1
|
Qiang Y, Lu X, Zhang Y. Association between dietary patterns and glycemic control in type II diabetes mellitus patients. Aten Primaria 2025; 57:103075. [PMID: 39288729 PMCID: PMC11421999 DOI: 10.1016/j.aprim.2024.103075] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/12/2024] [Revised: 06/26/2024] [Accepted: 06/27/2024] [Indexed: 09/19/2024] Open
Abstract
OBJECTIVE To assess the association between dietary patterns and glycemic control among patients with type II diabetes mellitus (T2DM). DESIGN A cross-sectional study. SITE: The 2015-2018 National Health and Nutrition Examination Survey (NHANES). PARTICIPANTS A total of 1646 T2DM patients were included, of whom 854 were hyperglycemia. METHODS Main dietary patterns were identified using the sparse principal components analysis (SPCA). Logistic regression analysis was applied to investigate the association between each dietary pattern and the risk of hyperglycemia with odds ratios (OR) and 95% confidence intervals (CI). SPCA analysis yielded five significant principal components (PC), which represented five main dietary patterns. RESULTS PC1, characterized by a high intake of sweets, red meat and processed meat, was associated with higher odds of hyperglycemia in patients who underwent hyperglycemic drug or insulin treatments (OR: 1.71, 95% CI: 1.10-2.64). PC5, characterized by high in red meat, while low in coffee, sweets, and high-fat dairy consumption. The relationship between the PC5 and hyperglycemia was marginal significance (OR: 0.63, 95% CI: 0.38-1.02). PC2 was characterized by a high consumption of green vegetables, other vegetables, and whole grains, and low intake of potatoes and processed meat. In patients with the hyperglycemic drug and insulin free, higher PC2 levels were related to lower odds of hyperglycemia (OR: 0.45, 95% CI: 0.21-0.96). CONCLUSIONS High intake of sweets, red meat, and processed meat might be detrimental to glycemic control in patients with drug-treated T2DM. High in red meat, while low in coffee, sweets, and high-fat dairy consumption may be beneficial to glycemic control. In addition, high consumption of green vegetables, other vegetables, and whole grains, and low intake of potatoes and processed meat may be good for glycemic control in patients without drug-treated T2DM.
Collapse
Affiliation(s)
- Ye Qiang
- Department of Endocrinology, Qingdao Hospital, University of Health and Rehabilitation Sciences (Quingdao Municipal Hospital), Qingdao 266071, Shandong Province, PR China
| | - Xingchen Lu
- Department of Endocrinology, Qingdao Hospital, University of Health and Rehabilitation Sciences (Quingdao Municipal Hospital), Qingdao 266071, Shandong Province, PR China
| | - Yuchao Zhang
- Department of Endocrinology, Qingdao Hospital, University of Health and Rehabilitation Sciences (Quingdao Municipal Hospital), Qingdao 266071, Shandong Province, PR China.
| |
Collapse
|
2
|
Xu K, Zhang B, He Y, Wang Y, Liu Y, Shi G, Shen Y, Chen F, Mi B, Shi L, Zeng L, Liu X, Dang S, Yan H. Serum Lipidomic Signatures Mediate the Association Between Coarse Grain Preference and Central Obesity in Adults With Normal Weight and High Wheat Intake. Mol Nutr Food Res 2024:e202400515. [PMID: 39692176 DOI: 10.1002/mnfr.202400515] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/13/2024] [Revised: 10/11/2024] [Accepted: 11/29/2024] [Indexed: 12/19/2024]
Abstract
Little is known about the association between grain preference andabdominal fat accumulation, and mediating roles of circulating lipidomicsignatures. We quantified 1245 circulating lipids in 150 normal-weight centralobesity (NWCO) cases and 150 controls using targeted lipidomics. Grainpreference was determined by the highest intake frequency of grains (whiterice, wheat, or coarse grain). In our participants with high wheat intakefrequency, preferring coarse grain over rice was associated with a 60% lowerrisk of NWCO. Of the 585 lipids showing opposing associations with white riceand coarse grains, 46 were significantly linked to either (p < 0.05), predominantly alkylacyl phospholipids (PE-Os; n < 9) and alkenylacylphospholipids (PE-Ps; nx = 7). Network analysis identified a module primarilycomposed of PE-Os and PE-Ps, which was positively associated with coarse grain (p = 0.014). Another module, mainly consisting of triacylglycerols (TGs), was associatedwith white rice (p = 0.003) and mediated the association between white rice(mediation proportion: 20.30%; p = 0.027) or coarse grain preference (11.43%; p = 0.040) and NWCO. Specific lipids, such as TG(8:0_16:0_16:0) and TG(8:0_14:0_18:0), exhibited notable mediation effects. In normal-weight individuals with highwheat intake frequency, preferring coarse grain was inversely associated with NWCO, mediated by specific lipidomic signatures.
