1
|
Faniyan TS, Zhang X, Morgan DA, Robles J, Bathina S, Brookes PS, Rahmouni K, Perry RJ, Chhabra KH. A kidney-hypothalamus axis promotes compensatory glucose production in response to glycosuria. eLife 2024; 12:RP91540. [PMID: 39082939 PMCID: PMC11290820 DOI: 10.7554/elife.91540] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 08/02/2024] Open
Abstract
The kidneys facilitate energy conservation through reabsorption of nutrients including glucose. Almost all the filtered blood glucose is reabsorbed by the kidneys. Loss of glucose in urine (glycosuria) is offset by an increase in endogenous glucose production to maintain normal energy supply in the body. How the body senses this glucose loss and consequently enhances glucose production is unclear. Using renal Slc2a2 (also known as Glut2) knockout mice, we demonstrate that elevated glycosuria activates the hypothalamic-pituitary-adrenal axis, which in turn drives endogenous glucose production. This phenotype was attenuated by selective afferent renal denervation, indicating the involvement of the afferent nerves in promoting the compensatory increase in glucose production. In addition, through plasma proteomics analyses we observed that acute phase proteins - which are usually involved in the body's defense mechanisms against a threat - were the top candidates which were either upregulated or downregulated in renal Slc2a2 KO mice. Overall, afferent renal nerves contribute to promoting endogenous glucose production in response to elevated glycosuria and loss of glucose in urine is sensed as a biological threat in mice. These findings may be useful in improving the efficiency of drugs like SGLT2 inhibitors that are intended to treat hyperglycemia by enhancing glycosuria but are met with a compensatory increase in endogenous glucose production.
Collapse
Affiliation(s)
- Tumininu S Faniyan
- Department of Medicine, Division of Endocrinology, Diabetes, and Metabolism, University of Rochester Medical CenterRochesterUnited States
| | - Xinyi Zhang
- Department of Cellular and Molecular Physiology, Yale UniversityNew HavenUnited States
| | - Donald A Morgan
- Department of Neuroscience and Pharmacology, University of Iowa Carver College of MedicineIowa CityUnited States
| | - Jorge Robles
- Department of Medicine, Division of Endocrinology, Diabetes, and Metabolism, University of Rochester Medical CenterRochesterUnited States
| | - Siresha Bathina
- Department of Medicine, Division of Endocrinology, Diabetes, and Metabolism, University of Rochester Medical CenterRochesterUnited States
| | - Paul S Brookes
- Department of Anesthesiology, University of Rochester Medical CenterRochesterUnited States
| | - Kamal Rahmouni
- Department of Neuroscience and Pharmacology, University of Iowa Carver College of MedicineIowa CityUnited States
| | - Rachel J Perry
- Department of Cellular and Molecular Physiology, Yale UniversityNew HavenUnited States
| | - Kavaljit H Chhabra
- Department of Medicine, Division of Endocrinology, Diabetes, and Metabolism, University of Rochester Medical CenterRochesterUnited States
| |
Collapse
|
2
|
Faniyan TS, Zhang X, Morgan DA, Robles J, Bathina S, Brookes PS, Rahmouni K, Perry RJ, Chhabra KH. A kidney-hypothalamus axis promotes compensatory glucose production in response to glycosuria. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2023.09.01.555894. [PMID: 37790458 PMCID: PMC10542134 DOI: 10.1101/2023.09.01.555894] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/05/2023]
Abstract
The kidneys facilitate energy conservation through reabsorption of nutrients including glucose. Almost all the filtered blood glucose is reabsorbed by the kidneys. Loss of glucose in urine (glycosuria) is offset by an increase in endogenous glucose production to maintain normal energy supply in the body. How the body senses this glucose loss and consequently enhances glucose production is unclear. Using renal Glut2 knockout mice, we demonstrate that elevated glycosuria activates the hypothalamic-pituitary-adrenal axis, which in turn drives endogenous glucose production. This phenotype was attenuated by selective afferent renal denervation, indicating the involvement of the afferent nerves in promoting the compensatory increase in glucose production. In addition, through plasma proteomics analyses we observed that acute phase proteins - which are usually involved in body's defense mechanisms against a threat - were the top candidates which were either upregulated or downregulated in renal Glut2 KO mice. Overall, afferent renal nerves contribute to promoting endogenous glucose production in response to elevated glycosuria and loss of glucose in urine is sensed as a biological threat in mice. These findings may be useful in improving efficiency of drugs like SGLT2 inhibitors that are intended to treat hyperglycemia by enhancing glycosuria but are met with a compensatory increase in endogenous glucose production.
