1
|
Petrov MS. The Pharmacological Landscape for Fatty Change of the Pancreas. Drugs 2024; 84:375-384. [PMID: 38573485 PMCID: PMC11101365 DOI: 10.1007/s40265-024-02022-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 03/07/2024] [Indexed: 04/05/2024]
Abstract
The quest for medications to reduce intra-pancreatic fat deposition is now quarter a century old. While no specific medication has been approved for the treatment of fatty change of the pancreas, drug repurposing shows promise in reducing the burden of the most common disorder of the pancreas. This leading article outlines the 12 classes of medications that have been investigated to date with a view to reducing intra-pancreatic fat deposition. Information is presented hierarchically-from preclinical studies to retrospective findings in humans to prospective interventional studies to randomised controlled trials. This lays the grounds for shepherding the most propitious drugs into medical practice through well-designed basic science studies and adequately powered randomised controlled trials.
Collapse
Affiliation(s)
- Maxim S Petrov
- School of Medicine, University of Auckland, Auckland, New Zealand.
| |
Collapse
|
2
|
You J, Yang C, Han J, Wang H, Zhang W, Zhang Y, Lu Z, Wang S, Cai R, Li H, Yu J, Gao J, Zhang Y, Gu Z. Ultrarapid-Acting Microneedles for Immediate Delivery of Biotherapeutics. ADVANCED MATERIALS (DEERFIELD BEACH, FLA.) 2023; 35:e2304582. [PMID: 37547966 DOI: 10.1002/adma.202304582] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/16/2023] [Revised: 07/19/2023] [Indexed: 08/08/2023]
Abstract
Subcutaneous (SC) injection is a common administration route for rapid and efficient delivery of biotherapeutics. However, syringe-based injections usually require professional assistance and are associated with pain and potential risks of infections, thus leading to undesired patient compliance and poor life quality. Herein, this work presents an ultrarapid-acting microneedle (URA-MN) patch for immediate transdermal delivery of therapeutics in a minimally invasive manner. Effervescent agents are incorporated into the tip of URA-MN for rapid generation of CO2 bubbles upon insertion into the skin, immediately powering the biotherapeutics release within a few minutes. The release kinetics of diverse agents including liraglutide (LRT), insulin, and heparin from the URA-MN patches are evaluated in three different mouse models, and the rapid release of biotherapeutics and potent therapeutic effects are achieved with only 5 min administration. Noteworthily, attributed to the short application duration and negligible residuals of MN matrix remaining in the skin, the URA-MN patch shows desirable biocompatibility after six-week administration.
Collapse
Affiliation(s)
- Jiahuan You
- Key Laboratory of Advanced Drug Delivery Systems of Zhejiang Province, College of Pharmaceutical Sciences, Zhejiang University, Hangzhou, 310058, China
| | - Changwei Yang
- Key Laboratory of Advanced Drug Delivery Systems of Zhejiang Province, College of Pharmaceutical Sciences, Zhejiang University, Hangzhou, 310058, China
| | - Jinpeng Han
- Key Laboratory of Advanced Drug Delivery Systems of Zhejiang Province, College of Pharmaceutical Sciences, Zhejiang University, Hangzhou, 310058, China
| | - Hao Wang
- Key Laboratory of Advanced Drug Delivery Systems of Zhejiang Province, College of Pharmaceutical Sciences, Zhejiang University, Hangzhou, 310058, China
| | - Wentao Zhang
- Key Laboratory of Advanced Drug Delivery Systems of Zhejiang Province, College of Pharmaceutical Sciences, Zhejiang University, Hangzhou, 310058, China
| | - Ying Zhang
- Key Laboratory of Advanced Drug Delivery Systems of Zhejiang Province, College of Pharmaceutical Sciences, Zhejiang University, Hangzhou, 310058, China
- Department of Burns and Wound Care Center, Second Affiliated Hospital, School of Medicine, Zhejiang University, Hangzhou, 310009, China
| | - Ziyi Lu
- Key Laboratory of Advanced Drug Delivery Systems of Zhejiang Province, College of Pharmaceutical Sciences, Zhejiang University, Hangzhou, 310058, China
- Department of General Surgery, Sir Run Run Shaw Hospital, School of Medicine, Zhejiang University, Hangzhou, 310016, China
| | - Shiqi Wang
- Key Laboratory of Advanced Drug Delivery Systems of Zhejiang Province, College of Pharmaceutical Sciences, Zhejiang University, Hangzhou, 310058, China
| | - Ruisi Cai
- Key Laboratory of Advanced Drug Delivery Systems of Zhejiang Province, College of Pharmaceutical Sciences, Zhejiang University, Hangzhou, 310058, China
| | - Hongjun Li
- Key Laboratory of Advanced Drug Delivery Systems of Zhejiang Province, College of Pharmaceutical Sciences, Zhejiang University, Hangzhou, 310058, China
- Liangzhu Laboratory, Zhejiang University Medical Center, Hangzhou, 311121, China
- Jinhua Institute of Zhejiang University, Jinhua, 321299, China
- National Key Laboratory of Advanced Drug Delivery and Release Systems, Zhejiang University, Hangzhou, 310058, China
| | - Jicheng Yu
- Key Laboratory of Advanced Drug Delivery Systems of Zhejiang Province, College of Pharmaceutical Sciences, Zhejiang University, Hangzhou, 310058, China
- Department of General Surgery, Sir Run Run Shaw Hospital, School of Medicine, Zhejiang University, Hangzhou, 310016, China
- Liangzhu Laboratory, Zhejiang University Medical Center, Hangzhou, 311121, China
- Jinhua Institute of Zhejiang University, Jinhua, 321299, China
- National Key Laboratory of Advanced Drug Delivery and Release Systems, Zhejiang University, Hangzhou, 310058, China
| | - Jianqing Gao
- Key Laboratory of Advanced Drug Delivery Systems of Zhejiang Province, College of Pharmaceutical Sciences, Zhejiang University, Hangzhou, 310058, China
