1
|
Delvecchio M, Piona C, Chobot A, Cudizio L, Deeb A, Elbarbary N, Dos Santos TJ, Habeb A. Knowledge, Attitudes, and Practices in Neonatal Diabetes Mellitus Management: the JEnious-NeOnatal-DIabetes (JENODI) Survey. Diabetes Ther 2025; 16:885-897. [PMID: 40106224 PMCID: PMC12006576 DOI: 10.1007/s13300-025-01714-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/29/2024] [Accepted: 02/17/2025] [Indexed: 03/22/2025] Open
Abstract
INTRODUCTION We aimed to explore the knowledge, attitude, and management of neonatal diabetes mellitus (NDM) among members of the International Society for Pediatric and Adolescent Diabetes (ISPAD). METHODS Members of the society were invited to complete an online questionnaire posted on the ISPAD website. RESULTS We received 108 responses from 45 different countries. Of these, 103 were involved in NDM management. 87.9% of participants would start insulin at diagnosis, and 11% would prefer sulfonylurea (SU); 54.6% would start with an insulin pump, and 80.6% would use continuous glucose monitoring. Genetic testing was suggested by 97.2% (50.9% when diagnosis occurs up to 6 months, 15.7% up to 9 months, and 30.6% up to 12 months of age), while 79.6% routinely request it in clinical practice. Of the participants, 96.3% consider genetic testing necessary to identify children who can be treated with SU, and 26.9% would try SU before testing/obtaining results. Only 37% received specific training on NDM, while 44.5% felt less confident in managing patients with NDM. Incidence in the country of practice, participant's age, years of experience in the field, number of patients registered in the clinic, and number of patients with NDM followed up were associated with differences in answers. CONCLUSIONS This survey offers the possibility of informing health providers about the awareness of different aspects of NDM management. Our results provide the opportunity to compare various aspects of diagnosis and treatment of NDM in different geographic areas. Continuous education is needed to boost physicians' confidence in managing patients with this rare form of diabetes.
Collapse
Affiliation(s)
- Maurizio Delvecchio
- Department of Biotechnological and Applied Clinical Sciences, University of L'Aquila, L'Aquila, Italy.
| | - Claudia Piona
- Pediatric Diabetes and Metabolic Disorders Unit, Regional Center for Pediatric Diabetes, University City Hospital, Verona, Italy
| | - Agata Chobot
- Department of Pediatrics, Institute of Medical Sciences, University of Opole, Opole, Poland
- Department of Pediatrics, University Clinical Hospital in Opole, Opole, Poland
| | | | - Asma Deeb
- Faculty of Health and Science, Endocrine Division, Sheikh Shakhbout Medical City, Faculty of Medicine, Khalifa University, Ain Shams University, Abu Dhabi, United Arab Emirates
| | - Nancy Elbarbary
- Diabetes Unit, Department of Pediatrics, Faculty of Medicine, Ain Shams University, Cairo, Egypt
| | - Tiago J Dos Santos
- Instituto Hispalense de Pediatría, Almeria, Andalusia, Spain
- Department of Nursing Sciences, Physiotherapy, and Medicine, Faculty of Health Sciences, University of Almeria, Almeria, Spain
| | - Abdelhadi Habeb
- Pediatric Department, Prince Moh bin Abdulaziz Hospital, National Guard Health Affairs, Madinah, Kingdom of Saudi Arabia
| |
Collapse
|
2
|
Donis R, Al Badi M, Alhashmi N, Hattersley AT, Flanagan SE, De Franco E. Two cases of neonatal hyperglycemia caused by a homozygous COQ9 stop-gain variant. J Diabetes Investig 2025; 16:959-963. [PMID: 40062559 PMCID: PMC12057368 DOI: 10.1111/jdi.70022] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/11/2024] [Revised: 02/18/2025] [Accepted: 02/25/2025] [Indexed: 05/08/2025] Open
Abstract
Neonatal diabetes mellitus (NDM) is a monogenic condition diagnosed <6 months of age with >40 genetic causes. International guidelines recommend referral for genetic testing immediately after diagnosis since the genetic result guides clinical management. We used next-generation sequencing to identify a homozygous pathogenic variant, p.(Arg244*), in COQ9 in 2 individuals referred for NDM testing. Both had insulin-treated hyperglycemia, severe structural brain defects, dysmorphic features, and lactic acidosis. Recessive loss-of-function variants in COQ9 cause Coenzyme Q10 deficiency-5, a multi-system mitochondrial disease, with 7 cases reported. Neonatal hyperglycemia has not been reported in any of these cases but has been described for two other Coenzyme Q10 disorders caused by variants in COQ2 and COQ4. Our report shows that individuals with COQ9-related disease can present with neonatal hyperglycemia, expanding the clinical spectrum of this disorder. We recommend the inclusion of COQ9, as well as COQ2 and COQ4, to gene panels used for NDM testing.
Collapse
Affiliation(s)
- Russell Donis
- Department of Clinical and Biomedical Sciences, Faculty of Health and Life SciencesUniversity of ExeterExeterUK
| | | | | | - Andrew T Hattersley
- Department of Clinical and Biomedical Sciences, Faculty of Health and Life SciencesUniversity of ExeterExeterUK
| | - Sarah E Flanagan
- Department of Clinical and Biomedical Sciences, Faculty of Health and Life SciencesUniversity of ExeterExeterUK
| | - Elisa De Franco
- Department of Clinical and Biomedical Sciences, Faculty of Health and Life SciencesUniversity of ExeterExeterUK
| |
Collapse
|
3
|
Holder M, Kamrath C, Lange K, Kummer S, Ziegler R. Diagnosis, Therapy and Follow-Up of Type 1 Diabetes Mellitus in Children and Adolescents. Exp Clin Endocrinol Diabetes 2025; 133:205-223. [PMID: 40328265 DOI: 10.1055/a-2490-5096] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 05/08/2025]
Affiliation(s)
- Martin Holder
- Olgahospital, Stuttgart Hospital, Stuttgart, Germany
| | | | - Karin Lange
- Hannover Medical School (MHH), Hannover, Germany
| | | | - Ralph Ziegler
- Diabetological Practice for Children and Adolescents, Münster, Germany
| |
Collapse
|
4
|
Zhao J, Chen R, Luo M, Zhu Q, Zhao Q. Genetic variation in targets of antihyperglycemic drugs and inflammatory bowel disease' risk: A mendelian randomization study. Diabetes Metab Syndr 2025; 19:103204. [PMID: 40023995 DOI: 10.1016/j.dsx.2025.103204] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/15/2023] [Revised: 01/31/2025] [Accepted: 02/05/2025] [Indexed: 03/04/2025]
Abstract
AIM Antihyperglycemic drugs have potential therapeutic benefits for inflammatory bowel disease (IBD). We aimed to investigate the association between genetic variations in gene-targeted antihyperglycemic drugs and the risk of IBD. METHODS Summary statistics for HbA1c data were from the UK Biobank including 344,182 participants. Statistics of IBD were obtained from UK Inflammatory Bowel Disease Genetics. Two Mendelian randomization methods were employed to derive the main findings. RESULTS In the SMR analysis, increased expression of genetic variations in SGLT2 inhibitor targets (gene: SLC5A2) was linked to a higher risk of CD (OR: 1.97, P = 0.048). Genetic variation in brain cerebellum tissue of sulfonylurea targets (gene: ABCC8) expression was positively associated with IBD (OR = 1.11, P = 0.000). The genetic variation in the GLP-1RA targets (gene: GLP1R) expression was positively correlated with IBD (OR: 1.45, P = 0.039). The IVW-MR analysis suggested reduced IBD and CD risk with expression of increased genetic variation in the thiazolidinediones targets (gene: PPARG). CONCLUSION Genetic variations in SGLT2 inhibitor targets might be associated with an increased risk of CD. The ABCC8 gene might be linked to IBD, CD, and UC. There might be a positive correlation between genetic variation in the GLP-1RA targets expression and IBD occurrence.
Collapse
Affiliation(s)
- Jiaxi Zhao
- General Practice Ward / International Medical Center Ward General Practice Medical Center, West China Hospital, Sichuan University, Chengdu, Sichuan, China
| | - Rong Chen
- Department of Rehabilitation Medicine, The First Affiliated Hospital, Sun Yat-Sen University, Guangzhou, Guangdong, China
| | - Mengqi Luo
- Department of Gastroenterology and Hepatology, West China Hospital, Sichuan University, Chengdu, Sichuan, China
| | - Quanjing Zhu
- Department of Laboratory Medicine, West China Hospital, Sichuan University, Chengdu, Sichuan, China
| | - Qian Zhao
- General Practice Ward / International Medical Center Ward General Practice Medical Center, West China Hospital, Sichuan University, Chengdu, Sichuan, China.
| |
Collapse
|
5
|
Behre E, Donnell SS, Larsen N, Mora G, Patra K. Monogenic Familial Neonatal Diabetes in Preterm Infant With ABCC8 Gene Mutation: Transition to Oral Sulfonylurea Therapy. J Pediatr Pharmacol Ther 2025; 30:129-132. [PMID: 39935558 PMCID: PMC11809537 DOI: 10.5863/1551-6776-30.1.129] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/02/2024] [Accepted: 04/16/2024] [Indexed: 02/13/2025]
Abstract
Sulfonylurea treatment has been shown to improve both glycemic control and neurodevelopmental outcomes in neonatal diabetes (NDM) secondary to ABCC8 gene mutations. Given these mutations are among the most common, an empiric sulfonylurea trial may be reasonable. We report a case of NDM secondary to an ABCC8 mutation in an infant born at 34 6/7 weeks gestational age (GA) who was transitioned to oral sulfonylurea therapy at 38 2/7 weeks corrected GA. Empiric oral sulfonylurea therapy was initiated while genetic testing was pending, which later confirmed the diagnosis of monogenic NDM. Empiric transition to sulfonylurea therapy in a preterm infant with monogenic NDM is described for the first time in the literature. Furthermore, this report offers possible guidance relating to initial sulfonylurea dose at initiation and the utility of additional genetic testing in family members.
