Course and Medical Sciences and the Pain Research Institute, University of Liverpool and Liverpool University Hospital NHS Foundation Trust, Liverpool L9 7AL, UK; (A.J.N.); (J.B.); (J.N.); (A.M.); (A.G.M.)
- Division of Diabetes, Endocrinology and Gastroenterology, Institute of Human Development, University of Manchester, Manchester M13 9PL, UK
| |
Collapse
|
2
|
Singleton JR, Foster-Palmer S, Marcus RL. Exercise as Treatment for Neuropathy in the Setting of Diabetes and Prediabetic Metabolic Syndrome: A Review of Animal Models and Human Trials. Curr Diabetes Rev 2022; 18:e230921196752. [PMID: 34561989 DOI: 10.2174/1573399817666210923125832] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/09/2020] [Revised: 01/21/2021] [Accepted: 05/17/2021] [Indexed: 11/22/2022]
Abstract
BACKGROUND Peripheral neuropathy is among the most common complications of diabetes, but a phenotypically identical distal sensory predominant, painful axonopathy afflicts patients with prediabetic metabolic syndrome, exemplifying a spectrum of risk and continuity of pathogenesis. No pharmacological treatment convincingly improves neuropathy in the setting of metabolic syndrome, but evolving data suggest that exercise may be a promising alternative. OBJECTIVE The aim of the study was to review in depth the current literature regarding exercise treatment of metabolic syndrome neuropathy in humans and animal models, highlight the diverse mechanisms by which exercise exerts beneficial effects, and examine adherence limitations, safety aspects, modes and dose of exercise. RESULTS Rodent models that recapitulate the organismal milieu of prediabetic metabolic syndrome and the phenotype of its neuropathy provide a strong platform to dissect exercise effects on neuropathy pathogenesis. In these models, exercise reverses hyperglycemia and consequent oxidative and nitrosative stress, improves microvascular vasoreactivity, enhances axonal transport, ameliorates the lipotoxicity and inflammatory effects of hyperlipidemia and obesity, supports neuronal survival and regeneration following injury, and enhances mitochondrial bioenergetics at the distal axon. Prospective human studies are limited in scale but suggest exercise to improve cutaneous nerve regenerative capacity, neuropathic pain, and task-specific functional performance measures of gait and balance. Like other heath behavioral interventions, the benefits of exercise are limited by patient adherence. CONCLUSION Exercise is an integrative therapy that potently reduces cellular inflammatory state and improves distal axonal oxidative metabolism to ameliorate features of neuropathy in metabolic syndrome. The intensity of exercise need not improve cardinal features of metabolic syndrome, including weight, glucose control, to exert beneficial effects.
Collapse
Affiliation(s)
| | | | - Robin L Marcus
- Department Physical Therapy and Athletic Training, University of Utah, UT, United States
| |
Collapse
|
3
|
Arora K, Tomar PC, Mohan V. Diabetic neuropathy: an insight on the transition from synthetic drugs to herbal therapies. J Diabetes Metab Disord 2021; 20:1773-1784. [PMID: 34900824 PMCID: PMC8630252 DOI: 10.1007/s40200-021-00830-2] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/06/2021] [Accepted: 06/03/2021] [Indexed: 12/11/2022]
Abstract
The global pandemic of prediabetes and diabetes has led to a severe corresponding complication of these disorders. Neuropathy is one of the most prevalent complication of diabetes is, affecting blood supply of the peripheral nervous system that may eventually results into loss of sensations, injuries, diabetic foot and death. The utmost identified risk of diabetic neuropathy is uncontrolled high blood glucose levels. However, aging, body mass index (BMI), oxidative stress, inflammation, increased HbA1c levels and blood pressure are among the other key factors involved in the upsurge of this disease. The so far treatment to deal with diabetic neuropathy is controlling metabolic glucose levels. Apart from this, drugs like reactive oxygen species (ROS) inhibitors, aldose reductase inhibitors, PKC inhibitors, Serotonin-norepinephrine reuptake inhibitors (SNRIs), anticonvulsants, N-methyl-D-aspartate receptor (NMDAR) antagonists, are the other prescribed medications. However, the related side-effects (hallucinations, drowsiness, memory deficits), cost, poor pharmacokinetics and drug resistance brought the trust of patients down and thus herbal renaissance is occurring all over the word as the people have shifted their intentions from synthetic drugs to herbal remedies. Medicinal plants have widely been utilized as herbal remedies against number of ailments in Indian medicinal history. Their bioactive components are very much potent to handle different chronic disorders and complications with lesser-known side effects. Therefore, the current article mainly concludes the etiology and pathophysiology of diabetic neuropathy. Furthermore, it also highlights the important roles of medicinal plants and their naturally occurring bioactive compounds in addressing this disease.
Collapse
Affiliation(s)
- Komal Arora
- Department of Life Sciences, Neurosciences, Gurugram University, Gurugram, India
| | - Pushpa C. Tomar
- Department of Biotechnology, Faculty of Engineering & Technology, Manav Rachna International Institute of Research & Studies, Haryana 121004 Faridabad, India
| | - Vandana Mohan
- Department of Life Sciences, Neurosciences, Gurugram University, Gurugram, India
| |
Collapse
|
4
|
Ziegler D, Bönhof GJ, Strom A, Straßburger K, Karusheva Y, Szendroedi J, Roden M. Progression and regression of nerve fibre pathology and dysfunction early in diabetes over 5 years. Brain 2021; 144:3251-3263. [PMID: 34499110 DOI: 10.1093/brain/awab330] [Citation(s) in RCA: 20] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/01/2021] [Revised: 06/24/2021] [Accepted: 08/08/2021] [Indexed: 12/17/2022] Open
Abstract
It has been traditionally suggested that the early development of diabetic sensorimotor polyneuropathy (DSPN) is characterized by a predominant and progressive injury to small nerve fibres followed by large fibre impairment. We alternatively hypothesized that small and large fibre damage due to DSPN in type 1 and type 2 diabetes could develop in parallel and may not only be progressive but also reversible. Participants from the German Diabetes Study baseline cohort with recent-onset type 1/type 2 diabetes (n = 350/570) and age-matched glucose-tolerant control individuals (Control 1/Control 2: n = 114/190) were assessed by nerve conduction studies (NCS), thermal detection thresholds (TDT), vibration perception threshold (VPT), Neuropathy Symptom Score (NSS), Neuropathy Disability Score (NDS), and intraepidermal nerve fibre density (IENFD) in skin biopsies (type 1/type 2 diabetes: n = 102/226; Control 1/Control 2: n = 109/208). Subsets of participants with type 1/type 2 diabetes were followed for 5 years (n = 184/307; IENFD subset: n = 18/69). DSPN was defined by the Toronto Consensus criteria. At baseline, DSPN was present in 8.1 and 13.3% of the type 1 and type 2 diabetes groups, respectively. The most frequently abnormal tests in the lower limbs below or above the 2.5th and 97.5th centile of the controls were IENFD (13.7%) and individual NCS (up to 9.4%) in type 1 diabetes participants and IENFD (21.8%), malleolar VPT (17.5%), and individual NCS (up to 11.8%) in those with type 2 diabetes, whereas TDT abnormalities did not differ between the control and diabetes groups. After 5 years in type 2 diabetes participants, the highest progression rates from the normal to the abnormal range were found for IENFD (18.8%) by -4.1 ± 2.8 fibres/mm, malleolar VPT (18.6%) by 9.1 ± 20.2 µm, and NDS (15.0%) by 3.7 ± 1.5 points, while vice versa the highest regression rates were observed for NDS (11.2%) by -3.1 ± 1.3 points, sural nerve amplitude (9.1%) by 4.7 ± 3.0 µV, IENFD (8.7%) by 1.4 ± 1.3 fibres/mm, and NSS (8.2%) by -5.8 ± 1.6 points. In type 1 diabetes participants, no major progression was seen after 5 years, but subclinical DSPN regressed in 10.3%. These findings point to an early parallel damage to both small and large nerve fibres in well-controlled recent-onset type 2 and, to a lesser extent, type 1 diabetes. After 5 years peripheral nerve morphology and function and clinical measures progress to the abnormal range in type 2 diabetes, but initial nerve alterations are also reversible to a meaningful degree.
Collapse
Affiliation(s)
- Dan Ziegler
- Institute for Clinical Diabetology, German Diabetes Center, Leibniz Center for Diabetes Research at Heinrich-Heine-University Düsseldorf, 40225 Düsseldorf, Germany.,Department of Endocrinology and Diabetology, Medical Faculty and University Hospital Düsseldorf, Heinrich-Heine-University Düsseldorf, 40225 Düsseldorf, Germany.,German Center for Diabetes Research, Partner Düsseldorf, 85764 München-Neuherberg, Germany
| | - Gidon J Bönhof
- Institute for Clinical Diabetology, German Diabetes Center, Leibniz Center for Diabetes Research at Heinrich-Heine-University Düsseldorf, 40225 Düsseldorf, Germany.,Department of Endocrinology and Diabetology, Medical Faculty and University Hospital Düsseldorf, Heinrich-Heine-University Düsseldorf, 40225 Düsseldorf, Germany
| | - Alexander Strom
- Institute for Clinical Diabetology, German Diabetes Center, Leibniz Center for Diabetes Research at Heinrich-Heine-University Düsseldorf, 40225 Düsseldorf, Germany.,German Center for Diabetes Research, Partner Düsseldorf, 85764 München-Neuherberg, Germany
| | - Klaus Straßburger
- Institute for Biometrics and Epidemiology, German Diabetes Center, Leibniz Center for Diabetes Research at Heinrich Heine University, 40225 Düsseldorf, Germany
| | - Yanislava Karusheva
- Institute for Clinical Diabetology, German Diabetes Center, Leibniz Center for Diabetes Research at Heinrich-Heine-University Düsseldorf, 40225 Düsseldorf, Germany
| | - Julia Szendroedi
- Institute for Clinical Diabetology, German Diabetes Center, Leibniz Center for Diabetes Research at Heinrich-Heine-University Düsseldorf, 40225 Düsseldorf, Germany.,Department of Endocrinology and Diabetology, Medical Faculty and University Hospital Düsseldorf, Heinrich-Heine-University Düsseldorf, 40225 Düsseldorf, Germany.,German Center for Diabetes Research, Partner Düsseldorf, 85764 München-Neuherberg, Germany
| | - Michael Roden
- Institute for Clinical Diabetology, German Diabetes Center, Leibniz Center for Diabetes Research at Heinrich-Heine-University Düsseldorf, 40225 Düsseldorf, Germany.,Department of Endocrinology and Diabetology, Medical Faculty and University Hospital Düsseldorf, Heinrich-Heine-University Düsseldorf, 40225 Düsseldorf, Germany.,German Center for Diabetes Research, Partner Düsseldorf, 85764 München-Neuherberg, Germany
| | | |
Collapse
|
5
|
Celiker H, Erekul G, Turhan SA, Kokar S, Yavuz DG, Gunduz OH, Tavakoli M, Toker E. Early detection of neuropathy in patients with type 2 diabetes with or without microalbuminuria in the absence of peripheral neuropathy and retinopathy. J Fr Ophtalmol 2021; 44:485-493. [PMID: 33648764 DOI: 10.1016/j.jfo.2020.09.027] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/25/2020] [Revised: 09/17/2020] [Accepted: 09/18/2020] [Indexed: 10/22/2022]
Abstract
PURPOSE Our goal is early detection of neuropathy in patients with type 2 diabetes with or without microalbuminuria in the absence of diabetic retinopathy and peripheral neuropathy by using in vivo corneal confocal microscopy (IVCCM). METHODS A total of 60 type-2 diabetic patients, assigned to either a diabetes mellitus (DM) with microalbuminuria group (DM/MA+, n=30) or a DM without microalbuminuria group (DM/MA-, n=30), and 30 age-matched control subjects were enrolled in this study. All cases underwent evaluation of blood glucose level, HbA1c, lipid fractions, body mass index (BMI), and corneal sensitivity (CS). Corneal nerve fiber length (NFL), nerve fiber density (NFD), nerve branch density (NBD), and tortuosity coefficient (TC) were quantified by IVCCM. None of the patients had peripheral neuropathy or retinopathy. RESULTS Compared with the healthy subjects, NFL and NFD were reduced in both diabetic groups (P<0.0001), while NBD was significantly reduced in the DM/MA+ group. Between the diabetic groups, NFL, NFD, and NBD were significantly higher in the DM/MA- group (all P's<0.001). CS was significantly lower in DM/MA+ compared with DM/MA- and controls (both P's<0.0001). NFD and NFL were inversely correlated with age, triglyceride level, and BMI. CONCLUSION These results indicate that significant damage to small nerves, quantified using IVCCM, can be detected in the absence of retinopathy, peripheral neuropathy or microalbuminuria in type 2 diabetic patients. The severity of corneal nerve involvement may further increase in the presence of nephropathy. This feature may also be valuable for early detection of microvascular complications of DM, allowing for the prevention of progression of life threatening microvascular complications.
Collapse
Affiliation(s)
- Hande Celiker
- Department of Ophthalmology, Marmara University School of Medicine, Istanbul, Turkey.
| | - Gozde Erekul
- Department of Ophthalmology, Marmara University School of Medicine, Istanbul, Turkey
| | - Semra Akkaya Turhan
- Department of Ophthalmology, Marmara University School of Medicine, Istanbul, Turkey
| | - Serdar Kokar
- Section of Pain Medicine, Department of Physical Medicine and Rehabilitation, Marmara University School of Medicine, Istanbul, Turkey
| | - Dilek Gogas Yavuz
- Section of Endocrinology and Metabolism, Department of Internal Medicine, Marmara University School of Medicine, Istanbul, Turkey
| | - Osman Hakan Gunduz
- Section of Pain Medicine, Department of Physical Medicine and Rehabilitation, Marmara University School of Medicine, Istanbul, Turkey
| | - Mitra Tavakoli
- College of Medicine and Health, University of Exeter, Exeter, UK
| | - Ebru Toker
- Department of Ophthalmology, Marmara University School of Medicine, Istanbul, Turkey
| |
Collapse
|
6
|
Abstract
BACKGROUND Diabetic neuropathy is a multifaceted condition affecting up to 50% of individuals with long standing diabetes. The most common presentation is peripheral diabetic sensory neuropathy (DPN). METHODS We carried out a systematic review of papers dealing with diabetic neuropathy on Pubmed in addition to a targeted Google search.Search terms included small fiber neuropathy,diffuse peripheral neuropathy, quantitative sensory testing, nerve conduction testing, intra-epidermal nerve fiber density, corneal confocal reflectance microscopy, aldose reductase inhbitors, nerve growth factor, alpha-lipoic acid, ruboxistaurin, nerve growth factor antibody, and cibinetide. RESULTS Over the past half century, there have been a number of agents undergoing unsuccessful trials for treatment of DPN.There are several approved agents for relief of pain caused by diabetic neuropathy, but these do not affect the pathologic process. EXPERT OPINION The failure to find treatments for diabetic neuropathy can be ascribed to (1) the complexity of design of studies and (2) the slow progression of the condition, necessitating long duration trials to prove efficacy.We propose a modification of the regulatory process to permit early introduction of agents with demonstrated safety and suggestion of benefit as well as prolongation of marketing exclusivity while long term trials are in progress to prove efficacy.