- Jinhua Institute of Zhejiang University, Jinhua, 321299, China
- National Key Laboratory of Advanced Drug Delivery and Release Systems, Zhejiang University, Hangzhou, 310058, China
| | - Yuqi Zhang
- Key Laboratory of Advanced Drug Delivery Systems of Zhejiang Province, College of Pharmaceutical Sciences, Zhejiang University, Hangzhou, 310058, China
- Department of Burns and Wound Care Center, Second Affiliated Hospital, School of Medicine, Zhejiang University, Hangzhou, 310009, China
- National Key Laboratory of Advanced Drug Delivery and Release Systems, Zhejiang University, Hangzhou, 310058, China
| | - Zhen Gu
- Key Laboratory of Advanced Drug Delivery Systems of Zhejiang Province, College of Pharmaceutical Sciences, Zhejiang University, Hangzhou, 310058, China
- Department of General Surgery, Sir Run Run Shaw Hospital, School of Medicine, Zhejiang University, Hangzhou, 310016, China
- Liangzhu Laboratory, Zhejiang University Medical Center, Hangzhou, 311121, China
- Jinhua Institute of Zhejiang University, Jinhua, 321299, China
- National Key Laboratory of Advanced Drug Delivery and Release Systems, Zhejiang University, Hangzhou, 310058, China
- MOE Key Laboratory of Macromolecular Synthesis and Functionalization, Department of Polymer Science and Engineering, Zhejiang University, Hangzhou, 310027, China
| |
Collapse
|
3
|
Sarathi V, Tirupati S, Sabinkar G, Mohan R. Hyperamylasemia is not Associated with Dipeptidyl Peptidase 4 Inhibitors in South Indian Adults with Type 2 Diabetes Mellitus. Int J Appl Basic Med Res 2023; 13:113-116. [PMID: 37614844 PMCID: PMC10443446 DOI: 10.4103/ijabmr.ijabmr_503_22] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/04/2022] [Revised: 03/07/2023] [Accepted: 05/18/2023] [Indexed: 08/25/2023] Open
Abstract
Introduction Although not definitive, there is small increased risk of acute pancreatitis with the use of dipeptidyl peptidase 4 inhibitors (DPP4i). Hence, there is an interest in the elevation of pancreatic enzymes among type 2 diabetes mellitus (T2DM) patients using DPP4i. However, the studies regarding their association are limited and provide conflicting results. Moreover, there are no such studies among South Indian T2DM patients. Hence, we evaluated the prevalence of hyperamylasemia among South Indian T2DM patients and its association with DPP4i use. Methods This cross-sectional study was conducted at a tertiary health care center from South India. Adult T2DM patients on stable doses of antidiabetic medications for at least previous 3 months were included in the study. Patients with other types of diabetes mellitus, gall stones, diabetic ketoacidosis, acute illness, chronic kidney disease and untreated hypothyroidism were excluded from the study. All participants were evaluated with glycemic parameters, serum creatinine and serum amylase. Hyperamylasemia was defined as serum amylase ≥220 U/L. Results A total of 200 participants were included in the study among whom 93 patients were not on DPP4i whereas 107 were on DPP4i including 41 (38.32%) each on teneligliptin and sitagliptin. Baseline characteristics including glycemic measures were comparable between DPP4i users and nonusers. A total of 14 patients (7%) had hyperamylasemia but the prevalence of hyperamylasemia did not differ between DPP4i users and nonuser (6/107 vs. 8/93, P = 0.42). Conclusions Asymptomatic hyperamylasemia is not uncommon in South Indian T2DM patients but is not associated with the use of DPP4i.
Collapse
Affiliation(s)
- Vijaya Sarathi
- Department of Endocrinology, Vydehi Institute of Medical Sciences and Research Center, Bengaluru, Karnataka, India
| | - Sunanda Tirupati
- Department of Endocrinology, Narayana Medical College and Hospital, Nellore, Andhra Pradesh, India
| | - Gayatri Sabinkar
- Department of Endocrinology, Narayana Medical College and Hospital, Nellore, Andhra Pradesh, India
| | - Rama Mohan
- Department of Endocrinology, Narayana Medical College and Hospital, Nellore, Andhra Pradesh, India
| |
Collapse
|
4
|
Model JFA, Rocha DS, Fagundes ADC, Vinagre AS. Physiological and pharmacological actions of glucagon like peptide-1 (GLP-1) in domestic animals. Vet Anim Sci 2022; 16:100245. [PMID: 35372707 PMCID: PMC8966211 DOI: 10.1016/j.vas.2022.100245] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/03/2021] [Revised: 02/25/2022] [Accepted: 03/14/2022] [Indexed: 11/25/2022] Open
Abstract
GLP-1 improves peripheral glucose uptake in healthy dogs and cats. GLP-1 analogues administration in diabetic cats reduces exogenous insulin requirement. Dogs cardiomyocytes apoptosis is reduced by GLP-1-derived molecules action.
Analogues of glucagon like peptide-1 (GLP-1) and other drugs that increase this peptide half-life are used worldwide in human medicine to treat type 2 diabetes mellitus (DM) and obesity. These molecules can increase insulin release and satiety, interesting effects that could also be useful in the treatment of domestic animals pathologies, however their use in veterinary medicine are still limited. Considering the increasing incidence of DM and obesity in cats and dogs, the aim of this review is to summarize the available information about the physiological and pharmacological actions of GLP-1 in domestic animals and discuss about its potential applications in veterinary medicine. In diabetic dogs, the use of drugs based on GLP-1 actions reduced blood glucose and increased glucose uptake, while in diabetic cats they reduced glycemic variability and exogenous insulin administration. Thus, available evidence indicates that GLP-1 based drugs could become alternatives to DM treatment in domestic animals. Nevertheless, current data do not provide enough elements to recommend these drugs widespread clinical use.