Collapse
Affiliation(s)
| | - Sierra S. Donnell
- Division of Hospital-Based Medicine (SD), Ann and Robert H. Lurie Children’s Hospital of Chicago
| | - Nicole Larsen
- Department of Pediatrics (NL), Division of Neonatal-Perinatal Medicine, University of Michigan C.S. Mott Children’s Hospital
| | - Guido Mora
- Division of Endocrinology (GM), Ann and Robert H. Lurie Children’s Hospital of Chicago
| | - Kousiki Patra
- Department of Pediatrics (KP), Division of Neonatology, Rush University Medical Center
| |
Collapse
|
6
|
Barbetti F, Deeb A, Suzuki S. Neonatal diabetes mellitus around the world: Update 2024. J Diabetes Investig 2024; 15:1711-1724. [PMID: 39344692 PMCID: PMC11615689 DOI: 10.1111/jdi.14312] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/05/2024] [Revised: 08/22/2024] [Accepted: 08/29/2024] [Indexed: 10/01/2024] Open
Abstract
Neonatal diabetes mellitus (NDM), defined as diabetes with an onset during the first 6 months of life, is a rare form of monogenic diabetes. The initial publications on this condition began appearing in the second half of the 1990s and quite surprisingly, the search for new NDM genes is still ongoing with great vigor. Between 2018 and early 2024, six brand new NDM-genes have been discovered (CNOT1, FICD, ONECUT1, PDIA6, YIPF5, ZNF808) and three genes known to cause different diseases were identified as NDM-genes (EIF2B1, NARS2, KCNMA1). In addition, NDM cases carrying mutations in three other genes known to give rise to diabetes during childhood have been also identified (AGPAT2, BSCL2, PIK3R1). As a consequence, the list of NDM genes now exceeds 40. This genetic heterogeneity translates into many different mechanism(s) of disease that are being investigated with state-of-the-art methodologies, such as induced pluripotent stem cells (iPSC) and human embryonic stem cells (hESC) manipulated with the CRISPR technique of genome editing. This diversity in genetic causes and the pathophysiology of diabetes dictate the need for a variety of therapeutic approaches. The aim of this paper is to provide an overview on recent achievements in all aspects of this area of research.
Collapse
Affiliation(s)
- Fabrizio Barbetti
- Monogenic Diabetes Clinic, Endocrinology and Diabetes UnitBambino Gesù Children's Hospital IRCCSRomeItaly
| | - Asma Deeb
- Pediatric Endocrine Division, Sheikh Shakhbout Medical City and College of Medicine and Health ScienceKhalifa UniversityAbu DhabiUAE
| | - Shigeru Suzuki
- Department of PediatricsAsahikawa Medical UniversityAsahikawaJapan
| |
Collapse
|
7
|
Liu Y, Ren S, Zhu C, Chen S, Zhang H, Zhang J, Li J, Jiang Y. Identification of heterozygous mutations of ABCC8 gene responsible for maturity-onset diabetes of the young with exome sequencing. Acta Diabetol 2024:10.1007/s00592-024-02410-1. [PMID: 39556225 DOI: 10.1007/s00592-024-02410-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/12/2024] [Accepted: 10/29/2024] [Indexed: 11/19/2024]
Abstract
BACKGROUND Although the MODY12 subtype, caused by ABCC8 mutations, is rare, it is highly sensitive to sulfonylureas. The identification of ABCC8 mutations in patients clinically diagnosed with MODY has the ability to contribute to the precise management of diabetes. METHODS Genetic analysis of two families with MODY were conducted using whole-exome sequencing (WES) and Sanger sequencing. The spatial structures of the mutant proteins were constructed using MODELLER and PyMOL software to provide further evidence of pathogenicity. RESULTS The heterozygous missense mutations V357I and R1393H in ABCC8 were found in probands of two unrelated MODY pedigrees, which co-segregated with the hyperglycemic phenotypes in these two pedigrees. Detection of the V357I mutation enabled the proband of family A to successfully transfer from insulin to sulfonylurea (SU). After 3 months of follow-up for the SU trial, the HbA1c level of proband A improved from 12.4% at the initial diagnosis to 7.20%. Proband B was treated with insulin because of pregnancy and poor islet function. In silico analysis indicated that the R1393H mutation resulted in a longer hydrogen bond distance to L1389 and cleavage of carbon-hydrogen bonds to V1395, A1390, and L1389. CONCLUSIONS We have described two pathogenic missense mutations in ABCC8 in Chinese families with MODY. Our findings support the heterogeneity in the clinical features of MODY12 caused by ABCC8 mutations.
Collapse
Affiliation(s)
- Yanxia Liu
- Department of Endocrinology and Metabolism, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, China
| | - Shuxin Ren
- Department of Endocrinology and Metabolism, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, China
| | - Chaofeng Zhu
- Genetic and Prenatal Diagnosis Center, the First Affiliated Hospital of Zhengzhou University, Zhengzhou, China
| | - Sufang Chen
- Department of Geriatric Endocrinology, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, China
| | - Huijuan Zhang
- Department of Endocrinology and Metabolism, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, China
| | - Juan Zhang
- Institute of Monogenic Disease, School of Medicine, Huanghuai University, Zhumadian, China
| | - Jianhua Li
- Department of Emergency Medicine, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, China.
| | - Yanyan Jiang
- Department of Geriatric Endocrinology, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, China.
| |
Collapse
|
8
|
Panza R, Cattivera V, Colella J, Baldassarre ME, Capozza M, Zagaroli L, Iezzi ML, Laforgia N, Delvecchio M. Insulin Delivery Technology for Treatment of Infants with Neonatal Diabetes Mellitus: A Systematic Review. Diabetes Ther 2024; 15:2293-2308. [PMID: 39292435 PMCID: PMC11467148 DOI: 10.1007/s13300-024-01653-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/01/2024] [Accepted: 09/06/2024] [Indexed: 09/19/2024] Open
Abstract
Neonatal diabetes mellitus is a rare disorder of glucose metabolism with onset within the first 6 months of life. The initial treatment is based on insulin infusion. The technologies for diabetes treatment can be very helpful, even if guidelines are still lacking. The current study aimed to provide a comprehensive review of the literature about the safety and efficacy of insulin treatment with technology for diabetes to support clinicians in the management of infants with neonatal diabetes mellitus. A total of 22 papers were included, most of them case reports or case series. The first infants with neonatal diabetes mellitus treated with insulin pumps were described nearly two decades ago. Over the years, continuous glucose monitoring systems were added to treat these individuals, allowing for a better customization of insulin administration. Insulin was diluted in some cases to further minimize the doses. Improvement in technology for diabetes prompted clinicians to use new devices and algorithms for insulin delivery in infants with neonatal diabetes as well. These systems are safe and effective, may shorten hospital stay, and help clinicians weaning insulin during the remission phase in the transient forms or switching from insulin to sulfonylurea when suggested by the molecular diagnosis. New technologies for insulin delivery in infants with neonatal diabetes can be used safely and closed-loop algorithms can work properly in these situations, optimizing blood glucose control.
Collapse
Affiliation(s)
- Raffaella Panza
- Section of Neonatology and NICU, Interdisciplinary Department of Medicine, University of Bari "Aldo Moro", 70124, Bari, Italy
| | - Valentina Cattivera
- Department of Biotechnological and Applied Clinical Sciences, University of L'Aquila, 67100, L'Aquila, Italy
| | - Jacopo Colella
- Department of Biotechnological and Applied Clinical Sciences, University of L'Aquila, 67100, L'Aquila, Italy
| | - Maria Elisabetta Baldassarre
- Section of Neonatology and NICU, Interdisciplinary Department of Medicine, University of Bari "Aldo Moro", 70124, Bari, Italy
| | - Manuela Capozza
- Section of Neonatology and NICU, Interdisciplinary Department of Medicine, University of Bari "Aldo Moro", 70124, Bari, Italy
| | - Luca Zagaroli
- Unit of Pediatrics, San Salvatore Hospital, ASL 1 Abruzzo, 67100, L'Aquila, Italy
| | - Maria Laura Iezzi
- Unit of Pediatrics, San Salvatore Hospital, ASL 1 Abruzzo, 67100, L'Aquila, Italy
| | - Nicola Laforgia
- Section of Neonatology and NICU, Interdisciplinary Department of Medicine, University of Bari "Aldo Moro", 70124, Bari, Italy
| | - Maurizio Delvecchio
- Department of Biotechnological and Applied Clinical Sciences, University of L'Aquila, 67100, L'Aquila, Italy.
| |
Collapse
|
9
|
Delvecchio M, Liu M, Rapini N, Barbetti F. Editorial: Personalized therapies for monogenic diabetes. Front Genet 2024; 15:1496367. [PMID: 39399218 PMCID: PMC11466878 DOI: 10.3389/fgene.2024.1496367] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/14/2024] [Accepted: 09/23/2024] [Indexed: 10/15/2024] Open
Affiliation(s)
- Maurizio Delvecchio
- Department of Biotechnological and Applied Clinical Sciences, University of L’Aquila, L’Aquila, Italy
| | - Ming Liu
- Department of Endocrinology and Metabolism, Tianjin Medical University General Hospital, Tianjin, China
| | - Novella Rapini
- Endocrinology and Diabetes Unit, Bambino Gesù Children’s Hospital, IRCCS, Scientific Institute for Research, Hospitalization and Health Care, Rome, Italy
| | - Fabrizio Barbetti
- Monogenic Diabetes Clinic, Unit of Endocrinology and Diabetes, Bambino Gesù Children Hospital IRCCS, Rome, Italy
| |
Collapse
|
10
|
Shen LH, Cui Y, Fu DX, Yang W, Wu SN, Wang HZ, Yang HH, Chen YX, Wei HY. Transient diabetes mellitus with ABCC8 variant successfully treated with sulfonylurea: Two case reports and review of literature. World J Diabetes 2024; 15:1811-1819. [PMID: 39192869 PMCID: PMC11346097 DOI: 10.4239/wjd.v15.i8.1811] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/22/2024] [Revised: 05/24/2024] [Accepted: 06/18/2024] [Indexed: 07/25/2024] Open
Abstract
BACKGROUND Transient neonatal diabetes mellitus (TNDM) is a rare form of diabetes mellitus that usually presents within the first 6 mo of life. Patients often enter remission within several months, although relapse can occur later in life. Mutations in the ABCC8 gene, which encodes the sulfonylurea receptor 1 of the ATP-sensitive potassium channel in pancreatic beta cells, are associated with TNDM and permanent neonatal diabetes. This study describes a novel de novo c.3880C>T heterozygous ABCC8 variant that causes TNDM and can be treated with sulf-onylurea therapy. CASE SUMMARY We retrospectively analyzed 2 Chinese patients with TNDM who were diagnosed, treated, or referred for follow-up between September 2017 and September 2023. The patients were tested for mutations using targeted next-generation sequencing. Patients with neonatal diabetes mellitus caused by a c.3880C>T heterozygous missense variant in the ABCC8 gene have not been reported before. Both children had an onset of post-infectious diabetic ketoacidosis, which is worth noting. At a follow-up visit after discontinuing insulin injection, oral glyburide was found to be effective with no adverse reactions. CONCLUSION Early genetic testing of neonatal diabetes mellitus aids in accurate diagnosis and treatment and helps avoid daily insulin injections that may cause pain.