Collapse
Affiliation(s)
- Marc S Rendell
- The Association for Diabetes Investigators , Newport Coast, California. USA
| |
Collapse
|
7
|
Carmichael J, Fadavi H, Ishibashi F, Shore AC, Tavakoli M. Advances in Screening, Early Diagnosis and Accurate Staging of Diabetic Neuropathy. Front Endocrinol (Lausanne) 2021; 12:671257. [PMID: 34122344 PMCID: PMC8188984 DOI: 10.3389/fendo.2021.671257] [Citation(s) in RCA: 69] [Impact Index Per Article: 17.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/23/2021] [Accepted: 03/17/2021] [Indexed: 12/14/2022] Open
Abstract
The incidence of both type 1 and type 2 diabetes is increasing worldwide. Diabetic peripheral neuropathy (DPN) is among the most distressing and costly of all the chronic complications of diabetes and is a cause of significant disability and poor quality of life. This incurs a significant burden on health care costs and society, especially as these young people enter their peak working and earning capacity at the time when diabetes-related complications most often first occur. DPN is often asymptomatic during the early stages; however, once symptoms and overt deficits have developed, it cannot be reversed. Therefore, early diagnosis and timely intervention are essential to prevent the development and progression of diabetic neuropathy. The diagnosis of DPN, the determination of the global prevalence, and incidence rates of DPN remain challenging. The opinions vary about the effectiveness of the expansion of screenings to enable early diagnosis and treatment initiation before disease onset and progression. Although research has evolved over the years, DPN still represents an enormous burden for clinicians and health systems worldwide due to its difficult diagnosis, high costs related to treatment, and the multidisciplinary approach required for effective management. Therefore, there is an unmet need for reliable surrogate biomarkers to monitor the onset and progression of early neuropathic changes in DPN and facilitate drug discovery. In this review paper, the aim was to assess the currently available tests for DPN's sensitivity and performance.
Collapse
Affiliation(s)
- Josie Carmichael
- Diabetes and Vascular Research Centre, National Institute for Health Research, Exeter Clinical Research Facility, University of Exeter Medical School, Exeter, United Kingdom
| | - Hassan Fadavi
- Peripheral Neuropathy Group, Imperial College, London, United Kingdom
| | - Fukashi Ishibashi
- Internal Medicine, Ishibashi Medical and Diabetes Centre, Hiroshima, Japan
| | - Angela C Shore
- Diabetes and Vascular Research Centre, National Institute for Health Research, Exeter Clinical Research Facility, University of Exeter Medical School, Exeter, United Kingdom
| | - Mitra Tavakoli
- Diabetes and Vascular Research Centre, National Institute for Health Research, Exeter Clinical Research Facility, University of Exeter Medical School, Exeter, United Kingdom
| |
Collapse
|
8
|
Røikjer J, Mørch CD, Ejskjaer N. Diabetic Peripheral Neuropathy: Diagnosis and Treatment. Curr Drug Saf 2020; 16:2-16. [PMID: 32735526 DOI: 10.2174/1574886315666200731173113] [Citation(s) in RCA: 33] [Impact Index Per Article: 6.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/01/2020] [Revised: 06/04/2020] [Accepted: 06/16/2020] [Indexed: 02/08/2023]
Abstract
BACKGROUND Diabetic peripheral neuropathy (DPN) is traditionally divided into large and small fibre neuropathy (SFN). Damage to the large fibres can be detected using nerve conduction studies (NCS) and often results in a significant reduction in sensitivity and loss of protective sensation, while damage to the small fibres is hard to reliably detect and can be either asymptomatic, associated with insensitivity to noxious stimuli, or often manifests itself as intractable neuropathic pain. OBJECTIVE To describe the recent advances in both detection, grading, and treatment of DPN as well as the accompanying neuropathic pain. METHODS A review of relevant, peer-reviewed, English literature from MEDLINE, EMBASE and Cochrane Library between January 1st 1967 and January 1st 2020 was used. RESULTS We identified more than three hundred studies on methods for detecting and grading DPN, and more than eighty randomised-controlled trials for treating painful diabetic neuropathy. CONCLUSION NCS remains the method of choice for detecting LFN in people with diabetes, while a gold standard for the detection of SFN is yet to be internationally accepted. In the recent years, several methods with huge potential for detecting and grading this condition have become available including skin biopsies and corneal confocal microscopy, which in the future could represent reliable endpoints for clinical studies. While several newer methods for detecting SFN have been developed, no new drugs have been accepted for treating neuropathic pain in people with diabetes. Tricyclic antidepressants, serotonin-norepinephrine reuptake inhibitors and anticonvulsants remain first line treatment, while newer agents targeting the proposed pathophysiology of DPN are being developed.
Collapse
Affiliation(s)
- Johan Røikjer
- Department of Health Science and Technology, Aalborg University Hospital, Aalborg University, Aalborg, Denmark
| | - Carsten Dahl Mørch
- Department of Health Science and Technology, Aalborg University Hospital, Aalborg University, Aalborg, Denmark
| | - Niels Ejskjaer
- Department of Clinical Medicine, Aalborg University, Aalborg, Denmark
| |
Collapse
|
9
|
Won JC, Kwon HS, Moon SS, Chun SW, Kim CH, Park IB, Kim IJ, Lee J, Cha BY, Park TS. γ-Linolenic Acid versus α-Lipoic Acid for Treating Painful Diabetic Neuropathy in Adults: A 12-Week, Double-Placebo, Randomized, Noninferiority Trial. Diabetes Metab J 2020; 44:542-554. [PMID: 31701699 PMCID: PMC7453980 DOI: 10.4093/dmj.2019.0099] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/22/2019] [Accepted: 08/13/2019] [Indexed: 12/31/2022] Open
Abstract
BACKGROUND This study was a multicenter, parallel-group, double-blind, double-dummy, randomized, noninferiority trial to evaluate the efficacy and safety of γ-linolenic acid (GLA) relative to α-lipoic acid (ALA) over a 12-week treatment period in type 2 diabetes mellitus (T2DM) patients with painful diabetic peripheral neuropathy (DPN). METHODS This study included 100 T2DM patients between 20 and 75 years of age who had painful DPN and received either GLA (320 mg/day) and placebo or ALA (600 mg/day) and placebo for 12 weeks. The primary outcome measures were mean changes in pain intensities as measured by the visual analogue scale (VAS) and the total symptom scores (TSS). RESULTS Of the 100 subjects who initially participated in the study, 73 completed the 12-week treatment period. Per-protocol analyses revealed significant decreases in the mean VAS and TSS scores compared to baseline in both groups, but there were no significant differences between the groups. The treatment difference for the VAS (95% confidence interval [CI]) between the two groups was -0.65 (-1.526 to 0.213) and the upper bound of the 95% CI did not exceed the predefined noninferiority margin (δ₁=0.51). For the TSS, the treatment difference was -0.05 (-1.211 to 1.101) but the upper bound of the 95% CI crossed the noninferiority margin (δ₂=0.054). There were no serious adverse events associated with the treatments. CONCLUSION GLA treatment in patients with painful DPN was noninferior to ALA in terms of reducing pain intensity measured by the VAS over 12 weeks.
Collapse
Affiliation(s)
- Jong Chul Won
- Division of Endocrinology and Metabolism, Department of Internal Medicine, Cardiovascular and Metabolic Disease Center, Inje University Sanggye Paik Hospital, Inje University College of Medicine, Seoul, Korea
| | - Hyuk Sang Kwon
- Division of Endocrinology and Metabolism, Department of Internal Medicine, Yeouido St. Mary's Hospital, College of Medicine, The Catholic University of Korea, Seoul, Korea
| | - Seong Su Moon
- Department of Internal Medicine, Dongguk University College of Medicine, Gyeongju, Korea
| | - Sung Wan Chun
- Division of Endocrinology and Metabolism, Department of Internal Medicine, Soonchunhyang University Cheonan Hospital, Soonchunhyang University College of Medicine, Cheonan, Korea
| | - Chong Hwa Kim
- Division of Endocrinology and Metabolism, Department of Internal Medicine, Sejong General Hospital, Bucheon, Korea
| | - Ie Byung Park
- Division of Endocrinology and Metabolism, Department of Internal Medicien, Gachon University Gil Medical Center, Gachon University College of Medicine, Incheon, Korea
| | - In Joo Kim
- Division of Endocrinology and Metabolism, Department of Internal Medicine, Pusan National University Hospital, Pusan National University School of Medicine, Busan, Korea
| | - Jihyun Lee
- Department of Internal Medicine, Daegu Catholic University School of Medicine, Daegu, Korea
| | - Bong Yun Cha
- Division of Endocrinology and Metabolism, Department of Internal Medicine, College of Medicine, The Catholic University of Korea, Seoul, Korea
| | - Tae Sun Park
- Division of Endocrinology and Metabolism, Department of Internal Medicine, Chonbuk National University Medical School, Jeonju, Korea.
| |
Collapse
|
10
|
Himeno T, Kamiya H, Nakamura J. Lumos for the long trail: Strategies for clinical diagnosis and severity staging for diabetic polyneuropathy and future directions. J Diabetes Investig 2020; 11:5-16. [PMID: 31677343 PMCID: PMC6944828 DOI: 10.1111/jdi.13173] [Citation(s) in RCA: 30] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/14/2019] [Revised: 10/29/2019] [Accepted: 10/31/2019] [Indexed: 02/06/2023] Open
Abstract
Diabetic polyneuropathy, which is a chronic symmetrical length-dependent sensorimotor polyneuropathy, is the most common form of diabetic neuropathy. Although diabetic polyneuropathy is the most important risk factor in cases of diabetic foot, given its poor prognosis, the criteria for diagnosis and staging of diabetic polyneuropathy has not been established; consequently, no disease-modifying treatment is available. Most criteria and scoring systems that were previously proposed consist of clinical signs, symptoms and quantitative examinations, including sensory function tests and nerve conduction study. However, in diabetic polyneuropathy, clinical symptoms, including numbness, pain and allodynia, show no significant correlation with the development of pathophysiological changes in the peripheral nervous system. Therefore, these proposed criteria and scoring systems have failed to become a universal clinical end-point for large-scale clinical trials evaluating the prognosis in diabetes patients. We should use quantitative examinations of which validity has been proven. Nerve conduction study, for example, has been proven effective to evaluate dysfunctions of large nerve fibers. Baba's classification, which uses a nerve conduction study, is one of the most promising diagnostic methods. Loss of small nerve fibers can be determined using corneal confocal microscopy and intra-epidermal nerve fiber density. However, no staging criteria have been proposed using these quantitative evaluations for small fiber neuropathy. To establish a novel diagnostic and staging criteria of diabetic polyneuropathy, we propose three principles to be considered: (i) include only generalizable objective quantitative tests; (ii) exclude clinical symptoms and signs; and (iii) do not restrictively exclude other causes of polyneuropathy.
Collapse
Affiliation(s)
- Tatsuhito Himeno
- Division of DiabetesDepartment of Internal MedicineAichi Medical University School of MedicineNagakuteJapan
| | - Hideki Kamiya
- Division of DiabetesDepartment of Internal MedicineAichi Medical University School of MedicineNagakuteJapan
| | - Jiro Nakamura
- Division of DiabetesDepartment of Internal MedicineAichi Medical University School of MedicineNagakuteJapan
| |
Collapse
|
11
|
Creigh PD, Mountain J, Sowden JE, Eichinger K, Ravina B, Larkindale J, Herrmann DN. Measuring peripheral nerve involvement in Friedreich's ataxia. Ann Clin Transl Neurol 2019; 6:1718-1727. [PMID: 31414727 PMCID: PMC6764626 DOI: 10.1002/acn3.50865] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/25/2019] [Accepted: 07/22/2019] [Indexed: 12/31/2022] Open
Abstract
OBJECTIVE Experimental therapies under development for Friedreich's Ataxia (FRDA) require validated biomarkers. In-vivo reflectance confocal microscopy (RCM) of skin is a noninvasive way to quantify Meissner's corpuscle (MC) density and has emerged as a sensitive measure of sensory polyneuropathies. We conducted a prospective, cross-sectional study evaluating RCM of MCs and conventional peripheral nerve measures as candidate peripheral nerve markers in FRDA. METHODS Sixteen individuals with FRDA and 16 age- and gender-matched controls underwent RCM of MC density and morphology, skin biopsies for epidermal nerve fiber density (ENFD), nerve conduction studies (NCS), and quantitative sensory testing (QST) including touch, vibration, and cooling thresholds. RESULTS MC densities were measurable in all participants with FRDA, and were lower at digit V (hand), thenar eminence, and arch (foot) compared to controls. By contrast, sensory NCS showed floor effects and were obtainable in only 13% of FRDA participants. QST thresholds for touch, vibration, and cooling were higher at the hand and foot in FRDA than controls. Reductions in ENFDs were present in more severely affected individuals with FRDA (Friedreich's Ataxia Rating Scale (FARS) >60) compared to matched controls, although skin biopsies were not well tolerated in children. MC densities, ENFDs, and touch and vibration thresholds were associated with clinical disease severity (FARS and modified FARS) and duration since symptom onset. INTERPRETATION MC density, ENFD, and QST thresholds provide structural and physiologic markers of sensory involvement in FRDA. Longitudinal evaluation is needed to determine whether these measures can identify changes associated with disease progression or treatment.