Collapse
|
5
|
Cakmak R, Caklili OT, Tekin S, Hacisahinogullari H, Tanrikulu S, Koc MS, Dinccag N. Comparison of amylase and lipase levels of patients with Type 2 diabetes under different treatment modalities. Biomark Med 2021; 16:5-10. [PMID: 34856813 DOI: 10.2217/bmm-2021-0318] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/28/2022] Open
Abstract
Aim: Study aims to assess amylase, lipase of patients with Type 2 diabetes under different types of treatments. Materials & methods: Patients' treatment modalities including insulin, metformin, pioglitazone, sodium-glucose co-transporter-2 inhibitors, insulin secretagogues, dipeptidyl peptidase-4 inhibitors and glucagon like peptide-1 receptor agonists were compared. Results: There was no difference in amylase and lipase levels between dipeptidyl peptidase-4 inhibitor users and non-users (p = 0.2, p = 0.3, respectively) and glucagon like peptide-1 analog users and non-users (p = 0.1, p = 0.7, respectively). Patients who use insulin secretagogues had significantly higher amylase, lipase (77.2 ± 39.8 vs 69.5 ± 33.0, p = 0.038 and 47.2 ± 33.2 vs 39.6 ± 26.8, p = 0.01, respectively) and patients on basal insulin had lower amylase levels (69.9 ± 37.7 vs 77.2 ± 33.7, p = 0.014). Conclusion: Incretin-based therapies showed no difference in amylase and lipase levels whereas there was increase with secretagogues and decrease with basal insulin.
Collapse
Affiliation(s)
- Ramazan Cakmak
- Department of Endocrinology & Metabolism, Basaksehir Cam & Sakura City Hospital, Istanbul, Turkey
| | - Ozge T Caklili
- Department of Endocrinology & Metabolism, Istanbul University, Faculty of Medicine, Istanbul, Turkey
| | - Sakin Tekin
- Department of Endocrinology & Metabolism, Zonguldak Bulent Ecevit University, Faculty of Medicine, Zonguldak, Turkey
| | - Hulya Hacisahinogullari
- Department of Endocrinology & Metabolism, Istanbul University, Faculty of Medicine, Istanbul, Turkey
| | - Seher Tanrikulu
- Department of Endocrinology & Metabolism, Haydarpasa Training & Research Hospital, Istanbul, Turkey
| | - Mehmet S Koc
- Department of Endocrinology & Metabolism, Malatya Training & Research Hospital, Malatya, Turkey
| | - Nevin Dinccag
- Department of Endocrinology & Metabolism, Istanbul University, Faculty of Medicine, Istanbul, Turkey
| |
Collapse
|
6
|
Sasaki H, Saisho Y, Inaishi J, Itoh H. Revisiting Regulators of Human β-cell Mass to Achieve β-cell-centric Approach Toward Type 2 Diabetes. J Endocr Soc 2021; 5:bvab128. [PMID: 34405128 PMCID: PMC8361804 DOI: 10.1210/jendso/bvab128] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/31/2021] [Indexed: 02/07/2023] Open
Abstract
Type 2 diabetes (T2DM) is characterized by insulin resistance and β-cell dysfunction. Because patients with T2DM have inadequate β-cell mass (BCM) and β-cell dysfunction worsens glycemic control and makes treatment difficult, therapeutic strategies to preserve and restore BCM are needed. In rodent models, obesity increases BCM about 3-fold, but the increase in BCM in humans is limited. Besides, obesity-induced changes in BCM may show racial differences between East Asians and Caucasians. Recently, the developmental origins of health and disease hypothesis, which states that the risk of developing noncommunicable diseases including T2DM is influenced by the fetal environment, has been proposed. It is known in rodents that animals with low birthweight have reduced BCM through epigenetic modifications, making them more susceptible to diabetes in the future. Similarly, in humans, we revealed that individuals born with low birthweight have lower BCM in adulthood. Because β-cell replication is more frequently observed in the 5 years after birth, and β cells are found to be more plastic in that period, a history of childhood obesity increases BCM. BCM in patients with T2DM is reduced by 20% to 65% compared with that in individuals without T2DM. However, since BCM starts to decrease from the stage of borderline diabetes, early intervention is essential for β-cell protection. In this review, we summarize the current knowledge on regulatory factors of human BCM in health and diabetes and propose the β-cell–centric concept of diabetes to enhance a more pathophysiology-based treatment approach for T2DM.
