1
|
Kerver GA, Murray MF, Dougherty EN. Eating Disorders in the Context of Metabolic and Bariatric Surgery: Current Status and Future Directions. Curr Obes Rep 2025; 14:31. [PMID: 40208455 DOI: 10.1007/s13679-025-00620-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Accepted: 03/18/2025] [Indexed: 04/11/2025]
Abstract
PURPOSE OF REVIEW Eating disorders (EDs) are a relatively uncommon yet salient concern for patients undergoing metabolic and bariatric surgery (MBS). This report aims to advance understanding of the complex relationship between EDs and MBS by highlighting recent empirical evidence and identifying areas for future research. RECENT FINDINGS Little-to-no empirical evidence suggests that EDs be considered an absolute contraindication for MBS. However, a small subset of patients experience recurrent or emergent ED symptoms following surgery, invariably resulting in poorer postsurgical outcomes. Plausibly, a confluence of psychosocial and neurobiological mechanisms explains post-MBS ED symptoms. Accurate identification of MBS-related ED concerns is essential, with growing evidence suggesting structured postsurgical treatment may be optimal. Despite recent advances, more research on EDs in the context of MBS is needed, including rigorous mechanistic studies with long-term follow-up that clarify how predisposing factors interact to precipitate postsurgical ED symptoms. More work is also required to inform design and dissemination of targeted ED interventions for patients pursuing MBS.
Collapse
Affiliation(s)
- Gail A Kerver
- Sanford Research, Center for Biobehavioral Research, 4840 23rd Ave S, Fargo, ND, 58104, USA.
- Department of Psychiatry and Behavioral Science, School of Medicine and Health Sciences, University of North Dakota, 1919 Elm St. N, Fargo, ND, 58102-2416, USA.
| | - Matthew F Murray
- Department of Psychiatry & Behavioral Neuroscience, University of Chicago, 5841 S Maryland Ave, MC3077, Chicago, IL, 60637, USA
| | - Elizabeth N Dougherty
- Department of Psychiatry & Behavioral Neuroscience, University of Chicago, 5841 S Maryland Ave, MC3077, Chicago, IL, 60637, USA
| |
Collapse
|
2
|
Alabdulkader S, Al-Alsheikh AS, Miras AD, Goldstone AP. Obesity surgery and neural correlates of human eating behaviour: A systematic review of functional MRI studies. Neuroimage Clin 2024; 41:103563. [PMID: 38237270 PMCID: PMC10828606 DOI: 10.1016/j.nicl.2024.103563] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/29/2022] [Revised: 01/03/2024] [Accepted: 01/07/2024] [Indexed: 02/03/2024]
Abstract
Changes in eating behaviour including reductions in appetite and food intake, and healthier food cue reactivity, reward, hedonics and potentially also preference, contribute to weight loss and its health benefits after obesity surgery. Functional magnetic resonance imaging (fMRI) has been increasingly used to interrogate the neural correlates of eating behaviour in obesity, including brain reward-cognitive systems, changes after obesity surgery, and links with alterations in the gut-hormone-brain axis. Neural responses to food cues can be measured by changes in blood oxygen level dependent (BOLD) signal in brain regions involved in reward processing, including caudate, putamen, nucleus accumbens, insula, amygdala, orbitofrontal cortex, and top-down inhibitory control, including dorsolateral prefrontal cortex (dlPFC). This systematic review aimed to examine: (i) results of human fMRI studies involving obesity surgery, (ii) important methodological differences in study design across studies, and (iii) correlations and associations of fMRI findings with clinical outcomes, other eating behaviour measures and mechanistic measures. Of 741 articles identified, 23 were eligible for inclusion: 16 (69.6%) longitudinal, two (8.7%) predictive, and five (21.7%) cross-sectional studies. Seventeen studies (77.3%) included patients having Roux-en-Y gastric bypass (RYGB) surgery, six (26.1%) vertical sleeve gastrectomy (VSG), and five (21.7%) laparoscopic adjustable gastric banding (LAGB). The majority of studies (86.0%) were identified as having a very low risk of bias, though only six (27.3%) were controlled interventional studies, with none including randomisation to surgical and control interventions. The remaining studies (14.0%) had a low risk of bias driven by their control groups not having an active treatment. After RYGB surgery, food cue reactivity often decreased or was unchanged in brain reward systems, and there were inconsistent findings as to whether reductions in food cue reactivity was greater for high-energy than low-energy foods. There was minimal evidence from studies of VSG and LAGB surgeries for changes in food cue reactivity in brain reward systems, though effects of VSG surgery on food cue reactivity in the dlPFC were more consistently found. There was consistent evidence for post-operative increases in satiety gut hormones glucagon-like-peptide 1 (GLP-1) and peptide YY (PYY) mediating reduced food cue reactivity after RYGB surgery, including two interventional studies. Methodological heterogeneity across studies, including nutritional state, nature of food cues, post-operative timing, lack of control groups for order effects and weight loss or dietary/psychological advice, and often small sample sizes, limited the conclusions that could be drawn, especially for correlational analyses with clinical outcomes, other eating behaviour measures and potential mediators. This systematic review provides a detailed data resource for those performing or analysing fMRI studies of obesity surgery and makes suggestions to help improve reporting and design of such studies, as well as future directions.
Collapse
Affiliation(s)
- Shahd Alabdulkader
- Department of Health Sciences, College of Health and Rehabilitation Sciences, Princess Nourah bint Abdulrahman University, PO Box 84428, Riyadh 11671, Saudi Arabia; Department of Metabolism, Digestion and Reproduction, Imperial College London, Hammersmith Hospital, London W12 0NN, UK.
| | - Alhanouf S Al-Alsheikh
- Department of Metabolism, Digestion and Reproduction, Imperial College London, Hammersmith Hospital, London W12 0NN, UK; Department of Community Health Sciences, College of Applied Medical Sciences, King Saud University, Riyadh 11451, Saudi Arabia.
| | - Alexander D Miras
- Department of Metabolism, Digestion and Reproduction, Imperial College London, Hammersmith Hospital, London W12 0NN, UK; Ulster University, School of Medicine, Faculty of Life & Health Sciences, Londonderry, Northern Ireland BT48 7JL, UK.
| | - Anthony P Goldstone
- PsychoNeuroEndocrinology Research Group, Division of Psychiatry, Department of Brain Sciences, Faculty of Medicine, Imperial College London, Hammersmith Hospital, London W12 0NN, UK.
| |
Collapse
|
3
|
Hirani D, Alabdulkader S, Miras AD, Salem V. What can functional brain imaging teach us about remission of type 2 diabetes? Diabet Med 2023; 40:e15235. [PMID: 37793983 DOI: 10.1111/dme.15235] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/30/2023] [Revised: 09/20/2023] [Accepted: 09/27/2023] [Indexed: 10/06/2023]
Abstract
AIMS With a paradigm shift in attitudes towards type 2 diabetes (T2D), 'weight loss responsive' diabetes is now thought of as a curable disease state. As a result, national programmes are being orchestrated to induce T2D remission soon after diagnosis with aggressive dietary interventions-such as very low-calorie diets (VLCD). However, dietary interventions to achieve weight loss and diabetes remission lack the same long-term sustainability and cardiovascular risk reduction evidence as bariatric surgery. This review aims to explore how brain imaging has contributed to our understanding of human eating behaviours and how neural correlates are affected by T2D. METHODS We summarise functional MRI (fMRI) studies looking at human eating behaviour and obesity. We explore how these neural correlates are affected by insulin resistance and T2D itself as well as its different treatment approaches. Finally, we comment on the need for more personalised approaches to maintaining metabolic health and how fMRI studies may inform this. CONCLUSION fMRI studies have helped to fashion our understanding of the neurobiology of human appetite and obesity. Improving our understanding of the neural implications of T2D that promote disadvantageous eating behaviours will enable prevention of disease as well as mitigation against a vicious cycle of metabolic dysfunction and associated cognitive complications.