Collapse
Affiliation(s)
- Ling-Hua Shen
- Department of Endocrinology and Metabolism, Henan Key Laboratory of Children's Genetics and Metabolic Diseases, Children's Hospital Affiliated to Zhengzhou University, Henan Children's Hospital Zhengzhou Children's Hospital, Zhengzhou 450018, Henan Province, China
| | - Yan Cui
- Department of Endocrinology and Metabolism, Henan Key Laboratory of Children's Genetics and Metabolic Diseases, Children's Hospital Affiliated to Zhengzhou University, Henan Children's Hospital Zhengzhou Children's Hospital, Zhengzhou 450018, Henan Province, China
| | - Dong-Xia Fu
- Department of Endocrinology and Metabolism, Henan Key Laboratory of Children's Genetics and Metabolic Diseases, Children's Hospital Affiliated to Zhengzhou University, Henan Children's Hospital Zhengzhou Children's Hospital, Zhengzhou 450018, Henan Province, China
| | - Wei Yang
- Department of Endocrinology and Metabolism, Henan Key Laboratory of Children's Genetics and Metabolic Diseases, Children's Hospital Affiliated to Zhengzhou University, Henan Children's Hospital Zhengzhou Children's Hospital, Zhengzhou 450018, Henan Province, China
| | - Sheng-Nan Wu
- Department of Endocrinology and Metabolism, Henan Key Laboratory of Children's Genetics and Metabolic Diseases, Children's Hospital Affiliated to Zhengzhou University, Henan Children's Hospital Zhengzhou Children's Hospital, Zhengzhou 450018, Henan Province, China
| | - Hui-Zhen Wang
- Department of Endocrinology and Metabolism, Henan Key Laboratory of Children's Genetics and Metabolic Diseases, Children's Hospital Affiliated to Zhengzhou University, Henan Children's Hospital Zhengzhou Children's Hospital, Zhengzhou 450018, Henan Province, China
| | - Hai-Hua Yang
- Department of Endocrinology and Metabolism, Henan Key Laboratory of Children's Genetics and Metabolic Diseases, Children's Hospital Affiliated to Zhengzhou University, Henan Children's Hospital Zhengzhou Children's Hospital, Zhengzhou 450018, Henan Province, China
| | - Yong-Xing Chen
- Department of Endocrinology and Metabolism, Henan Key Laboratory of Children's Genetics and Metabolic Diseases, Children's Hospital Affiliated to Zhengzhou University, Henan Children's Hospital Zhengzhou Children's Hospital, Zhengzhou 450018, Henan Province, China
| | - Hai-Yan Wei
- Department of Endocrinology and Metabolism, Henan Key Laboratory of Children's Genetics and Metabolic Diseases, Children's Hospital Affiliated to Zhengzhou University, Henan Children's Hospital Zhengzhou Children's Hospital, Zhengzhou 450018, Henan Province, China
| |
Collapse
|
11
|
Niculae AȘ, Bolba C, Grama A, Mariş A, Bodea L, Căinap S, Mititelu A, Fufezan O, Pop TL. Wolcott-Rallison Syndrome, a Rare Cause of Permanent Diabetes Mellitus in Infants-Case Report. Pediatr Rep 2023; 15:608-616. [PMID: 37873802 PMCID: PMC10594453 DOI: 10.3390/pediatric15040056] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/24/2023] [Revised: 10/02/2023] [Accepted: 10/04/2023] [Indexed: 10/25/2023] Open
Abstract
Wolcott-Rallison syndrome is a rare cause of permanent neonatal diabetes mellitus caused by mutations in the eukaryotic translation initiation factor 2 alpha kinase 3 gene (EIF2AK3). Individuals affected by this disorder have severe hyperglycemia, pancreatic failure, and bone abnormalities and are prone to severe and life-threatening episodes of liver failure. This report illustrates the case of a 2-month-old infant with extreme hyperglycemia and severe diabetic ketoacidosis. Acute management was focused on correcting severe acidosis. Further management aimed to obtain stable blood glucose levels, balancing the patient's need for comfort and lack of distress with the clinicians' need for adequate information regarding the patient's glycemic control. Genetic testing of the patient and his parents confirmed the diagnosis. The follow-up for 18 months after diagnosis is detailed, illustrating both the therapeutic success of subcutaneous insulin therapy and the ongoing complications that patients with Wolcott-Rallison syndrome are subject to.
Collapse
Affiliation(s)
- Alexandru-Ștefan Niculae
- 2nd Pediatric Discipline, Department of Mother and Child, Iuliu Hatieganu University of Medicine and Pharmacy Cluj-Napoca, 400177 Cluj-Napoca, Romania; (A.-Ș.N.); (S.C.); (A.M.); (T.L.P.)
| | - Claudia Bolba
- 2nd Pediatric Clinic, Emergency Clinical Hospital for Children Cluj-Napoca, 400177 Cluj-Napoca, Romania;
| | - Alina Grama
- 2nd Pediatric Discipline, Department of Mother and Child, Iuliu Hatieganu University of Medicine and Pharmacy Cluj-Napoca, 400177 Cluj-Napoca, Romania; (A.-Ș.N.); (S.C.); (A.M.); (T.L.P.)
- 2nd Pediatric Clinic, Emergency Clinical Hospital for Children Cluj-Napoca, 400177 Cluj-Napoca, Romania;
| | - Alexandra Mariş
- Intesive Care Unit, Emergency Clinical Hospital for Children Cluj-Napoca, 400370 Cluj-Napoca, Romania; (A.M.); (L.B.)
| | - Laura Bodea
- Intesive Care Unit, Emergency Clinical Hospital for Children Cluj-Napoca, 400370 Cluj-Napoca, Romania; (A.M.); (L.B.)
| | - Simona Căinap
- 2nd Pediatric Discipline, Department of Mother and Child, Iuliu Hatieganu University of Medicine and Pharmacy Cluj-Napoca, 400177 Cluj-Napoca, Romania; (A.-Ș.N.); (S.C.); (A.M.); (T.L.P.)
- 2nd Pediatric Clinic, Emergency Clinical Hospital for Children Cluj-Napoca, 400177 Cluj-Napoca, Romania;
| | - Alexandra Mititelu
- 2nd Pediatric Discipline, Department of Mother and Child, Iuliu Hatieganu University of Medicine and Pharmacy Cluj-Napoca, 400177 Cluj-Napoca, Romania; (A.-Ș.N.); (S.C.); (A.M.); (T.L.P.)
| | - Otilia Fufezan
- Department of Imaging, Emergency Clinical Hospital for Children Cluj-Napoca, 400370 Cluj-Napoca, Romania;
| | - Tudor Lucian Pop
- 2nd Pediatric Discipline, Department of Mother and Child, Iuliu Hatieganu University of Medicine and Pharmacy Cluj-Napoca, 400177 Cluj-Napoca, Romania; (A.-Ș.N.); (S.C.); (A.M.); (T.L.P.)
- 2nd Pediatric Clinic, Emergency Clinical Hospital for Children Cluj-Napoca, 400177 Cluj-Napoca, Romania;
| |
Collapse
|
12
|
Alam KA, Svalastoga P, Martinez A, Glennon JC, Haavik J. Potassium channels in behavioral brain disorders. Molecular mechanisms and therapeutic potential: A narrative review. Neurosci Biobehav Rev 2023; 152:105301. [PMID: 37414376 DOI: 10.1016/j.neubiorev.2023.105301] [Citation(s) in RCA: 10] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/31/2023] [Revised: 06/26/2023] [Accepted: 06/30/2023] [Indexed: 07/08/2023]
Abstract
Potassium channels (K+-channels) selectively control the passive flow of potassium ions across biological membranes and thereby also regulate membrane excitability. Genetic variants affecting many of the human K+-channels are well known causes of Mendelian disorders within cardiology, neurology, and endocrinology. K+-channels are also primary targets of many natural toxins from poisonous organisms and drugs used within cardiology and metabolism. As genetic tools are improving and larger clinical samples are being investigated, the spectrum of clinical phenotypes implicated in K+-channels dysfunction is rapidly expanding, notably within immunology, neurosciences, and metabolism. K+-channels that previously were considered to be expressed in only a few organs and to have discrete physiological functions, have recently been found in multiple tissues and with new, unexpected functions. The pleiotropic functions and patterns of expression of K+-channels may provide additional therapeutic opportunities, along with new emerging challenges from off-target effects. Here we review the functions and therapeutic potential of K+-channels, with an emphasis on the nervous system, roles in neuropsychiatric disorders and their involvement in other organ systems and diseases.