Collapse
Affiliation(s)
- Hironobu Sasaki
- Division of Nephrology, Endocrinology and Metabolism, Department of Internal Medicine, Keio University School of Medicine, Tokyo, Japan.,Center for Preventive Medicine, Keio University School of Medicine, Tokyo, Japan
| | - Yoshifumi Saisho
- Division of Nephrology, Endocrinology and Metabolism, Department of Internal Medicine, Keio University School of Medicine, Tokyo, Japan
| | - Jun Inaishi
- Division of Nephrology, Endocrinology and Metabolism, Department of Internal Medicine, Keio University School of Medicine, Tokyo, Japan.,Center for Preventive Medicine, Keio University School of Medicine, Tokyo, Japan
| | - Hiroshi Itoh
- Division of Nephrology, Endocrinology and Metabolism, Department of Internal Medicine, Keio University School of Medicine, Tokyo, Japan
| |
Collapse
|
7
|
Quast DR, Nauck MA, Schenker N, Menge BA, Kapitza C, Meier JJ. Macronutrient intake, appetite, food preferences and exocrine pancreas function after treatment with short- and long-acting glucagon-like peptide-1 receptor agonists in type 2 diabetes. Diabetes Obes Metab 2021; 23:2344-2353. [PMID: 34189834 DOI: 10.1111/dom.14477] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/21/2021] [Revised: 06/14/2021] [Accepted: 06/27/2021] [Indexed: 12/20/2022]
Abstract
AIM To clarify the distinct effects of a long-acting (liraglutide) and a short-acting (lixisenatide) glucagon-like peptide-1 receptor agonist (GLP-1 RA) on macronutrient intake, gastrointestinal side effects and pancreas function. MATERIALS AND METHODS Fifty participants were randomized to either lixisenatide or liraglutide for a treatment period of 10 weeks. Appetite, satiety, macronutrient intake, gastrointestinal symptoms and variables related to pancreatic function and gastric emptying were assessed at baseline and after treatment. RESULTS Both GLP-1 RAs reduced macronutrient intake similarly. Weight loss and appetite reduction were not related to the delay in gastric emptying or gastrointestinal side effects (P > .05). Lipase increased significantly with liraglutide treatment (by 18.3 ± 4.1 U/L; P = .0001), but not with lixisenatide (-1.8 ± 2.4 U/L; P = .46). Faecal elastase and serum ß-carotin levels (indicators for exocrine pancreas function) improved in both groups (P < .05). Changes in lipase activities did not correlate with gastrointestinal symptoms (P > .05 for each variable). CONCLUSIONS Both GLP-1 RAs comparably affected body weight, energy and macronutrient intake. Both treatments were associated with indicators of improved exocrine pancreas function. Reductions in appetite and body weight as a result of treatment with short- or long-acting GLP-1 RAs are not driven by changes in gastric emptying or gastrointestinal side effects.
Collapse
Affiliation(s)
- Daniel R Quast
- Diabetes Division, Department of Internal Medicine, St. Josef Hospital, Ruhr-University Bochum, Bochum, Germany
| | - Michael A Nauck
- Diabetes Division, Department of Internal Medicine, St. Josef Hospital, Ruhr-University Bochum, Bochum, Germany
| | - Nina Schenker
- Diabetes Division, Department of Internal Medicine, St. Josef Hospital, Ruhr-University Bochum, Bochum, Germany
| | - Björn A Menge
- Diabetes Division, Department of Internal Medicine, St. Josef Hospital, Ruhr-University Bochum, Bochum, Germany
| | | | - Juris J Meier
- Diabetes Division, Department of Internal Medicine, St. Josef Hospital, Ruhr-University Bochum, Bochum, Germany
- Department of Internal Medicine, Gastroenterology and Diabetes, Augusta Clinic Bochum, Bochum, Germany
| |
Collapse
|
8
|
Abstract
The glucagon-like peptide-1 receptor agonist (GLP-1RA) semaglutide is the most recently approved agent of this drug class, and the only GLP-1RA currently available as both subcutaneous and oral formulation. While GLP-1RAs effectively improve glycemic control and cause weight loss, potential safety concerns have arisen over the years. For semaglutide, such concerns have been addressed in the extensive phase 3 registration trials including cardiovascular outcome trials for both subcutaneous (SUSTAIN: Semaglutide Unabated Sustainability in Treatment of Type 2 Diabetes) and oral (PIONEER: Peptide InnOvatioN for the Early diabEtes tReatment) semaglutide and are being studied in further trials and registries, including real world data studies. In the current review we discuss the occurrence of adverse events associated with semaglutide focusing on hypoglycemia, gastrointestinal side effects, pancreatic safety (pancreatitis and pancreatic cancer), thyroid cancer, gallbladder events, cardiovascular aspects, acute kidney injury, diabetic retinopathy (DRP) complications and injection-site and allergic reactions and where available, we highlight potential underlying mechanisms. Furthermore, we discuss whether effects are specific for semaglutide or a class effect. We conclude that semaglutide induces mostly mild-to-moderate and transient gastrointestinal disturbances and increases the risk of biliary disease (cholelithiasis). No unexpected safety issues have arisen to date, and the established safety profile for semaglutide is similar to that of other GLP-1RAs where definitive conclusions for pancreatic and thyroid cancer cannot be drawn at this point due to low incidence of these conditions. Due to its potent glucose-lowering effect, patients at risk for deterioration of existing DRP should be carefully monitored if treated with semaglutide, particularly if also treated with insulin. Given the beneficial metabolic and cardiovascular actions of semaglutide, and the low risk for severe adverse events, semaglutide has an overall favorable risk/benefit profile for patient with type 2 diabetes.