Collapse
|
3
|
Cersosimo E, Alatrach M, Solis-Herrera C, Baskoy G, Adams J, Hansis-Diarte A, Gastaldelli A, Chavez A, Triplitt C, DeFronzo RA. Emergence of a New Glucoregulatory Mechanism for Glycemic Control With Dapagliflozin/Exenatide Therapy in Type 2 Diabetes. J Clin Endocrinol Metab 2023; 109:161-170. [PMID: 37481263 DOI: 10.1210/clinem/dgad438] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/08/2023] [Revised: 07/18/2023] [Accepted: 07/19/2023] [Indexed: 07/24/2023]
Abstract
CONTEXT This study addresses the development of a new glucoregulatory mechanism in type 2 diabetes (T2D) patients treated with SGLT-2 inhibitors, which is independent of glucose, insulin and glucagon. The data suggest the presence of a potential trigger factor (s) arising in the kidney that stimulates endogenous glucose production (EGP) during sustained glycosuria. OBJECTIVE To investigate effects of SGLT-2 inhibitor therapy together with GLP-1 receptor agonist on EGP and glucose kinetics in patients with T2D. Our hypothesis was that increased EGP in response to SGLT2i-induced glycosuria persists for a long period and is not abolished by GLP-1 RA stimulation of insulin secretion and glucagon suppression. METHODS Seventy-five patients received a 5-hour dual-tracer oral glucose tolerance test (OGTT) (intravenous 3-(3H)-glucose oral (1-14C)-glucose): (1) before/after 1 of dapagliflozin (DAPA); exenatide (EXE), or both, DAPA/EXE (acute study), and (2) after 1 and 4 months of therapy with each drug. RESULTS In the acute study, during the OGTT plasma glucose (PG) elevation was lower in EXE (Δ = 42 ± 1 mg/dL) than DAPA (Δ = 72 ± 3), and lower in DAPA/EXE (Δ = 11 ± 3) than EXE and DAPA. EGP decrease was lower in DAPA (Δ = -0.65 ± 0.03 mg/kg/min) than EXE (Δ = -0.96 ± 0.07); in DAPA/EXE (Δ = -0.84 ± 0.05) it was lower than EXE, higher than DAPA. At 1 month, similar PG elevations (EXE, Δ = 26 ± 1 mg/dL; DAPA, Δ = 62 ± 2, DAPA/EXE, Δ = 27 ± 1) and EGP decreases (DAPA, Δ = -0.60 ± 0.05 mg/kg/min; EXE, Δ = -0.77 ± 0.04; DAPA/EXE, Δ = -0.72 ± 0.03) were observed. At 4 months, PG elevations (EXE, Δ = 55 ± 2 mg/dL; DAPA, Δ = 65 ± 6; DAPA/EXE, Δ = 46 ± 2) and lower EGP decrease in DAPA (Δ = -0.66 ± 0.04 mg/kg/min) vs EXE (Δ = -0.84 ± 0.05) were also comparable; in DAPA/EXE (Δ = -0.65 ± 0.03) it was equal to DAPA and lower than EXE. Changes in plasma insulin/glucagon could not explain higher EGP in DAPA/EXE vs EXE mg/kg/min. CONCLUSION Our findings provide strong evidence for the emergence of a new long-lasting, glucose-independent, insulin/glucagon-independent, glucoregulatory mechanism via which SGLT2i-induced glycosuria stimulates EGP in patients with T2D. SGLT2i plus GLP-1 receptor agonist combination therapy is accompanied by superior glycemic control vs monotherapy.
Collapse
Affiliation(s)
- Eugenio Cersosimo
- Department of Medicine, Division of Diabetes, University of Texas Health Science Center and Texas Diabetes Institute, University Health System, San Antonio, TX 78229, USA
| | - Mariam Alatrach
- Department of Medicine, Division of Diabetes, University of Texas Health Science Center and Texas Diabetes Institute, University Health System, San Antonio, TX 78229, USA
| | - Carolina Solis-Herrera
- Department of Medicine, Division of Diabetes, University of Texas Health Science Center and Texas Diabetes Institute, University Health System, San Antonio, TX 78229, USA
| | - Gozde Baskoy
- Department of Medicine, Division of Diabetes, University of Texas Health Science Center and Texas Diabetes Institute, University Health System, San Antonio, TX 78229, USA
| | - John Adams
- Department of Medicine, Division of Diabetes, University of Texas Health Science Center and Texas Diabetes Institute, University Health System, San Antonio, TX 78229, USA
| | - Andrea Hansis-Diarte
- Department of Medicine, Division of Diabetes, University of Texas Health Science Center and Texas Diabetes Institute, University Health System, San Antonio, TX 78229, USA
| | - Amalia Gastaldelli
- Department of Medicine, Division of Diabetes, University of Texas Health Science Center and Texas Diabetes Institute, University Health System, San Antonio, TX 78229, USA
| | - Alberto Chavez
- Department of Medicine, Division of Diabetes, University of Texas Health Science Center and Texas Diabetes Institute, University Health System, San Antonio, TX 78229, USA
| | - Curtis Triplitt
- Department of Medicine, Division of Diabetes, University of Texas Health Science Center and Texas Diabetes Institute, University Health System, San Antonio, TX 78229, USA
| | - Ralph A DeFronzo
- Department of Medicine, Division of Diabetes, University of Texas Health Science Center and Texas Diabetes Institute, University Health System, San Antonio, TX 78229, USA
| |
Collapse
|
4
|
Oka K, Masuda T, Ohara K, Miura M, Morinari M, Misawa K, Miyazawa Y, Akimoto T, Shimada K, Nagata D. Fluid homeostatic action of dapagliflozin in patients with chronic kidney disease: the DAPA-BODY Trial. Front Med (Lausanne) 2023; 10:1287066. [PMID: 38155663 PMCID: PMC10753517 DOI: 10.3389/fmed.2023.1287066] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/19/2023] [Accepted: 11/30/2023] [Indexed: 12/30/2023] Open
Abstract
Sodium glucose cotransporter 2 (SGLT2) inhibitors have both glucose-lowering and diuretic effects. We recently reported that the SGLT2 inhibitor dapagliflozin exerts short-term fluid homeostatic action in patients with chronic kidney disease (CKD). However, the long-term effects of SGLT2 inhibitors on body fluid status in patients with CKD remain unclear. This was a prospective, non-randomized, open-label study that included a dapagliflozin treatment group (n = 73) and a control group (n = 24) who were followed for 6 months. Body fluid volume was measured using a bioimpedance analysis device. The extracellular water-to-total body water ratio (ECW/TBW), a predictor of renal outcomes, was used as a parameter for body fluid status (fluid retention, 0.400 ≤ ECW/TBW). Six-month treatment with dapagliflozin significantly decreased ECW/TBW compared with the control group (-0.65% ± 2.03% vs. 0.97% ± 2.49%, p = 0.0018). Furthermore, dapagliflozin decreased the ECW/TBW in patients with baseline fluid retention, but not in patients without baseline fluid retention (-1.47% ± 1.93% vs. -0.01% ± 1.88%, p = 0.0017). Vasopressin surrogate marker copeptin levels were similar between the control and dapagliflozin groups at 6 months (32.3 ± 33.4 vs. 30.6 ± 30.1 pmol/L, p = 0.8227). However, dapagliflozin significantly increased the change in copeptin levels at 1 week (39.0% ± 41.6%, p = 0.0010), suggesting a compensatory increase in vasopressin secretion to prevent hypovolemia. Renin and aldosterone levels were similar between the control and dapagliflozin groups at 6 months, while epinephrine and norepinephrine (markers of sympathetic nervous system activity) were significantly lower in the dapagliflozin group than in the control group. In conclusion, the SGLT2 inhibitor dapagliflozin ameliorated fluid retention and maintained euvolemic fluid status in patients with CKD, suggesting that SGLT2 inhibitors exert sustained fluid homeostatic actions in patients with various fluid backgrounds. Clinical trial registration: https://www.umin.ac.jp/ctr/, identifier [UMIN000048568].
