1
|
Bazzazzadehgan S, Shariat-Madar Z, Mahdi F. Distinct Roles of Common Genetic Variants and Their Contributions to Diabetes: MODY and Uncontrolled T2DM. Biomolecules 2025; 15:414. [PMID: 40149950 PMCID: PMC11940602 DOI: 10.3390/biom15030414] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/30/2024] [Revised: 01/26/2025] [Accepted: 03/10/2025] [Indexed: 03/29/2025] Open
Abstract
Type 2 diabetes mellitus (T2DM) encompasses a range of clinical manifestations, with uncontrolled diabetes leading to progressive or irreversible damage to various organs. Numerous genes associated with monogenic diabetes, exhibiting classical patterns of inheritance (autosomal dominant or recessive), have been identified. Additionally, genes involved in complex diabetes, which interact with environmental factors to trigger the disease, have also been discovered. These genetic findings have raised hopes that genetic testing could enhance diagnostics, disease surveillance, treatment selection, and family counseling. However, the accurate interpretation of genetic data remains a significant challenge, as variants may not always be definitively classified as either benign or pathogenic. Research to date, however, indicates that periodic reevaluation of genetic variants in diabetes has led to more consistent findings, with biases being steadily eliminated. This has improved the interpretation of variants across diverse ethnicities. Clinical studies suggest that genetic risk information may motivate patients to adopt behaviors that promote the prevention or management of T2DM. Given that the clinical features of certain monogenic diabetes types overlap with T2DM, and considering the significant role of genetic variants in diabetes, healthcare providers caring for prediabetic patients should consider genetic testing as part of the diagnostic process. This review summarizes current knowledge of the most common genetic variants associated with T2DM, explores novel therapeutic targets, and discusses recent advancements in the pharmaceutical management of uncontrolled T2DM.
Collapse
Affiliation(s)
- Shadi Bazzazzadehgan
- Department of Pharmacy Administration, School of Pharmacy, University of Mississippi, University, MS 38677, USA;
| | - Zia Shariat-Madar
- Division of Pharmacology, School of Pharmacy, University of Mississippi, Oxford, MS 38677, USA;
| | - Fakhri Mahdi
- Division of Pharmacology, School of Pharmacy, University of Mississippi, Oxford, MS 38677, USA;
| |
Collapse
|
2
|
Simmons KM, Sims EK. Screening and Prevention of Type 1 Diabetes: Where Are We? J Clin Endocrinol Metab 2023; 108:3067-3079. [PMID: 37290044 PMCID: PMC11491628 DOI: 10.1210/clinem/dgad328] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/09/2023] [Revised: 05/10/2023] [Accepted: 05/31/2023] [Indexed: 06/10/2023]
Abstract
A diagnosis of type 1 diabetes (T1D) and the subsequent requirement for exogenous insulin treatment is associated with considerable acute and chronic morbidity and a substantial effect on patient quality of life. Importantly, a large body of work suggests that early identification of presymptomatic T1D can accurately predict clinical disease, and when paired with education and monitoring, can yield improved health outcomes. Furthermore, a growing cadre of effective disease-modifying therapies provides the potential to alter the natural history of early stages of T1D. In this mini review, we highlight prior work that has led to the current landscape of T1D screening and prevention, as well as challenges and next steps moving into the future of these rapidly evolving areas of patient care.
Collapse
Affiliation(s)
- Kimber M Simmons
- Barbara Davis Center for Diabetes, Division of Pediatrics, University of Colorado School of Medicine, Aurora, CO 80045, USA
| | - Emily K Sims
- Division of Pediatric Endocrinology and Diabetology, Herman B Wells Center for Pediatric Research; Center for Diabetes and Metabolic Diseases, Indiana University School of Medicine, Indianapolis, IN 46202, USA
| |
Collapse
|
3
|
Abstract
PURPOSE OF REVIEW Emerging data have suggested that β-cell dysfunction may exacerbate the development and progression of type 1 diabetes (T1D). In this review, we highlight clinical and preclinical studies suggesting a role for β-cell dysfunction during the evolution of T1D and suggest agents that may promote β-cell health in T1D. RECENT FINDINGS Metabolic abnormalities exist years before development of hyperglycemia and exhibit a reproducible pattern reflecting progressive deterioration of β-cell function and increases in β-cell stress and death. Preclinical studies indicate that T1D may be prevented by modification of pathways impacting intrinsic β-cell stress and antigen presentation. Recent findings suggest that differences in metabolic phenotypes and β-cell stress may reflect differing endotypes of T1D. Multiple pathways representing potential drug targets have been identified, but most remain to be tested in human populations with preclinical disease. SUMMARY This cumulative body of work shows clear evidence that β-cell stress, dysfunction, and death are harbingers of impending T1D and likely contribute to progression of disease and insulin deficiency. Treatment with agents targeting β-cell health could augment interventions with immunomodulatory therapies but will need to be tested in intervention studies with endpoints carefully designed to capture changes in β-cell function and health.