Collapse
Affiliation(s)
| | - Daniël H. Van Raalte
- Diabetes Center, Department of Internal Medicine, Amsterdam University Medical Center, Amsterdam, Netherlands
| |
Collapse
|
9
|
Kuchay MS, Krishan S, Mishra SK, Choudhary NS, Singh MK, Wasir JS, Kaur P, Gill HK, Bano T, Farooqui KJ, Mithal A. Effect of dulaglutide on liver fat in patients with type 2 diabetes and NAFLD: randomised controlled trial (D-LIFT trial). Diabetologia 2020; 63:2434-2445. [PMID: 32865597 DOI: 10.1007/s00125-020-05265-7] [Citation(s) in RCA: 143] [Impact Index Per Article: 28.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/25/2020] [Accepted: 07/22/2020] [Indexed: 02/08/2023]
Abstract
AIMS/HYPOTHESIS Liraglutide, a daily injectable glucagon-like peptide-1 receptor (GLP-1r) agonist, has been shown to reduce liver fat content (LFC) in humans. Data regarding the effect of dulaglutide, a once-weekly GLP-1r agonist, on human LFC are scarce. This study examined the effect of dulaglutide on LFC in individuals with type 2 diabetes and non-alcoholic fatty liver disease (NAFLD). METHODS Effect of dulaglutide on liver fat (D-LIFT) was a 24 week, open-label, parallel-group, randomised controlled trial to determine the effect of dulaglutide on liver fat at a tertiary care centre in India. Adults (n = 64), who had type 2 diabetes and MRI-derived proton density fat fraction-assessed LFC of ≥6.0% at baseline, were randomly assigned to receive dulaglutide weekly for 24 weeks (add-on to usual care) or usual care, based on a predefined computer-generated number with a 1:1 allocation that was concealed using serially numbered, opaque, sealed envelopes. The primary endpoint was the difference of the change in LFC from 0 (baseline) to 24 weeks between groups. The secondary outcome measures included the difference of the change in pancreatic fat content (PFC), change in liver stiffness measurement (LSM in kPa) measured by vibration-controlled transient elastography, and change in liver enzymes. RESULTS Eighty-eight patients were screened; 32 were randomly assigned to the dulaglutide group and 32 to the control group. Overall, 52 participants were included for per-protocol analysis: those who had MRI-PDFF data at baseline and week 24. Dulaglutide treatment resulted in a control-corrected absolute change in LFC of -3.5% (95% CI -6.6, -0.4; p = 0.025) and relative change of -26.4% (-44.2, -8.6; p = 0.004), corresponding to a 2.6-fold greater reduction. Dulaglutide-treated participants also showed a significant reduction in γ-glutamyl transpeptidase (GGT) levels (mean between-group difference -13.1 U/l [95% CI -24.4, -1.8]; p = 0.025) and non-significant reductions in aspartate aminotransferase (AST) (-9.3 U/l [-19.5, 1.0]; p = 0.075) and alanine aminotransferase (ALT) levels (-13.1 U/l [-24.4, 2.5]; p = 0.10). Absolute changes in PFC (-1.4% [-3.2, 0.3]; p = 0.106) and LSM (-1.31 kPa [-2.99, 0.37]; p = 0.123) were not significant when comparing the two groups. There were no serious drug-related adverse events. CONCLUSIONS/INTERPRETATION When included in the standard treatment for type 2 diabetes, dulaglutide significantly reduces LFC and improves GGT levels in participants with NAFLD. There were non-significant reductions in PFC, liver stiffness, serum AST and serum ALT levels. Dulaglutide could be considered for the early treatment of NAFLD in patients with type 2 diabetes. TRIAL REGISTRATION ClinicalTrials.gov NCT03590626 FUNDING: The current study was supported by an investigator-initiated study grant from Medanta-The Medicity's departmental research fund and a grant from the Endocrine and Diabetes Foundation (EDF), India. Graphical abstract.
Collapse
Affiliation(s)
- Mohammad S Kuchay
- Division of Endocrinology and Diabetes, Medanta-The Medicity Hospital, Haryana, India.
| | - Sonal Krishan
- Department of Radiology, Medanta-The Medicity Hospital, Haryana, India
| | - Sunil K Mishra
- Division of Endocrinology and Diabetes, Medanta-The Medicity Hospital, Haryana, India
| | - Narendra S Choudhary
- Institute of Digestive and Hepatobiliary Sciences, Medanta-The Medicity Hospital, Haryana, India
| | - Manish K Singh
- Department of Clinical Research and Studies, Medanta-The Medicity Hospital, Haryana, India
| | - Jasjeet S Wasir
- Division of Endocrinology and Diabetes, Medanta-The Medicity Hospital, Haryana, India
| | - Parjeet Kaur
- Division of Endocrinology and Diabetes, Medanta-The Medicity Hospital, Haryana, India
| | - Harmandeep K Gill
- Division of Endocrinology and Diabetes, Medanta-The Medicity Hospital, Haryana, India
| | - Tarannum Bano
- Division of Endocrinology and Diabetes, Medanta-The Medicity Hospital, Haryana, India
| | - Khalid J Farooqui
- Division of Endocrinology and Diabetes, Medanta-The Medicity Hospital, Haryana, India
| | - Ambrish Mithal
- Division of Endocrinology and Diabetes, Medanta-The Medicity Hospital, Haryana, India
| |
Collapse
|
10
|
Svane MS, Johannesen HH, Martinussen C, Bojsen-Møller KN, Hansen ML, Hansen AE, Deacon CF, Hartmann B, Keller SH, Klausen TL, Loft A, Kjaer A, Madsbad S, Löfgren J, Holst JJ, Wewer Albrechtsen NJ. No effects of a 6-week intervention with a glucagon-like peptide-1 receptor agonist on pancreatic volume and oedema in obese men without diabetes. Diabetes Obes Metab 2020; 22:1837-1846. [PMID: 32495988 DOI: 10.1111/dom.14106] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/27/2020] [Revised: 05/13/2020] [Accepted: 05/27/2020] [Indexed: 11/29/2022]
Abstract
AIM To investigate the effect of a glucagon-like peptide-1 receptor agonist (GLP-1RA), liraglutide, on pancreatic volume, oedema, cellularity and DNA synthesis in humans. MATERIALS AND METHODS We performed an open-label study in 14 obese men (age 38 ± 11 years, body mass index 32 ± 4 kg/m2 ) without diabetes. Subjects were examined at baseline, during titration (week 4) of liraglutide towards 3.0 mg/day, and 2 weeks after steady-state treatment (week 6) of a final dose of liraglutide. The primary endpoint was pancreatic volume determined by magnetic resonance imaging. Secondary endpoints included pancreatic oedema and cellularity, positron emission tomography-based [18 F]fluorothymidine (FLT) uptake (DNA synthesis) and plasma pancreatic enzymes. RESULTS Plasma amylase (+7 U/L [95% confidence intervals 3-11], P < .01) and lipase (+19 U/L [7-30], P < .01) increased during liraglutide treatment. Pancreatic volume did not change from baseline to steady state of treatment (+0.2 cm3 [-8-8], P = .96) and no change in pancreatic cellular infiltration was found (P = .22). During titration of liraglutide, FLT uptake in pancreatic tissue increased numerically (+0.08 [0.00-0.17], P = .0507). CONCLUSIONS Six weeks of treatment with liraglutide did not affect pancreatic volume, oedema or cellularity in obese men without diabetes.