Collapse
Affiliation(s)
- Kentaro Oka
- Division of Nephrology, Department of Internal Medicine, Jichi Medical University, Shimotsuke, Tochigi, Japan
- Department of Nephrology, Shin-Oyama City Hospital, Oyama, Tochigi, Japan
| | - Takahiro Masuda
- Division of Nephrology, Department of Internal Medicine, Jichi Medical University, Shimotsuke, Tochigi, Japan
- Department of Nephrology, Shin-Oyama City Hospital, Oyama, Tochigi, Japan
| | - Ken Ohara
- Division of Nephrology, Department of Internal Medicine, Jichi Medical University, Shimotsuke, Tochigi, Japan
| | - Marina Miura
- Department of Nephrology, Shin-Oyama City Hospital, Oyama, Tochigi, Japan
| | - Masato Morinari
- Department of Internal Medicine, Nasu Minami Hospital, Nasukarasuyama, Tochigi, Japan
| | - Kyohei Misawa
- Division of Nephrology, Department of Internal Medicine, Jichi Medical University, Shimotsuke, Tochigi, Japan
- Department of Nephrology, Shin-Oyama City Hospital, Oyama, Tochigi, Japan
| | - Yasuharu Miyazawa
- Department of Internal Medicine, Nasu Minami Hospital, Nasukarasuyama, Tochigi, Japan
| | - Tetsu Akimoto
- Division of Nephrology, Department of Internal Medicine, Jichi Medical University, Shimotsuke, Tochigi, Japan
| | - Kazuyuki Shimada
- Department of Cardiology, Shin-Oyama City Hospital, Oyama, Tochigi, Japan
| | - Daisuke Nagata
- Division of Nephrology, Department of Internal Medicine, Jichi Medical University, Shimotsuke, Tochigi, Japan
| |
Collapse
|
5
|
Nistor M, Schmidt M, Klingner C, Klingner C, Schwab M, Bischoff SJ, Matziolis G, Rodríguez-González GL, Schiffner R. Renal Glucose Release after Unilateral Renal Denervation during a Hypoglycemic Clamp in Pigs with an Altered Hypothalamic Pituitary Adrenal Axis after Late-Gestational Dexamethasone Injection. Int J Mol Sci 2023; 24:12738. [PMID: 37628918 PMCID: PMC10454812 DOI: 10.3390/ijms241612738] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/24/2023] [Revised: 08/10/2023] [Accepted: 08/11/2023] [Indexed: 08/27/2023] Open
Abstract
Previously, we demonstrated in pigs that renal denervation halves glucose release during hypoglycaemia and that a prenatal dexamethasone injection caused increased ACTH and cortisol concentrations as markers of a heightened hypothalamic pituitary adrenal axis (HPAA) during hypoglycaemia. In this study, we investigated the influence of an altered HPAA on renal glucose release during hypoglycaemia. Pigs whose mothers had received two late-gestational dexamethasone injections were subjected to a 75 min hyperinsulinaemic-hypoglycaemic clamp (<3 mmol/L) after unilateral surgical denervation. Para-aminohippurate (PAH) clearance, inulin, sodium excretion and arterio-venous blood glucose difference were measured every fifteen minutes. The statistical analysis was performed with a Wilcoxon signed-rank test. PAH, inulin, the calculated glomerular filtration rate and plasma flow did not change through renal denervation. Urinary sodium excretion increased significantly (p = 0.019). Side-dependent renal net glucose release (SGN) decreased by 25 ± 23% (p = 0.004). At 25 percent, the SGN decrease was only half of that observed in non-HPAA-altered animals in our prior investigation. The current findings may suggest that specimens with an elevated HPAA undergo long-term adaptations to maintain glucose homeostasis. Nonetheless, the decrease in SGN warrants further investigations and potentially caution in performing renal denervation in certain patient groups, such as diabetics at risk of hypoglycaemia.
Collapse
Affiliation(s)
- Marius Nistor
- Orthopaedic Department, Jena University Hospital, Campus Eisenberg, 07607 Eisenberg, Germany; (M.N.)
| | - Martin Schmidt
- Institute for Biochemistry II, Jena University Hospital, 07743 Jena, Germany
| | - Carsten Klingner
- Department of Neurology, Jena University Hospital, 07747 Jena, Germany (M.S.)
| | - Caroline Klingner
- Department of Neurology, Jena University Hospital, 07747 Jena, Germany (M.S.)
| | - Matthias Schwab
- Department of Neurology, Jena University Hospital, 07747 Jena, Germany (M.S.)
| | | | - Georg Matziolis
- Orthopaedic Department, Jena University Hospital, Campus Eisenberg, 07607 Eisenberg, Germany; (M.N.)
| | | | - René Schiffner
- Orthopaedic Department, Jena University Hospital, Campus Eisenberg, 07607 Eisenberg, Germany; (M.N.)
- Emergency Department, Otto-von-Guericke University, 39120 Magdeburg, Germany
- Emergency Department, Helios University Clinic Wuppertal, 42283 Wuppertal, Germany
| |
Collapse
|
6
|
Gao YM, Feng ST, Wen Y, Tang TT, Wang B, Liu BC. Cardiorenal protection of SGLT2 inhibitors—Perspectives from metabolic reprogramming. EBioMedicine 2022; 83:104215. [PMID: 35973390 PMCID: PMC9396537 DOI: 10.1016/j.ebiom.2022.104215] [Citation(s) in RCA: 40] [Impact Index Per Article: 13.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/09/2022] [Revised: 07/12/2022] [Accepted: 07/29/2022] [Indexed: 11/23/2022] Open
Abstract
Sodium-glucose co-transporter 2 (SGLT2) inhibitors, initially developed as a novel class of anti-hyperglycaemic drugs, have been shown to significantly improve metabolic indicators and protect the kidneys and heart of patients with or without type 2 diabetes mellitus. The possible mechanisms mediating these unexpected cardiorenal benefits are being extensively investigated because they cannot solely be attributed to improvements in glycaemic control. Notably, emerging data indicate that metabolic reprogramming is involved in the progression of cardiorenal metabolic diseases. SGLT2 inhibitors reprogram systemic metabolism to a fasting-like metabolic paradigm, involving the metabolic switch from carbohydrates to other energetic substrates and regulation of the related nutrient-sensing pathways, which might explain some of their cardiorenal protective effects. In this review, we will focus on the current understanding of cardiorenal protection by SGLT2 inhibitors, specifically its relevance to metabolic reprogramming.