Collapse
Affiliation(s)
- Emily K. Sims
- Department of Pediatrics, Indiana University School of Medicine, Indianapolis, IN
- Department of Wells Center for Pediatric Research, Indiana University School of Medicine, Indianapolis, IN
- Department of Center for Diabetes and Metabolic Diseases, Indiana University School of Medicine, Indianapolis, IN
- Department of Biochemistry and Molecular Biology, Indiana University School of Medicine, Indianapolis, IN
| | - Raghavendra G. Mirmira
- Kovler Diabetes Center and the Department of Medicine, The University of Chicago, Chicago, IL
| | - Carmella Evans-Molina
- Department of Pediatrics, Indiana University School of Medicine, Indianapolis, IN
- Department of Wells Center for Pediatric Research, Indiana University School of Medicine, Indianapolis, IN
- Department of Center for Diabetes and Metabolic Diseases, Indiana University School of Medicine, Indianapolis, IN
- Department of Biochemistry and Molecular Biology, Indiana University School of Medicine, Indianapolis, IN
- Department of Medicine, Indiana University School of Medicine, Indianapolis, IN
- Department of Cellular and Integrative Physiology, Indiana University School of Medicine, Indianapolis, IN
- Roudebush VA Medical Center, Indianapolis, IN
| |
Collapse
|
4
|
Fenske RJ, Kimple ME. Targeting dysfunctional beta-cell signaling for the potential treatment of type 1 diabetes mellitus. Exp Biol Med (Maywood) 2018; 243:586-591. [PMID: 29504478 DOI: 10.1177/1535370218761662] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022] Open
Abstract
Since its discovery and purification by Frederick Banting in 1921, exogenous insulin has remained almost the sole therapy for type 1 diabetes mellitus. While insulin alleviates the primary dysfunction of the disease, many other aspects of the pathophysiology of type 1 diabetes mellitus are unaffected. Research aimed towards the discovery of novel type 1 diabetes mellitus therapeutics targeting different cell signaling pathways is gaining momentum. The focus of these efforts has been almost entirely on the impact of immunomodulatory drugs, particularly those that have already received FDA-approval for other autoimmune diseases. However, these drugs can often have severe side effects, while also putting already immunocompromised individuals at an increased risk for other infections. Potential therapeutic targets in the insulin-producing beta-cell have been largely ignored by the type 1 diabetes mellitus field, save the glucagon-like peptide 1 receptor. While there is preliminary evidence to support the clinical exploration of glucagon-like peptide 1 receptor-based drugs as type 1 diabetes mellitus adjuvant therapeutics, there is a vast space for other putative therapeutic targets to be explored. The alpha subunit of the heterotrimeric Gz protein (Gαz) has been shown to promote beta-cell inflammation, dysfunction, death, and failure to replicate in the context of diabetes in a number of mouse models. Genetic loss of Gαz or inhibition of the Gαz signaling pathway through dietary interventions is protective against the development of insulitis and hyperglycemia. The multifaceted effects of Gαz in regards to beta-cell health in the context of diabetes make it an ideal therapeutic target for further study. It is our belief that a low-risk, effective therapy for type 1 diabetes mellitus will involve a multidimensional approach targeting a number of regulatory systems, not the least of which is the insulin-producing beta-cell. Impact statement The expanding investigation of beta-cell therapeutic targets for the treatment and prevention of type 1 diabetes mellitus is fundamentally relevant and timely. This review summarizes the overall scope of research into novel type 1 diabetes mellitus therapeutics, highlighting weaknesses or caveats in current clinical trials as well as describing potential new targets to pursue. More specifically, signaling proteins that act as modulators of beta-cell function, survival, and replication, as well as immune infiltration may need to be targeted to develop the most efficient pharmaceutical interventions for type 1 diabetes mellitus. One such beta-cell signaling pathway, mediated by the alpha subunit of the heterotrimeric Gz protein (Gαz), is discussed in more detail. The work described here will be critical in moving the field forward as it emphasizes the central role of the beta-cell in type 1 diabetes mellitus disease pathology.