Collapse
Affiliation(s)
- Kun Xu
- Key Laboratory for Disease Prevention and Control and Health Promotion of Shaanxi Province, Department of Epidemiology and Biostatistics, School of Public Health, Global Health Institute, Xi'an Jiaotong University Health Science Center, Xi'an, Shaanxi, China
- School of Public Health, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
- Key Laboratory of Environment and Genes Related to Diseases of Ministry of Education of China, Xi'an Jiaotong University, Xi'an, Shaanxi, China
| | - Binyan Zhang
- Key Laboratory for Disease Prevention and Control and Health Promotion of Shaanxi Province, Department of Epidemiology and Biostatistics, School of Public Health, Global Health Institute, Xi'an Jiaotong University Health Science Center, Xi'an, Shaanxi, China
| | - Yifei He
- Key Laboratory for Disease Prevention and Control and Health Promotion of Shaanxi Province, Department of Epidemiology and Biostatistics, School of Public Health, Global Health Institute, Xi'an Jiaotong University Health Science Center, Xi'an, Shaanxi, China
| | - Yutong Wang
- Key Laboratory for Disease Prevention and Control and Health Promotion of Shaanxi Province, Department of Epidemiology and Biostatistics, School of Public Health, Global Health Institute, Xi'an Jiaotong University Health Science Center, Xi'an, Shaanxi, China
| | - Yezhou Liu
- Key Laboratory for Disease Prevention and Control and Health Promotion of Shaanxi Province, Department of Epidemiology and Biostatistics, School of Public Health, Global Health Institute, Xi'an Jiaotong University Health Science Center, Xi'an, Shaanxi, China
| | - Guoshuai Shi
- Key Laboratory for Disease Prevention and Control and Health Promotion of Shaanxi Province, Department of Epidemiology and Biostatistics, School of Public Health, Global Health Institute, Xi'an Jiaotong University Health Science Center, Xi'an, Shaanxi, China
| | - Yuan Shen
- Key Laboratory for Disease Prevention and Control and Health Promotion of Shaanxi Province, Department of Epidemiology and Biostatistics, School of Public Health, Global Health Institute, Xi'an Jiaotong University Health Science Center, Xi'an, Shaanxi, China
| | - Fangyao Chen
- Key Laboratory for Disease Prevention and Control and Health Promotion of Shaanxi Province, Department of Epidemiology and Biostatistics, School of Public Health, Global Health Institute, Xi'an Jiaotong University Health Science Center, Xi'an, Shaanxi, China
| | - Baibing Mi
- Key Laboratory for Disease Prevention and Control and Health Promotion of Shaanxi Province, Department of Epidemiology and Biostatistics, School of Public Health, Global Health Institute, Xi'an Jiaotong University Health Science Center, Xi'an, Shaanxi, China
| | - Lin Shi
- School of Food Engineering and Nutritional Science, Shaanxi Normal University, Xi' an, Shaanxi, China
| | - Lingxia Zeng
- Key Laboratory for Disease Prevention and Control and Health Promotion of Shaanxi Province, Department of Epidemiology and Biostatistics, School of Public Health, Global Health Institute, Xi'an Jiaotong University Health Science Center, Xi'an, Shaanxi, China
| | - Xin Liu
- Key Laboratory for Disease Prevention and Control and Health Promotion of Shaanxi Province, Department of Epidemiology and Biostatistics, School of Public Health, Global Health Institute, Xi'an Jiaotong University Health Science Center, Xi'an, Shaanxi, China
- Key Laboratory of Environment and Genes Related to Diseases of Ministry of Education of China, Xi'an Jiaotong University, Xi'an, Shaanxi, China
| | - Shaonong Dang
- Key Laboratory for Disease Prevention and Control and Health Promotion of Shaanxi Province, Department of Epidemiology and Biostatistics, School of Public Health, Global Health Institute, Xi'an Jiaotong University Health Science Center, Xi'an, Shaanxi, China
| | - Hong Yan
- Key Laboratory for Disease Prevention and Control and Health Promotion of Shaanxi Province, Department of Epidemiology and Biostatistics, School of Public Health, Global Health Institute, Xi'an Jiaotong University Health Science Center, Xi'an, Shaanxi, China