Collapse
|
7
|
Gan T, Song Y, Guo F, Qin G. Emerging roles of Sodium-glucose cotransporter 2 inhibitors in Diabetic kidney disease. Mol Biol Rep 2022; 49:10915-10924. [PMID: 36002651 DOI: 10.1007/s11033-022-07758-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/18/2022] [Revised: 06/27/2022] [Accepted: 06/30/2022] [Indexed: 10/15/2022]
Abstract
Diabetic kidney disease (DKD), a severe microvascular complication of diabetes mellitus, is the primary cause of end stage renal disease (ESRD). Sodium-glucose cotransporter 2 (SGLT2) inhibitors are a class of novel anti-diabetic drugs for DKD, which have the potential to prevent renal function from failing. The involved mechanisms have garnered considerable attention. Besides hypoglycemic effect, it seems that various glucose-independent nephroprotective mechanisms also have a role. Among them, improvement in tubuloglomerular feedback is considered as the main reason, followed by reduced intraglomerular pressure and fluid load. In addition, reduced blood pressure, anti-inflammatory effects, nutrient deprivation signaling as well as improved endothelial function are also important. In the future, clinical trials and mechanistic studies might further complement the current knowledge on SGLT2 inhibitors and facilitate to translate these agents to clinical use. Here, we review these mechanisms of SGLT2 inhibitors with an emphasis on kidney protective effects.
Collapse
Affiliation(s)
- Tian Gan
- Department of Endocrinology and Metabolism, The First Affiliated Hospital of Zhengzhou University, 450052, Zhengzhou, China
| | - Yi Song
- Department of Endocrinology and Metabolism, The First Affiliated Hospital of Zhengzhou University, 450052, Zhengzhou, China
| | - Feng Guo
- Department of Endocrinology and Metabolism, The First Affiliated Hospital of Zhengzhou University, 450052, Zhengzhou, China
| | - Guijun Qin
- Department of Endocrinology and Metabolism, The First Affiliated Hospital of Zhengzhou University, 450052, Zhengzhou, China.
| |
Collapse
|
8
|
Dutt C, Nunes Salles JE, Joshi S, Nair T, Chowdhury S, Mithal A, Mohan V, Kasliwal R, Sharma S, Tijssen J, Tandon N. Risk Factors Analysis and Management of Cardiometabolic-Based Chronic Disease in Low- and Middle-Income Countries. Diabetes Metab Syndr Obes 2022; 15:451-465. [PMID: 35210795 PMCID: PMC8858768 DOI: 10.2147/dmso.s333787] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/11/2021] [Accepted: 11/19/2021] [Indexed: 12/21/2022] Open
Abstract
The epidemic of obesity or adiposity-based chronic diseases presents a significant challenge with the rising prevalence of morbidities and mortality due to atherosclerotic cardiovascular diseases (ASCVD), especially in low- and middle-income countries (LMIC). The underlying pathophysiology of metabolic inflexibility is a common thread linking insulin resistance to cardiometabolic-based chronic disease (CMBCD), including dysglycemia, hypertension, and dyslipidemia progressing to downstream ASCVD events. The complex CMBCD paradigm in the LMIC population within the socio-economic and cultural context highlights considerable heterogeneity of disease predisposition, clinical patterns, and socio-medical needs. This review intends to summarize the current knowledge of CMBCD. We describe recently established or emerging trends for managing risk factors, assessment tools for evaluating ASCVD risk, and various pharmacological and non-pharmacological measures particularly relevant for LMICs. A CMBCD model positions insulin resistance and β-cell dysfunction at the summit of the disease spectrum may improve outcomes at a lower cost in LMICs. Despite identifying multiple pathophysiologic disturbances constituting CMBCD, a large percentage of the patient at risk for ASCVD remains undefined. Targeting dysglycemia, dyslipidemia, and hypertension using antihypertensive, statins, anti-glycemic, and antiplatelet agents has reduced the incidence of ASCVD. Thus, primordial prevention targeting pathophysiological changes that cause abnormalities in adiposity and primary prevention by detecting and managing risk factors remains the foundation for CMBCD management. Therefore, targeting pathways that address mitochondrial dysfunction would exert a beneficial effect on metabolic inflexibility that may potentially correct insulin resistance, β cell dysfunction and, consequently, would be therapeutically effective across the entire continuum of CMBCD.