Collapse
Affiliation(s)
- Maria S Svane
- Department of Endocrinology, Hvidovre Hospital, Hvidovre, Denmark
- Novo Nordisk Foundation Center for Basic Metabolic Research, Faculty of Health and Medical Sciences, University of Copenhagen, Copenhagen, Denmark
| | - Helle H Johannesen
- Department of Clinical Physiology, Nuclear Medicine & PET, Rigshospitalet, University of Copenhagen, Copenhagen, Denmark
| | - Christoffer Martinussen
- Department of Endocrinology, Hvidovre Hospital, Hvidovre, Denmark
- Novo Nordisk Foundation Center for Basic Metabolic Research, Faculty of Health and Medical Sciences, University of Copenhagen, Copenhagen, Denmark
| | - Kirstine N Bojsen-Møller
- Department of Endocrinology, Hvidovre Hospital, Hvidovre, Denmark
- Novo Nordisk Foundation Center for Basic Metabolic Research, Faculty of Health and Medical Sciences, University of Copenhagen, Copenhagen, Denmark
| | | | - Adam E Hansen
- Department of Clinical Physiology, Nuclear Medicine & PET, Rigshospitalet, University of Copenhagen, Copenhagen, Denmark
| | - Carolyn F Deacon
- Novo Nordisk Foundation Center for Basic Metabolic Research, Faculty of Health and Medical Sciences, University of Copenhagen, Copenhagen, Denmark
- Department of Biomedical Sciences, Faculty of Health and Medical Sciences, University of Copenhagen, Copenhagen, Denmark
| | - Bolette Hartmann
- Novo Nordisk Foundation Center for Basic Metabolic Research, Faculty of Health and Medical Sciences, University of Copenhagen, Copenhagen, Denmark
- Department of Biomedical Sciences, Faculty of Health and Medical Sciences, University of Copenhagen, Copenhagen, Denmark
| | - Sune H Keller
- Department of Clinical Physiology, Nuclear Medicine & PET, Rigshospitalet, University of Copenhagen, Copenhagen, Denmark
| | - Thomas L Klausen
- Department of Clinical Physiology, Nuclear Medicine & PET, Rigshospitalet, University of Copenhagen, Copenhagen, Denmark
| | - Annika Loft
- Department of Clinical Physiology, Nuclear Medicine & PET, Rigshospitalet, University of Copenhagen, Copenhagen, Denmark
| | - Andreas Kjaer
- Department of Clinical Physiology, Nuclear Medicine & PET, Rigshospitalet, University of Copenhagen, Copenhagen, Denmark
- Department of Biomedical Sciences, Faculty of Health and Medical Sciences, University of Copenhagen, Copenhagen, Denmark
| | - Sten Madsbad
- Department of Endocrinology, Hvidovre Hospital, Hvidovre, Denmark
| | - Johan Löfgren
- Department of Clinical Physiology, Nuclear Medicine & PET, Rigshospitalet, University of Copenhagen, Copenhagen, Denmark
| | - Jens J Holst
- Novo Nordisk Foundation Center for Basic Metabolic Research, Faculty of Health and Medical Sciences, University of Copenhagen, Copenhagen, Denmark
- Department of Biomedical Sciences, Faculty of Health and Medical Sciences, University of Copenhagen, Copenhagen, Denmark
| | - Nicolai J Wewer Albrechtsen
- Department of Biomedical Sciences, Faculty of Health and Medical Sciences, University of Copenhagen, Copenhagen, Denmark
- Department of Clinical Biochemistry, Rigshospitalet, University of Copenhagen, Copenhagen, Denmark
| |
Collapse
|
11
|
Shawky LM, Morsi AA, El Bana E, Hanafy SM. The Biological Impacts of Sitagliptin on the Pancreas of a Rat Model of Type 2 Diabetes Mellitus: Drug Interactions with Metformin. BIOLOGY 2019; 9:E6. [PMID: 31881657 PMCID: PMC7167819 DOI: 10.3390/biology9010006] [Citation(s) in RCA: 25] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 10/25/2019] [Revised: 12/22/2019] [Accepted: 12/23/2019] [Indexed: 12/25/2022]
Abstract
Sitagliptin, a dipeptidyl peptidase-4 (DPP-4) inhibitor, is a beneficial class of antidiabetic drugs. However, a major debate about the risk of developing pancreatitis is still existing. The aim of the work was to study the histological and immunohistochemical effects of sitagliptin on both endocrine and exocrine pancreases in a rat model of type 2 diabetes mellitus and to correlate these effects with the biochemical findings. Moreover, a possible synergistic effect of sitagliptin, in combination with metformin, was also evaluated. Fifty adult male rats were used and assigned into five equal groups. Group 1 served as control. Group 2 comprised of untreated diabetic rats. Group 3 diabetic rats received sitagliptin. Group 4 diabetic rats received metformin. Group 5 diabetic rats received both combined. Treatments were given for 4 weeks after the induction of diabetes. Blood samples were collected for biochemical assay before the sacrification of rats. Pancreases were removed, weighed, and were processed for histological and immunohistochemical examination. In the untreated diabetic group, the islets appeared shrunken with disturbed architecture and abnormal immunohistochemical reactions for insulin, caspase-3, and inducible nitric oxide synthase (iNOS). The biochemical findings were also disturbed. Morphometrically, there was a significant decrease in the islet size and islet number. Treatment with sitagliptin, metformin, and their combination showed an improvement, with the best response in the combined approach. No evidence of pancreatic injury was identified in the sitagliptin-treated groups. In conclusion, sitagliptin had a cytoprotective effect on beta-cell damage. Furthermore, the data didn't indicate any detrimental effects of sitagliptin on the exocrine pancreas.