Collapse
Affiliation(s)
- Peter D. Creigh
- Department of NeurologyUniversity of Rochester School of Medicine and DentistryRochesterNew York
| | - Joan Mountain
- Department of NeurologyUniversity of Rochester School of Medicine and DentistryRochesterNew York
| | - Janet E. Sowden
- Department of NeurologyUniversity of Rochester School of Medicine and DentistryRochesterNew York
| | - Katy Eichinger
- Department of NeurologyUniversity of Rochester School of Medicine and DentistryRochesterNew York
| | - Bernard Ravina
- Department of NeurologyUniversity of Rochester School of Medicine and DentistryRochesterNew York
- Praxis Precision MedicinesCambridgeMassachusetts
| | - Jane Larkindale
- Friedreich’s Ataxia Research AllianceDowningtownPennsylvania
| | - David N. Herrmann
- Department of NeurologyUniversity of Rochester School of Medicine and DentistryRochesterNew York
| |
Collapse
|
12
|
Tang HY, Jiang AJ, Ma JL, Wang FJ, Shen GM. Understanding the Signaling Pathways Related to the Mechanism and Treatment of Diabetic Peripheral Neuropathy. Endocrinology 2019; 160:2119-2127. [PMID: 31318414 DOI: 10.1210/en.2019-00311] [Citation(s) in RCA: 29] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/23/2019] [Accepted: 07/11/2019] [Indexed: 12/13/2022]
Abstract
Worldwide, the most prevalent metabolic disorder is diabetes mellitus (DM), an important condition that has been widely studied. Diabetic peripheral neuropathy (DPN), a complication that can occur with DM, is associated with pain and can result in foot ulcers and even amputation. DPN treatments are limited and mainly focus on pain management. There is a clear need to develop treatments for DPN at all stages. To make this progress, it is necessary to understand the molecular signaling pathways related to DPN. For this review, we aimed to concentrate on the main signaling cascades that contribute to DPN. In addition, we provide information with regard to treatments that are being explored.
Collapse
Affiliation(s)
- He-Yong Tang
- Anhui University of Chinese Medicine, Hefei, Anhui, China
| | - Ai-Juan Jiang
- Anhui University of Chinese Medicine, Hefei, Anhui, China
| | - Jun-Long Ma
- Anhui University of Chinese Medicine, Hefei, Anhui, China
| | - Fan-Jing Wang
- Anhui University of Chinese Medicine, Hefei, Anhui, China
| | - Guo-Ming Shen
- Anhui University of Chinese Medicine, Hefei, Anhui, China
| |
Collapse
|
13
|
Azmi S, Petropoulos IN, Ferdousi M, Ponirakis G, Alam U, Malik RA. An update on the diagnosis and treatment of diabetic somatic and autonomic neuropathy. F1000Res 2019; 8. [PMID: 30828432 PMCID: PMC6381801 DOI: 10.12688/f1000research.17118.1] [Citation(s) in RCA: 25] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Accepted: 02/07/2019] [Indexed: 12/30/2022] Open
Abstract
Diabetic peripheral neuropathy (DPN) is the most common chronic complication of diabetes. It poses a significant challenge for clinicians as it is often diagnosed late when patients present with advanced consequences such as foot ulceration. Autonomic neuropathy (AN) is also a frequent and under-diagnosed complication unless it is overtly symptomatic. Both somatic and autonomic neuropathy are associated with increased mortality. Multiple clinical trials have failed because of limited efficacy in advanced disease, inadequate trial duration, lack of effective surrogate end-points and a lack of deterioration in the placebo arm in clinical trials of DPN. Multifactorial risk factor reduction, targeting glycaemia, blood pressure and lipids can reduce the progression of DPN and AN. Treatment of painful DPN reduces painful symptoms by about 50% at best, but there is limited efficacy with any single agent. This reflects the complex aetiology of painful DPN and argues for improved clinical phenotyping with the use of targeted therapy, taking into account co-morbid conditions such as anxiety, depression and sleep disturbance.
Collapse
Affiliation(s)
- Shazli Azmi
- Institute of Cardiovascular Sciences, University of Manchester and Central Manchester NHS Foundation Trust, Manchester Academic Health Science Centre, Manchester, UK.,Manchester Diabetes Centre, Manchester University Foundation Trust, Manchester, UK
| | | | - Maryam Ferdousi
- Institute of Cardiovascular Sciences, University of Manchester and Central Manchester NHS Foundation Trust, Manchester Academic Health Science Centre, Manchester, UK
| | - Georgios Ponirakis
- Weill Cornell Medicine-Qatar, Education City, Qatar Foundation, Doha, Qatar
| | - Uazman Alam
- Department of Eye and Vision Science, Institute of Ageing and Chronic Disease, University of Liverpool, Liverpool, UK.,Department of Diabetes and Endocrinology, Royal Liverpool and Broadgreen University NHS Hospital Trust, Liverpool, UK
| | - Rayaz A Malik
- Institute of Cardiovascular Sciences, University of Manchester and Central Manchester NHS Foundation Trust, Manchester Academic Health Science Centre, Manchester, UK.,Weill Cornell Medicine-Qatar, Education City, Qatar Foundation, Doha, Qatar
| |
Collapse
|
14
|
Bönhof GJ, Herder C, Strom A, Papanas N, Roden M, Ziegler D. Emerging Biomarkers, Tools, and Treatments for Diabetic Polyneuropathy. Endocr Rev 2019; 40:153-192. [PMID: 30256929 DOI: 10.1210/er.2018-00107] [Citation(s) in RCA: 136] [Impact Index Per Article: 22.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/15/2018] [Accepted: 08/23/2018] [Indexed: 12/12/2022]
Abstract
Diabetic neuropathy, with its major clinical sequels, notably neuropathic pain, foot ulcers, and autonomic dysfunction, is associated with substantial morbidity, increased risk of mortality, and reduced quality of life. Despite its major clinical impact, diabetic neuropathy remains underdiagnosed and undertreated. Moreover, the evidence supporting a benefit for causal treatment is weak at least in patients with type 2 diabetes, and current pharmacotherapy is largely limited to symptomatic treatment options. Thus, a better understanding of the underlying pathophysiology is mandatory for translation into new diagnostic and treatment approaches. Improved knowledge about pathogenic pathways implicated in the development of diabetic neuropathy could lead to novel diagnostic techniques that have the potential of improving the early detection of neuropathy in diabetes and prediabetes to eventually embark on new treatment strategies. In this review, we first provide an overview on the current clinical aspects and illustrate the pathogenetic concepts of (pre)diabetic neuropathy. We then describe the biomarkers emerging from these concepts and novel diagnostic tools and appraise their utility in the early detection and prediction of predominantly distal sensorimotor polyneuropathy. Finally, we discuss the evidence for and limitations of the current and novel therapy options with particular emphasis on lifestyle modification and pathogenesis-derived treatment approaches. Altogether, recent years have brought forth a multitude of emerging biomarkers reflecting different pathogenic pathways such as oxidative stress and inflammation and diagnostic tools for an early detection and prediction of (pre)diabetic neuropathy. Ultimately, these insights should culminate in improving our therapeutic armamentarium against this common and debilitating or even life-threatening condition.
Collapse
Affiliation(s)
- Gidon J Bönhof
- Institute for Clinical Diabetology, German Diabetes Center, Leibniz Center for Diabetes Research, Heinrich Heine University Düsseldorf, Düsseldorf, Germany
| | - Christian Herder
- Institute for Clinical Diabetology, German Diabetes Center, Leibniz Center for Diabetes Research, Heinrich Heine University Düsseldorf, Düsseldorf, Germany.,German Center for Diabetes Research, Munich-Neuherberg, Neuherberg, Partner Düsseldorf, Düsseldorf, Germany.,Medical Faculty, Heinrich Heine University, Düsseldorf, Germany
| | - Alexander Strom
- Institute for Clinical Diabetology, German Diabetes Center, Leibniz Center for Diabetes Research, Heinrich Heine University Düsseldorf, Düsseldorf, Germany.,German Center for Diabetes Research, Munich-Neuherberg, Neuherberg, Partner Düsseldorf, Düsseldorf, Germany
| | - Nikolaos Papanas
- Second Department of Internal Medicine, Diabetes Center, Diabetic Foot Clinic, Democritus University of Thrace, Alexandroupolis, Greece
| | - Michael Roden
- Institute for Clinical Diabetology, German Diabetes Center, Leibniz Center for Diabetes Research, Heinrich Heine University Düsseldorf, Düsseldorf, Germany.,German Center for Diabetes Research, Munich-Neuherberg, Neuherberg, Partner Düsseldorf, Düsseldorf, Germany.,Division of Endocrinology and Diabetology, Medical Faculty, Heinrich Heine University, Düsseldorf, Germany
| | - Dan Ziegler
- Institute for Clinical Diabetology, German Diabetes Center, Leibniz Center for Diabetes Research, Heinrich Heine University Düsseldorf, Düsseldorf, Germany.,German Center for Diabetes Research, Munich-Neuherberg, Neuherberg, Partner Düsseldorf, Düsseldorf, Germany.,Division of Endocrinology and Diabetology, Medical Faculty, Heinrich Heine University, Düsseldorf, Germany
| |
Collapse
|
15
|
Chen X, Graham J, Petropoulos IN, Ponirakis G, Asghar O, Alam U, Marshall A, Ferdousi M, Azmi S, Efron N, Malik RA. Corneal Nerve Fractal Dimension: A Novel Corneal Nerve Metric for the Diagnosis of Diabetic Sensorimotor Polyneuropathy. Invest Ophthalmol Vis Sci 2018; 59:1113-1118. [PMID: 29490348 PMCID: PMC5830988 DOI: 10.1167/iovs.17-23342] [Citation(s) in RCA: 65] [Impact Index Per Article: 9.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022] Open
Abstract
Objective Corneal confocal microscopy (CCM), an in vivo ophthalmic imaging modality, is a noninvasive and objective imaging biomarker for identifying small nerve fiber damage. We have evaluated the diagnostic performance of previously established CCM parameters to a novel automated measure of corneal nerve complexity called the corneal nerve fiber fractal dimension (ACNFrD). Methods A total of 176 subjects (84 controls and 92 patients with type 1 diabetes) with and without diabetic sensorimotor polyneuropathy (DSPN) underwent CCM. Fractal dimension analysis was performed on CCM images using purpose-built corneal nerve analysis software, and compared with previously established manual and automated corneal nerve fiber measurements. Results Manual and automated subbasal corneal nerve fiber density (CNFD) (P < 0.0001), length (CNFL) (P < 0.0001), branch density (CNBD) (P < 0.05), and ACNFrD (P < 0.0001) were significantly reduced in patients with DSPN compared to patients without DSPN. The areas under the receiver operating characteristic curves for identifying DSPN were comparable: 0.77 for automated CNFD, 0.74 for automated CNFL, 0.69 for automated CNBD, and 0.74 for automated ACNFrD. Conclusions ACNFrD shows comparable diagnostic efficiency to identify diabetic patients with and without DSPN.
Collapse
Affiliation(s)
- Xin Chen
- School of Computer Science, University of Nottingham, Nottingham, United Kingdom
| | - Jim Graham
- Centre for Imaging Sciences, Institute of Population Health, University of Manchester, Manchester, United Kingdom
| | | | | | - Omar Asghar
- Cardiovascular Sciences, Institute of Cardiovascular Sciences, University of Manchester, Manchester, United Kingdom
| | - Uazman Alam
- Department of Eye and Vision Sciences, Institute of Ageing and Chronic Disease, University of Liverpool, Liverpool, United Kingdom.,Diabetes and Endocrinology Research, Clinical Sciences Centre, Aintree University Hospital, Liverpool, United Kingdom
| | - Andrew Marshall
- Department of Clinical Neurophysiology, Central Manchester NHS Foundation Trust, Manchester, United Kingdom
| | - Maryam Ferdousi
- Cardiovascular Sciences, Institute of Cardiovascular Sciences, University of Manchester, Manchester, United Kingdom
| | - Shazli Azmi
- Cardiovascular Sciences, Institute of Cardiovascular Sciences, University of Manchester, Manchester, United Kingdom
| | - Nathan Efron
- Institute of Health and Biomedical Innovation, Queensland University of Technology, Brisbane, Australia
| | - Rayaz A Malik
- Weill Cornell Medicine-Qatar, Division of Medicine, Doha, Qatar.,Cardiovascular Sciences, Institute of Cardiovascular Sciences, University of Manchester, Manchester, United Kingdom
| |
Collapse
|
16
|
Petropoulos IN, Ponirakis G, Khan A, Almuhannadi H, Gad H, Malik RA. Diagnosing Diabetic Neuropathy: Something Old, Something New. Diabetes Metab J 2018; 42:255-269. [PMID: 30136449 PMCID: PMC6107364 DOI: 10.4093/dmj.2018.0056] [Citation(s) in RCA: 83] [Impact Index Per Article: 11.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/03/2018] [Accepted: 05/28/2018] [Indexed: 12/13/2022] Open
Abstract
There are potentially many ways of assessing diabetic peripheral neuropathy (DPN). However, they do not fulfill U.S. Food and Drug Administration (FDA) requirements in relation to their capacity to assess therapeutic benefit in clinical trials of DPN. Over the past several decades symptoms and signs, quantitative sensory and electrodiagnostic testing have been strongly endorsed, but have consistently failed as surrogate end points in clinical trials. Therefore, there is an unmet need for reliable biomarkers to capture the onset and progression and to facilitate drug discovery in DPN. Corneal confocal microscopy (CCM) is a non-invasive ophthalmic imaging modality for in vivo evaluation of sensory C-fibers. An increasing body of evidence from multiple centers worldwide suggests that CCM fulfills the FDA criteria as a surrogate endpoint of DPN.