Collapse
Affiliation(s)
- Chaitanya Dutt
- Research and Development, Torrent Pharmaceuticals Ltd, Ahmedabad, Gujarat, India
| | | | - Shashank Joshi
- Department of Endocrinology, Lilavati Hospital, Mumbai, Maharashtra, India
| | - Tiny Nair
- Department of Cardiology, PRS Hospital, Thiruvananthapuram, Kerala, India
| | - Subhankar Chowdhury
- Department of Endocrinology, Institute of Post-Graduate Medical Education and Research and Seth Sukhlal Karnani Memorial Hospital, Kolkata, West Bengal, India
| | - Ambrish Mithal
- Department of Endocrinology & Diabetes, Max Healthcare, New Delhi, India
| | | | | | - Satyawan Sharma
- Department of Cardiology, Bombay Hospital and Medical Research Center, Mumbai, Maharashtra, India
| | - Jan Tijssen
- Academic Medical Center - University of Amsterdam, Amsterdam, the Netherlands
| | - Nikhil Tandon
- Department of Endocrinology, All India Institute of Medical Sciences, New Delhi, India
| |
Collapse
|
9
|
Mwita PS, Shaban N, Mbalawata IS, Mayige M. Mathematical modelling of root causes of hyperglycemia and hypoglycemia in a diabetes mellitus patient. SCIENTIFIC AFRICAN 2021. [DOI: 10.1016/j.sciaf.2021.e01042] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/19/2022] Open
|
10
|
Kuhre RE, Deacon CF, Wewer Albrechtsen NJ, Holst JJ. Do sodium-glucose co-transporter-2 inhibitors increase plasma glucagon by direct actions on the alpha cell? And does the increase matter for the associated increase in endogenous glucose production? Diabetes Obes Metab 2021; 23:2009-2019. [PMID: 33961344 DOI: 10.1111/dom.14422] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/10/2021] [Revised: 04/21/2021] [Accepted: 05/04/2021] [Indexed: 12/12/2022]
Abstract
Sodium-glucose co-transporter-2 inhibitors (SGLT2is) lower blood glucose and are used for treatment of type 2 diabetes. However, SGLT2is have been associated with increases in endogenous glucose production (EGP) by mechanisms that have been proposed to result from SGLT2i-mediated increases in circulating glucagon concentrations, but the relative importance of this effect is debated, and mechanisms possibly coupling SGLT2is to increased plasma glucagon are unclear. A direct effect on alpha-cell activity has been proposed, but data on alpha-cell SGLT2 expression are inconsistent, and studies investigating the direct effects of SGLT2 inhibition on glucagon secretion are conflicting. By contrast, alpha-cell sodium-glucose co-transporter-1 (SGLT1) expression has been found more consistently and appears to be more prominent, pointing to an underappreciated role for this transporter. Nevertheless, the selectivity of most SGLT2is does not support interference with SGLT1 during therapy. Paracrine effects mediated by secretion of glucagonotropic/static molecules from beta and/or delta cells have also been suggested to be involved in SGLT2i-induced increase in plasma glucagon, but studies are few and arrive at different conclusions. It is also possible that the effect on glucagon is secondary to drug-induced increases in urinary glucose excretion and lowering of blood glucose, as shown in experiments with glucose clamping where SGLT2i-associated increases in plasma glucagon are prevented. However, regardless of the mechanisms involved, the current balance of evidence does not support that SGLT2 plays a crucial role for alpha-cell physiology or that SGLT2i-induced glucagon secretion is important for the associated increased EGP, particularly because the increase in EGP occurs before any rise in plasma glucagon.
Collapse
Affiliation(s)
- Rune E Kuhre
- Department of Biomedical Sciences, Faculty of Health and Medical Sciences, University of Copenhagen, Copenhagen, Denmark
- Obesity Pharmacology, Novo Nordisk, Måløv, Denmark
| | - Carolyn F Deacon
- Department of Biomedical Sciences, Faculty of Health and Medical Sciences, University of Copenhagen, Copenhagen, Denmark
- School of Biomedical Sciences, Ulster University, Coleraine, UK
| | - Nicolai J Wewer Albrechtsen
- Department of Biomedical Sciences, Faculty of Health and Medical Sciences, University of Copenhagen, Copenhagen, Denmark
- Department of Clinical Biochemistry, Rigshospitalet, University of Copenhagen, Copenhagen, Denmark
- Novo Nordisk Foundation Center for Protein Research, Faculty of Health and Medical Sciences, University of Copenhagen, Copenhagen, Denmark
| | - Jens J Holst
- Department of Biomedical Sciences, Faculty of Health and Medical Sciences, University of Copenhagen, Copenhagen, Denmark
- Novo Nordisk Foundation Centre for Basic Metabolic Research, Faculty of Health and Medical Sciences, University of Copenhagen, Copenhagen, Denmark
| |
Collapse
|
11
|
Ertuglu LA, Porrini E, Hornum M, Demiray A, Afsar B, Ortiz A, Covic A, Rossing P, Kanbay M. Glucagon-like peptide-1 receptor agonists and sodium-glucose cotransporter 2 inhibitors for diabetes after solid organ transplantation. Transpl Int 2021; 34:1341-1359. [PMID: 33880815 DOI: 10.1111/tri.13883] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/09/2021] [Revised: 03/22/2021] [Accepted: 04/12/2021] [Indexed: 12/13/2022]
Abstract
Post-transplant diabetes mellitus (PTDM) is a common complication of solid organ transplantation and a major cause of increased morbidity and mortality. Additionally, solid organ transplant patients may have pre-existent type 2 diabetes mellitus (T2DM). While insulin is the treatment of choice for hyperglycemia in the first weeks after transplantation, there is no preferred first line agent for long-term management of PTDM or pre-existent T2DM. Glucagon-like peptide-1 receptor agonists (GLP-1RA) and sodium-glucose cotransporter 2 (SGLT2) inhibitors improve glycemic control, lower body weight, and blood pressure, are recommended after lifestyle and metformin as initial therapy for diabetic patients with cardiovascular or kidney comorbidities regarding their cardiorenal benefits. Furthermore, the mechanisms of action of GLP-1RA may counteract some of the driving forces for PTDM, as calcineurin-induced β cell toxicity as per preclinical data, and improve obesity. However, their use in the treatment of PTDM is currently limited by a paucity of data. Retrospective observational and small exploratory studies suggest that GLP-1RA effectively improve glycemic control and induce weight loss in patients with PTDM without interacting with commonly used immunosuppressive agents, although randomized-controlled clinical trials are required to confirm their safety and efficacy. In this narrative review, we evaluate the risk factors and pathogenesis of PTDM and compare the potential roles of GLP-1RA and SGLT2 inhibitors in PTDM prevention and management as well as in pre-existent T2DM, and providing a roadmap for evidence generation on newer antidiabetic drugs for solid organ transplantation.