- Key Laboratory of Environment and Genes Related to Diseases of Ministry of Education of China, Xi'an Jiaotong University, Xi'an, Shaanxi, China
- Nutrition and Food Safety Engineering Research Center of Shaanxi Province, Key Laboratory of Environment and Genes Related to Diseases, Xi'an Jiaotong University, Xi'an, Shaanxi, China
| |
Collapse
|
3
|
Feng Y, Wang J, Zhang R, Wang Y, Wang J, Meng H, Cheng H, Zhang J. Mediterranean diet related to 3-year incidence of cognitive decline: results from a cohort study in Chinese rural elders. Nutr Neurosci 2024; 27:1351-1362. [PMID: 38598413 DOI: 10.1080/1028415x.2024.2336715] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/12/2024]
Abstract
OBJECTIVE This study aims to examine the effect of the Mediterranean diet (MeDi) on cognitive decline among the Chinese elderly with a 3-year follow-up. METHODS This study is divided into two waves: wave-1 January 2019 to June 2019 (n = 2313); wave-2 January 2022 to March 2022 (n = 1648). MeDi scores were calculated from the Mediterranean Diet Adherence Screener (MEDAS), with the scoring of low compliance (0-6 points) and high compliance (7-14 points). The Mini-Mental State Examination (MMSE) was used to assess cognitive function. An MMSE score dropping ≥ 2 points from baseline was defined as cognitive decline. The relationships between MeDi score and cognitive decline were analyzed by linear regression models or Binary logistic regression. RESULTS During the 3-year follow-up, 23.8% of patients exhibited cognitive decline. The study revealed a significant difference in MMSE score changes between low and high MeDi adherence groups (p < 0.001). MeDi score was negatively correlated with cognitive deterioration (β = -0.020, p = 0.026). MeDi score was only negatively associated with cognitive decline in the female subgroup aged ≥65 years (β = -0.034, p = 0.033). The food beans (OR = 0.65, 95%CI:0.51, 0.84), fish (OR = 0.72, 95%CI:0.54, 0.97), and cooked vegetables (OR = 0.68, 95%CI:0.53, 0.84) were protective factors for cognitive decline. CONCLUSIONS This study suggests that greater adherence to the MeDi is linked to a reduced risk of cognitive decline in elderly people. However, this is found only in women who are 65 years old or older. It also found long-term adherence to beans, fish, and vegetables are more effective in improving cognitive function.
Collapse
Affiliation(s)
- Yuping Feng
- School of Nursing, Gansu University of Chinese Medicine, Lanzhou, People's Republic of China
| | - Jiancheng Wang
- Department of General Practice Medicine, Hospital of Gansu Health Vocational College, Lanzhou, People's Republic of China
| | - Rong Zhang
- School of Nursing, Gansu University of Chinese Medicine, Lanzhou, People's Republic of China
| | - Yunhua Wang
- School of Public Health, Lanzhou University, Lanzhou, People's Republic of China
| | - Jing Wang
- School of Nursing, Gansu University of Chinese Medicine, Lanzhou, People's Republic of China
| | - Hongyan Meng
- School of Nursing, Gansu University of Chinese Medicine, Lanzhou, People's Republic of China
| | - Hu Cheng
- School of Public Health, Lanzhou University, Lanzhou, People's Republic of China
| | - Juxia Zhang
- Clinical Educational Department, Gansu Provincial Hospital, Lanzhou, People's Republic of China
| |
Collapse
|
4
|
Jiang YC, Lai K, Muirhead RP, Chung LH, Huang Y, James E, Liu XT, Wu J, Atkinson FS, Yan S, Fogelholm M, Raben A, Don AS, Sun J, Brand-Miller JC, Qi Y. Deep serum lipidomics identifies evaluative and predictive biomarkers for individualized glycemic responses following low-energy diet-induced weight loss: a PREVention of diabetes through lifestyle Intervention and population studies in Europe and around the World (PREVIEW) substudy. Am J Clin Nutr 2024; 120:864-878. [PMID: 39182617 DOI: 10.1016/j.ajcnut.2024.08.015] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/27/2024] [Revised: 07/12/2024] [Accepted: 08/19/2024] [Indexed: 08/27/2024] Open