Collapse
Affiliation(s)
| | - Pernille Svalastoga
- Mohn Center for Diabetes Precision Medicine, Department of Clinical Science, University of Bergen, Bergen, Norway; Children and Youth Clinic, Haukeland University Hospital, Bergen, Norway
| | | | - Jeffrey Colm Glennon
- Conway Institute for Biomolecular and Biomedical Research, School of Medicine, University College Dublin, Dublin, Ireland.
| | - Jan Haavik
- Department of Biomedicine, University of Bergen, Norway; Division of Psychiatry, Haukeland University Hospital, Norway.
| |
Collapse
|
13
|
Ashcroft FM. KATP Channels and the Metabolic Regulation of Insulin Secretion in Health and Disease: The 2022 Banting Medal for Scientific Achievement Award Lecture. Diabetes 2023; 72:693-702. [PMID: 37815796 PMCID: PMC10202764 DOI: 10.2337/dbi22-0030] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/09/2023] [Accepted: 02/28/2023] [Indexed: 10/11/2023]
Abstract
Diabetes is characterized by elevation of plasma glucose due to an insufficiency of the hormone insulin and is associated with both inadequate insulin secretion and impaired insulin action. The Banting Medal for Scientific Achievement Commemorates the work of Sir Frederick Banting, a member of the team that first used insulin to treat a patient with diabetes almost exactly one hundred years ago on 11 January 1922. This article is based on my Banting lecture of 2022 and concerns the mechanism of glucose-stimulated insulin secretion from pancreatic β-cells, with an emphasis on the metabolic regulation of the KATP channel. This channel plays a central role in insulin release. Its closure in response to metabolically generated changes in the intracellular concentrations of ATP and MgADP stimulates β-cell electrical activity and insulin granule exocytosis. Activating mutations in KATP channel genes that impair the ability of the channel to respond to ATP give rise to neonatal diabetes. Impaired KATP channel regulation may also play a role in type 2 diabetes. I conjecture that KATP channel closure in response to glucose is reduced because of impaired glucose metabolism, which fails to generate a sufficient increase in ATP. Consequently, glucose-stimulated β-cell electrical activity is less. As ATP is also required for insulin granule exocytosis, both reduced exocytosis and less β-cell electrical activity may contribute to the reduction in insulin secretion. I emphasize that what follows is not a definitive review of the topic but a personal account of the contribution of my team to the field that is based on my Banting lecture.
Collapse
Affiliation(s)
- Frances M. Ashcroft
- Department of Physiology, Anatomy, and Genetics, University of Oxford, Oxford, U.K
| |
Collapse
|
14
|
Galderisi A, Kermorvant‐Duchemin E, Daruich A, Bonnard AA, Lapillonne A, Aubelle M, Perrella B, Vial Y, Cave H, Berdugo M, Jarreau P, Polak M, Beltrand J. Early treatment of neonatal diabetes with oral glibenclamide in an extremely preterm infant. JIMD Rep 2023; 64:161-166. [PMID: 36873092 PMCID: PMC9981413 DOI: 10.1002/jmd2.12358] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/22/2022] [Revised: 01/03/2023] [Accepted: 01/04/2023] [Indexed: 01/31/2023] Open
Abstract
Early treatment of neonatal diabetes with sulfonylureas has been proven to produce marked improvements of neurodevelopment, beside the demonstrated efficacy on glycemic control. Several barriers still prevent an early treatment in preterm babies including the limited availability of suitable galenic form of glibenclamide. We adopted oral glibenclamide suspension (Amglidia) for the early treatment of neonatal diabetes due to an homozygous variant of KCNJ11 gene c.10C>T [p.Arg4Cys] in an extremely preterm infant born at 26 + 2 weeks' of gestational age. After ~6 weeks of insulin treatment with a low glucose intake (4.5 g/kg/day), the infant was switched to Amglidia 6 mg/ml diluted in maternal milk, via nasogastric tube (0.2 mg/kg/day) progressively reduced to 0.01 mg/kg/day (after ~3 months). While on glibenclamide, the patient exhibited a mean daily growth of 11 g/kg/day. The treatment was suspended at month 6 of birth (weight 4.9 kg [5th-10th centile], M3 of c.a.) for normalization of glucose profile. During the treatment, the patient exhibited a stable glucose profile within the range of 4-8 mmol/L in the absence of hypo or hyperglycemic episodes with 2-3 blood glucose tests per day. The patient was diagnosed with retinopathy of prematurity Stade II in Zone II without plus disease at 32 weeks, with progressive regression and complete retinal vascularization at 6 months of birth. Amglidia could be regarded as the specific treatment for neonatal diabetes even in preterm babies due to its beneficial effect on the metabolic and neurodevelopmental side.
Collapse
Affiliation(s)
- Alfonso Galderisi
- Hôpital Universitaire Necker‐Enfants Malades, Service d'endocrinologieGynécologie et Diabétologie Pédiatrique Hôpital Necker‐Enfants Malades ParisFrance
- Department of Woman and Child's HealthUniversity of PadovaPadovaItaly
| | - Elsa Kermorvant‐Duchemin
- Department of Neonatal MedicineHôpital Universitaire ‐ Enfants Malades, Université Paris CitéParisFrance
- Inserm, Centre de Recherche des Cordeliers, Sorbonne UniversityParis Cité University, Physiopathology of Ocular Diseases: Therapeutic InnovationsParisFrance
| | - Alejandra Daruich
- Inserm, Centre de Recherche des Cordeliers, Sorbonne UniversityParis Cité University, Physiopathology of Ocular Diseases: Therapeutic InnovationsParisFrance
- Ophthalmology DepartmentNecker‐Enfants Malades University Hospital, Assistance Publique Hôpitaux de Paris, Paris Cité UniversityParisFrance
| | - Adeline Alice Bonnard
- Département de GénétiqueHôpital Universitaire Robert DebréParisFrance
- INSERM UMR_S1131 ‐ Institut de Recherche Saint‐LouisParisFrance
| | - Alexandre Lapillonne
- Hôpital Universitaire Necker‐Enfants Malades, Service de Pédiatrie et Réanimation NéonatalesUniversité Paris CitéParisFrance
| | - Marie‐Stéphanie Aubelle
- Neonatal Intensive Care Unit of Port‐RoyalAPHP. Centre ‐ Université Paris Cité, APHPParisFrance
| | - Bruna Perrella
- Neonatal Intensive Care Unit of Port‐RoyalAPHP. Centre ‐ Université Paris Cité, APHPParisFrance
| | - Yoann Vial
- Département de GénétiqueHôpital Universitaire Robert DebréParisFrance
- INSERM UMR_S1131 ‐ Institut de Recherche Saint‐LouisParisFrance
| | - Héléne Cave
- Département de GénétiqueHôpital Universitaire Robert DebréParisFrance
- INSERM UMR_S1131 ‐ Institut de Recherche Saint‐LouisParisFrance
| | - Marianne Berdugo
- Inserm, Centre de Recherche des Cordeliers, Sorbonne UniversityParis Cité University, Physiopathology of Ocular Diseases: Therapeutic InnovationsParisFrance
| | - Pierre‐Henri Jarreau
- Neonatal Intensive Care Unit of Port‐RoyalAPHP. Centre ‐ Université Paris Cité, APHPParisFrance
| | - Michel Polak
- Hôpital Universitaire Necker‐Enfants Malades, Service d'endocrinologieGynécologie et Diabétologie Pédiatrique Hôpital Necker‐Enfants Malades ParisFrance
- Institut IMAGINE, INSERM U1163ParisFrance
- Institut CochinINSERM U1016ParisFrance
- Centre des maladies endocriniennes rares de la croissance et du développementHôpital universitaire Necker‐Enfants maladesParisFrance
| | - Jacques Beltrand
- Hôpital Universitaire Necker‐Enfants Malades, Service d'endocrinologieGynécologie et Diabétologie Pédiatrique Hôpital Necker‐Enfants Malades ParisFrance
- Institut CochinINSERM U1016ParisFrance
- Centre des maladies endocriniennes rares de la croissance et du développementHôpital universitaire Necker‐Enfants maladesParisFrance
| |
Collapse
|
15
|
Rapini N, Patera PI, Schiaffini R, Ciampalini P, Pampanini V, Cristina MM, Deodati A, Bracaglia G, Porzio O, Ruta R, Novelli A, Mucciolo M, Cianfarani S, Barbetti F. Monogenic diabetes clinic (MDC): 3-year experience. Acta Diabetol 2023; 60:61-70. [PMID: 36178555 PMCID: PMC9813184 DOI: 10.1007/s00592-022-01972-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/30/2022] [Accepted: 09/06/2022] [Indexed: 01/29/2023]
Abstract
AIM In the pediatric diabetes clinic, patients with type 1 diabetes mellitus (T1D) account for more than 90% of cases, while monogenic forms represent about 6%. Many monogenic diabetes subtypes may respond to therapies other than insulin and have chronic diabetes complication prognosis that is different from T1D. With the aim of providing a better diagnostic pipeline and a tailored care for patients with monogenic diabetes, we set up a monogenic diabetes clinic (MDC). METHODS In the first 3 years of activity 97 patients with non-autoimmune forms of hyperglycemia were referred to MDC. Genetic testing was requested for 80 patients and 68 genetic reports were available for review. RESULTS In 58 subjects hyperglycemia was discovered beyond 1 year of age (Group 1) and in 10 before 1 year of age (Group 2). Genetic variants considered causative of hyperglycemia were identified in 25 and 6 patients of Group 1 and 2, respectively, with a pick up rate of 43.1% (25/58) for Group 1 and 60% (6/10) for Group 2 (global pick-up rate: 45.5%; 31/68). When we considered probands of Group 1 with a parental history of hyperglycemia, 58.3% (21/36) had a positive genetic test for GCK or HNF1A genes, while pick-up rate was 18.1% (4/22) in patients with mute family history for diabetes. Specific treatments for each condition were administered in most cases. CONCLUSION We conclude that MDC may contribute to provide a better diabetes care in the pediatric setting.