Collapse
Affiliation(s)
| | | | - Adnan Khan
- Division of Research, Weill Cornell Medicine Qatar, Doha, Qatar
| | | | - Hoda Gad
- Division of Research, Weill Cornell Medicine Qatar, Doha, Qatar
| | - Rayaz A Malik
- Division of Research, Weill Cornell Medicine Qatar, Doha, Qatar.
| |
Collapse
|
17
|
R(+)-Thioctic Acid Effects on Oxidative Stress and Peripheral Neuropathy in Type II Diabetic Patients: Preliminary Results by Electron Paramagnetic Resonance and Electroneurography. OXIDATIVE MEDICINE AND CELLULAR LONGEVITY 2018; 2018:1767265. [PMID: 29849866 PMCID: PMC5914101 DOI: 10.1155/2018/1767265] [Citation(s) in RCA: 23] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 08/15/2017] [Revised: 11/02/2017] [Accepted: 12/27/2017] [Indexed: 12/15/2022]
Abstract
Objectives Diabetic neuropathy is the most common complication of diabetes. The idea of alterations in energy metabolism in diabetes is emerging. The biogenic antioxidant R(+)-thioctic acid has been successfully used in the treatment of diabetic polyneuropathic (DPN) patients. Methods The effects of R(+)-thioctic acid (1 tablet, 1.6 g) administration were evaluated in 12 DPN patients at baseline and at 15, 30, 60, and 120 administration days throughout the assessment of oxidative stress (OxS); ROS production rate by electron paramagnetic resonance (EPR) technique; and oxidative damage biomarkers (thiobarbituric acid reactive substances (TBARS) and protein carbonyls (PC)), electroneurography (ENG) and visual analogue scale. Results Supplementation induced significant changes (p < 0.05) at 30 and 60 days. ROS production rate up to -16%; TBARS (-31%), PC (-38%), and TAC up to +48%. Motor nerve conduction velocity in SPE and ulnar nerves (+22% and +16%) and sensor conduction velocity in sural and median nerves (+22% and +5%). Patients reported a general wellness sensation improvement (+35%) at 30 days: lower limb pain sensation (-40%) and upper limbs (-23%). Conclusion The results strongly indicate that an increased antioxidant capacity plays an important role in OxS, nerve conduction velocity, pain, and general wellness improvement. Nevertheless, the effects of the antioxidant compound were found positive up to 60 days. Then, a hormesis effect was observed. Novelty of the research would be a challenge for investigators to carefully address issues, including dose range factors, appropriate administration time, and targeting population to counteract possible "boomerang effects." The great number of monitored parameters would firmly stress these conclusions.
Collapse
|
18
|
Ito A, Kunikata H, Yasuda M, Sawada S, Kondo K, Satake C, Hashimoto K, Aizawa N, Katagiri H, Nakazawa T. The Relationship between Peripheral Nerve Conduction Velocity and Ophthalmological Findings in Type 2 Diabetes Patients with Early Diabetic Retinopathy. J Ophthalmol 2018; 2018:2439691. [PMID: 29675271 PMCID: PMC5838505 DOI: 10.1155/2018/2439691] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/01/2017] [Revised: 12/15/2017] [Accepted: 01/15/2018] [Indexed: 02/06/2023] Open
Abstract
PURPOSE Nerve conduction velocity (NCV) is an indicator of neuronal damage in the distal segment of the peripheral nerves. Here, we determined the association between NCV and other systemic and ocular clinical findings, in type 2 diabetes patients with early diabetic retinopathy (DR). METHODS This study included 42 eyes of 42 type 2 diabetes patients (median age: 54 years) with no DR or with mild nonproliferative DR. Standard statistical techniques were used to determine associations between clinical findings. RESULTS Sural sensory conduction velocity (SCV) and tibial motor conduction velocity (MCV) were significantly lower in mild nonproliferative DR patients than patients with no DR (P = 0.008 and P = 0.01, resp.). Furthermore, logistic regression analyses revealed that sural SCV and tibial MCV were independent factors contributing to the presence of mild nonproliferative DR (OR 0.83, P = 0.012 and OR 0.69 P = 0.02, resp.). Tibial MCV was correlated with choroidal thickness (CT) (P = 0.01), and a multiple regression analysis revealed that age, tibial MCV, and carotid intima-media thickness were independent associating factors with CT (P = 0.035, P = 0.015, and P = 0.008, resp.). CONCLUSIONS Our findings suggest that reduced NCV may be closely associated with early DR in type 2 diabetes patients. Thus, reduced nerve conduction is a potential early biomarker of DR.
Collapse
Affiliation(s)
- Azusa Ito
- Department of Ophthalmology, Tohoku University Graduate School of Medicine, Sendai, Japan
| | - Hiroshi Kunikata
- Department of Ophthalmology, Tohoku University Graduate School of Medicine, Sendai, Japan
- Department of Retinal Disease Control, Tohoku University Graduate School of Medicine, Sendai, Japan
| | - Masayuki Yasuda
- Department of Ophthalmology, Tohoku University Graduate School of Medicine, Sendai, Japan
| | - Shojiro Sawada
- Department of Metabolism and Diabetes, Tohoku University Graduate School of Medicine, Sendai, Japan
| | - Keiichi Kondo
- Department of Metabolism and Diabetes, Tohoku University Graduate School of Medicine, Sendai, Japan
| | - Chihiro Satake
- Department of Metabolism and Diabetes, Tohoku University Graduate School of Medicine, Sendai, Japan
| | - Kazuki Hashimoto
- Department of Ophthalmology, Tohoku University Graduate School of Medicine, Sendai, Japan
| | - Naoko Aizawa
- Department of Ophthalmology, Tohoku University Graduate School of Medicine, Sendai, Japan
| | - Hideki Katagiri
- Department of Metabolism and Diabetes, Tohoku University Graduate School of Medicine, Sendai, Japan
| | - Toru Nakazawa
- Department of Ophthalmology, Tohoku University Graduate School of Medicine, Sendai, Japan
- Department of Retinal Disease Control, Tohoku University Graduate School of Medicine, Sendai, Japan
- Department of Advanced Ophthalmic Medicine, Tohoku University Graduate School of Medicine, Sendai, Japan
- Department of Ophthalmic Imaging and Information Analytics, Tohoku University Graduate School of Medicine, Sendai, Japan
| |
Collapse
|
19
|
The impact of diabetes on corneal nerve morphology and ocular surface integrity. Ocul Surf 2018; 16:45-57. [PMID: 29113918 DOI: 10.1016/j.jtos.2017.10.006] [Citation(s) in RCA: 105] [Impact Index Per Article: 15.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/18/2017] [Revised: 10/03/2017] [Accepted: 10/26/2017] [Indexed: 12/11/2022]
|
20
|
Edwards K, Pritchard N, Dehghani C, Vagenas D, Russell A, Malik RA, Efron N. Corneal confocal microscopy best identifies the development and progression of neuropathy in patients with type 1 diabetes. J Diabetes Complications 2017; 31:1325-1327. [PMID: 28551295 DOI: 10.1016/j.jdiacomp.2017.04.025] [Citation(s) in RCA: 25] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/14/2016] [Revised: 02/02/2017] [Accepted: 04/11/2017] [Indexed: 11/25/2022]
Abstract
A sub-set of 38 individuals with type 1 diabetes that fulfilled a strict criterion of "normal" classification for all 7 measures of neuropathy at baseline, were identified and followed. Corneal nerve morphology, as captured with corneal confocal microscopy demonstrated the greatest, and most sustained degeneration over a 4 year period.
Collapse
Affiliation(s)
- Katie Edwards
- Institute of Health and Biomedical Innovation, Queensland University of Technology, Queensland, Australia.
| | - Nicola Pritchard
- Institute of Health and Biomedical Innovation, Queensland University of Technology, Queensland, Australia
| | - Cirous Dehghani
- Institute of Health and Biomedical Innovation, Queensland University of Technology, Queensland, Australia
| | - Dimitrios Vagenas
- Institute of Health and Biomedical Innovation, Queensland University of Technology, Queensland, Australia
| | - Anthony Russell
- School of Medicine, University of Queensland, Queensland, Australia; Department of Diabetes and Endocrinology, Princess Alexandra Hospital, Woolloongabba, Queensland, Australia
| | - Rayaz A Malik
- Center for Endocrinology and Diabetes, Institute of Human Development, University of Manchester, Manchester, United Kingdom; Weill Cornell Medical College in Qatar, Doha, Qatar
| | - Nathan Efron
- Institute of Health and Biomedical Innovation, Queensland University of Technology, Queensland, Australia
| |
Collapse
|
21
|
Alam U, Jeziorska M, Petropoulos IN, Asghar O, Fadavi H, Ponirakis G, Marshall A, Tavakoli M, Boulton AJM, Efron N, Malik RA. Diagnostic utility of corneal confocal microscopy and intra-epidermal nerve fibre density in diabetic neuropathy. PLoS One 2017; 12:e0180175. [PMID: 28719619 PMCID: PMC5515394 DOI: 10.1371/journal.pone.0180175] [Citation(s) in RCA: 124] [Impact Index Per Article: 15.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/14/2016] [Accepted: 06/12/2017] [Indexed: 01/31/2023] Open
Abstract
Objectives Corneal confocal microscopy (CCM) is a rapid, non-invasive, reproducible technique that quantifies small nerve fibres. We have compared the diagnostic capability of CCM against a range of established measures of nerve damage in patients with diabetic neuropathy. Methods In this cross sectional study, thirty subjects with Type 1 diabetes without neuropathy (T1DM), thirty one T1DM subjects with neuropathy (DSPN) and twenty seven non-diabetic healthy control subjects underwent detailed assessment of neuropathic symptoms and neurologic deficits, quantitative sensory testing (QST), electrophysiology, skin biopsy and corneal confocal microscopy (CCM). Results Subjects with DSPN were older (C vs T1DM vs DSPN: 41.0±14.9 vs 38.8±12.5 vs 53.3±11.9, P = 0.0002), had a longer duration of diabetes (P<0.0001), lower eGFR (P = 0.006) and higher albumin-creatinine ratio (P = 0.03) with no significant difference for HbA1c, BMI, lipids and blood pressure. Patients with DSPN were representative of subjects with diabetic neuropathy with clinical signs and symptoms of neuropathy and greater neuropathy deficits quantified by QST, electrophysiology, intra-epidermal nerve fibre density and CCM. Corneal nerve fibre density (CNFD) (Spearman’s Rho = 0.60 P<0.0001) and IENFD (Spearman’s Rho = 0.56 P<0.0001) were comparable when correlated with peroneal nerve conduction velocity. For the diagnosis of diabetic neuropathy the sensitivity for CNFD was 0.77 and specificity was 0.79 with an area under the ROC curve of 0.81. IENFD had a diagnostic sensitivity of 0.61, specificity of 0.80 and area under the ROC curve of 0.73. Conclusions CCM is a valid accurate non-invasive method to identify small nerve fibre pathology and is able to diagnose DPN.
Collapse
Affiliation(s)
- Uazman Alam
- Diabetes & Endocrinology Research, Department of Eye & Vision Sciences, Institute of Ageing and Chronic Disease, University of Liverpool and Aintree University Hospital NHS Foundation Trust, Liverpool, United Kingdom
- Division of Diabetes, Endocrinology and Gastroenterology, Institute of Human Development, University of Manchester and the Manchester Royal Infirmary, Central Manchester Hospital Foundation Trust, Manchester, United Kingdom
| | - Maria Jeziorska
- Division of Diabetes, Endocrinology and Gastroenterology, Institute of Human Development, University of Manchester and the Manchester Royal Infirmary, Central Manchester Hospital Foundation Trust, Manchester, United Kingdom
| | - Ioannis N. Petropoulos
- Division of Diabetes, Endocrinology and Gastroenterology, Institute of Human Development, University of Manchester and the Manchester Royal Infirmary, Central Manchester Hospital Foundation Trust, Manchester, United Kingdom
| | - Omar Asghar
- Division of Diabetes, Endocrinology and Gastroenterology, Institute of Human Development, University of Manchester and the Manchester Royal Infirmary, Central Manchester Hospital Foundation Trust, Manchester, United Kingdom
| | - Hassan Fadavi
- Division of Diabetes, Endocrinology and Gastroenterology, Institute of Human Development, University of Manchester and the Manchester Royal Infirmary, Central Manchester Hospital Foundation Trust, Manchester, United Kingdom
| | | | - Andrew Marshall
- Division of Diabetes, Endocrinology and Gastroenterology, Institute of Human Development, University of Manchester and the Manchester Royal Infirmary, Central Manchester Hospital Foundation Trust, Manchester, United Kingdom
| | - Mitra Tavakoli
- Division of Diabetes, Endocrinology and Gastroenterology, Institute of Human Development, University of Manchester and the Manchester Royal Infirmary, Central Manchester Hospital Foundation Trust, Manchester, United Kingdom
- University of Exeter, Exeter, United Kingdom
| | - Andrew J. M. Boulton
- Division of Diabetes, Endocrinology and Gastroenterology, Institute of Human Development, University of Manchester and the Manchester Royal Infirmary, Central Manchester Hospital Foundation Trust, Manchester, United Kingdom
| | - Nathan Efron
- Institute of Health and Biomedical Innovation, Queensland University of Technology, Brisbane, Queensland, Australia
| | - Rayaz A. Malik
- Division of Diabetes, Endocrinology and Gastroenterology, Institute of Human Development, University of Manchester and the Manchester Royal Infirmary, Central Manchester Hospital Foundation Trust, Manchester, United Kingdom
- Weill Cornell Medicine-Qatar, Doha, Qatar
- * E-mail:
| |
Collapse
|
22
|
Creigh PD, McDermott MP, Sowden JE, Ferguson M, Herrmann DN. In-vivo reflectance confocal microscopy of Meissner's corpuscles in diabetic distal symmetric polyneuropathy. J Neurol Sci 2017; 378:213-219. [PMID: 28566167 DOI: 10.1016/j.jns.2017.05.025] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/20/2016] [Revised: 04/19/2017] [Accepted: 05/11/2017] [Indexed: 02/07/2023]
Abstract
OBJECTIVE To evaluate in-vivo reflectance confocal microscopy (RCM) of Meissner's corpuscles (MC) in diabetic distal symmetric polyneuropathy (DSP). METHODS Forty-three adults with diabetes and 21 control subjects underwent RCM of MC density at the fingertip of digit V, thenar eminence (TE), and arch of the foot, ankle skin biopsy for epidermal nerve fiber density (ENFD), electrophysiological studies, monofilament threshold testing, and timed vibration at the toe. Subjects with diabetes were subdivided into groups with and without clinical DSP using the American Academy of Neurology (AAN) case definition and neuropathy outcomes were compared across groups. RESULTS Both diabetic groups (with and without AAN clinical DSP criteria) had objective evidence of peripheral sensory involvement using conventional sensory measures, although those with clinical DSP criteria had greater abnormalities. MC densities were lower in the entire diabetic group at the TE and digit V relative to controls. MC densities at all imaging sites were associated with corresponding conventional sensory measures. MC densities were reduced in subjects without AAN clinical DSP criteria at the TE and digit V compared to controls whereas conventional upper limb sensory measures did not differ between these groups. CONCLUSIONS In-vivo RCM of MC density at digit V is a non-invasive, painless, objective marker in diabetes that offers a window into early large fiber sensory nerve terminal loss. Further studies are needed to determine whether RCM of MCs can identify quantitative changes in DSP associated with disease progression or treatment.