Collapse
Affiliation(s)
- Lale A Ertuglu
- Department of Medicine, Koc University School of Medicine, Istanbul, Turkey
| | - Esteban Porrini
- Red de Investigación Renal (REDINREN), Instituto Carlos III-FEDER, Tenerife, Spain.,Department of Medicine, Hospital Universitario de Canarias, Tenerife, Spain.,Instituto de Tecnologías Biomédicas, University of La Laguna, Tenerife, Spain
| | - Mads Hornum
- Department of Nephrology, Rigshospitalet, Copenhagen, Denmark.,Department of Clinical Medicine, Faculty of Health and Medical Sciences, University of Copenhagen, Copenhagen, Denmark
| | - Atalay Demiray
- Department of Medicine, Koc University School of Medicine, Istanbul, Turkey
| | - Baris Afsar
- Division of Nephrology, Department of Internal Medicine, Suleyman Demirel University School of Medicine, Isparta, Turkey
| | - Alberto Ortiz
- IIS-Fundacion Jimenez Diaz, Department of Medicine, School of Medicine, Universidad Autonoma de Madrid, Madrid, Spain
| | - Adrian Covic
- Department of Nephrology, Grigore T. Popa' University of Medicine, Iasi, Romania
| | - Peter Rossing
- Department of Clinical Medicine, Faculty of Health and Medical Sciences, University of Copenhagen, Copenhagen, Denmark.,Steno Diabetes Center Copenhagen, Copenhagen, Denmark
| | - Mehmet Kanbay
- Division of Nephrology, Department of Medicine, Koc University School of Medicine, Istanbul, Turkey
| |
Collapse
|
12
|
Yamasaki N, Tamura Y, Kaga H, Sato M, Kiya M, Kadowaki S, Suzuki R, Furukawa Y, Sugimoto D, Funayama T, Someya Y, Kakehi S, Nojiri S, Satoh H, Kawamori R, Watada H. A decrease in plasma glucose levels is required for increased endogenous glucose production with a single administration of a sodium-glucose co-transporter-2 inhibitor tofogliflozin. Diabetes Obes Metab 2021; 23:1092-1100. [PMID: 33377253 DOI: 10.1111/dom.14312] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/30/2020] [Revised: 12/09/2020] [Accepted: 12/21/2020] [Indexed: 12/19/2022]
Abstract
AIM To investigate whether changes in endogenous glucose production (EGP) and insulin and glucagon levels are elicited by the decrease in plasma glucose (PG) levels induced by the sodium-glucose co-transporter-2 (SGLT2) inhibitor tofogliflozin. MATERIALS AND METHODS We evaluated EGP in 12 Japanese patients with type 2 diabetes under the conditions of no drugs administered (CON), single administration of the SGLT2 inhibitor tofogliflozin (TOF), and single administration of TOF with adjustment of PG levels with exogenous glucose infusion to mimic changes in PG levels observed with CON (TOF + G). We evaluated changes in EGP and levels of C-peptide and glucagon from baseline to 180 minutes after drug administration. RESULTS Endogenous glucose production decreased in the CON (-0.22 ± 0.11 mg/kg·min) and TOF + G experiments (-0.31 ± 0.24 mg/kg·min), but not in the TOF experiment (+0.08 ± 0.19 mg/kg·min). The decrease in C-peptide was significantly greater in the TOF experiment (-0.11 ± 0.06 nmol/L) than in the CON (-0.03 ± 0.06 nmol/L) and the TOF + G experiments (-0.01 ± 0.11 nmol/L), while the increase in glucagon was significantly greater in the TOF experiment (+11.1 ± 6.3 pmol/L), but not in the TOF + G experiment (+8.6 ± 7.6 pmol/L) compared to the CON experiment (+5.1 ± 4.3 pmol/L). CONCLUSIONS These results indicate that the decrease in PG levels induced by SGLT2 inhibitor administration is required for the increase in EGP and decrease in insulin secretion.
Collapse
Affiliation(s)
- Nozomu Yamasaki
- Department of Metabolism and Endocrinology, Juntendo University Graduate School of Medicine, Tokyo, Japan
| | - Yoshifumi Tamura
- Department of Metabolism and Endocrinology, Juntendo University Graduate School of Medicine, Tokyo, Japan
- Sportology Center, Juntendo University Graduate School of Medicine, Tokyo, Japan
| | - Hideyoshi Kaga
- Department of Metabolism and Endocrinology, Juntendo University Graduate School of Medicine, Tokyo, Japan
| | - Motonori Sato
- Department of Metabolism and Endocrinology, Juntendo University Graduate School of Medicine, Tokyo, Japan
| | - Mai Kiya
- Department of Metabolism and Endocrinology, Juntendo University Graduate School of Medicine, Tokyo, Japan
| | - Satoshi Kadowaki
- Department of Metabolism and Endocrinology, Juntendo University Graduate School of Medicine, Tokyo, Japan
| | - Ruriko Suzuki
- Department of Metabolism and Endocrinology, Juntendo University Graduate School of Medicine, Tokyo, Japan
| | - Yasuhiko Furukawa
- Department of Metabolism and Endocrinology, Juntendo University Graduate School of Medicine, Tokyo, Japan
| | - Daisuke Sugimoto
- Department of Metabolism and Endocrinology, Juntendo University Graduate School of Medicine, Tokyo, Japan
| | - Takashi Funayama
- Department of Metabolism and Endocrinology, Juntendo University Graduate School of Medicine, Tokyo, Japan
| | - Yuki Someya
- Sportology Center, Juntendo University Graduate School of Medicine, Tokyo, Japan
| | - Saori Kakehi
- Sportology Center, Juntendo University Graduate School of Medicine, Tokyo, Japan
| | - Shuko Nojiri
- Department of Medical Technology Center, Juntendo University Faculty of Medicine, Tokyo, Japan
| | - Hiroaki Satoh
- Department of Metabolism and Endocrinology, Juntendo University Graduate School of Medicine, Tokyo, Japan
| | - Ryuzo Kawamori
- Department of Metabolism and Endocrinology, Juntendo University Graduate School of Medicine, Tokyo, Japan
- Sportology Center, Juntendo University Graduate School of Medicine, Tokyo, Japan
| | - Hirotaka Watada
- Department of Metabolism and Endocrinology, Juntendo University Graduate School of Medicine, Tokyo, Japan
- Sportology Center, Juntendo University Graduate School of Medicine, Tokyo, Japan
- Center for Therapeutic Innovations in Diabetes, Juntendo University Graduate School of Medicine, Tokyo, Japan
- Center for Identification of Diabetic Therapeutic Targets, Juntendo University Graduate School of Medicine, Tokyo, Japan
| |
Collapse
|
13
|
Type 2 diabetes subgroups and potential medication strategies in relation to effects on insulin resistance and beta-cell function: A step toward personalised diabetes treatment? Mol Metab 2020; 46:101158. [PMID: 33387681 PMCID: PMC8085543 DOI: 10.1016/j.molmet.2020.101158] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/01/2020] [Revised: 11/16/2020] [Accepted: 12/27/2020] [Indexed: 02/07/2023] Open
Abstract