Collapse
Affiliation(s)
- Novella Rapini
- Diabetology and Growth Disorders Unit, Bambino Gesù Children's Hospital, IRCCS, 00164, Rome, Italy
| | - Patrizia I Patera
- Diabetology and Growth Disorders Unit, Bambino Gesù Children's Hospital, IRCCS, 00164, Rome, Italy
| | - Riccardo Schiaffini
- Diabetology and Growth Disorders Unit, Bambino Gesù Children's Hospital, IRCCS, 00164, Rome, Italy
| | - Paolo Ciampalini
- Diabetology and Growth Disorders Unit, Bambino Gesù Children's Hospital, IRCCS, 00164, Rome, Italy
| | - Valentina Pampanini
- Diabetology and Growth Disorders Unit, Bambino Gesù Children's Hospital, IRCCS, 00164, Rome, Italy
| | - Matteoli M Cristina
- Diabetology and Growth Disorders Unit, Bambino Gesù Children's Hospital, IRCCS, 00164, Rome, Italy
| | - Annalisa Deodati
- Diabetology and Growth Disorders Unit, Bambino Gesù Children's Hospital, IRCCS, 00164, Rome, Italy
| | - Giorgia Bracaglia
- Clinical Laboratory Unit, Bambino Gesù Children's Hospital, Piazza S Onofrio 4, 00165, Rome, Italy
| | - Ottavia Porzio
- Clinical Laboratory Unit, Bambino Gesù Children's Hospital, Piazza S Onofrio 4, 00165, Rome, Italy
- Department of Experimental Medicine, Univerisity of Rome 'Tor Vergata', 00131, Rome, Italy
| | - Rosario Ruta
- Translational Cytogenomics Research Unit, Bambino Gesù Children's Hospital, IRCCS, 00146, Rome, Italy
| | - Antonio Novelli
- Translational Cytogenomics Research Unit, Bambino Gesù Children's Hospital, IRCCS, 00146, Rome, Italy
| | - Mafalda Mucciolo
- Translational Cytogenomics Research Unit, Bambino Gesù Children's Hospital, IRCCS, 00146, Rome, Italy
| | - Stefano Cianfarani
- Diabetology and Growth Disorders Unit, Bambino Gesù Children's Hospital, IRCCS, 00164, Rome, Italy
- Department of Systems Medicine, University of Rome 'Tor Vergata', 00131, Rome, Italy
- Department of Women's and Children's Health, Karolinska Institutet, 17177, Stockholm, Sweden
| | - Fabrizio Barbetti
- Clinical Laboratory Unit, Bambino Gesù Children's Hospital, Piazza S Onofrio 4, 00165, Rome, Italy.
| |
Collapse
|
16
|
Warncke K, Eckert A, Kapellen T, Kummer S, Raile K, Dunstheimer D, Grulich-Henn J, Woelfle J, Wenzel S, Hofer SE, Dost A, Holl RW. Clinical presentation and long-term outcome of patients with KCNJ11/ABCC8 variants: Neonatal diabetes or MODY in the DPV registry from Germany and Austria. Pediatr Diabetes 2022; 23:999-1008. [PMID: 35822653 DOI: 10.1111/pedi.13390] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/10/2022] [Revised: 06/08/2022] [Accepted: 07/10/2022] [Indexed: 11/28/2022] Open
Abstract
OBJECTIVE To describe clinical presentation/longterm outcomes of patients with ABCC8/KCNJ11 variants in a large cohort of patients with diabetes. RESEARCH DESIGN AND METHODS We analyzed patients in the Diabetes Prospective Follow-up (DPV) registry with diabetes and pathogenic variants in the ABCC8/KCNJ11 genes. For patients with available data at three specific time-points-classification as K+ -channel variant, 2-year follow-up and most recent visit-the longitudinal course was evaluated in addition to the cross-sectional examination. RESULTS We identified 93 cases with ABCC8 (n = 54)/KCNJ11 (n = 39) variants, 63 of them with neonatal diabetes. For 22 patients, follow-up data were available. Of these, 19 were treated with insulin at diagnosis, and the majority of patients was switched to sulfonylurea thereafter. However, insulin was still administered in six patients at the most recent visit. Patients were in good metabolic control with a median (IQR) A1c level of 6.0% (5.5-6.7), that is, 42.1 (36.6-49.7) mmol/mol after 2 years and 6.7% (6.0-8.0), that is, 49.7 (42.1-63.9) mmol/mol at the most recent visit. Five patients were temporarily without medication for a median (IQR) time of 4.0 (3.5-4.4) years, while two other patients continue to be off medication at the last follow-up. CONCLUSIONS ABCC8/KCNJ11 variants should be suspected in children diagnosed with diabetes below the age of 6 months, as a high percentage can be switched from insulin to oral antidiabetic drugs. Thirty patients with diabetes due to pathogenic variants of ABCC8 or KCNJ11 were diagnosed beyond the neonatal period. Patients maintain good metabolic control even after a diabetes duration of up to 11 years.
Collapse
Affiliation(s)
- Katharina Warncke
- Department of Pediatrics, Kinderklinik München Schwabing, Technical University of Munich School of Medicine, Munich, Germany
| | - Alexander Eckert
- Institute of Epidemiology and Medical Biometry, ZIBMT, University of Ulm, Ulm, Germany.,German Center for Diabetes Research (DZD), Neuherberg, Germany
| | - Thomas Kapellen
- Hospital for Children and Adolescents, University of Leipzig, Leipzig, Germany.,Median Children's Hospital "Am Nicolausholz", Bad Kösen, Germany
| | - Sebastian Kummer
- Department of General Pediatrics, Neonatology and Pediatric Cardiology, University Children's Hospital, Medical Faculty, Heinrich-Heine University, Duesseldorf, Germany
| | - Klemens Raile
- Department of Paediatric Endocrinology and Diabetology, Charité, Berlin, Germany
| | | | - Jürgen Grulich-Henn
- University Children's Hospital, University of Heidelberg, Heidelberg, Germany
| | - Joachim Woelfle
- Department of Pediatrics and Adolescent Medicine, University Hospital Erlangen, Friedrich-Alexander-Universität Erlangen-Nürnberg, Erlangen, Germany
| | - Sandra Wenzel
- Katholisches Kinderkrankenhaus Wilhelmstift, Hamburg, Germany
| | - Sabine E Hofer
- Department of Pediatrics 1, Medical University of Innsbruck, Innsbruck, Austria
| | - Axel Dost
- Department of Pediatrics, University Hospital Jena, Jena, Germany
| | - Reinhard W Holl
- Institute of Epidemiology and Medical Biometry, ZIBMT, University of Ulm, Ulm, Germany.,German Center for Diabetes Research (DZD), Neuherberg, Germany
| |
Collapse
|
17
|
Bonnefond A, Semple RK. Achievements, prospects and challenges in precision care for monogenic insulin-deficient and insulin-resistant diabetes. Diabetologia 2022; 65:1782-1795. [PMID: 35618782 PMCID: PMC9522735 DOI: 10.1007/s00125-022-05720-7] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/01/2021] [Accepted: 02/01/2022] [Indexed: 01/19/2023]
Abstract
Integration of genomic and other data has begun to stratify type 2 diabetes in prognostically meaningful ways, but this has yet to impact on mainstream diabetes practice. The subgroup of diabetes caused by single gene defects thus provides the best example to date of the vision of 'precision diabetes'. Monogenic diabetes may be divided into primary pancreatic beta cell failure, and primary insulin resistance. In both groups, clear examples of genotype-selective responses to therapy have been advanced. The benign trajectory of diabetes due to pathogenic GCK mutations, and the sulfonylurea-hyperresponsiveness conferred by activating KCNJ11 or ABCC8 mutations, or loss-of-function HNF1A or HNF4A mutations, often decisively guide clinical management. In monogenic insulin-resistant diabetes, subcutaneous leptin therapy is beneficial in some severe lipodystrophy. Increasing evidence also supports use of 'obesity therapies' in lipodystrophic people even without obesity. In beta cell diabetes the main challenge is now implementation of the precision diabetes vision at scale. In monogenic insulin-resistant diabetes genotype-specific benefits are proven in far fewer patients to date, although further genotype-targeted therapies are being evaluated. The conceptual paradigm established by the insulin-resistant subgroup with 'adipose failure' may have a wider influence on precision therapy for common type 2 diabetes, however. For all forms of monogenic diabetes, population-wide genome sequencing is currently forcing reappraisal of the importance assigned to pathogenic mutations when gene sequencing is uncoupled from prior suspicion of monogenic diabetes.
Collapse
Affiliation(s)
- Amélie Bonnefond
- Inserm UMR1283, CNRS UMR8199, European Genomic Institute for Diabetes (EGID), Institut Pasteur de Lille, Lille University Hospital, Lille, France.
- Université de Lille, Lille, France.
- Department of Metabolism, Imperial College London, London, UK.
| | - Robert K Semple
- Centre for Cardiovascular Science, University of Edinburgh, Edinburgh, UK.