Abstract
BACKGROUND Weight loss through lifestyle interventions, notably low-energy diets, offers glycemic benefits in populations with overweight-associated prediabetes. However, >50% of these individuals fail to achieve normoglycemia after weight loss. Circulating lipids hold potential for evaluating dietary impacts and predicting diabetes risk. OBJECTIVES This study sought to identify serum lipids that could serve as evaluative or predictive biomarkers for individual glycemic changes following diet-induced weight loss. METHODS We studied 104 participants with overweight-associated prediabetes, who lost ≥8% weight via a low-energy diet over 8 wk. High-coverage lipidomics was conducted in serum samples before and after the dietary intervention. The lipidomic recalibration was assessed using differential lipid abundance comparisons and partial least squares discriminant analyses. Associations between lipid changes and clinical characteristics were determined by Spearman correlation and Bootstrap Forest of ensemble machine learning model. Baseline lipids, predictive of glycemic parameters changes postweight loss, were assessed using Bootstrap Forest analyses. RESULTS We quantified 439 serum lipid species and 9 related organic acids. Dietary intervention significantly reduced diacylglycerols, ceramides, lysophospholipids, and ether-linked phosphatidylethanolamine. In contrast, acylcarnitines, short-chain fatty acids, organic acids, and ether-linked phosphatidylcholine increased significantly. Changes in certain lipid species (e.g., saturated and monounsaturated fatty acid-containing glycerolipids, sphingadienine-based very long-chain sphingolipids, and organic acids) were closely associated with clinical glycemic parameters. Six baseline bioactive sphingolipids primarily predicted changes in fasting plasma glucose. In addition, a number of baseline lipid species, mainly diacylglycerols and triglycerides, were predictive of clinical changes in hemoglobin A1c, insulin and homeostasis model assessment of insulin resistance. CONCLUSIONS Newly discovered serum lipidomic alterations and the associated changes in lipid-clinical variables suggest broad metabolic reprogramming related to diet-mediated glycemic control. Novel lipid predictors of glycemic outcomes could facilitate early stratification of individuals with prediabetes who are metabolically less responsive to weight loss, enabling more tailored intervention strategies beyond 1-size-fits-all lifestyle modification advice. The PREVIEW lifestyle intervention study was registered at clinicaltrials.gov as NCT01777893 (https://clinicaltrials.gov/study/NCT01777893).
Collapse
Affiliation(s)
- Yingxin Celia Jiang
- Centenary Institute, The University of Sydney, Sydney, New South Wales, Australia; Charles Perkins Centre, The University of Sydney, Sydney, New South Wales, Australia
| | - Kaitao Lai
- Charles Perkins Centre, The University of Sydney, Sydney, New South Wales, Australia; School of Medical Sciences, Faculty of Medicine and Health, The University of Sydney, Sydney, New South Wales, Australia; ANZAC Research Institute, The University of Sydney, Sydney, New South Wales, Australia
| | - Roslyn Patricia Muirhead
- Charles Perkins Centre, The University of Sydney, Sydney, New South Wales, Australia; Sydney Medical School, Faculty of Medicine and Health, The University of Sydney, Sydney, New South Wales, Australia
| | - Long Hoa Chung
- Centenary Institute, The University of Sydney, Sydney, New South Wales, Australia; Charles Perkins Centre, The University of Sydney, Sydney, New South Wales, Australia
| | - Yu Huang
- Centenary Institute, The University of Sydney, Sydney, New South Wales, Australia; Charles Perkins Centre, The University of Sydney, Sydney, New South Wales, Australia
| | - Elizaveta James
- Charles Perkins Centre, The University of Sydney, Sydney, New South Wales, Australia; School of Medical Sciences, Faculty of Medicine and Health, The University of Sydney, Sydney, New South Wales, Australia