Collapse
Affiliation(s)
- Dhruti Hirani
- Imperial College Healthcare NHS Trust, Diabetes Centre, St Mary's Hospital, London, UK
| | - Shahd Alabdulkader
- Department of Health Sciences, College of Health and Rehabilitation Sciences, Princess Nourah Bint Abdulrahman University, Riyadh, Kingdom of Saudi Arabia
| | - Alexander D Miras
- Department of Metabolism, Digestion and Reproduction, Imperial College London, Hammersmith Hospital, London, UK
- Ulster University, School of Medicine, Faculty of Life & Health Sciences, Derry, UK
| | - Victoria Salem
- Imperial College Healthcare NHS Trust, Diabetes Centre, St Mary's Hospital, London, UK
- Department of Bioengineering, Imperial College London, London, UK
| |
Collapse
|
4
|
Sanchez-Rangel E, Gunawan F, Jiang L, Savoye M, Dai F, Coppoli A, Rothman DL, Mason GF, Hwang JJ. Reversibility of brain glucose kinetics in type 2 diabetes mellitus. Diabetologia 2022; 65:895-905. [PMID: 35247067 PMCID: PMC8960594 DOI: 10.1007/s00125-022-05664-y] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/13/2021] [Accepted: 12/02/2021] [Indexed: 11/20/2022]
Abstract
AIMS/HYPOTHESIS We have previously shown that individuals with uncontrolled type 2 diabetes have a blunted rise in brain glucose levels measured by 1H magnetic resonance spectroscopy. Here, we investigate whether reductions in HbA1c normalise intracerebral glucose levels. METHODS Eight individuals (two men, six women) with poorly controlled type 2 diabetes and mean ± SD age 44.8 ± 8.3 years, BMI 31.4 ± 6.1 kg/m2 and HbA1c 84.1 ± 16.2 mmol/mol (9.8 ± 1.4%) underwent 1H MRS scanning at 4 Tesla during a hyperglycaemic clamp (~12.21 mmol/l) to measure changes in cerebral glucose at baseline and after a 12 week intervention that improved glycaemic control through the use of continuous glucose monitoring, diabetes regimen intensification and frequent visits to an endocrinologist and nutritionist. RESULTS Following the intervention, mean ± SD HbA1c decreased by 24.3 ± 15.3 mmol/mol (2.1 ± 1.5%) (p=0.006), with minimal weight changes (p=0.242). Using a linear mixed-effects regression model to compare glucose time courses during the clamp pre and post intervention, the pre-intervention brain glucose level during the hyperglycaemic clamp was significantly lower than the post-intervention brain glucose (p<0.001) despite plasma glucose levels during the hyperglycaemic clamp being similar (p=0.266). Furthermore, the increases in brain glucose were correlated with the magnitude of improvement in HbA1c (r = 0.71, p=0.048). CONCLUSION/INTERPRETATION These findings highlight the potential reversibility of cerebral glucose transport capacity and metabolism that can occur in individuals with type 2 diabetes following improvement of glycaemic control. Trial registration ClinicalTrials.gov NCT03469492.
Collapse
Affiliation(s)
- Elizabeth Sanchez-Rangel
- Department of Internal Medicine/Section of Endocrinology, Yale University School of Medicine, New Haven, CT, USA
| | - Felona Gunawan
- Department of Internal Medicine/Section of Endocrinology, Yale University School of Medicine, New Haven, CT, USA
| | - Lihong Jiang
- Department of Radiology and Biomedical Imaging, Yale University School of Medicine, New Haven, CT, USA
| | - Mary Savoye
- Department of Pediatric Endocrinology and General Clinical Research Center, Yale University School of Medicine, New Haven, CT, USA
| | - Feng Dai
- Yale Center for Analytical Sciences, Yale School of Public Health, New Haven, CT, USA
| | - Anastasia Coppoli
- Department of Radiology and Biomedical Imaging, Yale University School of Medicine, New Haven, CT, USA
| | - Douglas L Rothman
- Department of Radiology and Biomedical Imaging, Yale University School of Medicine, New Haven, CT, USA
- Department of Biomedical Engineering, Yale University School of Medicine, New Haven, CT, USA
| | - Graeme F Mason
- Department of Radiology and Biomedical Imaging, Yale University School of Medicine, New Haven, CT, USA
- Department of Biomedical Engineering, Yale University School of Medicine, New Haven, CT, USA
- Department of Psychiatry, Yale University School of Medicine, New Haven, CT, USA
| | - Janice Jin Hwang
- Department of Internal Medicine/Section of Endocrinology, Yale University School of Medicine, New Haven, CT, USA.
| |
Collapse
|
5
|
Guyot E, Nazare JA, Oustric P, Robert M, Disse E, Dougkas A, Iceta S. Food Reward after Bariatric Surgery and Weight Loss Outcomes: An Exploratory Study. Nutrients 2022; 14:nu14030449. [PMID: 35276808 PMCID: PMC8840022 DOI: 10.3390/nu14030449] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/04/2022] [Revised: 01/14/2022] [Accepted: 01/18/2022] [Indexed: 12/20/2022] Open
Abstract
Changes in food preferences after bariatric surgery may alter its effectiveness as a treatment for obesity. We aimed to compare food reward for a comprehensive variety of food categories between patients who received a sleeve gastrectomy (SG) or a Roux-en-Y gastric bypass (RYGB) and to explore whether food reward differs according to weight loss. In this cross-sectional exploratory study, food reward was assessed using the Leeds Food Preference Questionnaire (LFPQ) in patients at 6, 12, or 24 months after SG or RYGB. We assessed the liking and wanting of 11 food categories. Comparisons were done regarding the type of surgery and total weight loss (TWL; based on tertile distribution). Fifty-six patients (30 SG and 26 RYGB) were included (women: 70%; age: 44.0 (11.1) y). Regarding the type of surgery, scores were not significantly different between SG and RYGB, except for ‘non-dairy products—without color’ explicit liking (p = 0.04). Regarding TWL outcomes, explicit liking, explicit wanting, and implicit wanting, scores were significantly higher for good responders than low responders for ‘No meat—High fat’ (post-hoc corrected p-value: 0.04, 0.03, and 0.04, respectively). Together, our results failed to identify major differences in liking and wanting between the types of surgery and tended to indicate that higher weight loss might be related to a higher reward for high protein-content food. Rather focus only on palatable foods, future studies should also consider a broader range of food items, including protein reward.
Collapse
Affiliation(s)
- Erika Guyot
- Department of Endocrinology Diabetes and Nutrition, Integrated Center for Obesity, Hospices Civils de Lyon, Lyon-Sud Hospital, 69310 Pierre-Bénite, France; (E.G.); (E.D.)
- Centre de Recherche en Nutrition Humaine Rhône-Alpes (CRNH-RA), Laboratoire Centre Européen Nutrition et Santé (CENS), 69310 Pierre-Bénite, France;
- CarMeN, Unité INSERM 1060, Université Claude Bernard Lyon 1, 69310 Pierre-Bénite, France
- Institut Paul Bocuse Research Center, 69130 Lyon, France;
| | - Julie-Anne Nazare
- Centre de Recherche en Nutrition Humaine Rhône-Alpes (CRNH-RA), Laboratoire Centre Européen Nutrition et Santé (CENS), 69310 Pierre-Bénite, France;
- CarMeN, Unité INSERM 1060, Université Claude Bernard Lyon 1, 69310 Pierre-Bénite, France
| | - Pauline Oustric
- School of Psychology, University of Leeds, Leeds LS2 9JT, UK;
| | - Maud Robert
- Department of Digestive and Bariatric Surgery, Integrated Center for Obesity, Hospices Civils de Lyon, Hôpital Edouard Herriot, 69437 Lyon, France;
| | - Emmanuel Disse
- Department of Endocrinology Diabetes and Nutrition, Integrated Center for Obesity, Hospices Civils de Lyon, Lyon-Sud Hospital, 69310 Pierre-Bénite, France; (E.G.); (E.D.)
- Centre de Recherche en Nutrition Humaine Rhône-Alpes (CRNH-RA), Laboratoire Centre Européen Nutrition et Santé (CENS), 69310 Pierre-Bénite, France;
- CarMeN, Unité INSERM 1060, Université Claude Bernard Lyon 1, 69310 Pierre-Bénite, France
| | | | - Sylvain Iceta
- Department of Endocrinology Diabetes and Nutrition, Integrated Center for Obesity, Hospices Civils de Lyon, Lyon-Sud Hospital, 69310 Pierre-Bénite, France; (E.G.); (E.D.)
- Centre de Recherche de l’Institut Universitaire de Cardiologie et de Pneumologie de Québec, Université Laval, Québec City, QC G1V 4G5, Canada
- Correspondence: ; Tel.: +1-(418)-656-8711
| |
Collapse
|
6
|
Guyot E, Dougkas A, Nazare JA, Bagot S, Disse E, Iceta S. A systematic review and meta-analyses of food preference modifications after bariatric surgery. Obes Rev 2021; 22:e13315. [PMID: 34312976 DOI: 10.1111/obr.13315] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/03/2021] [Revised: 06/14/2021] [Accepted: 06/14/2021] [Indexed: 12/12/2022]
Abstract
This systematic review and meta-analyses aimed to synthesize evidence of the link between bariatric surgery and changes in food preferences, considering the method of assessment. MEDLINE, Cochrane Library, Web of Science, Cinahl, PsychINFO, ProQuest, and Open grey were searched incorporating two blocks of terms ("Intervention" and "Food Preferences"). Interventional or observational studies involving patients (BMI ≥ 35 kg m-2 ) with sleeve gastrectomy (SG) or Roux-en-Y Gastric Bypass (RYGB) and a control group were included. Meta-analyses were performed comparing the standardized daily mean percentage energy from proteins, carbohydrates, and lipids between preoperative and postoperative patients. Fifty-seven studies concerning 2,271 patients with RYGB and 903 patients with SG met the inclusion criteria, of which 24 were eligible for meta-analysis. Despite a total reduction in macronutrient intakes, the meta-analyses revealed a postoperative increase in percentage energy from proteins at 12 months (0.24, 95% CI: 0.03, 0.46, {I2 } = 73%) and a decrease in percentage energy from fat at 1 month (-0.47, 95% CI: 0.86, 0.09, {I2 } = 72%), up to 24 months (-0.20, 95% CI: -0.31, 0.08, {I2 } = 0%). In conclusion, the present systematic review and meta-analyses showed changes of food preferences in terms of macronutrient, food selection and, overall food appreciation up to 5 years following bariatric surgery.