Collapse
Affiliation(s)
- Peter D Creigh
- University of Rochester, Department of Neurology, United States.
| | - Michael P McDermott
- University of Rochester, Department of Neurology, United States; University of Rochester, Department of Biostatistics and Computational Biology, United States.
| | - Janet E Sowden
- University of Rochester, Department of Neurology, United States.
| | - Michele Ferguson
- University of Rochester, Department of Neurology, United States.
| | - David N Herrmann
- University of Rochester, Department of Neurology, United States.
| |
Collapse
|
23
|
Activity for Diabetic Polyneuropathy (ADAPT): Study Design and Protocol for a 2-Site Randomized Controlled Trial. Phys Ther 2017; 97:20-31. [PMID: 27417167 PMCID: PMC6257067 DOI: 10.2522/ptj.20160200] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/27/2016] [Accepted: 07/06/2016] [Indexed: 12/14/2022]
Abstract
BACKGROUND Half of all patients with diabetes develop diabetic peripheral neuropathy (DPN), a complication leading to reduced mobility and quality of life. Although there are no proven pharmacologic approaches to reduce DPN risk or slow its progression, evidence suggests that physical activity may improve symptoms and enhance peripheral nerve regeneration. OBJECTIVE The aim of the study will be to determine the impact of an intense lifestyle intervention on neuropathy progression and quality of life in individuals with DPN. DESIGN The study will be a randomized controlled trial. SETTING The study will be conducted at 2 academic medical centers. PARTICIPANTS The participants will be 140 individuals with type 2 diabetes and mild to moderate DPN. INTERVENTION The intervention group will receive 18 months of supervised exercise training, actigraphy-based counseling to reduce sedentary behavior, and individualized dietary counseling. Control group participants will receive diet and activity counseling at baseline and at 9 months. MEASUREMENTS The primary outcomes are neuropathy progression as measured by intraepidermal nerve fiber density in a distal thigh skin biopsy and the Norfolk Quality of Life-Diabetic Neuropathy score. Secondary outcomes include pain, gait, balance, and mobility measures. LIMITATIONS Due to the combined intervention approach, this protocol will not be able to determine which intervention components influence outcomes. There also may be difficulty with participant attrition during the 18-month study intervention. CONCLUSIONS The Activity for Diabetic Polyneuropathy (ADAPT) protocol resulted from a collaboration between physical therapists and neurologist researchers that includes as primary outcomes both a quality-of-life measure (NQOL-DN) and a physiologic biomarker (IENFD). It has the potential to demonstrate that an intensive lifestyle intervention may be a sustainable, clinically effective approach for people with DPN that improves patient outcomes and can have an immediate impact on patient care and future clinical trials.
Collapse
|
24
|
Physical Training and Activity in People With Diabetic Peripheral Neuropathy: Paradigm Shift. Phys Ther 2017; 97:31-43. [PMID: 27445060 PMCID: PMC6256941 DOI: 10.2522/ptj.20160124] [Citation(s) in RCA: 37] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/20/2016] [Accepted: 07/11/2016] [Indexed: 12/31/2022]
Abstract
Diabetic peripheral neuropathy (DPN) occurs in more than 50% of people with diabetes and is an important risk factor for skin breakdown, amputation, and reduced physical mobility (ie, walking and stair climbing). Although many beneficial effects of exercise for people with diabetes have been well established, few studies have examined whether exercise provides comparable benefits to people with DPN. Until recently, DPN was considered to be a contraindication for walking or any weight-bearing exercise because of concerns about injuring a person's insensitive feet. These guidelines were recently adjusted, however, after research demonstrated that weight-bearing activities do not increase the risk of foot ulcers in people who have DPN but do not have severe foot deformity. Emerging research has revealed positive adaptations in response to overload stress in these people, including evidence for peripheral neuroplasticity in animal models and early clinical trials. This perspective article reviews the evidence for peripheral neuroplasticity in animal models and early clinical trials, as well as adaptations of the integumentary system and the musculoskeletal system in response to overload stress. These positive adaptations are proposed to promote improved function in people with DPN and to foster the paradigm shift to including weight-bearing exercise for people with DPN. This perspective article also provides specific assessment and treatment recommendations for this important, high-risk group.
Collapse
|
25
|
Petropoulos IN, Javed S, Azmi S, Khan A, Ponirakis G, Malik RA. Diabetic neuropathy and painful diabetic neuropathy in the Middle East and North Africa (MENA) region: Much work needs to be done. J Taibah Univ Med Sci 2016. [DOI: 10.1016/j.jtumed.2016.06.002] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/25/2022] Open
|
26
|
Abstract
Electrophysiologic studies provide objective data concerning nerve and muscle function. This information enables the diagnosis of disease states and monitoring of disease progression. This chapter describes the changes in electrophysiologic function in both prediabetes and diabetes and discusses the utility of this testing in patients with diabetes. Both the strengths and limitations of electrophysiology are discussed.
Collapse
|
27
|
Chen X, Graham J, Dabbah MA, Petropoulos IN, Tavakoli M, Malik RA. An Automatic Tool for Quantification of Nerve Fibers in Corneal Confocal Microscopy Images. IEEE Trans Biomed Eng 2016; 64:786-794. [PMID: 27295646 DOI: 10.1109/tbme.2016.2573642] [Citation(s) in RCA: 126] [Impact Index Per Article: 14.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/05/2022]
Abstract
OBJECTIVE We describe and evaluate an automated software tool for nerve-fiber detection and quantification in corneal confocal microscopy (CCM) images, combining sensitive nerve- fiber detection with morphological descriptors. METHOD We have evaluated the tool for quantification of Diabetic Sensorimotor Polyneuropathy (DSPN) using both new and previously published morphological features. The evaluation used 888 images from 176 subjects (84 controls and 92 patients with type 1 diabetes). The patient group was further subdivided into those with ( n = 63) and without ( n = 29) DSPN. RESULTS We achieve improved nerve- fiber detection over previous results (91.7% sensitivity and specificity in identifying nerve-fiber pixels). Automatic quantification of nerve morphology shows a high correlation with previously reported, manually measured, features. Receiver Operating Characteristic (ROC) analysis of both manual and automatic measurement regimes resulted in similar results in distinguishing patients with DSPN from those without: AUC of about 0.77 and 72% sensitivity-specificity at the equal error rate point. CONCLUSION Automated quantification of corneal nerves in CCM images provides a sensitive tool for identification of DSPN. Its performance is equivalent to manual quantification, while improving speed and repeatability. SIGNIFICANCE CCM is a novel in vivo imaging modality that has the potential to be a noninvasive and objective image biomarker for peripheral neuropathy. Automatic quantification of nerve morphology is a major step forward in the early diagnosis and assessment of progression, and, in particular, for use in clinical trials to establish therapeutic benefit in diabetic and other peripheral neuropathies.
Collapse
|
28
|
Malik RA. Wherefore Art Thou, O Treatment for Diabetic Neuropathy? INTERNATIONAL REVIEW OF NEUROBIOLOGY 2016; 127:287-317. [PMID: 27133154 DOI: 10.1016/bs.irn.2016.03.008] [Citation(s) in RCA: 42] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
Abstract
As of March 2016, we continue to advocate the diagnosis of diabetic neuropathy using a simple foot examination or monofilament, which identifies only those with severe neuropathy and hence risk of foot ulceration. Given the fact that the 5-year mortality rate of diabetic patients with foot ulceration is worse than that of most common cancers, surely we should be identifying patients at an earlier stage of neuropathy to prevent its progression to a stage with such a high mortality? Of course, we lament that there is no licensed treatment for diabetic neuropathy. Who is to blame? As researchers and carers, we have a duty of care to our patients with diabetic neuropathy. So, we have to look forward not backwards, and move away from our firmly entrenched views on the design and conduct of clinical trials for diabetic neuropathy. Relevant organizations such as Neurodiab, the American Diabetes Association and the Peripheral Nerve Society have to acknowledge that they cannot continue to endorse a bankrupt strategy. The FDA needs an open and self-critical dialogue with these organizations, to give pharmaceutical companies at least a fighting chance to deliver effective new therapies for diabetic neuropathy.
Collapse
Affiliation(s)
- R A Malik
- Weill Cornell Medicine-Qatar, Qatar Foundation, Education City, Doha, Qatar.
| |
Collapse
|
29
|
Ziegler D, Low PA, Freeman R, Tritschler H, Vinik AI. Predictors of improvement and progression of diabetic polyneuropathy following treatment with α-lipoic acid for 4 years in the NATHAN 1 trial. J Diabetes Complications 2016; 30:350-6. [PMID: 26651260 DOI: 10.1016/j.jdiacomp.2015.10.018] [Citation(s) in RCA: 57] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/01/2015] [Revised: 10/30/2015] [Accepted: 10/31/2015] [Indexed: 01/24/2023]
Abstract
AIMS We aimed to analyze the impact of baseline factors on the efficacy of α-lipoic acid (ALA) over 4 years in the NATHAN 1 trial. METHODS This was a post-hoc analysis of the NATHAN 1 trial, a 4-year randomized study including 460 diabetic patients with mild-to-moderate polyneuropathy using ALA 600 mg qd or placebo. Amongst others, efficacy measures were the Neuropathy Impairment Score of the lower limbs (NIS-LL) and heart rate during deep breathing (HRDB). RESULTS Improvement and prevention of progression of NIS-LL (ΔNIS-LL≥2 points) with ALA vs. placebo after 4 years was predicted by higher age, lower BMI, male sex, normal blood pressure, history of cardiovascular disease (CVD), insulin treatment, longer duration of diabetes and neuropathy, and higher neuropathy stage. Participants treated with ALA who received ACE inhibitors showed a better outcome in HRDB after 4 years. CONCLUSIONS Better outcome in neuropathic impairments following 4-year treatment with α-lipoic acid was predicted by normal BMI and blood pressure and higher burden due to CVD, diabetes, and neuropathy, while improvement in cardiac autonomic function was predicted by ACE inhibitor treatment. Thus, optimal control of CVD risk factors could contribute to improved efficacy of α-lipoic acid in patients with higher disease burden.
Collapse
Affiliation(s)
- Dan Ziegler
- Institute for Clinical Diabetology, German Diabetes Center at Heinrich Heine University, Leibniz Center for Diabetes Research, Düsseldorf, Germany; Department of Endocrinology and Diabetology, Medical Faculty, Heinrich Heine University, Düsseldorf, Germany.
| | - Phillip A Low
- Department of Neurology, Mayo Clinic, Rochester, MN, USA
| | - Roy Freeman
- Department of Neurology, Beth Israel Deaconess Medical Center, Harvard Medical School, Boston, MA, USA
| | | | - Aaron I Vinik
- Department of Medicine, EVMS Strelitz Diabetes Research Center and Neuroendocrine Unit, Eastern Virginia Medical School, Norfolk, VA, USA
| |
Collapse
|
30
|
Utility of Assessing Nerve Morphology in Central Cornea Versus Whorl Area for Diagnosing Diabetic Peripheral Neuropathy. Cornea 2016; 34:756-61. [PMID: 25909237 DOI: 10.1097/ico.0000000000000447] [Citation(s) in RCA: 32] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/09/2023]
Abstract
PURPOSE To compare small nerve fiber damage in the central cornea and whorl area in participants with diabetic peripheral neuropathy (DPN) and to examine the accuracy of evaluating these 2 anatomical sites for the diagnosis of DPN. METHODS A cohort of 187 participants (107 with type 1 diabetes and 80 controls) was enrolled. The neuropathy disability score (NDS) was used for the identification of DPN. The corneal nerve fiber length at the central cornea (CNFLcenter) and whorl (CNFLwhorl) was quantified using corneal confocal microscopy and a fully automated morphometric technique and compared according to the DPN status. Receiver operating characteristic analyses were used to compare the accuracy of the 2 corneal locations for the diagnosis of DPN. RESULTS CNFLcenter and CNFLwhorl were able to differentiate all 3 groups (diabetic participants with and without DPN and controls) (P < 0.001). There was a weak but significant linear relationship for CNFLcenter and CNFLwhorl versus NDS (P < 0.001); however, the corneal location × NDS interaction was not statistically significant (P = 0.17). The area under the receiver operating characteristic curve was similar for CNFLcenter and CNFLwhorl (0.76 and 0.77, respectively, P = 0.98). The sensitivity and specificity of the cutoff points were 0.9 and 0.5 for CNFLcenter and 0.8 and 0.6 for CNFLwhorl. CONCLUSIONS Small nerve fiber pathology is comparable at the central and whorl anatomical sites of the cornea. Quantification of CNFL from the corneal center is as accurate as CNFL quantification of the whorl area for the diagnosis of DPN.
Collapse
|
31
|
Abstract
Length-dependent neuropathy is the most common and costly complication of diabetes and frequently causes injury primarily to small-diameter cutaneous nociceptive fibers. Not only persistent hyperglycemia but also metabolic, endocrine, and inflammatory effects of obesity and dyslipidemia appear to play an important role in the development of diabetic neuropathy. Rational therapies aimed at direct control of glucose or its increased entry into the polyol pathway, oxidative or nitrosative stress, advanced glycation end product formation or signaling, microvascular ischemia, or adipocyte-derived toxicity have each failed in human trials of diabetic neuropathy. Aerobic exercise produces salutary effects in many of these pathogenic pathways simultaneously and, in both animal models and human trials, has been shown to improve symptoms of neuropathy and promote re-growth of cutaneous small-diameter fibers. Behavioral reduction in periods of seated, awake inactivity produces multimodal metabolic benefits similar to exercise, and the two strategies when combined may offer sustained benefit to peripheral nerve function.