Collapse
Affiliation(s)
- Rachel J Fenske
- 1 Interdisciplinary Graduate Program in Nutritional Sciences, University of Wisconsin-Madison, Madison, WI 53706, USA.,2 Department of Medicine, Division of Endocrinology, University of Wisconsin-Madison School of Medicine and Public Health, Madison, WI 53705, USA.,3 Research Service, William S. Middleton Memorial Veterans Hospital, Madison, WI 53705, USA
| | - Michelle E Kimple
- 1 Interdisciplinary Graduate Program in Nutritional Sciences, University of Wisconsin-Madison, Madison, WI 53706, USA.,2 Department of Medicine, Division of Endocrinology, University of Wisconsin-Madison School of Medicine and Public Health, Madison, WI 53705, USA.,3 Research Service, William S. Middleton Memorial Veterans Hospital, Madison, WI 53705, USA.,4 Department of Cell and Regenerative Biology, University of Wisconsin-Madison School of Medicine and Public Health, Madison, WI 53705, USA
| |
Collapse
|
5
|
Xie C, Hu J, Motloch LJ, Karam BS, Akar FG. The Classically Cardioprotective Agent Diazoxide Elicits Arrhythmias in Type 2 Diabetes Mellitus. J Am Coll Cardiol 2015; 66:1144-1156. [PMID: 26337994 DOI: 10.1016/j.jacc.2015.06.1329] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/26/2014] [Revised: 06/06/2015] [Accepted: 06/23/2015] [Indexed: 01/19/2023]
Abstract
BACKGROUND Type 2 diabetes mellitus (T2DM) is associated with an enhanced propensity for ventricular tachyarrhythmias (VTs) under conditions of metabolic demand. Activation of mitochondrial adenosine triphosphate-sensitive potassium (KATP) channels by low-dose diazoxide (DZX) improves hypoglycemia-related complications, metabolic function, and triglyceride and free fatty acid levels and reverses weight gain in T2DM. OBJECTIVES In this study, we hypothesized that DZX prevents ischemia-mediated arrhythmias in T2DM via its putative cardioprotective and antidiabetic property. METHODS Zucker obese diabetic fatty (ZO) rats (n = 43) with T2DM were studied. Controls consisted of Zucker lean (ZL; n = 13) and normal Sprague-Dawley (SprD; n = 30) rats. High-resolution optical action potential mapping was performed before and during challenge with no-flow ischemia for 12 min. RESULTS Electrophysiological properties were relatively stable in T2DM hearts at baseline. In contrast, ischemia uncovered major differences between groups, because action potential duration (APD) in T2DM failed to undergo progressive adaptation to ischemic challenge. DZX promoted the incidence of arrhythmias, because all DZX-treated T2DM hearts exhibited ischemia-induced VTs that persisted on reperfusion. In contrast, untreated T2DM and controls did not exhibit VT during ischemia. Unlike DZX, pinacidil promoted ischemia-mediated arrhythmias in both control and T2DM hearts. Rapid and spatially heterogeneous shortening of APD preceded the onset of arrhythmias in T2DM. DZX-mediated proarrhythmia in T2DM was not related to changes in the messenger ribonucleic acid expression of Kir6.1, Kir6.2, SUR1A, SUR1B, SUR2A, SUR2B, or ROMK (renal outer medullary potassium channel). CONCLUSIONS Ischemia uncovers a paradoxical resistance of T2DM hearts to APD adaptation. DZX reverses this property, resulting in rapid and heterogeneous APD shortening. This promotes reentrant VT during ischemia. DZX should be avoided in diabetic patients at risk of ischemic events.