Collapse
Affiliation(s)
- Erika Guyot
- Centre Européen Nutrition et Santé (CENS), Centre de Recherche en Nutrition Humaine Rhône-Alpes (CRNH-RA), Pierre-Bénite, France.,Institut Paul Bocuse Research Center, Ecully, France
| | | | - Julie-Anne Nazare
- Centre Européen Nutrition et Santé (CENS), Centre de Recherche en Nutrition Humaine Rhône-Alpes (CRNH-RA), Pierre-Bénite, France.,Laboratoire CarMeN, Université Claude Bernard Lyon 1, Pierre-Bénite, France
| | - Sarah Bagot
- Centre Européen Nutrition et Santé (CENS), Centre de Recherche en Nutrition Humaine Rhône-Alpes (CRNH-RA), Pierre-Bénite, France.,Institut Paul Bocuse Research Center, Ecully, France
| | - Emmanuel Disse
- Centre Européen Nutrition et Santé (CENS), Centre de Recherche en Nutrition Humaine Rhône-Alpes (CRNH-RA), Pierre-Bénite, France.,Laboratoire CarMeN, Université Claude Bernard Lyon 1, Pierre-Bénite, France.,Department of Endocrinology, Diabetes and Nutrition, Integrated Center for Obesity, Hospices Civils de Lyon, Lyon-Sud Hospital, Pierre-Bénite, France
| | - Sylvain Iceta
- Centre de Recherche de l'Institut Universitaire de Cardiologie et de Pneumologie de Québec-Université Laval, Quebec, Quebec, Canada
| |
Collapse
|
7
|
Hong J, Bo T, Xi L, Xu X, He N, Zhan Y, Li W, Liang P, Chen Y, Shi J, Li D, Yan F, Gu W, Wang W, Liu R, Wang J, Wang Z, Ning G. Reversal of Functional Brain Activity Related to Gut Microbiome and Hormones After VSG Surgery in Patients With Obesity. J Clin Endocrinol Metab 2021; 106:e3619-e3633. [PMID: 33950216 PMCID: PMC8372652 DOI: 10.1210/clinem/dgab297] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/27/2021] [Indexed: 12/19/2022]
Abstract
CONTEXT Vertical sleeve gastrectomy (VSG) is becoming a prioritized surgical intervention for obese individuals; however, the brain circuits that mediate its effective control of food intake and predict surgical outcome remain largely unclear. OBJECTIVE We investigated VSG-correlated alterations of the gut-brain axis. METHODS In this observational cohort study, 80 patients with obesity were screened. A total of 36 patients together with 26 normal-weight subjects were enrolled and evaluated using the 21-item Three-Factor Eating Questionnaire (TFEQ), MRI scanning, plasma intestinal hormone analysis, and fecal sample sequencing. Thirty-two patients underwent VSG treatment and 19 subjects completed an average of 4-month follow-up evaluation. Data-driven regional homogeneity (ReHo) coupled with seed-based connectivity analysis were used to quantify VSG-related brain activity. Longitudinal alterations of body weight, eating behavior, brain activity, gastrointestinal hormones, and gut microbiota were detected and subjected to repeated measures correlation analysis. RESULTS VSG induced significant functional changes in the right putamen (PUT.R) and left supplementary motor area, both of which correlated with weight loss and TFEQ scores. Moreover, postprandial levels of active glucagon-like peptide-1 (aGLP-1) and Ghrelin were associated with ReHo of PUT.R; meanwhile, relative abundance of Clostridia increased by VSG was associated with improvements in aGLP-1 secretion, PUT.R activity, and weight loss. Importantly, VSG normalized excessive functional connectivities with PUT.R, among which baseline connectivity between PUT.R and right orbitofrontal cortex was related to postoperative weight loss. CONCLUSION VSG causes correlated alterations of gut-brain axis, including Clostridia, postprandial aGLP-1, PUT.R activity, and eating habits. Preoperative connectivity of PUT.R may represent a potential predictive marker of surgical outcome in patients with obesity.
Collapse
Affiliation(s)
- Jie Hong
- Shanghai National Clinical Research Center for Metabolic Diseases, Key Laboratory for Endocrine and Metabolic Diseases of Chinese Health Commission, Department of Endocrinology and Metabolism, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine (SJTUSM), Shanghai 200025, China
| | - Tingting Bo
- Institute of Neuroscience, State Key Laboratory of Neuroscience, Key Laboratory of Primate Neurobiology, Center for Excellence in Brain Science and Intelligence Technology, Chinese Academy of Sciences, Shanghai 200031, China
- University of Chinese Academy of Sciences, Beijing 100049, China
| | - Liuqing Xi
- Shanghai National Clinical Research Center for Metabolic Diseases, Key Laboratory for Endocrine and Metabolic Diseases of Chinese Health Commission, Department of Endocrinology and Metabolism, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine (SJTUSM), Shanghai 200025, China
| | | | - Naying He
- Department of Radiology, Ruijin Hospital, SJTUSM, Shanghai 200025, China
| | - Yafeng Zhan
- Institute of Neuroscience, State Key Laboratory of Neuroscience, Key Laboratory of Primate Neurobiology, Center for Excellence in Brain Science and Intelligence Technology, Chinese Academy of Sciences, Shanghai 200031, China
- University of Chinese Academy of Sciences, Beijing 100049, China
| | - Wanyu Li
- Shanghai National Clinical Research Center for Metabolic Diseases, Key Laboratory for Endocrine and Metabolic Diseases of Chinese Health Commission, Department of Endocrinology and Metabolism, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine (SJTUSM), Shanghai 200025, China
| | - Peiwen Liang
- Shanghai National Clinical Research Center for Metabolic Diseases, Key Laboratory for Endocrine and Metabolic Diseases of Chinese Health Commission, Department of Endocrinology and Metabolism, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine (SJTUSM), Shanghai 200025, China
| | - Yufei Chen
- Shanghai National Clinical Research Center for Metabolic Diseases, Key Laboratory for Endocrine and Metabolic Diseases of Chinese Health Commission, Department of Endocrinology and Metabolism, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine (SJTUSM), Shanghai 200025, China
| | - Juan Shi
- Shanghai National Clinical Research Center for Metabolic Diseases, Key Laboratory for Endocrine and Metabolic Diseases of Chinese Health Commission, Department of Endocrinology and Metabolism, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine (SJTUSM), Shanghai 200025, China
| | - Danjie Li
- Shanghai National Clinical Research Center for Metabolic Diseases, Key Laboratory for Endocrine and Metabolic Diseases of Chinese Health Commission, Department of Endocrinology and Metabolism, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine (SJTUSM), Shanghai 200025, China
| | - Fuhua Yan
- Department of Radiology, Ruijin Hospital, SJTUSM, Shanghai 200025, China
| | - Weiqiong Gu
- Shanghai National Clinical Research Center for Metabolic Diseases, Key Laboratory for Endocrine and Metabolic Diseases of Chinese Health Commission, Department of Endocrinology and Metabolism, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine (SJTUSM), Shanghai 200025, China
| | - Weiqing Wang
- Shanghai National Clinical Research Center for Metabolic Diseases, Key Laboratory for Endocrine and Metabolic Diseases of Chinese Health Commission, Department of Endocrinology and Metabolism, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine (SJTUSM), Shanghai 200025, China
| | - Ruixin Liu
- Shanghai National Clinical Research Center for Metabolic Diseases, Key Laboratory for Endocrine and Metabolic Diseases of Chinese Health Commission, Department of Endocrinology and Metabolism, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine (SJTUSM), Shanghai 200025, China
| | - Jiqiu Wang
- Shanghai National Clinical Research Center for Metabolic Diseases, Key Laboratory for Endocrine and Metabolic Diseases of Chinese Health Commission, Department of Endocrinology and Metabolism, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine (SJTUSM), Shanghai 200025, China
| | - Zheng Wang
- Institute of Neuroscience, State Key Laboratory of Neuroscience, Key Laboratory of Primate Neurobiology, Center for Excellence in Brain Science and Intelligence Technology, Chinese Academy of Sciences, Shanghai 200031, China
- Shanghai Center for Brain Science and Brain-Inspired Intelligence Technology, Shanghai 201210, China
| | - Guang Ning
- Shanghai National Clinical Research Center for Metabolic Diseases, Key Laboratory for Endocrine and Metabolic Diseases of Chinese Health Commission, Department of Endocrinology and Metabolism, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine (SJTUSM), Shanghai 200025, China
| |
Collapse
|
8
|
Salem V, Demetriou L, Behary P, Alexiadou K, Scholtz S, Tharakan G, Miras AD, Purkayastha S, Ahmed AR, Bloom SR, Wall MB, Dhillo WS, Tan TMM. Weight Loss by Low-Calorie Diet Versus Gastric Bypass Surgery in People With Diabetes Results in Divergent Brain Activation Patterns: A Functional MRI Study. Diabetes Care 2021; 44:1842-1851. [PMID: 34158363 PMCID: PMC8385466 DOI: 10.2337/dc20-2641] [Citation(s) in RCA: 19] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/27/2020] [Accepted: 05/18/2021] [Indexed: 02/03/2023]
Abstract
OBJECTIVE Weight loss achieved with very-low-calorie diets (VLCDs) can produce remission of type 2 diabetes (T2D), but weight regain very often occurs with reintroduction of higher calorie intakes. In contrast, bariatric surgery produces clinically significant and durable weight loss, with diabetes remission that translates into reductions in mortality. We hypothesized that in patients living with obesity and prediabetes/T2D, longitudinal changes in brain activity in response to food cues as measured using functional MRI would explain this difference. RESEARCH DESIGN AND METHODS Sixteen participants underwent gastric bypass surgery, and 19 matched participants undertook a VLCD (meal replacement) for 4 weeks. Brain responses to food cues and resting-state functional connectivity were assessed with functional MRI pre- and postintervention and compared across groups. RESULTS We show that Roux-en-Y gastric bypass surgery (RYGB) results in three divergent brain responses compared with VLCD-induced weight loss: 1) VLCD resulted in increased brain reward center food cue responsiveness, whereas in RYGB, this was reduced; 2) VLCD resulted in higher neural activation of cognitive control regions in response to food cues associated with exercising increased cognitive restraint over eating, whereas RYGB did not; and 3) a homeostatic appetitive system (centered on the hypothalamus) is better engaged following RYGB-induced weight loss than VLCD. CONCLUSIONS Taken together, these findings point to divergent brain responses to different methods of weight loss in patients with diabetes, which may explain weight regain after a short-term VLCD in contrast to enduring weight loss after RYGB.