Collapse
Affiliation(s)
| | - A Gordon Smith
- Department of Neurology, University of Utah, Salt Lake City, UT, USA
| | - Robin L Marcus
- Department of Physical Therapy, University of Utah, Salt Lake City, UT, USA
| |
Collapse
|
32
|
Javed S, Alam U, Malik RA. Burning through the pain: treatments for diabetic neuropathy. Diabetes Obes Metab 2015; 17:1115-25. [PMID: 26179288 DOI: 10.1111/dom.12535] [Citation(s) in RCA: 47] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/15/2015] [Revised: 07/02/2015] [Accepted: 07/05/2015] [Indexed: 01/17/2023]
Abstract
The rise in the global burden of diabetes is spurring an increase in the prevalence of its complications. Diabetic peripheral neuropathy (DPN) is a common and devastating complication of diabetes, with multiple clinical manifestations. The most common is a symmetrical length-dependent dysfunction and damage of peripheral nerves. The management of DPN rests on three tenets: intensive glycaemic control, even though the evidence of benefit is questionable in people with type 2 diabetes; pathogenetic therapies; and symptomatic treatment. A number of pathogenetic treatments have been evaluated in phase III clinical trials, including α-lipoic acid (stems reactive oxygen species formation), benfotiamine (prevents vascular damage) and aldose-reductase inhibitors (reduce flux through the polyol pathway), protein kinase C inhibitors (prevent hyperglycaemia-induced activation of protein kinase C), nerve growth factors (stimulate nerve regeneration) and Actovegin® (improves tissue glucose and oxygen uptake). However, none have gained US Food and Drug Administration or European Medicines Agency (EMA) approval, questioning the validity of current trial designs and the endpoints deployed to define efficacy. For painful diabetic neuropathy, clinical guidelines recommend: atypical analgesics for pain relief, including duloxetine and amitriptyline; the γ-aminobutyric acid analogues gabapentin and pregabalin; opioids, including Tapentadol; and topical agents such as lidocaine and capsaicin. No single effective treatment exists for painful DPN, highlighting a growing need for studies to evaluate more potent and targeted drugs, as well as combinations. A number of novel potential candidates, including erythropoietin analogues and angiotensin II type 2 receptor anatagonists are currently being evaluated in phase II clinical trials.
Collapse
Affiliation(s)
- S Javed
- Centre for Endocrinology and Diabetes, Institute of Human Development, University of Manchester, Manchester, UK
| | - U Alam
- Central Manchester University Hospitals, Manchester, UK
| | - R A Malik
- Centre for Endocrinology and Diabetes, Institute of Human Development, University of Manchester, Manchester, UK
- Weill-Cornell Medical College-Qatar, Doha, Qatar
| |
Collapse
|
33
|
Ward RE, Caserotti P, Cauley JA, Boudreau RM, Goodpaster BH, Vinik AI, Newman AB, Strotmeyer ES. Mobility-Related Consequences of Reduced Lower-Extremity Peripheral Nerve Function with Age: A Systematic Review. Aging Dis 2015; 7:466-78. [PMID: 27493833 DOI: 10.14336/ad.2015.1127] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/27/2015] [Accepted: 11/27/2015] [Indexed: 11/01/2022] Open
Abstract
The objective of this study is to systematically review the relationship between lower-extremity peripheral nerve function and mobility in older adults. The National Library of Medicine (PubMed) was searched on March 23, 2015 with no limits on publication dates. One reviewer selected original research studies of older adults (≥65 years) that assessed the relationship between lower-extremity peripheral nerve function and mobility-related outcomes. Participants, study design and methods of assessing peripheral nerve impairment were evaluated and results were reported and synthesized. Eight articles were identified, including 6 cross-sectional and 2 longitudinal studies. These articles investigated 6 elderly cohorts (4 from the U.S. and 2 from Italy): 3 community-dwelling (including 1 with only disabled women and 1 without mobility limitations at baseline), 1 with both community-dwelling and institutionalized residents, 1 from a range of residential locations, and 1 of patients with peripheral arterial disease. Mean ages ranged from 71-82 years. Nerve function was assessed by vibration threshold (n=2); sensory measures and clinical signs and symptoms of neuropathy (n=2); motor nerve conduction (n=1); and a combination of both sensory measures and motor nerve conduction (n=3). Each study found that worse peripheral nerve function was related to poor mobility, although relationships varied based on the nerve function measure and mobility domain assessed. Six studies found that the association between nerve function and mobility persisted despite adjustment for diabetes. Evidence suggests that peripheral nerve function impairment at various levels of severity is related to poor mobility independent of diabetes. Relationships varied depending on peripheral nerve measure, which may be particularly important when investigating specific biological mechanisms. Future research needs to identify risk factors for peripheral nerve decline beyond diabetes, especially those common in late-life and modifiable. Interventions to preserve nerve function should be investigated with regard to their effect on postponing or preventing disability in older adults.
Collapse
Affiliation(s)
- Rachel E Ward
- 1Spaulding Rehabilitation Hospital, Cambridge, MA 02138, USA; 2School of Public Health, Boston University, Boston, MA 00218, USA
| | - Paolo Caserotti
- 3Department of Sports Science and Clinical Biomechanics, University of Southern, Denmark, Odense, Denmark
| | - Jane A Cauley
- 4Department of Epidemiology, Graduate School of Public Health, University of Pittsburgh, Pittsburgh, PA 15213, USA
| | - Robert M Boudreau
- 4Department of Epidemiology, Graduate School of Public Health, University of Pittsburgh, Pittsburgh, PA 15213, USA
| | | | - Aaron I Vinik
- 6Department of Neurobiology, Eastern Virginia Medical School, Norfolk, VA 23507, USA
| | - Anne B Newman
- 4Department of Epidemiology, Graduate School of Public Health, University of Pittsburgh, Pittsburgh, PA 15213, USA
| | - Elsa S Strotmeyer
- 4Department of Epidemiology, Graduate School of Public Health, University of Pittsburgh, Pittsburgh, PA 15213, USA
| |
Collapse
|
34
|
Javed S, Alam U, Malik RA. Treating Diabetic Neuropathy: Present Strategies and Emerging Solutions. Rev Diabet Stud 2015; 12:63-83. [PMID: 26676662 DOI: 10.1900/rds.2015.12.63] [Citation(s) in RCA: 55] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/15/2022] Open
Abstract
Diabetic peripheral neuropathies (DPN) are a heterogeneous group of disorders caused by neuronal dysfunction in patients with diabetes. They have differing clinical courses, distributions, fiber involvement (large or small), and pathophysiology. These complications are associated with increased morbidity, distress, and healthcare costs. Approximately 50% of patients with diabetes develop peripheral neuropathy, and the projected rise in the global burden of diabetes is spurring an increase in neuropathy. Distal symmetrical polyneuropathy (DSPN) with painful diabetic neuropathy, occurring in around 20% of diabetes patients, and diabetic autonomic neuropathy (DAN) are the most common manifestations of DPN. Optimal glucose control represents the only broadly accepted therapeutic option though evidence of its benefit in type 2 diabetes is unclear. A number of symptomatic treatments are recommended in clinical guidelines for the management of painful DPN, including antidepressants such as amitriptyline and duloxetine, the γ-aminobutyric acid analogues gabapentin and pregabalin, opioids, and topical agents such as capsaicin. However, monotherapy is frequently not effective in achieving complete resolution of pain in DPN. There is a growing need for head-to-head studies of different single-drug and combination pharmacotherapies. Due to the ubiquity of autonomic innervation in the body, DAN causes a plethora of symptoms and signs affecting cardiovascular, urogenital, gastrointestinal, pupillomotor, thermoregulatory, and sudomotor systems. The current treatment of DAN is largely symptomatic, and does not correct the underlying autonomic nerve deficit. A number of novel potential candidates, including erythropoietin analogues, angiotensin II receptor type 2 antagonists, and sodium channel blockers are currently being evaluated in phase II clinical trials.
Collapse
Affiliation(s)
- Saad Javed
- Centre for Endocrinology and Diabetes, Institute of Human Development, Manchester Academic Health Sciences Centre, University of Manchester, Manchester, UK
| | - Uazman Alam
- Centre for Endocrinology and Diabetes, Institute of Human Development, Manchester Academic Health Sciences Centre, University of Manchester, Manchester, UK
| | - Rayaz A Malik
- Centre for Endocrinology and Diabetes, Institute of Human Development, Manchester Academic Health Sciences Centre, University of Manchester, Manchester, UK
| |
Collapse
|
35
|
De Clerck EEB, Schouten JSAG, Berendschot TTJM, Kessels AGH, Nuijts RMMA, Beckers HJM, Schram MT, Stehouwer CDA, Webers CAB. New ophthalmologic imaging techniques for detection and monitoring of neurodegenerative changes in diabetes: a systematic review. Lancet Diabetes Endocrinol 2015; 3:653-63. [PMID: 26184671 DOI: 10.1016/s2213-8587(15)00136-9] [Citation(s) in RCA: 70] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/13/2014] [Revised: 03/30/2015] [Accepted: 05/01/2015] [Indexed: 01/12/2023]
Abstract
Optical coherence tomography (OCT) of the retina and around the optic nerve head and corneal confocal microscopy (CCM) are non-invasive and repeatable techniques that can quantify ocular neurodegenerative changes in individuals with diabetes. We systematically reviewed studies of ocular neurodegenerative changes in adults with type 1 or type 2 diabetes and noted changes in the retina, the optic nerve head, and the cornea. Of the 30 studies that met our inclusion criteria, 14 used OCT and 16 used CCM to assess ocular neurodegenerative changes. Even in the absence of diabetic retinopathy, several layers in the retina and the mean retinal nerve fibre layer around the optic nerve head were significantly thinner (-5·36 μm [95% CI -7·13 to -3·58]) in individuals with type 2 diabetes compared with individuals without diabetes. In individuals with type 1 diabetes without retinopathy none of the intraretinal layer thicknesses were significantly reduced compared with individuals without diabetes. In the absence of diabetic polyneuropathy, individuals with type 2 diabetes had a lower nerve density (nerve branch density: -1·10/mm(2) [95% CI -4·22 to 2·02]), nerve fibre density: -5·80/mm(2) [-8·06 to -3·54], and nerve fibre length: -4·00 mm/mm(2) [-5·93 to -2·07]) in the subbasal nerve plexus of the cornea than individuals without diabetes. Individuals with type 1 diabetes without polyneuropathy also had a lower nerve density (nerve branch density: -7·74/mm(2) [95% CI -14·13 to -1·34], nerve fibre density: -2·68/mm(2) [-5·56 to 0·20]), and nerve fibre length: -2·58 mm/mm(2) [-3·94 to -1·21]). Ocular neurodegenerative changes are more evident when diabetic retinopathy or polyneuropathy is present. OCT and CCM are potentially useful, in addition to conventional clinical methods, to assess diabetic neurodegenerative changes. Additional research is needed to determine their incremental benefit and to standardise procedures before the application of OCT and CCM in daily practice.
Collapse
Affiliation(s)
- Eline E B De Clerck
- Department of Ophthalmology, Maastricht University Medical Center +, Maastricht, Netherlands.
| | - Jan S A G Schouten
- Department of Ophthalmology, Maastricht University Medical Center +, Maastricht, Netherlands
| | - Tos T J M Berendschot
- Department of Ophthalmology, Maastricht University Medical Center +, Maastricht, Netherlands
| | - Alfons G H Kessels
- Department of Anesthesiology and Pain Medicine, Maastricht University Medical Center +, Maastricht, Netherlands
| | - Rudy M M A Nuijts
- Department of Ophthalmology, Maastricht University Medical Center +, Maastricht, Netherlands
| | - Henny J M Beckers
- Department of Ophthalmology, Maastricht University Medical Center +, Maastricht, Netherlands
| | - Miranda T Schram
- Department of Internal Medicine and Cardiovascular Research Institute, Maastricht University Medical Center +, Maastricht, Netherlands
| | - Coen D A Stehouwer
- Department of Internal Medicine and Cardiovascular Research Institute, Maastricht University Medical Center +, Maastricht, Netherlands
| | - Carroll A B Webers
- Department of Ophthalmology, Maastricht University Medical Center +, Maastricht, Netherlands
| |
Collapse
|
36
|
Alabdali M, Qrimli M, Barnett C, Abraham A, Breiner A, Katzberg HD, Aljaafari D, Albulaihe H, Perkins BA, Bril V. Choosing drugs for the treatment of diabetic neuropathy. Expert Opin Pharmacother 2015; 16:1805-14. [DOI: 10.1517/14656566.2015.1067680] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/05/2022]
|
37
|
Chen X, Graham J, Dabbah MA, Petropoulos IN, Ponirakis G, Asghar O, Alam U, Marshall A, Fadavi H, Ferdousi M, Azmi S, Tavakoli M, Efron N, Jeziorska M, Malik RA. Small nerve fiber quantification in the diagnosis of diabetic sensorimotor polyneuropathy: comparing corneal confocal microscopy with intraepidermal nerve fiber density. Diabetes Care 2015; 38:1138-44. [PMID: 25795415 PMCID: PMC4439535 DOI: 10.2337/dc14-2422] [Citation(s) in RCA: 180] [Impact Index Per Article: 18.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/13/2014] [Accepted: 02/26/2015] [Indexed: 02/03/2023]
Abstract
OBJECTIVE Quantitative assessment of small fiber damage is key to the early diagnosis and assessment of progression or regression of diabetic sensorimotor polyneuropathy (DSPN). Intraepidermal nerve fiber density (IENFD) is the current gold standard, but corneal confocal microscopy (CCM), an in vivo ophthalmic imaging modality, has the potential to be a noninvasive and objective image biomarker for identifying small fiber damage. The purpose of this study was to determine the diagnostic performance of CCM and IENFD by using the current guidelines as the reference standard. RESEARCH DESIGN AND METHODS Eighty-nine subjects (26 control subjects and 63 patients with type 1 diabetes), with and without DSPN, underwent a detailed assessment of neuropathy, including CCM and skin biopsy. RESULTS Manual and automated corneal nerve fiber density (CNFD) (P < 0.0001), branch density (CNBD) (P < 0.0001) and length (CNFL) (P < 0.0001), and IENFD (P < 0.001) were significantly reduced in patients with diabetes with DSPN compared with control subjects. The area under the receiver operating characteristic curve for identifying DSPN was 0.82 for manual CNFD, 0.80 for automated CNFD, and 0.66 for IENFD, which did not differ significantly (P = 0.14). CONCLUSIONS This study shows comparable diagnostic efficiency between CCM and IENFD, providing further support for the clinical utility of CCM as a surrogate end point for DSPN.