Background Type 2 diabetes is a syndrome defined by hyperglycaemia that is the result of various degrees of pancreatic β-cell failure and reduced insulin sensitivity. Although diabetes can be caused by multiple metabolic dysfunctions, most patients are defined as having either type 1 or type 2 diabetes. Recently, Ahlqvist and colleagues proposed a new method of classifying patients with adult-onset diabetes, considering the heterogenous metabolic phenotype of the disease. This new classification system could be useful for more personalised treatment based on the underlying metabolic disruption of the disease, although to date no prospective intervention studies have generated data to support such a claim. Scope of Review In this review, we first provide a short overview of the phenotype and pathogenesis of type 2 diabetes and discuss the current and new classification systems. We then review the effects of different anti-diabetic medication classes on insulin sensitivity and β-cell function and discuss future treatment strategies based on the subgroups proposed by Ahlqvist et al. Major Conclusions The proposed novel type 2 diabetes subgroups provide an interesting concept that could lead to a better understanding of the pathophysiology of the broad group of type 2 diabetes, paving the way for personalised treatment choices based on understanding the root cause of the disease. We conclude that the novel subgroups of adult-onset diabetes would benefit from anti-diabetic medications that take into account the main pathophysiology of the disease and thereby prevent end-organ damage. However, we are only beginning to address the personalised treatment of type 2 diabetes, and studies investigating the effects of current and novel drugs in subgroups with different metabolic phenotypes are needed to develop personalised treatment of the syndrome Novel subgroups of type 2 diabetes provide a concept that could lead to a better understanding of its pathophysiology. Treatment strategies would benefit from anti-diabetic medications that influence the main pathophysiology of diabetes. Here, we review different anti-diabetic medications classes affecting insulin sensitivity and β-cell function. We suggest that future treatment strategies could benefit by taking into account subgroups provided by Ahlqvist et al.
Collapse
|
14
|
Daniele G, Solis-Herrera C, Dardano A, Mari A, Tura A, Giusti L, Kurumthodathu JJ, Campi B, Saba A, Bianchi AM, Tregnaghi C, Egidi MF, Abdul-Ghani M, DeFronzo R, Del Prato S. Increase in endogenous glucose production with SGLT2 inhibition is attenuated in individuals who underwent kidney transplantation and bilateral native nephrectomy. Diabetologia 2020; 63:2423-2433. [PMID: 32827269 PMCID: PMC7527374 DOI: 10.1007/s00125-020-05254-w] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/31/2020] [Accepted: 05/30/2020] [Indexed: 12/02/2022]
Abstract
AIMS/HYPOTHESIS The glucosuria induced by sodium-glucose cotransporter 2 (SGLT2) inhibition stimulates endogenous (hepatic) glucose production (EGP), blunting the decline in HbA1c. We hypothesised that, in response to glucosuria, a renal signal is generated and stimulates EGP. To examine the effect of acute administration of SGLT2 inhibitors on EGP, we studied non-diabetic individuals who had undergone renal transplant with and without removal of native kidneys. METHODS This was a parallel, randomised, double-blind, placebo-controlled, single-centre study, designed to evaluate the effect of a single dose of dapagliflozin or placebo on EGP determined by stable-tracer technique. We recruited non-diabetic individuals who were 30-65 years old, with a BMI of 25-35 kg/m2 and stable body weight (±2 kg) over the preceding 3 months, and HbA1c <42 mmol/mol (6.0%). Participants had undergone renal transplant with and without removal of native kidneys and were on a stable dose of immunosuppressive medications. Participants received a single dose of dapagliflozin 10 mg or placebo on two separate days, at a 5- to 14-day interval, according to randomisation performed by our hospital pharmacy, which provided dapagliflozin and matching placebo, packaged in bulk bottles that were sequentially numbered. Both participants and investigators were blinded to group assignment. RESULTS Twenty non-diabetic renal transplant patients (ten with residual native kidneys, ten with bilateral nephrectomy) participated in the study. Dapagliflozin induced greater glucosuria in individuals with residual native kidneys vs nephrectomised individuals (8.6 ± 1.1 vs 5.5 ± 0.5 g/6 h; p = 0.02; data not shown). During the 6 h study period, plasma glucose decreased only slightly and similarly in both groups, with no difference compared with placebo (data not shown). Following administration of placebo, there was a progressive time-related decline in EGP that was similar in both nephrectomised individuals and individuals with residual native kidneys. Following dapagliflozin administration, EGP declined in both groups, but the differences between the decrement in EGP with dapagliflozin and placebo in the group with bilateral nephrectomy (Δ = 1.11 ± 0.72 μmol min-1 kg-1) was significantly lower (p = 0.03) than in the residual native kidney group (Δ = 2.56 ± 0.33 μmol min-1 kg-1). In the population treated with dapagliflozin, urinary glucose excretion was correlated with EGP (r = 0.34, p < 0.05). Plasma insulin, C-peptide, glucagon, prehepatic insulin:glucagon ratio, lactate, alanine and pyruvate concentrations were similar following placebo and dapagliflozin treatment. β-Hydroxybutyrate increased with dapagliflozin treatment in the residual native kidney group, while a small increase was observed only at 360 min in the nephrectomy group. Plasma adrenaline (epinephrine) did not change after dapagliflozin and placebo treatment in either group. Following dapagliflozin administration, plasma noradrenaline (norepinephrine) increased slightly in the residual native kidney group and decreased in the nephrectomy group. CONCLUSIONS/INTERPRETATION In nephrectomised individuals, the hepatic compensatory response to acute SGLT2 inhibitor-induced glucosuria was attenuated, as compared with individuals with residual native kidneys, suggesting that SGLT2 inhibitor-mediated stimulation of hepatic glucose production via efferent renal nerves occurs in an attempt to compensate for the urinary glucose loss (i.e. a renal-hepatic axis). TRIAL REGISTRATION ClinicalTrials.gov NCT03168295 FUNDING: This protocol was supported by Qatar National Research Fund (QNRF) Award No. NPRP 8-311-3-062 and NIH grant DK024092-38. Graphical abstract.