Collapse
Affiliation(s)
- Victoria Salem
- Department of Digestion, Metabolism and Reproduction, Imperial College London, London, U.K
| | | | - Preeshila Behary
- Department of Digestion, Metabolism and Reproduction, Imperial College London, London, U.K
| | - Kleopatra Alexiadou
- Department of Digestion, Metabolism and Reproduction, Imperial College London, London, U.K
| | - Samantha Scholtz
- West London Mental Health National Health Service Trust, London, U.K
| | - George Tharakan
- Department of Digestion, Metabolism and Reproduction, Imperial College London, London, U.K
| | - Alexander D Miras
- Department of Digestion, Metabolism and Reproduction, Imperial College London, London, U.K
| | - Sanjay Purkayastha
- Department of Surgery and Cancer, Imperial College Healthcare National Health Service Trust, London, U.K
| | - Ahmed R Ahmed
- Department of Surgery and Cancer, Imperial College Healthcare National Health Service Trust, London, U.K
| | - Stephen R Bloom
- Department of Digestion, Metabolism and Reproduction, Imperial College London, London, U.K
| | - Matthew B Wall
- Department of Digestion, Metabolism and Reproduction, Imperial College London, London, U.K.,Invicro London, Hammersmith Hospital, London, U.K
| | - Waljit S Dhillo
- Department of Digestion, Metabolism and Reproduction, Imperial College London, London, U.K
| | - Tricia M-M Tan
- Department of Digestion, Metabolism and Reproduction, Imperial College London, London, U.K.
| |
Collapse
|
9
|
Bennett C, Burrows T, Pursey K, Poudel G, Ng KW, Nguo K, Walker K, Porter J. Neural responses to food cues in middle to older aged adults: a scoping review of fMRI studies. Nutr Diet 2021; 78:343-364. [PMID: 33191542 DOI: 10.1111/1747-0080.12644] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/22/2020] [Revised: 09/15/2020] [Accepted: 09/23/2020] [Indexed: 01/18/2023]
Abstract
AIM Understanding neural responses through functional magnetic resonance imaging (fMRI) to food and food cues in middle-older adults may lead to better treatment options to address the growing issue of malnutrition. This scoping review aimed to determine the extent, range and nature of research using fMRI, related to reward-based regions, in response to food cues in middle to older aged adults (50 years and over). METHODS The following databases were systematically searched in July 2019: CINAHL, CENTRAL, Embase, Dissertations and Theses, Ovid Medline, PsycINFO, PsycEXTRA, Scopus and Web of Science. Studies were eligible for inclusion if participants had a mean or median age ≥50 years, utilised and reported outcomes of either a food cue task-related fMRI methodology or resting-state fMRI. Data from included studies were charted, and synthesised narratively. RESULTS Twenty-two studies were included. Eighteen studies utilised a task-related design to measure neural activation, two studies measured resting state neural connectivity only and an additional two studies measured both. The fMRI scanning paradigms, food cue tools and procedure of presentation varied markedly. Four studies compared the neural responses to food between younger and older adults, providing no consensus on neural age-related changes to food cues; two studies utilised longitudinal scans. CONCLUSION This review identified significant extent, range and nature in the approaches used to assess neuronal activity in response to food cues in adults aged 50 years and over. Future studies are needed to understand the age-related appetite changes whilst considering personal preferences for food cues.
Collapse
Affiliation(s)
- Christie Bennett
- Department of Nutrition, Dietetics and Food, School of Clinical Sciences, Faculty of Medicine, Nursing and Health Sciences, Monash University, Clayton, Victoria, Australia
| | - Tracy Burrows
- School of Health Sciences, Priority Research Centre for Physical Activity and Nutrition, University of Newcastle, Callaghan, New South Wales, Australia
| | - Kirrilly Pursey
- School of Health Sciences, Priority Research Centre for Physical Activity and Nutrition, University of Newcastle, Callaghan, New South Wales, Australia
| | - Govinda Poudel
- Behaviour Environment and Cognition, Mary McKillop Institute for Health Research, Australian Catholic University, Melbourne, Victoria, Australia
| | - Ker Wei Ng
- Department of Nutrition, Dietetics and Food, School of Clinical Sciences, Faculty of Medicine, Nursing and Health Sciences, Monash University, Clayton, Victoria, Australia
| | - Kay Nguo
- Department of Nutrition, Dietetics and Food, School of Clinical Sciences, Faculty of Medicine, Nursing and Health Sciences, Monash University, Clayton, Victoria, Australia
| | - Karen Walker
- Department of Nutrition, Dietetics and Food, School of Clinical Sciences, Faculty of Medicine, Nursing and Health Sciences, Monash University, Clayton, Victoria, Australia
| | - Judi Porter
- Institute for Physical Activity and Nutrition, School of Exercise and Nutrition Science, Deakin University, Geelong, Victoria, Australia
| |
Collapse
|
10
|
Faulkner ML, Momenan R, Leggio L. A neuroimaging investigation into the role of peripheral metabolic biomarkers in the anticipation of reward in alcohol use. Drug Alcohol Depend 2021; 221:108638. [PMID: 33667782 PMCID: PMC8527598 DOI: 10.1016/j.drugalcdep.2021.108638] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/28/2020] [Revised: 01/28/2021] [Accepted: 02/01/2021] [Indexed: 11/28/2022]
Abstract
BACKGROUND The relationship between alcohol use and metabolism has focused on the effects of alcohol use on metabolic factors. Metabolic factors, such as triglycerides, cholesterol, and glucose, have been shown to be associated with increased risk for heavy alcohol consumption and alcohol use disorder (AUD). It's been suggested that changes in metabolic factors may play a role in reward seeking behaviors and pathways. Studies on feeding behavior and obesity revealed the role of triglycerides in neural response to food cues in neurocircuitry regulating reward and feeding behaviors. This study aimed to explore the relationship of peripheral metabolism, alcohol use, and reward processing in individuals that use alcohol. METHODS Ninety participants from a previously collected dataset were included in the analysis. Participants were treatment seeking, detoxified individuals with AUD and healthy individuals without AUD, with the following metabolic biomarkers: triglyceride, glucose, high- and low-density cholesterol, and HbA1c levels. Participants completed a neuroimaging version of the Monetary Incentive Delay task (MID). RESULTS Correlations on peripheral metabolic biomarkers, alcohol use, and neural activity during reward anticipation and outcome during the MID task were not significant. Mediation models revealed triglycerides and high-density cholesterol had significant effects on left anterior insula during anticipation of potential monetary loss and this effect was not mediated by alcohol use. CONCLUSION Limbic recruitment by anticipation of monetary rewards revealed an independent relationship with peripheral metabolism and was not affected by individual differences in alcohol use, despite the effects of alcohol use on metabolic markers and reward processing neural circuitry.