Collapse
Affiliation(s)
- Xin Chen
- Centre for Imaging Sciences, Institute of Population Health, University of Manchester, Manchester, U.K
| | - Jim Graham
- Centre for Imaging Sciences, Institute of Population Health, University of Manchester, Manchester, U.K
| | - Mohammad A Dabbah
- Centre for Imaging Sciences, Institute of Population Health, University of Manchester, Manchester, U.K
| | - Ioannis N Petropoulos
- Centre for Endocrinology and Diabetes, Institute of Human Development, Manchester Academic Health Science Centre, Manchester, U.K. Division of Medicine, Weill Cornell Medical College in Qatar, Doha, Qatar
| | - Georgios Ponirakis
- Centre for Endocrinology and Diabetes, Institute of Human Development, Manchester Academic Health Science Centre, Manchester, U.K. Division of Medicine, Weill Cornell Medical College in Qatar, Doha, Qatar
| | - Omar Asghar
- Centre for Endocrinology and Diabetes, Institute of Human Development, Manchester Academic Health Science Centre, Manchester, U.K. Division of Medicine, Weill Cornell Medical College in Qatar, Doha, Qatar
| | - Uazman Alam
- Centre for Endocrinology and Diabetes, Institute of Human Development, Manchester Academic Health Science Centre, Manchester, U.K. Division of Medicine, Weill Cornell Medical College in Qatar, Doha, Qatar
| | - Andrew Marshall
- Department of Clinical Neurophysiology, Central Manchester NHS Foundation Trust, Manchester, U.K
| | - Hassan Fadavi
- Centre for Endocrinology and Diabetes, Institute of Human Development, Manchester Academic Health Science Centre, Manchester, U.K. Division of Medicine, Weill Cornell Medical College in Qatar, Doha, Qatar
| | - Maryam Ferdousi
- Centre for Endocrinology and Diabetes, Institute of Human Development, Manchester Academic Health Science Centre, Manchester, U.K. Division of Medicine, Weill Cornell Medical College in Qatar, Doha, Qatar
| | - Shazli Azmi
- Centre for Endocrinology and Diabetes, Institute of Human Development, Manchester Academic Health Science Centre, Manchester, U.K. Division of Medicine, Weill Cornell Medical College in Qatar, Doha, Qatar
| | - Mitra Tavakoli
- Centre for Endocrinology and Diabetes, Institute of Human Development, Manchester Academic Health Science Centre, Manchester, U.K. Division of Medicine, Weill Cornell Medical College in Qatar, Doha, Qatar
| | - Nathan Efron
- Institute of Health and Biomedical Innovation, Queensland University of Technology, Brisbane, Queensland, Australia
| | - Maria Jeziorska
- Centre for Endocrinology and Diabetes, Institute of Human Development, Manchester Academic Health Science Centre, Manchester, U.K. Division of Medicine, Weill Cornell Medical College in Qatar, Doha, Qatar
| | - Rayaz A Malik
- Centre for Endocrinology and Diabetes, Institute of Human Development, Manchester Academic Health Science Centre, Manchester, U.K. Division of Medicine, Weill Cornell Medical College in Qatar, Doha, Qatar
| |
Collapse
|
38
|
Affiliation(s)
- Christopher J Klein
- Department of Neurology, Department of Laboratory Medicine and Pathology, and Department of Medical Genetics, Mayo Clinic, Rochester, MN
| |
Collapse
|
39
|
Wang C, Lu J, Lu W, Yu H, Jiang L, Li M, Chen H, Yu H, Zhou J, Liu F, Bao Y, Jia W. Evaluating peripheral nerve function in asymptomatic patients with type 2 diabetes or latent autoimmune diabetes of adults (LADA): results from nerve conduction studies. J Diabetes Complications 2015; 29:265-9. [PMID: 25434703 DOI: 10.1016/j.jdiacomp.2014.11.001] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/26/2014] [Revised: 11/04/2014] [Accepted: 11/05/2014] [Indexed: 11/24/2022]
Abstract
AIMS To assess the involvement of peripheral nerve dysfunction in asymptomatic patients with latent autoimmune diabetes of adults (LADA) or type 2 diabetes (T2DM), and compare nerve conduction (NC) parameters between the two groups. METHODS A total of 1635 patients without symptoms and signs relevant to diabetic polyneuropathy (1275 with T2DM and 360 with LADA) were included and were further categorized into 3 groups according to diabetes duration: <5years, 5-14 years and ≥15years. All subjects underwent nerve conduction studies. Abnormal NC was defined as the abnormality of NC parameters in two or more anatomical nerves. RESULTS In both LADA and T2DM patients, the proportions of abnormal NC increased significantly with increasing durations (both P for trend <0.001). Specifically, abnormal NC was present in 18.5%, 38.8% and 66.7% of LADA patients with duration of <5 years, 5-14 years and ≥15 years, respectively. Those numbers were 24.8% (P=0.152, vs. LADA), 25.3% (P=0.023, vs. LADA) and 62.8% (P=0.723, vs. LADA) in T2DM. Regarding NC parameters, T2DM patients had higher composite Z-scores of latency than LADA patients within 5 years of duration (P=0.001). In patients with duration of 5-14years, the latency Z-scores were comparable between the two groups (P=0.164), whereas the Z-scores of amplitude were lower (the lower the worse) in LADA than in T2DM (P=0.035). CONCLUSIONS Peripheral nerve dysfunction is common in asymptomatic patients with LADA or T2DM. Findings of the study suggest that LADA and T2DM differ in the pattern of peripheral nerve involvement over diabetes duration.
Collapse
Affiliation(s)
- Congrong Wang
- Department of Endocrinology and Metabolism, Shanghai Jiao Tong University Affiliated Sixth People's Hospital, Shanghai Diabetes Institute, Shanghai Key Laboratory of Diabetes Mellitus, Shanghai Clinical Center for Diabetes, Shanghai, 200233, PR China
| | - Jingyi Lu
- Department of Endocrinology and Metabolism, Shanghai Jiao Tong University Affiliated Sixth People's Hospital, Shanghai Diabetes Institute, Shanghai Key Laboratory of Diabetes Mellitus, Shanghai Clinical Center for Diabetes, Shanghai, 200233, PR China
| | - Wei Lu
- Department of Endocrinology and Metabolism, Shanghai Jiao Tong University Affiliated Sixth People's Hospital, Shanghai Diabetes Institute, Shanghai Key Laboratory of Diabetes Mellitus, Shanghai Clinical Center for Diabetes, Shanghai, 200233, PR China
| | - Hong Yu
- National Metabolic Diseases Biobank, Shanghai, 200233, PR China
| | - Lan Jiang
- Department of Electrophysiology, Shanghai Jiao Tong University Affiliated Sixth People's Hospital, Shanghai, 200233, PR China
| | - Ming Li
- Department of Endocrinology and Metabolism, Shanghai Jiao Tong University Affiliated Sixth People's Hospital, Shanghai Diabetes Institute, Shanghai Key Laboratory of Diabetes Mellitus, Shanghai Clinical Center for Diabetes, Shanghai, 200233, PR China
| | - Haibing Chen
- Department of Endocrinology and Metabolism, Shanghai Jiao Tong University Affiliated Sixth People's Hospital, Shanghai Diabetes Institute, Shanghai Key Laboratory of Diabetes Mellitus, Shanghai Clinical Center for Diabetes, Shanghai, 200233, PR China
| | - Haoyong Yu
- Department of Endocrinology and Metabolism, Shanghai Jiao Tong University Affiliated Sixth People's Hospital, Shanghai Diabetes Institute, Shanghai Key Laboratory of Diabetes Mellitus, Shanghai Clinical Center for Diabetes, Shanghai, 200233, PR China
| | - Jian Zhou
- Department of Endocrinology and Metabolism, Shanghai Jiao Tong University Affiliated Sixth People's Hospital, Shanghai Diabetes Institute, Shanghai Key Laboratory of Diabetes Mellitus, Shanghai Clinical Center for Diabetes, Shanghai, 200233, PR China
| | - Fang Liu
- Department of Endocrinology and Metabolism, Shanghai Jiao Tong University Affiliated Sixth People's Hospital, Shanghai Diabetes Institute, Shanghai Key Laboratory of Diabetes Mellitus, Shanghai Clinical Center for Diabetes, Shanghai, 200233, PR China
| | - Yuqian Bao
- Department of Endocrinology and Metabolism, Shanghai Jiao Tong University Affiliated Sixth People's Hospital, Shanghai Diabetes Institute, Shanghai Key Laboratory of Diabetes Mellitus, Shanghai Clinical Center for Diabetes, Shanghai, 200233, PR China
| | - Weiping Jia
- Department of Endocrinology and Metabolism, Shanghai Jiao Tong University Affiliated Sixth People's Hospital, Shanghai Diabetes Institute, Shanghai Key Laboratory of Diabetes Mellitus, Shanghai Clinical Center for Diabetes, Shanghai, 200233, PR China.
| |
Collapse
|
40
|
Bramson C, Herrmann DN, Carey W, Keller D, Brown MT, West CR, Verburg KM, Dyck PJ. Exploring the role of tanezumab as a novel treatment for the relief of neuropathic pain. PAIN MEDICINE 2015; 16:1163-76. [PMID: 25594611 DOI: 10.1111/pme.12677] [Citation(s) in RCA: 49] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Abstract
OBJECTIVE Evaluate efficacy and safety of tanezumab, a humanized monoclonal antibody against nerve growth factor, in neuropathic pain. DESIGN Two randomized controlled trials. SUBJECTS Patients with pain due to diabetic peripheral neuropathy (DPN) or postherpetic neuralgia (PHN). METHODS In the DPN study, patients received subcutaneous tanezumab 20 mg or placebo on Day 1 and Week 8. Evaluations included change from baseline in average DPN pain (primary endpoint), Patient's Global Assessment of DPN, and safety (including neuropathy assessments). Due to a partial clinical hold limiting enrollment and treatment duration, the prespecified landmark analysis was modified post hoc from Week 16 to Week 8. In the PHN study, patients received intravenous tanezumab 50 μg/kg, tanezumab 200 μg/kg, or placebo on Day 1. Evaluations included change from baseline in average daily pain (primary endpoint), Brief Pain Inventory-short form, Patient's Global Assessment of pain from PHN, and safety. RESULTS Mean DPN pain reduction from baseline to Week 8 was greater with tanezumab vs placebo (P = 0.009); differences in Patient's Global Assessment of DPN were not significant (P > 0.05). Neither tanezumab dose resulted in significant differences vs placebo in efficacy in PHN (P > 0.05), although tanezumab 200 μg/kg provided some benefit. Neuropathy assessments showed no meaningful changes. CONCLUSIONS Tanezumab provided effective pain reduction in DPN. In PHN, only the highest tanezumab dose reduced pain; treatment differences were not significant. No new safety concerns were observed despite preexisting neuropathy.
Collapse
Affiliation(s)
| | - David N Herrmann
- University of Rochester Medical Center, School of Medicine and Dentistry, Rochester, New York
| | | | | | | | | | | | - Peter J Dyck
- Department of Neurology, Mayo Clinic, Rochester, Minnesota, USA
| |
Collapse
|
41
|
Javed S, Petropoulos IN, Alam U, Malik RA. Treatment of painful diabetic neuropathy. Ther Adv Chronic Dis 2015; 6:15-28. [PMID: 25553239 DOI: 10.1177/2040622314552071] [Citation(s) in RCA: 134] [Impact Index Per Article: 13.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/17/2023] Open
Abstract
Painful diabetic neuropathy (PDN) is a debilitating consequence of diabetes that may be present in as many as one in five patients with diabetes. The objective assessment of PDN is difficult, making it challenging to diagnose and assess in both clinical practice and clinical trials. No single treatment exists to prevent or reverse neuropathic changes or to provide total pain relief. Treatment of PDN is based on three major approaches: intensive glycaemic control and risk factor management, treatments based on pathogenetic mechanisms, and symptomatic pain management. Clinical guidelines recommend pain relief in PDN through the use of antidepressants such as amitriptyline and duloxetine, the γ-aminobutyric acid analogues gabapentin and pregabalin, opioids and topical agents such as capsaicin. Of these medications, duloxetine and pregabalin were approved by the US Food and Drug Administration (FDA) in 2004 and tapentadol extended release was approved in 2012 for the treatment of PDN. Proposed pathogenetic treatments include α-lipoic acid (stems reactive oxygen species formation), benfotiamine (prevents vascular damage in diabetes) and aldose-reductase inhibitors (reduces flux through the polyol pathway). There is a growing need for studies to evaluate the most potent drugs or combinations for the management of PDN to maximize pain relief and improve quality of life. A number of agents are potential candidates for future use in PDN therapy, including Nav 1.7 antagonists, N-type calcium channel blockers, NGF antibodies and angiotensin II type 2 receptor antagonists.
Collapse
Affiliation(s)
- Saad Javed
- Centre for Endocrinology and Diabetes, University of Manchester, Core Technology Facility (3rd floor), 46 Grafton Street, Manchester, M13 9NT, UK
| | - Ioannis N Petropoulos
- School of Medicine, Institute of Human Development, Centre for Endocrinology and Diabetes, Manchester, UK
| | - Uazman Alam
- School of Medicine, Institute of Human Development, Centre for Endocrinology and Diabetes, and Central Manchester NHS Foundation Trust, Manchester Academic Health Science Centre, Manchester, UK
| | - Rayaz A Malik
- School of Medicine, Institute of Human Development, Centre for Endocrinology and Diabetes, Central Manchester NHS Foundation Trust, Manchester Academic Health Science Centre, Manchester, UK, and Weill Cornell Medical College, Qatar
| |
Collapse
|
42
|
Singleton JR, Marcus RL, Jackson JE, K Lessard M, Graham TE, Smith AG. Exercise increases cutaneous nerve density in diabetic patients without neuropathy. Ann Clin Transl Neurol 2014; 1:844-9. [PMID: 25493275 PMCID: PMC4241811 DOI: 10.1002/acn3.125] [Citation(s) in RCA: 79] [Impact Index Per Article: 7.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/05/2014] [Revised: 08/15/2014] [Accepted: 08/19/2014] [Indexed: 12/16/2022] Open
Abstract
Early diabetic neuropathy is characterized by loss of unmyelinated axons, resulting in pain, numbness, and progressive decline in intraepidermal nerve fiber density. Patients with type 2 diabetes, without neuropathy, were assigned to quarterly lifestyle counseling (N = 40) or structured, supervised weekly exercise (N = 60) for 1 year. Distal leg IENFD significantly increased in the exercise cohort and remained unchanged in the counseling cohort (1.5 ± 3.6 vs. -0.1 ± 3.2 fibers/mm, P = 0.03). These results suggest preclinical injury to unmyelinated axons is potentially reversible, and that IENFD may be a responsive biomarker useful in future neuropathy prevention clinical trials.