Collapse
Affiliation(s)
- Lamiaa M. Shawky
- Department of Histology and Cell Biology, Benha Faculty of Medicine, Benha University, Benha 13511, Egypt;
| | - Ahmed A. Morsi
- Department of Histology and Cell Biology, Faculty of Medicine, Fayoum University, Fayoum 63511, Egypt
| | - Eman El Bana
- Department of Anatomy, Benha Faculty of Medicine, Benha University, Benha 13511, Egypt;
| | - Safaa Masoud Hanafy
- Department of Anatomy, Faculty of Medicine for Girls, Al-Azhar University, Cairo 11865, Egypt;
| |
Collapse
|
12
|
Müller TD, Finan B, Bloom SR, D'Alessio D, Drucker DJ, Flatt PR, Fritsche A, Gribble F, Grill HJ, Habener JF, Holst JJ, Langhans W, Meier JJ, Nauck MA, Perez-Tilve D, Pocai A, Reimann F, Sandoval DA, Schwartz TW, Seeley RJ, Stemmer K, Tang-Christensen M, Woods SC, DiMarchi RD, Tschöp MH. Glucagon-like peptide 1 (GLP-1). Mol Metab 2019; 30:72-130. [PMID: 31767182 PMCID: PMC6812410 DOI: 10.1016/j.molmet.2019.09.010] [Citation(s) in RCA: 1102] [Impact Index Per Article: 183.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/17/2019] [Revised: 09/10/2019] [Accepted: 09/22/2019] [Indexed: 02/06/2023] Open
Abstract
BACKGROUND The glucagon-like peptide-1 (GLP-1) is a multifaceted hormone with broad pharmacological potential. Among the numerous metabolic effects of GLP-1 are the glucose-dependent stimulation of insulin secretion, decrease of gastric emptying, inhibition of food intake, increase of natriuresis and diuresis, and modulation of rodent β-cell proliferation. GLP-1 also has cardio- and neuroprotective effects, decreases inflammation and apoptosis, and has implications for learning and memory, reward behavior, and palatability. Biochemically modified for enhanced potency and sustained action, GLP-1 receptor agonists are successfully in clinical use for the treatment of type-2 diabetes, and several GLP-1-based pharmacotherapies are in clinical evaluation for the treatment of obesity. SCOPE OF REVIEW In this review, we provide a detailed overview on the multifaceted nature of GLP-1 and its pharmacology and discuss its therapeutic implications on various diseases. MAJOR CONCLUSIONS Since its discovery, GLP-1 has emerged as a pleiotropic hormone with a myriad of metabolic functions that go well beyond its classical identification as an incretin hormone. The numerous beneficial effects of GLP-1 render this hormone an interesting candidate for the development of pharmacotherapies to treat obesity, diabetes, and neurodegenerative disorders.
Collapse
Affiliation(s)
- T D Müller
- Institute for Diabetes and Obesity, Helmholtz Diabetes Center, Helmholtz Zentrum München, German Research Center for Environmental Health (GmbH), Neuherberg, Germany; German Center for Diabetes Research (DZD), Neuherberg, Germany; Department of Pharmacology and Experimental Therapy, Institute of Experimental and Clinical Pharmacology and Toxicology, Eberhard Karls University Hospitals and Clinics, Tübingen, Germany.
| | - B Finan
- Novo Nordisk Research Center Indianapolis, Indianapolis, IN, USA
| | - S R Bloom
- Division of Diabetes, Endocrinology and Metabolism, Imperial College London, London, UK
| | - D D'Alessio
- Division of Endocrinology, Duke University Medical Center, Durham, NC, USA
| | - D J Drucker
- The Department of Medicine, Lunenfeld-Tanenbaum Research Institute, Mt. Sinai Hospital, University of Toronto, Ontario, M5G1X5, Canada
| | - P R Flatt
- SAAD Centre for Pharmacy & Diabetes, Ulster University, Coleraine, Northern Ireland, UK
| | - A Fritsche
- German Center for Diabetes Research (DZD), Neuherberg, Germany; Institute for Diabetes Research and Metabolic Diseases of the Helmholtz Center Munich at the University of Tübingen, Tübingen, Germany; Division of Endocrinology, Diabetology, Vascular Disease, Nephrology and Clinical Chemistry, Department of Internal Medicine, University of Tübingen, Tübingen, Germany
| | - F Gribble
- Metabolic Research Laboratories and Medical Research Council Metabolic Diseases Unit, Wellcome Trust-Medical Research Council, Institute of Metabolic Science, Addenbrooke's Hospital, University of Cambridge, Cambridge, CB2 0QQ, UK
| | - H J Grill
- Institute of Diabetes, Obesity and Metabolism, Department of Psychology, University of Pennsylvania, Philadelphia, PA, 19104, USA
| | - J F Habener
- Laboratory of Molecular Endocrinology, Massachusetts General Hospital, Harvard University, Boston, MA, USA
| | - J J Holst
- Novo Nordisk Foundation Center for Basic Metabolic Research, Department of Biomedical Sciences, University of Copenhagen, Copenhagen, Denmark
| | - W Langhans
- Physiology and Behavior Laboratory, ETH Zurich, Schwerzenbach, Switzerland
| | - J J Meier
- Diabetes Division, St Josef Hospital, Ruhr-University Bochum, Bochum, Germany
| | - M A Nauck
- Diabetes Center Bochum-Hattingen, St Josef Hospital (Ruhr-Universität Bochum), Bochum, Germany
| | - D Perez-Tilve
- Department of Internal Medicine, University of Cincinnati-College of Medicine, Cincinnati, OH, USA
| | - A Pocai