Collapse
Affiliation(s)
- Monica L. Faulkner
- Clinical Psychoneuroendocrinology and Neuropsychopharmacology Section, Translational Addiction Medicine Branch, National Institute on Drug Abuse Intramural Research Program and National Institute on Alcohol Abuse and Alcoholism Division of Intramural Clinical and Biological Research, National Institutes of Health, Baltimore and Bethesda, MD, USA, 20814
| | - Reza Momenan
- Clinical Neuroimaging Research Core, National Institute on Alcohol Abuse and Alcoholism, National Institutes of Health, Bethesda, MD, USA 20814
| | - Lorenzo Leggio
- Clinical Psychoneuroendocrinology and Neuropsychopharmacology Section, Translational Addiction Medicine Branch, National Institute on Drug Abuse Intramural Research Program and National Institute on Alcohol Abuse and Alcoholism Division of Intramural Clinical and Biological Research, National Institutes of Health, Baltimore and Bethesda, MD 20814, USA; Medication Development Program, National Institute on Drug Abuse Intramural Research Program, National Institutes of Health, Baltimore, MD 21224, USA; Center for Alcohol and Addiction Studies, Department of Behavioral and Social Sciences, Brown University, Providence, RI 02903, USA; Division of Addiction Medicine, Department of Medicine, School of Medicine, Johns Hopkins University, Baltimore, MD 21224, USA; Department of Neuroscience, Georgetown University Medical Center, Washington DC 20057, USA.
| |
Collapse
|
11
|
Bach P, Grosshans M, Koopmann A, Pfeifer AM, Vollstädt-Klein S, Otto M, Kienle P, Bumb JM, Kiefer F. Predictors of weight loss in participants with obesity following bariatric surgery - A prospective longitudinal fMRI study. Appetite 2021; 163:105237. [PMID: 33794259 DOI: 10.1016/j.appet.2021.105237] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/21/2020] [Revised: 12/21/2020] [Accepted: 03/26/2021] [Indexed: 01/04/2023]
Abstract
Prevalence rates of overweight and obesity are increasing worldwide and are amongst the leading causes of death. Participants with obesity also suffer from poorer mental health with a concomitant reduced quality of life. Bariatric surgery outperforms other existing weight optimization approaches. However, hitherto, it was not possible to identify factors predicting weight loss following surgery. Therefore, we aimed at investigating neural and behavioral predictors of weight loss, as well as the neurological underpinnings of food cue-induced craving before and after bariatric surgery. The total sample consisted of 26 participants with obesity (17 females and 9 males, mean age 41 ± 12 years, mean BMI 46 ± 6 kg/m2, 21 received Roux-en-Y gastric bypass and 5 sleeve gastrectomy). Participants with obesity were prospectively assessed using functional magnetic resonance imaging two weeks before, as well as eight and 24 weeks after surgery. Imaging data were available for 11 individuals; 10 received Roux-en-Y gastric bypass and one sleeve gastrectomy. Subjective cue-induced food craving correlated positively with brain activation in the amygdala, the parahippocampal gyrus, and hippocampus, and negatively with brain activation in frontal brain regions. In the total sample (N = 26), perceived feeling of hunger and YFAS sum score explained 50.6% of the variance (R2 = 0.506, F(1,23) = 10.759, p < 0.001) and in the imaging sample, cue-induced food craving at baseline before surgery explained 49.6% of the variance (R2 = 0.496, F(1,23) = 7.862, p = 0.023) of % total weight loss (%TWL). In other words, with respect to %TWL, bariatric surgery was most efficient in candidates characterized by high cue-induced food craving, high-perceived feeling of hunger and a low YFAS sum score.
Collapse
Affiliation(s)
- Patrick Bach
- Department of Addictive Behavior and Addiction Medicine, Central Institute of Mental Health, Medical Faculty Mannheim/Heidelberg University, Germany; Feuerlein Center on Translational Addiction Medicine (FCTS), University of Heidelberg, Germany
| | - Martin Grosshans
- Department of Addictive Behavior and Addiction Medicine, Central Institute of Mental Health, Medical Faculty Mannheim/Heidelberg University, Germany
| | - Anne Koopmann
- Department of Addictive Behavior and Addiction Medicine, Central Institute of Mental Health, Medical Faculty Mannheim/Heidelberg University, Germany; Feuerlein Center on Translational Addiction Medicine (FCTS), University of Heidelberg, Germany
| | - Anna-Maria Pfeifer
- Department of Addictive Behavior and Addiction Medicine, Central Institute of Mental Health, Medical Faculty Mannheim/Heidelberg University, Germany
| | - Sabine Vollstädt-Klein
- Department of Addictive Behavior and Addiction Medicine, Central Institute of Mental Health, Medical Faculty Mannheim/Heidelberg University, Germany; Feuerlein Center on Translational Addiction Medicine (FCTS), University of Heidelberg, Germany
| | - Mirko Otto
- Department of Surgery, University Medical Center Mannheim, Heidelberg University, Mannheim, Germany
| | - Peter Kienle
- Department of Surgery, University Medical Center Mannheim, Heidelberg University, Mannheim, Germany
| | - J Malte Bumb
- Department of Addictive Behavior and Addiction Medicine, Central Institute of Mental Health, Medical Faculty Mannheim/Heidelberg University, Germany; Feuerlein Center on Translational Addiction Medicine (FCTS), University of Heidelberg, Germany.
| | - Falk Kiefer
- Department of Addictive Behavior and Addiction Medicine, Central Institute of Mental Health, Medical Faculty Mannheim/Heidelberg University, Germany; Feuerlein Center on Translational Addiction Medicine (FCTS), University of Heidelberg, Germany
| |
Collapse
|
12
|
Gautron L. The Phantom Satiation Hypothesis of Bariatric Surgery. Front Neurosci 2021; 15:626085. [PMID: 33597843 PMCID: PMC7882491 DOI: 10.3389/fnins.2021.626085] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/04/2020] [Accepted: 01/06/2021] [Indexed: 01/26/2023] Open
Abstract
The excitation of vagal mechanoreceptors located in the stomach wall directly contributes to satiation. Thus, a loss of gastric innervation would normally be expected to result in abrogated satiation, hyperphagia, and unwanted weight gain. While Roux-en-Y-gastric bypass (RYGB) inevitably results in gastric denervation, paradoxically, bypassed subjects continue to experience satiation. Inspired by the literature in neurology on phantom limbs, I propose a new hypothesis in which damage to the stomach innervation during RYGB, including its vagal supply, leads to large-scale maladaptive changes in viscerosensory nerves and connected brain circuits. As a result, satiation may continue to arise, sometimes at exaggerated levels, even in subjects with a denervated or truncated stomach. The same maladaptive changes may also contribute to dysautonomia, unexplained pain, and new emotional responses to eating. I further revisit the metabolic benefits of bariatric surgery, with an emphasis on RYGB, in the light of this phantom satiation hypothesis.
Collapse
Affiliation(s)
- Laurent Gautron
- Department of Internal Medicine, Center for Hypothalamic Research, The University of Texas Southwestern Medical Center, Dallas, TX, United States
| |
Collapse
|
13
|
Hankir MK, Al-Bas S, Rullmann M, Chakaroun R, Seyfried F, Pleger B. Homeostatic, reward and executive brain functions after gastric bypass surgery. Appetite 2020; 146:104419. [DOI: 10.1016/j.appet.2019.104419] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/04/2019] [Revised: 07/01/2019] [Accepted: 08/23/2019] [Indexed: 12/15/2022]
|
14
|
Binda P, Eldor R, Huerta C, Adams J, Lancaster J, Fox P, Prato SD, DeFronzo R, Abdul-Ghani M, Daniele G. Exenatide modulates visual cortex responses. Diabetes Metab Res Rev 2019; 35:e3167. [PMID: 30974038 PMCID: PMC6718343 DOI: 10.1002/dmrr.3167] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/06/2018] [Revised: 03/25/2019] [Accepted: 04/09/2019] [Indexed: 12/14/2022]
Abstract
BACKGROUND Increasing evidence suggests that metabolism affects brain physiology. Here, we examine the effect of GLP-1 on simple visual-evoked functional Magnetic Resonance Imaging (fMRI) responses in cortical areas. METHODS Lean (n = 10) and nondiabetic obese (n = 10) subjects received exenatide (a GLP-1 agonist) or saline infusion, and fMRI responses to visual stimuli (food and nonfood images) were recorded. We analysed the effect of exenatide on fMRI signals across the cortical surface with special reference to the visual areas. We evaluated the effects of exenatide on the raw fMRI signal and on the fMRI signal change during visual stimulation (vs rest). RESULTS In line with previous studies, we find that exenatide eliminates the preference for food (over nonfood) images present under saline infusion in high-level visual cortex (temporal pole). In addition, we find that exenatide (vs saline) also modulates the response of early visual areas, enhancing responses to both food and nonfood images in several extrastriate occipital areas, similarly in obese and lean participants. Unexpectedly, exenatide increased fMRI raw signals (signal intensity during rest periods without stimulation) in a large occipital region, which were negatively correlated to BMI. CONCLUSIONS In both lean and obese individuals, exenatide affects neural processing in visual cortex, both in early visual areas and in higher order areas. This effect may contribute to the known effect of GLP1 analogues on food-related behaviour.