Collapse
Affiliation(s)
- John R Singleton
- Department of Neurology, University of Utah Salt Lake City, Utah
| | - Robin L Marcus
- Department of Physical Therapy, University of Utah Salt Lake City, Utah
| | - Justin E Jackson
- Department of Physical Therapy, University of Utah Salt Lake City, Utah
| | | | - Timothy E Graham
- Department of Internal Medicine, University of Utah Salt Lake City, Utah
| | - Albert G Smith
- Department of Neurology, University of Utah Salt Lake City, Utah
| |
Collapse
|
43
|
Brown MT, Herrmann DN, Goldstein M, Burr AM, Smith MD, West CR, Verburg KM, Dyck PJ. Nerve safety of tanezumab, a nerve growth factor inhibitor for pain treatment. J Neurol Sci 2014; 345:139-47. [DOI: 10.1016/j.jns.2014.07.028] [Citation(s) in RCA: 27] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/12/2014] [Accepted: 07/10/2014] [Indexed: 01/17/2023]
|
44
|
Stem MS, Hussain M, Lentz SI, Raval N, Gardner TW, Pop-Busui R, Shtein RM. Differential reduction in corneal nerve fiber length in patients with type 1 or type 2 diabetes mellitus. J Diabetes Complications 2014; 28:658-61. [PMID: 25044236 PMCID: PMC4146399 DOI: 10.1016/j.jdiacomp.2014.06.007] [Citation(s) in RCA: 40] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/04/2014] [Revised: 06/06/2014] [Accepted: 06/11/2014] [Indexed: 02/06/2023]
Abstract
AIM To examine the relationship between corneal nerve fiber length (CNFL) and diabetic neuropathy (DN) status in patients with type 1 or type 2 diabetes mellitus (DM). METHODS In this cross-sectional study, we examined 25 diabetic patients without DN, 10 patients with mild DN, 8 patients with severe DN, and 9 controls without diabetes. DN status was assigned based on a combination of clinical symptoms, signs, and electrophysiological testing. Patients underwent corneal confocal microscopy (CCM) of the sub-basal nerve plexus. Post-hoc analysis of the CCM images was performed to quantify the average CNFL, and ANOVA was used to assess for differences in CNFL. RESULTS All 25 subjects without DN had type 1 DM, and subjects with DN had type 2 DM. Participants with severe DN had significantly lower CNFL (12.5±6.1mm/mm(2)) compared to controls (20.7±2.2mm/mm(2)) (p=0.009). However, lower CNFL was also found in participants with type 1 DM who did not have DN (15.1±4.7mm/mm(2)) relative to controls (p=0.033). CONCLUSIONS CCM of the sub-basal nerve plexus may be an indicator of early peripheral nerve degeneration in type 1 DM. Type of diabetes, in addition to degree of neuropathy, may influence the extent of corneal nerve damage.
Collapse
Affiliation(s)
- Maxwell S Stem
- Department of Ophthalmology and Visual Sciences, University of Michigan Medical School
| | - Munira Hussain
- Department of Ophthalmology and Visual Sciences, University of Michigan Medical School
| | - Stephen I Lentz
- Department of Internal Medicine, Division of Metabolism, Endocrinology, and Diabetes, University of Michigan Medical School, Ann Arbor, MI
| | - Nilesh Raval
- University of Michigan Undergraduate Program, Ann Arbor, MI
| | - Thomas W Gardner
- Department of Ophthalmology and Visual Sciences, University of Michigan Medical School
| | - Rodica Pop-Busui
- Department of Internal Medicine, Division of Metabolism, Endocrinology, and Diabetes, University of Michigan Medical School, Ann Arbor, MI
| | - Roni M Shtein
- Department of Ophthalmology and Visual Sciences, University of Michigan Medical School.
| |
Collapse
|
45
|
Pritchard N, Edwards K, Dehghani C, Fadavi H, Jeziorska M, Marshall A, Petropoulos IN, Ponirakis G, Russell AW, Sampson GP, Shahidi AM, Srinivasan S, Tavakoli M, Vagenas D, Malik RA, Efron N. Longitudinal assessment of neuropathy in type 1 diabetes using novel ophthalmic markers (LANDMark): study design and baseline characteristics. Diabetes Res Clin Pract 2014; 104:248-56. [PMID: 24629408 DOI: 10.1016/j.diabres.2014.02.011] [Citation(s) in RCA: 53] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/11/2013] [Revised: 11/11/2013] [Accepted: 02/13/2014] [Indexed: 02/06/2023]
Abstract
AIMS Corneal nerve morphology and corneal sensation threshold have recently been explored as potential surrogate markers for the evaluation of diabetic neuropathy. We present the baseline findings of the 'Longitudinal Assessment of Neuropathy in type 1 Diabetes using novel ophthalmic Markers'(LANDMark) study. METHODS The LANDMark study is a 4-year, two-site, natural history study of three participant groups: type 1 diabetes with neuropathy (T1W), type 1 diabetes without neuropathy (T1WO) and control participants without diabetes or neuropathy. All participants undergo a detailed annual assessment of neuropathy including corneal nerve parameters measured using corneal confocal microscopy and corneal sensitivity measured using non-contact corneal aesthesiometry. RESULTS 76 T1W, 166 T1WO and 154 control participants were enrolled into the study. Corneal sensation threshold was significantly higher (i.e., sensitivity was lower) in T1W (1.0±1.1mbars) than T1WO (0.7±0.7mbars) and controls (0.6±0.4mbars) (p<0.001), with no difference between T1WO and controls. Corneal nerve fibre length was lower in T1W (14.0±6.4mm/mm(2)) compared to T1WO (19.1±5.8mm/mm(2)) and controls (23.2±6.3mm/mm(2)) (p<0.001). Corneal nerve fibre length was lower in T1WO compared to controls. CONCLUSIONS The LANDMark baseline findings confirm a reduction in corneal sensitivity only in Type 1 patients with neuropathy. However, corneal nerve fibre length is reduced in Type 1 patients without neuropathy with an even greater deficit in Type 1 patients with neuropathy.
Collapse
Affiliation(s)
- Nicola Pritchard
- Institute of Health and Biomedical Innovation, Queensland University of Technology, Kelvin Grove, Queensland, Australia
| | - Katie Edwards
- Institute of Health and Biomedical Innovation, Queensland University of Technology, Kelvin Grove, Queensland, Australia
| | - Cirous Dehghani
- Institute of Health and Biomedical Innovation, Queensland University of Technology, Kelvin Grove, Queensland, Australia
| | - Hassan Fadavi
- Centre for Endocrinology and Diabetes, Institute of Human Development, University of Manchester, UK
| | - Maria Jeziorska
- Centre for Endocrinology and Diabetes, Institute of Human Development, University of Manchester, UK
| | - Andrew Marshall
- Centre for Endocrinology and Diabetes, Institute of Human Development, University of Manchester, UK
| | - Ioannis N Petropoulos
- Centre for Endocrinology and Diabetes, Institute of Human Development, University of Manchester, UK
| | - Georgios Ponirakis
- Centre for Endocrinology and Diabetes, Institute of Human Development, University of Manchester, UK
| | | | - Geoff P Sampson
- Institute of Health and Biomedical Innovation, Queensland University of Technology, Kelvin Grove, Queensland, Australia
| | - Ayda M Shahidi
- Institute of Health and Biomedical Innovation, Queensland University of Technology, Kelvin Grove, Queensland, Australia
| | - Sangeetha Srinivasan
- Institute of Health and Biomedical Innovation, Queensland University of Technology, Kelvin Grove, Queensland, Australia
| | - Mitra Tavakoli
- Centre for Endocrinology and Diabetes, Institute of Human Development, University of Manchester, UK
| | - Dimitrios Vagenas
- Institute of Health and Biomedical Innovation, Queensland University of Technology, Kelvin Grove, Queensland, Australia
| | - Rayaz A Malik
- Centre for Endocrinology and Diabetes, Institute of Human Development, University of Manchester, UK
| | - Nathan Efron
- Institute of Health and Biomedical Innovation, Queensland University of Technology, Kelvin Grove, Queensland, Australia.
| |
Collapse
|
46
|
Arezzo JC, Seto S, Schaumburg HH. Sensory-motor assessment in clinical research trials. HANDBOOK OF CLINICAL NEUROLOGY 2014; 115:265-78. [PMID: 23931786 DOI: 10.1016/b978-0-444-52902-2.00016-3] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 03/10/2023]
Abstract
The assessment of changes in sensory-motor function in clinical research presents a unique set of difficulties. Clinimetrics is the science of measurement as related to the identification of a clinical disorder, the tracing of the progression of the condition under study, and calculation of its impact. The selection of appropriate measures for clinical studies of sensory-motor function must consider validity, sensitivity, specificity, responsiveness, reliability, and feasibility. Reasonable measures of motor function in clinical research include manual examination of muscle strength, electrophysiology, functional scales, patient-reported outcomes (e.g., quality of life), and for severe conditions such as ALS, survival. The assessment of sensory function includes targeted electrophysiology and QOL, as well as more focused measures such as quantitative sensory testing and the scoring of positive symptoms. Each individual measure and each combination of endpoints has its strengths and limitations.
Collapse
Affiliation(s)
- Joseph C Arezzo
- Department of Neuroscience, Albert Einstein College of Medicine, New York, USA; Department of Neurology, Albert Einstein College of Medicine, New York, USA.
| | | | | |
Collapse
|
47
|
Herrmann DN. Noninvasive and minimally invasive detection and monitoring of peripheral neuropathies. Expert Rev Neurother 2014; 8:1807-16. [DOI: 10.1586/14737175.8.12.1807] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
|
48
|
Abstract
Diabetic peripheral and autonomic neuropathies are common complications of diabetes with broad spectrums of clinical manifestations and high morbidity. Studies using various agents to target the pathways implicated in the development and progression of diabetic neuropathy were promising in animal models. In humans, however, randomized controlled studies have failed to show efficacy on objective measures of neuropathy. The complex anatomy of the peripheral and autonomic nervous systems, the multitude of pathogenic mechanisms involved, and the lack of uniformity of neuropathy measures have likely contributed to these failures. To date, tight glycemic control is the only strategy convincingly shown to prevent or delay the development of neuropathy in patients with type 1 diabetes and to slow the progression of neuropathy in some patients with type 2 diabetes. Lessons learned about the role of glycemic control on distal symmetrical polyneuropathy and cardiovascular autonomic neuropathy are discussed in this review.
Collapse
Affiliation(s)
- Lynn Ang
- Department of Internal Medicine, Division of Metabolism, Endocrinology and Diabetes, University of Michigan Medical School, 5329 Brehm Tower 1000 Wall Street, Ann Arbor, MI 48105, USA
| | - Mamta Jaiswal
- Department of Neurology, University of Michigan Medical School, Ann Arbor, MI, USA
| | - Catherine Martin
- Department of Internal Medicine, Division of Metabolism, Endocrinology and Diabetes, University of Michigan Medical School, 5329 Brehm Tower 1000 Wall Street, Ann Arbor, MI 48105, USA
| | - Rodica Pop-Busui
- Department of Internal Medicine, Division of Metabolism, Endocrinology and Diabetes, University of Michigan Medical School, 5329 Brehm Tower 1000 Wall Street, Ann Arbor, MI 48105, USA
| |
Collapse
|
49
|
Clinical and diagnostic features of small fiber damage in diabetic polyneuropathy. HANDBOOK OF CLINICAL NEUROLOGY 2014; 126:275-90. [DOI: 10.1016/b978-0-444-53480-4.00019-9] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/19/2023]
|
50
|
Lewis RA, McDermott MP, Herrmann DN, Hoke A, Clawson LL, Siskind C, Feely SME, Miller LJ, Barohn RJ, Smith P, Luebbe E, Wu X, Shy ME. High-dosage ascorbic acid treatment in Charcot-Marie-Tooth disease type 1A: results of a randomized, double-masked, controlled trial. JAMA Neurol 2013; 70:981-7. [PMID: 23797954 DOI: 10.1001/jamaneurol.2013.3178] [Citation(s) in RCA: 107] [Impact Index Per Article: 8.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
IMPORTANCE No current medications improve neuropathy in subjects with Charcot-Marie-Tooth disease type 1A (CMT1A). Ascorbic acid (AA) treatment improved the neuropathy of a transgenic mouse model of CMT1A and is a potential therapy. A lower dosage (1.5 g/d) did not cause improvement in humans. It is unknown whether a higher dosage would prove more effective. OBJECTIVE To determine whether 4-g/d AA improves the neuropathy of subjects with CMT1A. DESIGN A futility design to determine whether AA was unable to reduce worsening on the CMT Neuropathy Score (CMTNS) by at least 50% over a 2-year period relative to a natural history control group. SETTING Three referral centers with peripheral nerve clinics (Wayne State University, Johns Hopkins University, and University of Rochester). PARTICIPANTS One hundred seventy-four subjects with CMT1A were assessed for eligibility; 48 did not meet eligibility criteria and 16 declined to participate. The remaining 110 subjects, aged 13 to 70 years, were randomly assigned in a double-masked fashion with 4:1 allocation to oral AA (87 subjects) or matching placebo (23 subjects). Sixty-nine subjects from the treatment group and 16 from the placebo group completed the study. Two subjects from the treatment group and 1 from the placebo group withdrew because of adverse effects. INTERVENTIONS Oral AA (4 g/d) or matching placebo. MAIN OUTCOMES AND MEASURES Change from baseline to year 2 in the CMTNS, a validated composite impairment score for CMT. RESULTS The mean 2-year change in the CMTNS was -0.21 for the AA group and -0.92 for the placebo group, both better than natural history (+1.33). This was well below 50% reduction of CMTNS worsening from natural history, so futility could not be declared (P > .99). CONCLUSIONS AND RELEVANCE Both treated patients and those receiving placebo performed better than natural history. It seems unlikely that our results support undertaking a larger trial of 4-g/d AA treatment in subjects with CMT1A. TRIAL REGISTRATION clinicaltrials.gov Identifier: NCT00484510.
Collapse
Affiliation(s)
- Richard A Lewis
- Department of Neurology, Wayne State University, Detroit, Michigan, USA
| | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|