Collapse
Affiliation(s)
- Chaoqin Xie
- Cardiac Bioelectricity Research Laboratory, Cardiovascular Institute, Icahn School of Medicine at Mount Sinai, New York, New York
| | - Jun Hu
- Cardiac Bioelectricity Research Laboratory, Cardiovascular Institute, Icahn School of Medicine at Mount Sinai, New York, New York
| | - Lukas J Motloch
- Cardiac Bioelectricity Research Laboratory, Cardiovascular Institute, Icahn School of Medicine at Mount Sinai, New York, New York
| | - Basil S Karam
- Cardiac Bioelectricity Research Laboratory, Cardiovascular Institute, Icahn School of Medicine at Mount Sinai, New York, New York
| | - Fadi G Akar
- Cardiac Bioelectricity Research Laboratory, Cardiovascular Institute, Icahn School of Medicine at Mount Sinai, New York, New York
| |
Collapse
|
6
|
Duca FA, Bauer PV, Hamr SC, Lam TKT. Glucoregulatory Relevance of Small Intestinal Nutrient Sensing in Physiology, Bariatric Surgery, and Pharmacology. Cell Metab 2015. [PMID: 26212718 DOI: 10.1016/j.cmet.2015.07.003] [Citation(s) in RCA: 49] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/27/2022]
Abstract
Emerging evidence suggests the gastrointestinal tract plays an important glucoregulatory role. In this perspective, we first review how the intestine senses ingested nutrients, initiating crucial negative feedback mechanisms through a gut-brain neuronal axis to regulate glycemia, mainly via reduction in hepatic glucose production. We then highlight how intestinal energy sensory mechanisms are responsible for the glucose-lowering effects of bariatric surgery, specifically duodenal-jejunal bypass, and the antidiabetic agents metformin and resveratrol. A better understanding of these pathways lays the groundwork for intestinally targeted drug therapy for the treatment of diabetes.
Collapse
Affiliation(s)
- Frank A Duca
- Toronto General Research Institute and Department of Medicine, UHN, Toronto, ON M5G 1L7, Canada
| | - Paige V Bauer
- Toronto General Research Institute and Department of Medicine, UHN, Toronto, ON M5G 1L7, Canada; Department of Physiology, University of Toronto, Toronto, ON M5S 1A8, Canada
| | - Sophie C Hamr
- Toronto General Research Institute and Department of Medicine, UHN, Toronto, ON M5G 1L7, Canada; Department of Physiology, University of Toronto, Toronto, ON M5S 1A8, Canada
| | - Tony K T Lam
- Toronto General Research Institute and Department of Medicine, UHN, Toronto, ON M5G 1L7, Canada; Department of Physiology, University of Toronto, Toronto, ON M5S 1A8, Canada; Department of Medicine, University of Toronto, Toronto, ON M5S 1A8, Canada; Banting and Best Diabetes Centre, University of Toronto, Toronto, ON M5G 2C4, Canada.
| |
Collapse
|
7
|
Atkinson MA, von Herrath M, Powers AC, Clare-Salzler M. Current concepts on the pathogenesis of type 1 diabetes--considerations for attempts to prevent and reverse the disease. Diabetes Care 2015; 38:979-88. [PMID: 25998290 PMCID: PMC4439528 DOI: 10.2337/dc15-0144] [Citation(s) in RCA: 85] [Impact Index Per Article: 8.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 02/03/2023]
Affiliation(s)
- Mark A Atkinson
- Department of Pathology, University of Florida, Gainesville, FL Department of Pediatrics, University of Florida, Gainesville, FL
| | - Matthias von Herrath
- La Jolla Institute for Allergy and Immunology, San Diego, CA Novo Nordisk R&D Center, Seattle, WA
| | - Alvin C Powers
- Division of Diabetes, Endocrinology, and Metabolism, Department of Medicine, Vanderbilt University, Nashville, TN Department of Molecular Physiology and Biophysics, Vanderbilt University, Nashville, TN VA Tennessee Valley Healthcare System, Nashville, TN
| | | |
Collapse
|
8
|
Fleiner HF, Radtke M, Ryan L, Moen T, Grill V. Circulating immune mediators are closely linked in adult-onset type 1 diabetes as well as in non-diabetic subjects. Autoimmunity 2014; 47:530-7. [DOI: 10.3109/08916934.2014.938321] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/19/2023]
Affiliation(s)
- Hanne Fiskvik Fleiner
- Department of Cancer Research and Molecular Medicine, Norwegian University of Science and Technology
TrondheimNorway
| | - Maria Radtke