Collapse
Affiliation(s)
- Paola Binda
- Department of Translational Research on New Technologies in Medicine and Surgery, University of Pisa. Pisa. Italy
| | - Roy Eldor
- Diabetes Unit-Institute of Endocrinology, Metabolism & Hypertension at The Tel Aviv Sourasky Medical Center. Tel-Aviv. Israel
| | - Claudia Huerta
- Imaging Research Center, University of Texas Health Science Center at San Antonio. San Antonio, TX. US
| | - John Adams
- Imaging Research Center, University of Texas Health Science Center at San Antonio. San Antonio, TX. US
| | - John Lancaster
- Division of Diabetes, University of Texas Health Science Center at San Antonio. San Antonio, TX. US
| | - Peter Fox
- Division of Diabetes, University of Texas Health Science Center at San Antonio. San Antonio, TX. US
| | - Stefano Del Prato
- Department of Clinical and Experimental Medicine. Section of Diabetes. University of Pisa. Pisa. Italy
| | - Ralph DeFronzo
- Division of Diabetes, University of Texas Health Science Center at San Antonio. San Antonio, TX. US
| | - Muhammad Abdul-Ghani
- Division of Diabetes, University of Texas Health Science Center at San Antonio. San Antonio, TX. US
- Diabetes and Obesity Clinical Research Center, Hamad General Hospital, Doha, Qatar
| | - Giuseppe Daniele
- Division of Diabetes, University of Texas Health Science Center at San Antonio. San Antonio, TX. US
- Diabetes and Obesity Clinical Research Center, Hamad General Hospital, Doha, Qatar
- Department of Clinical and Experimental Medicine. Section of Diabetes. University of Pisa. Pisa. Italy
| |
Collapse
|
15
|
Zhang Z, Zhang B, Wang X, Zhang X, Yang QX, Qing Z, Zhang W, Zhu D, Bi Y. Olfactory Dysfunction Mediates Adiposity in Cognitive Impairment of Type 2 Diabetes: Insights From Clinical and Functional Neuroimaging Studies. Diabetes Care 2019; 42:1274-1283. [PMID: 31221697 DOI: 10.2337/dc18-2584] [Citation(s) in RCA: 71] [Impact Index Per Article: 11.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/18/2018] [Accepted: 04/17/2019] [Indexed: 02/03/2023]
Abstract
OBJECTIVE Large numbers of people with type 2 diabetes are obese. However, changes in cognition and related brain function in obese people with diabetes have not been characterized. Here, we investigated cognition, olfactory function, and odor-induced brain alterations in these patients and therapeutic effects of glucagon-like peptide 1 receptor agonists (GLP-1Ras) on their psychological behavior and olfactory networks. RESEARCH DESIGN AND METHODS Cognitive, olfactory, and odor-induced brain activation assessments were administered to 35 obese and 35 nonobese people with type 2 diabetes and 35 control subjects matched for age, sex, and education. Among them, 20 obese individuals with diabetes with inadequate glycemic control and metformin monotherapy received GLP-1Ra treatment for 3 months and were reassessed for metabolic, cognitive, olfactory, and neuroimaging changes. RESULTS Obese subjects with diabetes demonstrated lower general cognition and olfactory threshold scores, decreased left hippocampal activation, and disrupted seed-based functional connectivity with right insula compared with nonobese subjects with diabetes. Negative associations were found between adiposity and episodic memory and between fasting insulin and processing speed test time in diabetes. Mediation analyses showed that olfactory function and left hippocampus activation mediated these correlations. With 3-month GLP-1Ra treatment, obese subjects with diabetes exhibited improved Montreal Cognitive Assessment (MoCA) score, olfactory test total score, and enhanced odor-induced right parahippocampus activation. CONCLUSIONS Obese subjects with type 2 diabetes showed impaired cognition and dysfunctional olfaction and brain networks, the latter of which mediated adiposity in cognitive impairment of diabetes. GLP-1Ras ameliorated cognitive and olfactory abnormalities in obese subjects with diabetes, providing new perspectives for early diagnosis and therapeutic approaches for cognitive decrements in these patients.
Collapse
Affiliation(s)
- Zhou Zhang
- Department of Endocrinology, Drum Tower Hospital, Nanjing University Medical School, Nanjing, China
| | - Bing Zhang
- Department of Radiology, Drum Tower Hospital, Nanjing University Medical School, Nanjing, China.,Drum Tower Hospital, Clinical College of Nanjing Medical University, Nanjing, China
| | - Xin Wang
- Drum Tower Hospital, Clinical College of Nanjing Medical University, Nanjing, China
| | - Xin Zhang
- Department of Radiology, Drum Tower Hospital, Nanjing University Medical School, Nanjing, China
| | - Qing X Yang
- Center for NMR Research, Department of Radiology, Pennsylvania State University College of Medicine, Hershey, PA.,George M. Leader Foundation Alzheimer's Laboratory, Department of Neurosurgery, Pennsylvania State University College of Medicine, Hershey, PA
| | - Zhao Qing
- Department of Radiology, Drum Tower Hospital, Nanjing University Medical School, Nanjing, China
| | - Wen Zhang
- Department of Radiology, Drum Tower Hospital, Nanjing University Medical School, Nanjing, China
| | - Dalong Zhu
- Department of Endocrinology, Drum Tower Hospital, Nanjing University Medical School, Nanjing, China
| | - Yan Bi
- Department of Endocrinology, Drum Tower Hospital, Nanjing University Medical School, Nanjing, China
| |
Collapse
|
16
|
Neuro-hormonal mechanisms underlying changes in reward related behaviors following weight loss surgery: Potential pharmacological targets. Biochem Pharmacol 2019; 164:106-114. [PMID: 30954487 DOI: 10.1016/j.bcp.2019.04.004] [Citation(s) in RCA: 29] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/18/2019] [Accepted: 04/03/2019] [Indexed: 12/11/2022]
|
17
|
Lundqvist MH, Almby K, Abrahamsson N, Eriksson JW. Is the Brain a Key Player in Glucose Regulation and Development of Type 2 Diabetes? Front Physiol 2019; 10:457. [PMID: 31133864 PMCID: PMC6524713 DOI: 10.3389/fphys.2019.00457] [Citation(s) in RCA: 22] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/04/2018] [Accepted: 04/01/2019] [Indexed: 01/08/2023] Open
Abstract
Ever since Claude Bernards discovery in the mid 19th-century that a lesion in the floor of the third ventricle in dogs led to altered systemic glucose levels, a role of the CNS in whole-body glucose regulation has been acknowledged. However, this finding was later overshadowed by the isolation of pancreatic hormones in the 20th century. Since then, the understanding of glucose homeostasis and pathology has primarily evolved around peripheral mechanism. Due to scientific advances over these last few decades, however, increasing attention has been given to the possibility of the brain as a key player in glucose regulation and the pathogenesis of metabolic disorders such as type 2 diabetes. Studies of animals have enabled detailed neuroanatomical mapping of CNS structures involved in glucose regulation and key neuronal circuits and intracellular pathways have been identified. Furthermore, the development of neuroimaging techniques has provided methods to measure changes of activity in specific CNS regions upon diverse metabolic challenges in humans. In this narrative review, we discuss the available evidence on the topic. We conclude that there is much evidence in favor of active CNS involvement in glucose homeostasis but the relative importance of central vs. peripheral mechanisms remains to be elucidated. An increased understanding of this field may lead to new CNS-focusing pharmacologic strategies in the treatment of type 2 diabetes.
Collapse
Affiliation(s)
| | - Kristina Almby
- Department of Medical Sciences, Uppsala University, Uppsala, Sweden
| | | | - Jan W Eriksson
- Department of Medical Sciences, Uppsala University, Uppsala, Sweden
| |
Collapse
|
18
|
Drummen M, Dorenbos E, Vreugdenhil ACE, Stratton G, Raben A, Westerterp-Plantenga MS, Adam TC. Associations of Brain Reactivity to Food Cues with Weight Loss, Protein Intake and Dietary Restraint during the PREVIEW Intervention. Nutrients 2018; 10:E1771. [PMID: 30445718 PMCID: PMC6266251 DOI: 10.3390/nu10111771] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/17/2018] [Revised: 11/02/2018] [Accepted: 11/09/2018] [Indexed: 12/11/2022] Open
Abstract
The objective was to assess the effects of a weight loss and subsequent weight maintenance period comprising two diets differing in protein intake, on brain reward reactivity to visual food cues. Brain reward reactivity was assessed with functional magnetic resonance imaging in 27 overweight/obese individuals with impaired fasting glucose and/or impaired glucose tolerance (HOMA-IR: 3.7 ± 1.7; BMI: 31.8 ± 3.2 kg/m²; fasting glucose: 6.4 ± 0.6 mmol/L) before and after an 8-week low energy diet followed by a 2-year weight maintenance period, with either high protein (HP) or medium protein (MP) dietary guidelines. Brain reactivity and possible relationships with protein intake, anthropometrics, insulin resistance and eating behaviour were assessed. Brain reactivity, BMI, HOMA-IR and protein intake did not change differently between the groups during the intervention. In the whole group, protein intake during weight maintenance was negatively related to changes in high calorie images>low calorie images (H > L) brain activation in the superior/middle frontal gyrus and the inferior temporal gyrus (p < 0.005, corrected for multiple comparisons). H > L brain activation was positively associated with changes in body weight and body-fat percentage and inversely associated with changes in dietary restraint in multiple reward, gustatory and processing regions (p < 0.005, corrected for multiple comparisons). In conclusion, changes in food reward-related brain activation were inversely associated with protein intake and dietary restraint during weight maintenance after weight loss and positively associated with changes in body weight and body-fat percentage.
Collapse
Affiliation(s)
- Mathijs Drummen
- Department of Nutrition and Movement Sciences, Maastricht University Medical Centre, 6200 MD Maastricht, The Netherlands.