- MRC Human Genetics Unit, Institute of Genetics and Cancer, University of Edinburgh, Edinburgh, UK.
| |
Collapse
|
18
|
de Gouveia Buff Passone C, Giani E, Vaivre-Douret L, Kariyawasam D, Berdugo M, Garcin L, Beltrand J, Bernardo WM, Polak M. Sulfonylurea for improving neurological features in neonatal diabetes: A systematic review and meta-analyses. Pediatr Diabetes 2022; 23:675-692. [PMID: 35657808 DOI: 10.1111/pedi.13376] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/09/2022] [Revised: 05/19/2022] [Accepted: 05/31/2022] [Indexed: 11/29/2022] Open
Abstract
OBJECTIVE In monogenic diabetes due to KCNJ11 and ABCC8 mutations that impair KATP- channel function, sulfonylureas improve long-term glycemic control. Although KATP channels are extensively expressed in the brain, the effect of sulfonylureas on neurological function has varied widely. We evaluated published evidence about potential effects of sulfonylureas on neurological features, especially epilepsy, cognition, motor function and muscular tone, visuo-motor integration, and attention deficits in children and adults with KCNJ11 and ABCC8-related neonatal-onset diabetes mellitus. RESEARCH DESIGN AND METHODS We conducted a systematic review and meta-analyses of the literature (PROSPERO, CRD42021254782), including individual-patient data, according to PRISMA, using RevMan software. We also graded the level of evidence. RESULTS We selected 34 of 776 publications. The evaluation of global neurological function before and after sulfonylurea (glibenclamide) treatment in 114 patients yielded a risk difference (RD) of 58% (95%CI, 43%-74%; I2 = 54%) overall and 73% (95%CI, 32%-113%; I2 = 0%) in the subgroup younger than 4 years; the level of evidence was moderate and high, respectively. EEG studies of epilepsy showed a RD of 56% (95%CI, 23%-89%; I2 = 34%) in patients with KCNJ11 mutations, with a high quality of evidence. For hypotonia and motor function, the RDs were 90% (95%CI, 69%-111%; I2 = 0%) and 73% (95%CI, 35%-111%; I2 = 0%), respectively, with a high level of evidence. CONCLUSIONS Glibenclamide significantly improved neurological abnormalities in patients with neonatal-onset diabetes due to KCNJ11 or ABCC8 mutations. Hypotonia was the symptom that responded best. Earlier treatment initiation was associated with greater benefits.
Collapse
Affiliation(s)
- Caroline de Gouveia Buff Passone
- Pediatric Endocrinology, Gynaecology and Diabetology, Centre de Référence des Pathologies Gynécologiques Rares et des Maladies Endocriniennes Rares de la Croissance et du Développement, Hôpital Universitaire Necker Enfants Malades, Université de Paris, Paris, France.,Department of Endocrinology, Metabolism and Diabetes, Inserm U1016, Cochin Institute, Paris, France.,Pediatric Endocrinology Department, University of Sao Paulo, Sao Paulo, Brazil
| | - Elisa Giani
- Pediatric Endocrinology, Gynaecology and Diabetology, Centre de Référence des Pathologies Gynécologiques Rares et des Maladies Endocriniennes Rares de la Croissance et du Développement, Hôpital Universitaire Necker Enfants Malades, Université de Paris, Paris, France.,Department of Endocrinology, Metabolism and Diabetes, Inserm U1016, Cochin Institute, Paris, France.,Department of Biomedical Sciences, Humanitas University, Milan, Italy
| | - Laurence Vaivre-Douret
- Faculty of Health, Department of Medicine Paris Descartes, Université de Paris, and Institut Universitaire de France (IUF), Paris, France.,National Institute of Health and Medical Research (INSERM UMR 1018-CESP), Faculty of Medicine, University of Paris-Saclay, UVSQ, Villejuif, France.,Imagine Institute, Paris, France
| | - Dulanjalee Kariyawasam
- Pediatric Endocrinology, Gynaecology and Diabetology, Centre de Référence des Pathologies Gynécologiques Rares et des Maladies Endocriniennes Rares de la Croissance et du Développement, Hôpital Universitaire Necker Enfants Malades, Université de Paris, Paris, France.,Imagine Institute, Paris, France
| | - Marianne Berdugo
- Physiopathology of Ocular Diseases: Therapeutic Innovations, Sorbonne-Université and Université de Paris, Inserm UMRS 1138, Paris, France
| | - Laure Garcin
- Pediatric Endocrinology, Gynaecology and Diabetology, Centre de Référence des Pathologies Gynécologiques Rares et des Maladies Endocriniennes Rares de la Croissance et du Développement, Hôpital Universitaire Necker Enfants Malades, Université de Paris, Paris, France
| | - Jacques Beltrand
- Pediatric Endocrinology, Gynaecology and Diabetology, Centre de Référence des Pathologies Gynécologiques Rares et des Maladies Endocriniennes Rares de la Croissance et du Développement, Hôpital Universitaire Necker Enfants Malades, Université de Paris, Paris, France.,Department of Endocrinology, Metabolism and Diabetes, Inserm U1016, Cochin Institute, Paris, France.,Imagine Institute, Paris, France
| | | | - Michel Polak
- Pediatric Endocrinology, Gynaecology and Diabetology, Centre de Référence des Pathologies Gynécologiques Rares et des Maladies Endocriniennes Rares de la Croissance et du Développement, Hôpital Universitaire Necker Enfants Malades, Université de Paris, Paris, France.,Department of Endocrinology, Metabolism and Diabetes, Inserm U1016, Cochin Institute, Paris, France.,Imagine Institute, Paris, France
| |
Collapse
|
19
|
Colclough K, van Heugten R, Patel K. An update on the diagnosis and management of monogenic diabetes. PRACTICAL DIABETES 2022. [DOI: 10.1002/pdi.2410] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
Affiliation(s)
- Kevin Colclough
- Exeter Genomics Laboratory, Royal Devon & Exeter NHS Foundation Trust Exeter UK
| | - Rachel van Heugten
- Exeter Genomics Laboratory, Royal Devon & Exeter NHS Foundation Trust Exeter UK
| | - Kashyap Patel
- Institute of Biomedical and Clinical Science University of Exeter Medical School Exeter UK
| |
Collapse
|
20
|
Barbetti F, Rapini N, Schiaffini R, Bizzarri C, Cianfarani S. The application of precision medicine in monogenic diabetes. Expert Rev Endocrinol Metab 2022; 17:111-129. [PMID: 35230204 DOI: 10.1080/17446651.2022.2035216] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/05/2021] [Accepted: 01/25/2022] [Indexed: 12/13/2022]
Abstract
INTRODUCTION Monogenic diabetes, a form of diabetes mellitus, is caused by a mutation in a single gene and may account for 1-2% of all clinical forms of diabetes. To date, more than 40 loci have been associated with either isolated or syndromic monogenic diabetes. AREAS COVERED While the request of a genetic test is mandatory for cases with diabetes onset in the first 6 months of life, a decision may be difficult for childhood or adolescent diabetes. In an effort to assist the clinician in this task, we have grouped monogenic diabetes genes according to the age of onset (or incidental discovery) of hyperglycemia and described the additional clinical features found in syndromic diabetes. The therapeutic options available are reviewed. EXPERT OPINION Technical improvements in DNA sequencing allow for rapid, simultaneous analysis of all genes involved in monogenic diabetes, progressively shrinking the area of unsolved cases. However, the complexity of the analysis of genetic data requires close cooperation between the geneticist and the diabetologist, who should play a proactive role by providing a detailed clinical phenotype that might match a specific disease gene.
Collapse
Affiliation(s)
- Fabrizio Barbetti
- Department of Experimental Medicine, University of Rome Tor Vergata, Rome, Italy
- Diabetology and Growth Disorders Unit, Bambino Gesù Children's Hospital, IRCCS, Rome, Italy
| | - Novella Rapini
- Diabetology and Growth Disorders Unit, Bambino Gesù Children's Hospital, IRCCS, Rome, Italy
| | - Riccardo Schiaffini
- Diabetology and Growth Disorders Unit, Bambino Gesù Children's Hospital, IRCCS, Rome, Italy
| | - Carla Bizzarri
- Diabetology and Growth Disorders Unit, Bambino Gesù Children's Hospital, IRCCS, Rome, Italy
| | - Stefano Cianfarani
- Department of Systems Medicine, University of Rome Tor Vergata, Rome, Italy
- Dipartimento Pediatrico Universitario Ospedaliero, IRCCS "Bambino Gesù" Children's Hospital, Rome, Italy
- Department of Women's and Children Health, Karolisnska Institute and University Hospital, Sweden
| |
Collapse
|
21
|
Hammoud B, Greeley SAW. Growth and development in monogenic forms of neonatal diabetes. Curr Opin Endocrinol Diabetes Obes 2022; 29:65-77. [PMID: 34864759 PMCID: PMC11056188 DOI: 10.1097/med.0000000000000699] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
Abstract
PURPOSE OF REVIEW Neonatal diabetes mellitus (NDM) is a rare disorder in which 80-85% of infants diagnosed under 6 months of age will be found to have an underlying monogenic cause. This review will summarize what is known about growth and neurodevelopmental difficulties among individuals with various forms of NDM. RECENT FINDINGS Patients with NDM often have intrauterine growth restriction and/or low birth weight because of insulin deficiency in utero and the severity and likelihood of ongoing growth concerns after birth depends on the specific cause. A growing list of rare recessive causes of NDM are associated with neurodevelopmental and/or growth problems that can either be related to direct gene effects on brain development, or may be related to a variety of co-morbidities. The most common form of NDM results in spectrum of neurological disability due to expression of mutated KATP channels throughout the brain. SUMMARY Monogenic causes of neonatal diabetes are characterized by variable degree of restriction of growth in utero because of deficiency of insulin that depends on the specific gene cause. Many forms also include a spectrum of neurodevelopmental disability because of mutation-related effects on brain development. Longer term study is needed to clarify longitudinal effects on growth into adulthood.
Collapse
Affiliation(s)
- Batoul Hammoud
- Section of Adult and Pediatric Endocrinology, Diabetes, and Metabolism, and Kovler Diabetes Center, University of Chicago, Chicago, Illinois, USA
| | | |
Collapse
|
22
|
Cacciatore M, Grasso EA, Tripodi R, Chiarelli F. Impact of glucose metabolism on the developing brain. Front Endocrinol (Lausanne) 2022; 13:1047545. [PMID: 36619556 PMCID: PMC9816389 DOI: 10.3389/fendo.2022.1047545] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/18/2022] [Accepted: 12/13/2022] [Indexed: 12/24/2022] Open
Abstract
Glucose is the most important substrate for proper brain functioning and development, with an increased glucose consumption in relation to the need of creating new brain structures and connections. Therefore, alterations in glucose homeostasis will inevitably be associated with changes in the development of the Nervous System. Several studies demonstrated how the alteration of glucose homeostasis - both hyper and hypoglycemia- may interfere with the development of brain structures and cognitivity, including deficits in intelligence quotient, anomalies in learning and memory, as well as differences in the executive functions. Importantly, differences in brain structure and functionality were found after a single episode of diabetic ketoacidosis suggesting the importance of glycemic control and stressing the need of screening programs for type 1 diabetes to protect children from this dramatic condition. The exciting progresses of the neuroimaging techniques such as diffusion tensor imaging, has helped to improve the understanding of the effects, outcomes and mechanisms underlying brain changes following dysglycemia, and will lead to more insights on the physio-pathological mechanisms and related neurological consequences about hyper and hypoglycemia.