- Department of Cancer Research and Molecular Medicine, Norwegian University of Science and Technology
TrondheimNorway
- Department of Renal Medicine, St. Olavs University Hospital
TrondheimNorway
| | - Liv Ryan
- Department of Cancer Research and Molecular Medicine, Centre of Molecular Inflammation Research, Norwegian University of Science and Technology
TrondheimNorway
| | - Torolf Moen
- Department of Laboratory Medicine, Children’s and Women’s Health, Norwegian University of Science and Technology
TrondheimNorway
| | - Valdemar Grill
- Department of Cancer Research and Molecular Medicine, Norwegian University of Science and Technology
TrondheimNorway
- Department of Endocrinology, St. Olavs University Hospital
TrondheimNorway
| |
Collapse
|
9
|
Carey M, Kehlenbrink S, Hawkins M. Evidence for central regulation of glucose metabolism. J Biol Chem 2013; 288:34981-8. [PMID: 24142701 DOI: 10.1074/jbc.r113.506782] [Citation(s) in RCA: 37] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
Evidence for central regulation of glucose homeostasis is accumulating from both animal and human studies. Central nutrient and hormone sensing in the hypothalamus appears to coordinate regulation of whole body metabolism. Central signals activate ATP-sensitive potassium (KATP) channels, thereby down-regulating glucose production, likely through vagal efferent signals. Recent human studies are consistent with this hypothesis. The contributions of direct and central inputs to metabolic regulation are likely of comparable magnitude, with somewhat delayed central effects and more rapid peripheral effects. Understanding central regulation of glucose metabolism could promote the development of novel therapeutic approaches for such metabolic conditions as diabetes mellitus.
Collapse
Affiliation(s)
- Michelle Carey
- From the Department of Medicine and Diabetes Research Center, Albert Einstein College of Medicine, Bronx, New York 10461
| | | | | |
Collapse
|
10
|
Lynch CJ, Zhou Q, Shyng SL, Heal DJ, Cheetham SC, Dickinson K, Gregory P, Firnges M, Nordheim U, Goshorn S, Reiche D, Turski L, Antel J. Some cannabinoid receptor ligands and their distomers are direct-acting openers of SUR1 K(ATP) channels. Am J Physiol Endocrinol Metab 2012; 302:E540-51. [PMID: 22167524 PMCID: PMC3311290 DOI: 10.1152/ajpendo.00250.2011] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/27/2022]
Abstract
Here, we examined the chronic effects of two cannabinoid receptor-1 (CB1) inverse agonists, rimonabant and ibipinabant, in hyperinsulinemic Zucker rats to determine their chronic effects on insulinemia. Rimonabant and ibipinabant (10 mg·kg⁻¹·day⁻¹) elicited body weight-independent improvements in insulinemia and glycemia during 10 wk of chronic treatment. To elucidate the mechanism of insulin lowering, acute in vivo and in vitro studies were then performed. Surprisingly, chronic treatment was not required for insulin lowering. In acute in vivo and in vitro studies, the CB1 inverse agonists exhibited acute K channel opener (KCO; e.g., diazoxide and NN414)-like effects on glucose tolerance and glucose-stimulated insulin secretion (GSIS) with approximately fivefold better potency than diazoxide. Followup studies implied that these effects were inconsistent with a CB1-mediated mechanism. Thus effects of several CB1 agonists, inverse agonists, and distomers during GTTs or GSIS studies using perifused rat islets were unpredictable from their known CB1 activities. In vivo rimonabant and ibipinabant caused glucose intolerance in CB1 but not SUR1-KO mice. Electrophysiological studies indicated that, compared with diazoxide, 3 μM rimonabant and ibipinabant are partial agonists for K channel opening. Partial agonism was consistent with data from radioligand binding assays designed to detect SUR1 K(ATP) KCOs where rimonabant and ibipinabant allosterically regulated ³H-glibenclamide-specific binding in the presence of MgATP, as did diazoxide and NN414. Our findings indicate that some CB1 ligands may directly bind and allosterically regulate Kir6.2/SUR1 K(ATP) channels like other KCOs. This mechanism appears to be compatible with and may contribute to their acute and chronic effects on GSIS and insulinemia.