- NUTRIM School of Nutrition and Translational Research in Metabolism, Maastricht University, 6200 MD Maastricht, The Netherlands.
| | - Elke Dorenbos
- NUTRIM School of Nutrition and Translational Research in Metabolism, Maastricht University, 6200 MD Maastricht, The Netherlands.
- Centre for Overweight Adolescent and Children's Health Care (COACH), Department of Paediatrics, Maastricht University Medical Centre, 6200 MD Maastricht, The Netherlands.
| | - Anita C E Vreugdenhil
- NUTRIM School of Nutrition and Translational Research in Metabolism, Maastricht University, 6200 MD Maastricht, The Netherlands.
- Centre for Overweight Adolescent and Children's Health Care (COACH), Department of Paediatrics, Maastricht University Medical Centre, 6200 MD Maastricht, The Netherlands.
| | - Gareth Stratton
- Research Centre in Applied Sports, Technology Exercise and Medicine, College of Engineering, Swansea University, Swansea, SA1 8EN Wales, UK.
| | - Anne Raben
- Department of Nutrition, Exercise and Sports, University of Copenhagen, DK-1017 Copenhagen, Denmark.
| | - Margriet S Westerterp-Plantenga
- NUTRIM School of Nutrition and Translational Research in Metabolism, Maastricht University, 6200 MD Maastricht, The Netherlands.
| | - Tanja C Adam
- Department of Nutrition and Movement Sciences, Maastricht University Medical Centre, 6200 MD Maastricht, The Netherlands.
- NUTRIM School of Nutrition and Translational Research in Metabolism, Maastricht University, 6200 MD Maastricht, The Netherlands.
| |
Collapse
|
19
|
Schulze M, Sörös P, Vogel W, Münte TF, Müller HHO, Philipsen A. Impact of bariatric surgery on neural food processing and cognition: an fMRI study. BMJ Open 2018; 8:e022375. [PMID: 30269067 PMCID: PMC6169753 DOI: 10.1136/bmjopen-2018-022375] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 02/06/2023] Open
Abstract
INTRODUCTION The Roux-en-Y gastric bypass (RYGB) is one of the most widely used techniques for bariatric surgery. After RYGB, weight loss up to 50%-70% of excess body weight, improvement of insulin-resistance, changes in food preferences and improvements in cognitive performance have been reported. This protocol describes a longitudinal study of the neural correlates associated with food-processing and cognitive performance in patients with morbid obesity before and after RYGB relative to lean controls. METHODS AND ANALYSIS This study is a pre-post case-control experiment. Using functional MRI, the neural responses to food stimuli and a working memory task will be compared between 25 patients with obesity, pre and post RYGB, and a matched, lean control group. Resting state fMRI will be measured to investigate functional brain connectivity. Baseline measurements for both groups will take place 4 weeks prior to RYGB and 12 months after RYGB. The effects of RYGB on peptide tyrosine tyrosine and glucagon-like polypeptide-1 will also be determined. ETHICS AND DISSEMINATION The project has received ethical approval by the local medical ethics committee of the Carl-von-Ossietzky University of Oldenburg, Germany (registration: 2017-073). Results will be published in a peer-reviewed journal as original research and on international conferences. TRIAL REGISTRATION NUMBER DRKS00012495; Pre-results.
Collapse
Affiliation(s)
- Marcel Schulze
- Medical Campus University of Oldenburg, School of Medicine and Health Sciences, Psychiatry and Psychotherapy, University Hospital, Oldenburg, Germany
- Section for Experimental Neuropsychiatry, Department of Psychiatry, Faculty of Medicine, University of Freiburg, Freiburg, Germany
- Department of Psychiatry and Psychotherapy, University of Bonn, Bonn, Germany
| | - Peter Sörös
- Medical Campus University of Oldenburg, School of Medicine and Health Sciences, Psychiatry and Psychotherapy, University Hospital, Oldenburg, Germany
- Research Center Neurosensory Science, University of Oldenburg, Oldenburg, Germany
| | - Wolfgang Vogel
- Medical Campus University of Oldenburg, School of Medicine and Health Sciences, Psychiatry and Psychotherapy, University Hospital, Oldenburg, Germany
| | - Thomas F Münte
- Department of Neurology, University of Luebeck, Luebeck, Germany
| | - Helge H O Müller
- Department of Psychiatry and Psychotherapy, University of Bonn, Bonn, Germany
| | - Alexandra Philipsen
- Medical Campus University of Oldenburg, School of Medicine and Health Sciences, Psychiatry and Psychotherapy, University Hospital, Oldenburg, Germany
- Department of Psychiatry and Psychotherapy, University of Bonn, Bonn, Germany
| |
Collapse
|
20
|
Makaronidis JM, Batterham RL. Obesity, body weight regulation and the brain: insights from fMRI. Br J Radiol 2018; 91:20170910. [PMID: 29365284 DOI: 10.1259/bjr.20170910] [Citation(s) in RCA: 39] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022] Open
Abstract
Obesity constitutes a major global health threat. Despite the success of bariatric surgery in delivering sustainable weight loss and improvement in obesity-related morbidity, effective non-surgical treatments are urgently needed, necessitating an increased understanding of body weight regulation. Neuroimaging studies undertaken in people with healthy weight, overweight, obesity and following bariatric surgery have contributed to identifying the neurophysiological changes seen in obesity and help increase our understanding of the mechanisms driving the favourable eating behaviour changes and sustained weight loss engendered by bariatric surgery. These studies have revealed a key interplay between peripheral metabolic signals, homeostatic and hedonic brain regions and genetics. Findings from brain functional magnetic resonance imaging (fMRI) studies have consistently associated obesity with an increased motivational drive to eat, increased reward responses to food cues and impaired food-related self-control processes. Interestingly, new data link these obesity-associated changes with structural and connectivity changes within the central nervous system. Moreover, emerging data suggest that bariatric surgery leads to neuroplastic recovery. A greater understanding of the interactions between peripheral signals of energy balance, the neural substrates that regulate eating behaviour, the environment and genetics will be key for the development of novel therapeutic strategies for obesity. This review provides an overview of our current understanding of the pathoaetiology of obesity with a focus upon the role that fMRI studies have played in enhancing our understanding of the central regulation of eating behaviour and energy homeostasis.
Collapse
Affiliation(s)
- Janine M Makaronidis
- 1 Department of Medicine, Centre for Obesity Research, Rayne Institute, University College London , London , UK.,2 Bariatric Centre for Weight Management and Metabolic Surgery, University College London Hospital (UCLH) Bariatric Centre for Weight Management and Metabolic Surgery, University College London Hospital , London , UK.,3 Bariatric Centre for Weight Management and Metabolic Surgery, National Institute of Health Research, UCLH Biomedical Research Centre , London , UK
| | - Rachel L Batterham
- 1 Department of Medicine, Centre for Obesity Research, Rayne Institute, University College London , London , UK.,2 Bariatric Centre for Weight Management and Metabolic Surgery, University College London Hospital (UCLH) Bariatric Centre for Weight Management and Metabolic Surgery, University College London Hospital , London , UK.,3 Bariatric Centre for Weight Management and Metabolic Surgery, National Institute of Health Research, UCLH Biomedical Research Centre , London , UK
| |
Collapse
|
21
|
Zakeri R, Batterham RL. Potential mechanisms underlying the effect of bariatric surgery on eating behaviour. Curr Opin Endocrinol Diabetes Obes 2018; 25:3-11. [PMID: 29120924 DOI: 10.1097/med.0000000000000379] [Citation(s) in RCA: 37] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Abstract
PURPOSE OF REVIEW Reduced energy intake, resulting from favourable changes in eating behaviour, is the predominant driver of weight loss following bariatric surgery. Here we review the most recent studies examining the impact of Roux-en-Y gastric bypass (RYGB) and sleeve gastrectomy, the two most common bariatric procedures, upon eating behaviour and the suggested underlying biological mechanisms. RECENT FINDINGS Following RYGB or sleeve gastrectomy, most people report subjective changes in appetite, taste and food preference, with decreased high-fat preference most commonly reported. Objective postsurgery changes in taste and olfactory acuity occur. A new phenomenon, 'meal-size aversion', may contribute to reduced postoperative energy intake. Recent studies provide evidence for peptide YY3-36, glucagon-like peptide-1, ghrelin, neurotensin and oleoylethanolamide as mediators of postoperative eating behaviour changes. Factors modulating these changes include sex, type 2 diabetes status, genetics and bariatric procedure. New studies implicate central dopaminergic and opioid receptor signalling as key neural mediators driving altered eating behaviour. Brain neuroimaging studies show that obesity-associated changes in food-cue responses, brain connectivity and structural abnormalities are normalized following bariatric surgery. SUMMARY Understanding the biological mechanisms mediating the eating behaviour changes engendered by bariatric surgery may lead to the development of novel therapeutic strategies for people with obesity.