- Cardiovascular & ImmunoMetabolism, Janssen Research & Development, Welsh and McKean Roads, Spring House, PA, 19477, USA
| | - F Reimann
- Metabolic Research Laboratories and Medical Research Council Metabolic Diseases Unit, Wellcome Trust-Medical Research Council, Institute of Metabolic Science, Addenbrooke's Hospital, University of Cambridge, Cambridge, CB2 0QQ, UK
| | - D A Sandoval
- Department of Surgery, University of Michigan Medical School, Ann Arbor, MI, USA
| | - T W Schwartz
- Novo Nordisk Foundation Center for Basic Metabolic Research, University of Copenhagen, DL-2200, Copenhagen, Denmark; Department of Biomedical Sciences, University of Copenhagen, DK-2200, Copenhagen, Denmark
| | - R J Seeley
- Department of Surgery, University of Michigan Medical School, Ann Arbor, MI, USA
| | - K Stemmer
- Institute for Diabetes and Obesity, Helmholtz Diabetes Center, Helmholtz Zentrum München, German Research Center for Environmental Health (GmbH), Neuherberg, Germany; German Center for Diabetes Research (DZD), Neuherberg, Germany
| | - M Tang-Christensen
- Obesity Research, Global Drug Discovery, Novo Nordisk A/S, Måløv, Denmark
| | - S C Woods
- Department of Psychiatry and Behavioral Neuroscience, University of Cincinnati, Cincinnati, OH, USA
| | - R D DiMarchi
- Novo Nordisk Research Center Indianapolis, Indianapolis, IN, USA; Department of Chemistry, Indiana University, Bloomington, IN, USA
| | - M H Tschöp
- German Center for Diabetes Research (DZD), Neuherberg, Germany; Division of Metabolic Diseases, Department of Medicine, Technische Universität München, Munich, Germany; Helmholtz Zentrum München, German Research Center for Environmental Health (GmbH), Neuherberg, Germany
| |
Collapse
|
13
|
Saisho Y. Incretin-based therapy and pancreatitis: accumulating evidence and unresolved questions. ANNALS OF TRANSLATIONAL MEDICINE 2018; 6:131. [PMID: 29955591 DOI: 10.21037/atm.2018.02.24] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
Affiliation(s)
- Yoshifumi Saisho
- Department of Internal Medicine, Keio University School of Medicine, Tokyo, Japan
| |
Collapse
|
14
|
Kim YG, Kim S, Han SJ, Kim DJ, Lee KW, Kim HJ. Dipeptidyl Peptidase-4 Inhibitors and the Risk of Pancreatitis in Patients with Type 2 Diabetes Mellitus: A Population-Based Cohort Study. J Diabetes Res 2018; 2018:5246976. [PMID: 29850606 PMCID: PMC5914097 DOI: 10.1155/2018/5246976] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/13/2017] [Accepted: 02/12/2018] [Indexed: 12/14/2022] Open
Abstract
BACKGROUND Information on the risk of acute pancreatitis in patients receiving dipeptidyl-peptidase IV inhibitors (DPP-4i) is limited and controversial. One study suggested that the differences in findings between these meta-analyses were attributed to whether they included large randomized control trials with cardiovascular outcomes or not. The aim of our study was to determine whether the use of DPP-4i increases the risk of acute pancreatitis compared with sulfonylurea (SU) and whether the risk is higher in patients with underlying cardiovascular disease (CVD). METHODS A population-based cohort study was performed using Korean National Health Insurance Service-National Sample Cohort data. We included 33,395 new users of SU and DPP-4i from 1 January 2008 to 31 December 2015. SU-treated patients and DPP-4i-treated patients were matched by 1 : 1 propensity score matching. We used Kaplan-Meier curves and Cox proportional hazards regression analysis to calculate the risk of acute pancreatitis. RESULTS The hazard ratio (HR) of hospitalization for acute pancreatitis was 0.642 (95% confidence interval (CI): 0.535-0.771) in DPP-4i-treated patients compared with SU-treated patients. The HR of DPP-4i use was also lower than that of SU use in patients without underlying CVD (HR: 0.591; 95% CI: 0.476-0.735) but not in patients with underlying CVD (HR: 0.727; 95% CI: 0.527-1.003). CONCLUSION Our findings suggest that DPP-4i is less likely to cause drug-induced pancreatitis than SU. This finding was not evident in patients with CVD, but DPP-4i was not more likely to induce pancreatitis in these patients than SU was.
Collapse
Affiliation(s)
- Young-Gun Kim
- Department of Medical Sciences, Ajou University Graduate School, Suwon, Republic of Korea
- Department of Internal Medicine, Incheon Medical Center, Incheon, Republic of Korea
| | - Seirhan Kim
- Korean Centers for Disease Control and Prevention, Ministry of Health and Welfare, Seoul, Republic of Korea
| | - Seung Jin Han
- Department of Endocrinology and Metabolism, Ajou University School of Medicine, Suwon, Republic of Korea
| | - Dae Jung Kim
- Department of Endocrinology and Metabolism, Ajou University School of Medicine, Suwon, Republic of Korea
| | - Kwan-Woo Lee
- Department of Endocrinology and Metabolism, Ajou University School of Medicine, Suwon, Republic of Korea
| | - Hae Jin Kim
- Department of Endocrinology and Metabolism, Ajou University School of Medicine, Suwon, Republic of Korea
| |
Collapse
|