Collapse
|
23
|
Li J, Wang X, Mao H, Wen L, Deng A, Li Y, Zhang H, Liu C. Precision therapy for three Chinese families with maturity-onset diabetes of the young (MODY12). Front Endocrinol (Lausanne) 2022; 13:858096. [PMID: 35992135 PMCID: PMC9381955 DOI: 10.3389/fendo.2022.858096] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/22/2022] [Accepted: 07/13/2022] [Indexed: 11/17/2022] Open
Abstract
Maturity-onset diabetes of the young (MODY) is rare monogenic diabetes. However, MODY is often undiagnosed or misdiagnosed. In this study, we aimed to investigate the pathogenic gene for diabetes and provide precise treatment for diabetes patients in three families. Three families with suspected MODY were enrolled and screened for germline mutations using Whole exome sequencing (WES). Candidate pathogenic variants were validated in other family members and non-related healthy controls. Three heterozygous missense mutations in the ABCC8 gene (NM_001287174), c.1555 C>T (p.R519C), c.3706 A>G (p.I1236V), and c.2885 C>T (p.S962L) were found in families A, B, and C, respectively. All mutation sites cosegregated with diabetes, were predicted to be harmful by bioinformatics and were not found in non-related healthy controls. Two probands (onset ages, 8 and 12 years) were sensitive to glimepiride. However, an insufficient dose (2 mg/day) led to ketoacidosis. When the dosage of glimepiride was increased to 4 mg/day, blood sugar remained under control. A dose of 4 mg glimepiride daily also effectively controlled blood sugar in an adult patient 25-year-old. In addition, all patients were sensitive to liraglutide, which could control blood sugar better. These data suggest that ABCC8 was the pathogenic gene in three families with diabetes. Glimepiride (2 mg/day) was not effective in controlling blood sugar in children with ABCC8 mutations, however, 4 mg/daily glimepiride was effective in both adults and children. Moreover, liraglutide was effective in controlling blood sugar in both adults and children with ABCC8 mutations.
Collapse
Affiliation(s)
- Juyi Li
- Department of Pharmacy, The Central Hospital of Wuhan, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
- *Correspondence: Juyi Li, ; Yarong Li, ; Hongmei Zhang, ; Chao Liu,
| | - Xiufang Wang
- Department of Pain, The Central Hospital of Wuhan, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Huihui Mao
- Department of Nephrology, The Central Hospital of Wuhan, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Li Wen
- Department of Traditional Chinese Medicine and Ethnic Medicine, Guangxi Institute for Food and Drug Control, Nanning, China
| | - Aiping Deng
- Department of Pharmacy, The Central Hospital of Wuhan, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Yarong Li
- Department of Endocrinology, The Central Hospital of Wuhan, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
- *Correspondence: Juyi Li, ; Yarong Li, ; Hongmei Zhang, ; Chao Liu,
| | - Hongmei Zhang
- Department of Endocrinology, The Central Hospital of Wuhan, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
- *Correspondence: Juyi Li, ; Yarong Li, ; Hongmei Zhang, ; Chao Liu,
| | - Chao Liu
- Hubei Key Laboratory of Diabetes and Angiopathy, Hubei University of Science and Technology, Xianning, China
- *Correspondence: Juyi Li, ; Yarong Li, ; Hongmei Zhang, ; Chao Liu,
| |
Collapse
|
24
|
Ngoc CTB, Dung VC, De Franco E, Lan NN, Thao BP, Khanh NN, Flanagan SE, Craig ME, Hoang NH, Dien TM. Genetic Etiology of Neonatal Diabetes Mellitus in Vietnamese Infants and Characteristics of Those With INS Gene Mutations. Front Endocrinol (Lausanne) 2022; 13:866573. [PMID: 35518939 PMCID: PMC9063464 DOI: 10.3389/fendo.2022.866573] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/31/2022] [Accepted: 03/09/2022] [Indexed: 11/13/2022] Open
Abstract
BACKGROUND Neonatal diabetes mellitus (NDM) is a rare (1:90,000 newborns) but potentially devastating metabolic disorder characterized by hyperglycemia combined with low levels of insulin. Dominantly-acting insulin (INS) gene mutations cause permanent NDM through single amino acid changes in the protein sequence leading to protein misfolding, which is retained within the endoplasmic reticulum (ER), causing ER stress and β-cell apoptosis. Over 90 dominantly-acting INS gene mutations have been identified in individuals with permanent NDM. PATIENTS AND METHODS The study included 70 infants diagnosed with NDM in the first year of life between May 2008 and May 2021 at the Vietnam National Children's Hospital. Sequencing analysis of all the genes known to cause NDM was performed at the Exeter Genomic Laboratory, UK. Clinical characteristics, molecular genetics, and annual data relating to glycemic control (HbA1c) and severe hypoglycemia of those with INS mutations were collected. The main outcomes of interest were HbA1c, daily insulin dose, growth, and cognitive/motor development. RESULTS Fifty-five of 70 infants (78.5%) with NDM harbored a mutation in a known disease-causing gene and of these, 10 had six different de novo heterozygous INS mutations. Mean gestational age was 38.1 ± 2.5 weeks and mean birth weight was 2.8 ± 0.5 g. They presented with NDM at 20 ± 17 weeks of age; 6/10 had diabetic ketoacidosis with pH 7.13 ± 0.26; plasma glucose level 32.6 ± 14.3 mmol/l and HbA1C 81 ± 15% mmol/mol. After 5.5 ± 4.8 years of insulin treatment, 9/10 have normal development with a developmental quotient of 80-100% and HbA1C 64 ± 7.3 mmol/mol, 9/10 have normal height, weight, and BMI on follow-up. CONCLUSIONS We report a series of Vietnamese NDM cases with dominant INS mutations. INS mutations are the third commonest cause of permanent NDM. We recommend screening of the INS gene in all children diagnosed with diabetes in the first year of life.
Collapse
Affiliation(s)
- Can Thi Bich Ngoc
- The Center of Endocrinology, Metabolism, Genetics, and Molecular Therapy, Vietnam National Children’s Hospital, Hanoi, Vietnam
- Pediatric Department, Hanoi Medical University, Hanoi, Vietnam
| | - Vu Chi Dung
- The Center of Endocrinology, Metabolism, Genetics, and Molecular Therapy, Vietnam National Children’s Hospital, Hanoi, Vietnam
| | - Elisa De Franco
- Institute of Biomedical and Clinical Science, College of Medicine and Health, University of Exeter, Exeter, United Kingdom
| | - Nguyen Ngoc Lan
- Institute of Genome Research, Vietnam Academy of Science and Technology (VAST), Hanoi, Vietnam
| | - Bui Phuong Thao
- The Center of Endocrinology, Metabolism, Genetics, and Molecular Therapy, Vietnam National Children’s Hospital, Hanoi, Vietnam
| | - Nguyen Ngoc Khanh
- The Center of Endocrinology, Metabolism, Genetics, and Molecular Therapy, Vietnam National Children’s Hospital, Hanoi, Vietnam
| | - Sarah E. Flanagan
- Institute of Biomedical and Clinical Science, College of Medicine and Health, University of Exeter, Exeter, United Kingdom
| | - Maria E. Craig
- Institute of Endocrinology and Diabetes, The Children’s Hospital at Westmead/Discipline of Child and Adolescent Health, University of Sydney, Sydney, NSW, Australia
- School of Clinical Medicine, University of New South Wales Medicine and Health, Discipline of Paediatrics and Child Health, Sydney, NSW, Australia
| | - Nguyen Huy Hoang
- Institute of Genome Research, Vietnam Academy of Science and Technology (VAST), Hanoi, Vietnam
| | - Tran Minh Dien
- The Center of Endocrinology, Metabolism, Genetics, and Molecular Therapy, Vietnam National Children’s Hospital, Hanoi, Vietnam
- *Correspondence: Tran Minh Dien,
| |
Collapse
|
25
|
McClenaghan C, Rapini N, De Rose DU, Gao J, Roeglin J, Bizzarri C, Schiaffini R, Tiberi E, Mucciolo M, Deodati A, Perri A, Vento G, Barbetti F, Nichols CG, Cianfarani S. Sulfonylurea-Insensitive Permanent Neonatal Diabetes Caused by a Severe Gain-of-Function Tyr330His Substitution in Kir6.2. Horm Res Paediatr 2022; 95:215-223. [PMID: 34999583 PMCID: PMC9259755 DOI: 10.1159/000521858] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/27/2021] [Accepted: 12/02/2021] [Indexed: 01/09/2023] Open
Abstract
BACKGROUND/AIMS Mutations in KCNJ11, the gene encoding the Kir6.2 subunit of pancreatic and neuronal KATP channels, are associated with a spectrum of neonatal diabetes diseases. METHODS Variant screening was used to identify the cause of neonatal diabetes, and continuous glucose monitoring was used to assess effectiveness of sulfonylurea treatment. Electrophysiological analysis of variant KATP channel function was used to determine molecular basis. RESULTS We identified a previously uncharacterized KCNJ11 mutation, c.988T>C [p.Tyr330His], in an Italian child diagnosed with sulfonylurea-resistant permanent neonatal diabetes and developmental delay (intermediate DEND). Functional analysis of recombinant KATP channels reveals that this mutation causes a drastic gain-of-function, due to a reduction in ATP inhibition. Further, we demonstrate that the Tyr330His substitution causes a significant decrease in sensitivity to the sulfonylurea, glibenclamide. CONCLUSIONS In this subject, the KCNJ11 (c.988T>C) mutation provoked neonatal diabetes, with mild developmental delay, which was insensitive to correction by sulfonylurea therapy. This is explained by the molecular loss of sulfonylurea sensitivity conferred by the Tyr330His substitution and highlights the need for molecular analysis of such mutations.