Collapse
Affiliation(s)
- Roxanna Zakeri
- Centre for Obesity Research, Rayne Institute, Department of Medicine, University College London, London, UK
- University College London Hospital (UCLH) Bariatric Centre for Weight Management and Metabolic Surgery, University College London Hospital, London, UK
- National Institute of Health Research, UCLH Biomedical Research Centre, London, UK
| | - Rachel L Batterham
- Centre for Obesity Research, Rayne Institute, Department of Medicine, University College London, London, UK
- University College London Hospital (UCLH) Bariatric Centre for Weight Management and Metabolic Surgery, University College London Hospital, London, UK
- National Institute of Health Research, UCLH Biomedical Research Centre, London, UK
| |
Collapse
|
22
|
Neural predictors of 12-month weight loss outcomes following bariatric surgery. Int J Obes (Lond) 2017; 42:785-793. [PMID: 28894291 PMCID: PMC6319374 DOI: 10.1038/ijo.2017.190] [Citation(s) in RCA: 53] [Impact Index Per Article: 6.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/19/2017] [Revised: 07/13/2017] [Accepted: 07/22/2017] [Indexed: 12/13/2022]
Abstract
Background/Objectives: Despite the effectiveness of bariatric surgery, there is still substantial variability in long-term weight outcomes and few factors with predictive power to explain this variability. Neuroimaging may provide a novel biomarker with utility beyond other commonly used variables in bariatric surgery trials to improve prediction of long-term weight loss outcomes. The purpose of this study was to evaluate the effects of sleeve gastrectomy (SG) on reward and cognitive control circuitry post-surgery and determine the extent to which baseline brain activity predicts weight loss at 12-months post-surgery. Subjects/Methods: Using a longitudinal design, behavioral, hormone, and neuroimaging data (during a desire for palatable food regulation paradigm) were collected from 18 patients undergoing SG at baseline (<1 month prior) and 12-months post-SG. Results: SG patients lost an average of 29.0% of their weight (% total weight loss, %TWL) at 12-months post-SG, with significant variability (range: 16.0–43.5%). Maladaptive eating behaviors (uncontrolled, emotional, and externally-cued eating) improved (p<0.01), in parallel with reductions in fasting hormones (acyl ghrelin, leptin, glucose, insulin; p<0.05). Brain activity in the nucleus accumbens (NAcc), caudate, pallidum, and amygdala during desire for palatable food enhancement vs. regulation decreased from baseline to 12-months [p(FWE)<0.05]. Dorsolateral and dorsomedial prefrontal cortex activity during desire for palatable food regulation (vs. enhancement) increased from baseline to 12-months [p(FWE)<0.05]. Baseline activity in the NAcc and hypothalamus during desire for palatable food enhancement was significantly predictive of %TWL at 12-months [p(FWE)<0.05], superior to behavioral and hormone predictors, which did not significantly predict %TWL (p>0.10). Using stepwise linear regression, left NAcc activity accounted for 54% of the explained variance in %TWL at 12-months. Conclusions: Consistent with previous obesity studies, reward-related neural circuit activity may serve as an objective, relatively robust predictor of post-surgery weight loss. Replication in larger studies is necessary to determine true effect sizes for outcome prediction.
Collapse
|
23
|
Das UN. Is There a Role for Bioactive Lipids in the Pathobiology of Diabetes Mellitus? Front Endocrinol (Lausanne) 2017; 8:182. [PMID: 28824543 PMCID: PMC5539435 DOI: 10.3389/fendo.2017.00182] [Citation(s) in RCA: 34] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/17/2017] [Accepted: 07/10/2017] [Indexed: 12/12/2022] Open
Abstract
Inflammation, decreased levels of circulating endothelial nitric oxide (eNO) and brain-derived neurotrophic factor (BDNF), altered activity of hypothalamic neurotransmitters (including serotonin and vagal tone) and gut hormones, increased concentrations of free radicals, and imbalance in the levels of bioactive lipids and their pro- and anti-inflammatory metabolites have been suggested to play a role in diabetes mellitus (DM). Type 1 diabetes mellitus (type 1 DM) is due to autoimmune destruction of pancreatic β cells because of enhanced production of IL-6 and tumor necrosis factor-α (TNF-α) and other pro-inflammatory cytokines released by immunocytes infiltrating the pancreas in response to unknown exogenous and endogenous toxin(s). On the other hand, type 2 DM is due to increased peripheral insulin resistance secondary to enhanced production of IL-6 and TNF-α in response to high-fat and/or calorie-rich diet (rich in saturated and trans fats). Type 2 DM is also associated with significant alterations in the production and action of hypothalamic neurotransmitters, eNO, BDNF, free radicals, gut hormones, and vagus nerve activity. Thus, type 1 DM is because of excess production of pro-inflammatory cytokines close to β cells, whereas type 2 DM is due to excess of pro-inflammatory cytokines in the systemic circulation. Hence, methods designed to suppress excess production of pro-inflammatory cytokines may form a new approach to prevent both type 1 and type 2 DM. Roux-en-Y gastric bypass and similar surgeries ameliorate type 2 DM, partly by restoring to normal: gut hormones, hypothalamic neurotransmitters, eNO, vagal activity, gut microbiota, bioactive lipids, BDNF production in the gut and hypothalamus, concentrations of cytokines and free radicals that results in resetting glucose-stimulated insulin production by pancreatic β cells. Our recent studies suggested that bioactive lipids, such as arachidonic acid, eicosapentaneoic acid, and docosahexaenoic acid (which are unsaturated fatty acids) and their anti-inflammatory metabolites: lipoxin A4, resolvins, protectins, and maresins, may have antidiabetic actions. These bioactive lipids have anti-inflammatory actions, enhance eNO, BDNF production, restore hypothalamic dysfunction, enhance vagal tone, modulate production and action of ghrelin, leptin and adiponectin, and influence gut microbiota that may explain their antidiabetic action. These pieces of evidence suggest that methods designed to selectively deliver bioactive lipids to pancreatic β cells, gut, liver, and muscle may prevent type 1 and type 2 DM.
Collapse
Affiliation(s)
- Undurti N. Das
- BioScience Research Centre, Department of Medicine, Gayatri Vidya Parishad Hospital, GVP College of Engineering Campus, Visakhapatnam, India
- UND Life Sciences, Battle Ground, WA, United States
| |
Collapse
|
24
|
Olivo G, Zhou W, Sundbom M, Zhukovsky C, Hogenkamp P, Nikontovic L, Stark J, Wiemerslage L, Larsson EM, Benedict C, Schiöth HB. Resting-state brain connectivity changes in obese women after Roux-en-Y gastric bypass surgery: A longitudinal study. Sci Rep 2017; 7:6616. [PMID: 28747648 PMCID: PMC5529553 DOI: 10.1038/s41598-017-06663-5] [Citation(s) in RCA: 34] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/22/2017] [Accepted: 06/07/2017] [Indexed: 12/21/2022] Open
Abstract
Bariatric surgery is an effective method to rapidly induce weight loss in severely obese people, however its impact on brain functional connectivity after longer periods of follow-up is yet to be assessed. We investigated changes in connectivity in 16 severely obese women one month before, one month after and one year after Roux-en-Y gastric bypass surgery (RYGB). 12 lean controls were also enrolled. Resting-state fMRI was acquired for all participants following an overnight fast and after a 260 kcal load. Connectivity between regions involved in food-related saliency attribution and reward-driven eating behavior was stronger in presurgery patients compared to controls, but progressively weakened after follow-up. At one year, changes in networks related to cognitive control over eating and bodily perception also occurred. Connectivity between regions involved in emotional control and social cognition had a temporary reduction early after treatment but had increased again after one year of follow-up. Furthermore, we could predict the BMI loss by presurgery connectivity in areas linked to emotional control and social interaction. RYGBP seems to reshape brain functional connectivity, early affecting cognitive control over eating, and these changes could be an important part of the therapeutic effect of bariatric surgery.
Collapse
Affiliation(s)
- Gaia Olivo
- Department of Neuroscience, Functional Pharmacology, Uppsala University, Uppsala, Sweden.
| | - Wei Zhou
- Department of Neuroscience, Functional Pharmacology, Uppsala University, Uppsala, Sweden
| | - Magnus Sundbom
- Department of Surgical Sciences, Upper Gastrointestinal Surgery, Uppsala University, Uppsala, Sweden
| | - Christina Zhukovsky
- Department of Neuroscience, Functional Pharmacology, Uppsala University, Uppsala, Sweden
| | - Pleunie Hogenkamp
- Department of Neuroscience, Functional Pharmacology, Uppsala University, Uppsala, Sweden
| | - Lamia Nikontovic
- Department of Neuroscience, Functional Pharmacology, Uppsala University, Uppsala, Sweden
| | - Julia Stark
- Department of Neuroscience, Functional Pharmacology, Uppsala University, Uppsala, Sweden
| | - Lyle Wiemerslage
- Department of Neuroscience, Functional Pharmacology, Uppsala University, Uppsala, Sweden
| | - Elna-Marie Larsson
- Department of Surgical Sciences, Radiology, Uppsala University, Uppsala, Sweden
| | - Christian Benedict
- Department of Neuroscience, Functional Pharmacology, Uppsala University, Uppsala, Sweden
| | - Helgi B Schiöth
- Department of Neuroscience, Functional Pharmacology, Uppsala University, Uppsala, Sweden
| |
Collapse
|