| | - Xin Tracy Liu
- Centenary Institute, The University of Sydney, Sydney, New South Wales, Australia; Charles Perkins Centre, The University of Sydney, Sydney, New South Wales, Australia
| | - Julian Wu
- Charles Perkins Centre, The University of Sydney, Sydney, New South Wales, Australia; Barker College, Hornsby, New South Wales, Australia
| | - Fiona S Atkinson
- Charles Perkins Centre, The University of Sydney, Sydney, New South Wales, Australia; School of Life and Environmental Sciences, Faculty of Science, The University of Sydney, Sydney, New South Wales, Australia
| | - Shuang Yan
- Department of Endocrinology and Metabolism Diseases, The 4th Affiliated Hospital of Harbin Medical University, Harbin, Heilongjiang, China
| | - Mikael Fogelholm
- Department of Food and Nutrition, University of Helsinki, Helsinki, Finland
| | - Anne Raben
- Department of Nutrition, Exercise and Sports, University of Copenhagen, Copenhagen, Denmark; Clinical Research, Copenhagen University Hospital-Steno Diabetes Center Copenhagen, Herlev, Denmark
| | - Anthony Simon Don
- Charles Perkins Centre, The University of Sydney, Sydney, New South Wales, Australia; School of Medical Sciences, Faculty of Medicine and Health, The University of Sydney, Sydney, New South Wales, Australia
| | - Jing Sun
- Rural Health Research Institute, Charles Sturt University, Leeds Parade, New South Wales, Australia; School of Medicine and Dentistry, Menzies Health Institute Queensland, Institute for Integrated Intelligence and Systems, Griffith University, Southport, Queensland, Australia.
| | - Jennie Cecile Brand-Miller
- Charles Perkins Centre, The University of Sydney, Sydney, New South Wales, Australia; School of Life and Environmental Sciences, Faculty of Science, The University of Sydney, Sydney, New South Wales, Australia.
| | - Yanfei Qi
- Centenary Institute, The University of Sydney, Sydney, New South Wales, Australia; Charles Perkins Centre, The University of Sydney, Sydney, New South Wales, Australia; School of Medical Sciences, Faculty of Medicine and Health, The University of Sydney, Sydney, New South Wales, Australia.
| |
Collapse
|
5
|
Guan H, Zhao S, Li J, Wang Y, Niu P, Zhang Y, Zhang Y, Fang X, Miao R, Tian J. Exploring the design of clinical research studies on the efficacy mechanisms in type 2 diabetes mellitus. Front Endocrinol (Lausanne) 2024; 15:1363877. [PMID: 39371930 PMCID: PMC11449758 DOI: 10.3389/fendo.2024.1363877] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/08/2024] [Accepted: 08/23/2024] [Indexed: 10/08/2024] Open
Abstract
This review examines the complexities of Type 2 Diabetes Mellitus (T2DM), focusing on the critical role of integrating omics technologies with traditional experimental methods. It underscores the advancements in understanding the genetic diversity of T2DM and emphasizes the evolution towards personalized treatment modalities. The paper analyzes a variety of omics approaches, including genomics, methylation, transcriptomics, proteomics, metabolomics, and intestinal microbiomics, delineating their substantial contributions to deciphering the multifaceted mechanisms underlying T2DM. Furthermore, the review highlights the indispensable role of non-omics experimental techniques in comprehending and managing T2DM, advocating for their integration in the development of tailored medicine and precision treatment strategies. By identifying existing research gaps and suggesting future research trajectories, the review underscores the necessity for a comprehensive, multidisciplinary approach. This approach synergistically combines clinical insights with cutting-edge biotechnologies, aiming to refine the management and therapeutic interventions of T2DM, and ultimately enhancing patient outcomes. This synthesis of knowledge and methodologies paves the way for innovative advancements in T2DM research, fostering a deeper understanding and more effective treatment of this complex condition.