Collapse
Affiliation(s)
- Conor McClenaghan
- Center for the Investigation of Membrane Excitability Diseases,Department of Cell Biology and Physiology, Washington University School of Medicine, St. Louis, MO 63110, USA
| | - Novella Rapini
- Dipartimento Pediatrico Universitario Ospedaliero, IRCCS “Bambino Gesù” Children’s Hospital, Piazza S. Onofrio 4, 00164 Rome, Italy
| | - Domenico Umberto De Rose
- Neonatal Intensive Care Unit, Medical and Surgical Department of Fetus - Newborn - Infant, “Bambino Gesù” Children’s Hospital IRCCS, Rome, Italy,Neonatal Intensive Care Unit, Department of Woman and Child Health and Public Health, Fondazione Policlinico Universitario “Agostino Gemelli” IRCCS, Rome, Italy
| | - Jian Gao
- Center for the Investigation of Membrane Excitability Diseases,Department of Cell Biology and Physiology, Washington University School of Medicine, St. Louis, MO 63110, USA
| | - Jacob Roeglin
- Center for the Investigation of Membrane Excitability Diseases,Department of Cell Biology and Physiology, Washington University School of Medicine, St. Louis, MO 63110, USA
| | - Carla Bizzarri
- Dipartimento Pediatrico Universitario Ospedaliero, IRCCS “Bambino Gesù” Children’s Hospital, Piazza S. Onofrio 4, 00164 Rome, Italy
| | - Riccardo Schiaffini
- Dipartimento Pediatrico Universitario Ospedaliero, IRCCS “Bambino Gesù” Children’s Hospital, Piazza S. Onofrio 4, 00164 Rome, Italy
| | - Eloisa Tiberi
- Neonatal Intensive Care Unit, Department of Woman and Child Health and Public Health, Fondazione Policlinico Universitario “Agostino Gemelli” IRCCS, Rome, Italy
| | - Mafalda Mucciolo
- Genetics and Rare Disease Research Division, Bambino Gesù Pediatric Hospital, Rome, Italy
| | - Annalisa Deodati
- Dipartimento Pediatrico Universitario Ospedaliero, IRCCS “Bambino Gesù” Children’s Hospital, Piazza S. Onofrio 4, 00164 Rome, Italy
| | - Alessandro Perri
- Neonatal Intensive Care Unit, Department of Woman and Child Health and Public Health, Fondazione Policlinico Universitario “Agostino Gemelli” IRCCS, Rome, Italy
| | - Giovanni Vento
- Neonatal Intensive Care Unit, Department of Woman and Child Health and Public Health, Fondazione Policlinico Universitario “Agostino Gemelli” IRCCS, Rome, Italy,Università Cattolica del Sacro Cuore, Rome, Italy
| | - Fabrizio Barbetti
- Dipartimento Pediatrico Universitario Ospedaliero, IRCCS “Bambino Gesù” Children’s Hospital, Piazza S. Onofrio 4, 00164 Rome, Italy,Department of Experimental Medicine, University of Rome Tor Vergata, Via Montpellier 1, 00131 Rome, Italy
| | - Colin G. Nichols
- Center for the Investigation of Membrane Excitability Diseases,Department of Cell Biology and Physiology, Washington University School of Medicine, St. Louis, MO 63110, USA
| | - Stefano Cianfarani
- Dipartimento Pediatrico Universitario Ospedaliero, IRCCS “Bambino Gesù” Children’s Hospital, Piazza S. Onofrio 4, 00164 Rome, Italy,Department of Systems Medicine, University of Rome Tor Vergata, Rome, Italy,Department of Women’s and Children’s Health, Karolinska Institute and University Hospital, Stockholm, Sweden
| |
Collapse
|
26
|
Laimon W, El-Ziny M, El-Hawary A, Elsharkawy A, Salem NAB, Aboelenin HM, Awad MH, Flanagan SE, De Franco E. Genetic and clinical heterogeneity of permanent neonatal diabetes mellitus: a single tertiary centre experience. Acta Diabetol 2021; 58:1689-1700. [PMID: 34426871 DOI: 10.1007/s00592-021-01788-6] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/28/2021] [Accepted: 08/13/2021] [Indexed: 11/25/2022]
Abstract
AIMS Neonatal diabetes mellitus (NDM) is a rare disease where diabetes presents during the first six months of life. There are two types of this disorder: permanent neonatal diabetes (PNDM) and transient neonatal diabetes mellitus (TNDM). PNDM occurs due to mutations in genes involved in either beta-cell survival, insulin regulation, and secretion. This study aims to define the genetic aetiology and clinical phenotypes of PNDM in a large Egyptian cohort from a single centre. METHODS Patients with PNDM who were diagnosed, treated, or referred for follow-up between January 2002 and January 2021 were identified and clinically phenotyped. All patients were tested for mutations in EIF2AK3, KCNJ11, ABCC8, INS, FOXP3, GATA4, GATA6, GCK, GLIS3, HNF1B, IER3IP1, PDX1, PTF1A, NEUROD1, NEUROG3, NKX2-2, RFX6, SLC2A2, SLC19A2, STAT3, WFS1, ZFP57 using targeted next-generation sequencing (NGS) panel. INSR gene mutation was tested in one patient who showed clinical features of insulin resistance. RESULTS Twenty-nine patients from twenty-six families were diagnosed with PNDM. Pathogenic variants were identified in 17/29 patients (59%). EIF2AK3, INS, and KATP channel mutations were the commonest causes with frequency of 17%, 17%, and 14%, respectively. Patients with ABBC8 and KCNJ11 mutations were successfully shifted to sulfonylureas (SU). Paired data of glycosylated haemoglobin before and after SU transfer showed improved glycaemic control; 9.6% versus 7.1%, P = 0.041. CONCLUSIONS PNDM is a heterogenous disease with variable genotypes and clinical phenotypes among Egyptian patients. EIF2AK3, INS, ABCC8, and KCNJ11 mutations were the commonest causes of PNDM in the study cohort. All patients with KATP channel mutations were effectively treated with glyburide, reflecting the fact that genetic testing for patients with NDM is not only important for diagnosis but also for treatment plan and prognosis.
Collapse
Affiliation(s)
- Wafaa Laimon
- Pediatric Endocrinology and Diabetes Unit, Department of Pediatrics, Mansoura Faculty of Medicine, Mansoura University, Mansoura University Children's Hospital, Gomhoria Street, Mansoura, Dakhlia, 35516, Egypt.
| | - Magdy El-Ziny
- Pediatric Endocrinology and Diabetes Unit, Department of Pediatrics, Mansoura Faculty of Medicine, Mansoura University, Mansoura University Children's Hospital, Gomhoria Street, Mansoura, Dakhlia, 35516, Egypt
| | - Amany El-Hawary
- Pediatric Endocrinology and Diabetes Unit, Department of Pediatrics, Mansoura Faculty of Medicine, Mansoura University, Mansoura University Children's Hospital, Gomhoria Street, Mansoura, Dakhlia, 35516, Egypt
| | - Ashraf Elsharkawy
- Pediatric Endocrinology and Diabetes Unit, Department of Pediatrics, Mansoura Faculty of Medicine, Mansoura University, Mansoura University Children's Hospital, Gomhoria Street, Mansoura, Dakhlia, 35516, Egypt
| | - Nanees Abdel-Badie Salem
- Pediatric Endocrinology and Diabetes Unit, Department of Pediatrics, Mansoura Faculty of Medicine, Mansoura University, Mansoura University Children's Hospital, Gomhoria Street, Mansoura, Dakhlia, 35516, Egypt
| | - Hadil Mohamed Aboelenin
- Pediatric Endocrinology and Diabetes Unit, Department of Pediatrics, Mansoura Faculty of Medicine, Mansoura University, Mansoura University Children's Hospital, Gomhoria Street, Mansoura, Dakhlia, 35516, Egypt
| | - Mohammad Hosny Awad
- Pediatric Endocrinology and Diabetes Unit, Department of Pediatrics, Mansoura Faculty of Medicine, Mansoura University, Mansoura University Children's Hospital, Gomhoria Street, Mansoura, Dakhlia, 35516, Egypt
| | - Sarah E Flanagan
- Institute of Biomedical and Clinical Science, University of Exeter, Exeter, UK
| | - Elisa De Franco
- Institute of Biomedical and Clinical Science, University of Exeter, Exeter, UK
| |
Collapse
|
27
|
Nicht immer Typ 1 – seltene Diabetesformen bei Kindern. Monatsschr Kinderheilkd 2021. [DOI: 10.1007/s00112-021-01238-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/20/2022]
|
28
|
Day JO, Mullin S. The Genetics of Parkinson's Disease and Implications for Clinical Practice. Genes (Basel) 2021; 12:genes12071006. [PMID: 34208795 PMCID: PMC8304082 DOI: 10.3390/genes12071006] [Citation(s) in RCA: 106] [Impact Index Per Article: 26.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2021] [Revised: 06/21/2021] [Accepted: 06/28/2021] [Indexed: 12/17/2022] Open
Abstract
The genetic landscape of Parkinson’s disease (PD) is characterised by rare high penetrance pathogenic variants causing familial disease, genetic risk factor variants driving PD risk in a significant minority in PD cases and high frequency, low penetrance variants, which contribute a small increase of the risk of developing sporadic PD. This knowledge has the potential to have a major impact in the clinical care of people with PD. We summarise these genetic influences and discuss the implications for therapeutics and clinical trial design.
Collapse
Affiliation(s)
- Jacob Oliver Day
- Faculty of Health, University of Plymouth, Plymouth PL4 8AA, UK;
| | - Stephen Mullin
- Faculty of Health, University of Plymouth, Plymouth PL4 8AA, UK;
- Department of Clinical and Movement Neurosciences, University College London Institute of Neurology, London WC1N 3BG, UK
- Correspondence:
| |
Collapse
|