Collapse
Affiliation(s)
- Giuseppe Daniele
- Department of Clinical and Experimental Medicine, Section of Metabolic Diseases and Diabetes, University of Pisa, Via Paradisa 2, 56124, Pisa, Italy
| | - Carolina Solis-Herrera
- Division of Diabetes, University of Texas Health Science Center at San Antonio, San Antonio, TX, USA
| | - Angela Dardano
- Department of Clinical and Experimental Medicine, Section of Metabolic Diseases and Diabetes, University of Pisa, Via Paradisa 2, 56124, Pisa, Italy
| | - Andrea Mari
- Metabolic Unit, CNR Institute of Neuroscience, Padova, Italy
| | - Andrea Tura
- Metabolic Unit, CNR Institute of Neuroscience, Padova, Italy
| | - Laura Giusti
- Department of Clinical and Experimental Medicine, Section of Metabolic Diseases and Diabetes, University of Pisa, Via Paradisa 2, 56124, Pisa, Italy
| | - Jancy J Kurumthodathu
- Department of Clinical and Experimental Medicine, Section of Metabolic Diseases and Diabetes, University of Pisa, Via Paradisa 2, 56124, Pisa, Italy
| | - Beatrice Campi
- Department of Clinical and Experimental Medicine, Section of Metabolic Diseases and Diabetes, University of Pisa, Via Paradisa 2, 56124, Pisa, Italy
| | - Alessandro Saba
- Department of Clinical and Experimental Medicine, Section of Metabolic Diseases and Diabetes, University of Pisa, Via Paradisa 2, 56124, Pisa, Italy
| | - Anna Maria Bianchi
- Department of Clinical and Experimental Medicine, Section of Metabolic Diseases and Diabetes, University of Pisa, Via Paradisa 2, 56124, Pisa, Italy
| | - Carla Tregnaghi
- Department of Clinical and Experimental Medicine, Section of Metabolic Diseases and Diabetes, University of Pisa, Via Paradisa 2, 56124, Pisa, Italy
| | - Maria Francesca Egidi
- Department of Clinical and Experimental Medicine, Section of Metabolic Diseases and Diabetes, University of Pisa, Via Paradisa 2, 56124, Pisa, Italy
| | - Muhammad Abdul-Ghani
- Division of Diabetes, University of Texas Health Science Center at San Antonio, San Antonio, TX, USA
| | - Ralph DeFronzo
- Division of Diabetes, University of Texas Health Science Center at San Antonio, San Antonio, TX, USA
| | - Stefano Del Prato
- Department of Clinical and Experimental Medicine, Section of Metabolic Diseases and Diabetes, University of Pisa, Via Paradisa 2, 56124, Pisa, Italy.
| |
Collapse
|
15
|
Perry RJ, Shulman GI. Sodium-glucose cotransporter-2 inhibitors: Understanding the mechanisms for therapeutic promise and persisting risks. J Biol Chem 2020; 295:14379-14390. [PMID: 32796035 DOI: 10.1074/jbc.rev120.008387] [Citation(s) in RCA: 64] [Impact Index Per Article: 12.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/21/2020] [Revised: 08/11/2020] [Indexed: 12/16/2022] Open
Abstract
In a healthy person, the kidney filters nearly 200 g of glucose per day, almost all of which is reabsorbed. The primary transporter responsible for renal glucose reabsorption is sodium-glucose cotransporter-2 (SGLT2). Based on the impact of SGLT2 to prevent renal glucose wasting, SGLT2 inhibitors have been developed to treat diabetes and are the newest class of glucose-lowering agents approved in the United States. By inhibiting glucose reabsorption in the proximal tubule, these agents promote glycosuria, thereby reducing blood glucose concentrations and often resulting in modest weight loss. Recent work in humans and rodents has demonstrated that the clinical utility of these agents may not be limited to diabetes management: SGLT2 inhibitors have also shown therapeutic promise in improving outcomes in heart failure, atrial fibrillation, and, in preclinical studies, certain cancers. Unfortunately, these benefits are not without risk: SGLT2 inhibitors predispose to euglycemic ketoacidosis in those with type 2 diabetes and, largely for this reason, are not approved to treat type 1 diabetes. The mechanism for each of the beneficial and harmful effects of SGLT2 inhibitors-with the exception of their effect to lower plasma glucose concentrations-is an area of active investigation. In this review, we discuss the mechanisms by which these drugs cause euglycemic ketoacidosis and hyperglucagonemia and stimulate hepatic gluconeogenesis as well as their beneficial effects in cardiovascular disease and cancer. In so doing, we aim to highlight the crucial role for selecting patients for SGLT2 inhibitor therapy and highlight several crucial questions that remain unanswered.
Collapse
Affiliation(s)
- Rachel J Perry
- Departments of Cellular and Molecular Physiology and Internal Medicine (Endocrinology), Yale School of Medicine, New Haven, Connecticut, USA
| | - Gerald I Shulman
- Departments of Cellular and Molecular Physiology and Internal Medicine (Endocrinology), Yale School of Medicine, New Haven, Connecticut, USA
| |
Collapse
|
16
|
SGLT2-Hemmung bei nierentransplantierten Patienten mit und ohne Typ-2-Diabetes. DIABETOL STOFFWECHS 2020. [DOI: 10.1055/a-1199-9447] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/23/2022]
|