Collapse
MESH Headings
- ATP-Binding Cassette Transporters/agonists
- ATP-Binding Cassette Transporters/genetics
- ATP-Binding Cassette Transporters/metabolism
- Allosteric Regulation
- Animals
- Anti-Obesity Agents/adverse effects
- Anti-Obesity Agents/chemistry
- Anti-Obesity Agents/pharmacology
- Anti-Obesity Agents/therapeutic use
- Cell Line, Transformed
- Chlorocebus aethiops
- Cricetinae
- Glucose Intolerance/chemically induced
- Glucose Intolerance/metabolism
- Humans
- Hypoglycemic Agents/adverse effects
- Hypoglycemic Agents/chemistry
- Hypoglycemic Agents/pharmacology
- Hypoglycemic Agents/therapeutic use
- Islets of Langerhans/drug effects
- Islets of Langerhans/metabolism
- Ligands
- Male
- Membrane Transport Modulators/adverse effects
- Membrane Transport Modulators/chemistry
- Membrane Transport Modulators/pharmacology
- Membrane Transport Modulators/therapeutic use
- Mice
- Mice, Knockout
- Mice, Obese
- Potassium Channels, Inwardly Rectifying/agonists
- Potassium Channels, Inwardly Rectifying/genetics
- Potassium Channels, Inwardly Rectifying/metabolism
- Rats
- Rats, Zucker
- Receptor, Cannabinoid, CB1/agonists
- Receptor, Cannabinoid, CB1/antagonists & inhibitors
- Receptor, Cannabinoid, CB1/genetics
- Receptor, Cannabinoid, CB1/metabolism
- Receptors, Drug/agonists
- Receptors, Drug/genetics
- Receptors, Drug/metabolism
- Recombinant Proteins/agonists
- Recombinant Proteins/antagonists & inhibitors
- Recombinant Proteins/metabolism
- Stereoisomerism
- Sulfonylurea Receptors
Collapse
Affiliation(s)
- Christopher J Lynch
- Dept. of Cellular & Molecular Physiology, Pennsylvania State College of Medicine, Hershey, PA 17033, USA.
| | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
11
|
Kishore P, Boucai L, Zhang K, Li W, Koppaka S, Kehlenbrink S, Schiwek A, Esterson YB, Mehta D, Bursheh S, Su Y, Gutierrez-Juarez R, Muzumdar R, Schwartz GJ, Hawkins M. Activation of K(ATP) channels suppresses glucose production in humans. J Clin Invest 2011; 121:4916-20. [PMID: 22056385 DOI: 10.1172/jci58035] [Citation(s) in RCA: 86] [Impact Index Per Article: 6.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/15/2011] [Accepted: 10/05/2011] [Indexed: 12/17/2022] Open
Abstract
Increased endogenous glucose production (EGP) is a hallmark of type 2 diabetes mellitus. While there is evidence for central regulation of EGP by activation of hypothalamic ATP-sensitive potassium (K(ATP)) channels in rodents, whether these central pathways contribute to regulation of EGP in humans remains to be determined. Here we present evidence for central nervous system regulation of EGP in humans that is consistent with complementary rodent studies. Oral administration of the K(ATP) channel activator diazoxide under fixed hormonal conditions substantially decreased EGP in nondiabetic humans and Sprague Dawley rats. In rats, comparable doses of oral diazoxide attained appreciable concentrations in the cerebrospinal fluid, and the effects of oral diazoxide were abolished by i.c.v. administration of the K(ATP) channel blocker glibenclamide. These results suggest that activation of hypothalamic K(ATP) channels may be an important regulator of EGP in humans and that this pathway could be a target for treatment of hyperglycemia in type 2 diabetes mellitus.
Collapse
Affiliation(s)
- Preeti Kishore
- Albert Einstein College of Medicine, New York, New York, USA
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
12
|
Abstract
Not only T cells but also B cells play a role in the autoimmune process. Both monoclonal antiCD3 and antiCD20 antibodies seem efficacious. However, such treatments need to be refined to minimize adverse events. Use of autoantigens to create tolerance is a concept with great potential. GAD65 treatment has shown efficacy without adverse events thus far, and administration of the insulin B chain shows interesting immunologic effects. Other more or less speculative approaches to modulate the immune process need further studies with good design. Risks that are too serious cannot be motivated. In addition, as the beta cells may die even though the autoimmune process is stopped, protective measures may be valuable (eg, active insulin treatment, and perhaps interleukin-1 receptor antagonists to reduce the nonautoimmune inflammation). Combination of immune intervention, protection of the beta cells, and stimulation of regeneration may lead to a milder disease or even a cure in the future, and prevention is no longer unrealistic.
Collapse
Affiliation(s)
- Johnny Ludvigsson
- Department of Clinical and Experimental Medicine, Division of Pediatrics, Faculty of Health Sciences, Linköping University, Linköping, Sweden.
| |
Collapse
|