Collapse
Affiliation(s)
- Huifang Guan
- College of Traditional Chinese Medicine, Changchun University of Chinese Medicine, Changchun, China
| | - Shuang Zhao
- College of Traditional Chinese Medicine, Changchun University of Chinese Medicine, Changchun, China
| | - Jiarui Li
- College of Traditional Chinese Medicine, Changchun University of Chinese Medicine, Changchun, China
| | - Ying Wang
- College of Traditional Chinese Medicine, Changchun University of Chinese Medicine, Changchun, China
| | - Ping Niu
- Department of Encephalopathy, The Affiliated Hospital of Changchun university of Chinese Medicine, Jilin, China
| | - Yuxin Zhang
- Institute of Metabolic Diseases, Guang’anmen Hospital, China Academy of Chinese Medical Sciences, Beijing, China
| | - Yanjiao Zhang
- Institute of Metabolic Diseases, Guang’anmen Hospital, China Academy of Chinese Medical Sciences, Beijing, China
| | - Xinyi Fang
- Institute of Metabolic Diseases, Guang’anmen Hospital, China Academy of Chinese Medical Sciences, Beijing, China
- Graduate College, Beijing University of Chinese Medicine, Beijing, China
| | - Runyu Miao
- Institute of Metabolic Diseases, Guang’anmen Hospital, China Academy of Chinese Medical Sciences, Beijing, China
- Graduate College, Beijing University of Chinese Medicine, Beijing, China
| | - Jiaxing Tian
- Institute of Metabolic Diseases, Guang’anmen Hospital, China Academy of Chinese Medical Sciences, Beijing, China
| |
Collapse
|
6
|
Mendez Espinoza I, Choos END, Ecelbarger CM, Shepard BD. SGLT2 inhibition leads to a restoration of hepatic and circulating metabolites involved in the folate cycle and pyrimidine biosynthesis. Am J Physiol Gastrointest Liver Physiol 2024; 327:G235-G253. [PMID: 38915277 PMCID: PMC11427092 DOI: 10.1152/ajpgi.00029.2024] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/31/2024] [Revised: 06/19/2024] [Accepted: 06/19/2024] [Indexed: 06/26/2024]
Abstract
Inhibition of sodium-glucose cotransporter 2 (SGLT2) by empagliflozin (EMPA) and other "flozins" can improve glycemic control under conditions of diabetes and kidney disease. Though they act on the kidney, they also offer cardiovascular and liver protection. Previously, we found that EMPA decreased circulating triglycerides and hepatic lipid and cholesterol esters in male TallyHo mice fed a high-milk-fat diet (HMFD). The goal of this study was to determine whether the liver protection is associated with a change in metabolic function by characterizing the hepatic and circulating metabolic and lipidomic profiles using targeted LC-MS. In both male and female mice, HMFD feeding significantly altered the circulating and hepatic metabolome compared with low-fat diet (LFD). Addition of EMPA resulted in the restoration of circulating orotate (intermediate in pyrimidine biosynthesis) and hepatic dihydrofolate (intermediate in the folate and methionine cycles) levels in males and acylcarnitines in females. These changes were partially explained by altered expression of rate-limiting enzymes in these pathways. This metabolic signature was not detected when EMPA was incorporated into an LFD, suggesting that the restoration requires the metabolic shift that accompanies the HMFD. Notably, the HMFD increased expression of 18 of 20 circulating amino acids in males and 11 of 20 in females, and this pattern was reversed by EMPA. Finally, we confirmed that SGLT2 inhibition upregulates ketone bodies including β-hydroxybutyrate. Collectively, this study highlights the metabolic changes that occur with EMPA treatment, and sheds light on the possible mechanisms by which this drug offers liver and systemic protection.NEW & NOTEWORTHY Sodium-glucose cotransporter 2 (SGLT2) inhibitors, including empagliflozin, have emerged as a new treatment option for individuals with type 2 diabetes that have positive impacts on kidney and cardiovascular disease. However, less is known about their impact on other tissues, including the liver. Here, we report that empagliflozin reduces hepatic steatosis that is associated with restoring metabolic intermediates in the folate and pyrimidine biosynthesis pathways. These changes may lead to new approaches to treat nonalcoholic fatty liver disease.
Collapse
Affiliation(s)
- Ileana Mendez Espinoza
- Department of Human Science, Georgetown University, Washington, District of Columbia, United States
| | - Elijah N D Choos
- Department of Human Science, Georgetown University, Washington, District of Columbia, United States
| | - Carolyn M Ecelbarger
- Department of Medicine, Georgetown University, Washington, District of Columbia, United States
| | - Blythe D Shepard
- Department of Human Science, Georgetown University, Washington, District of Columbia, United States
| |
Collapse
|
7
|
Rojo-López MI, Barranco-Altirriba M, Rossell J, Antentas M, Castelblanco E, Yanes O, Weber RJM, Lloyd GR, Winder C, Dunn WB, Julve J, Granado-Casas M, Mauricio D. The Lipidomic Profile Is Associated with the Dietary Pattern in Subjects with and without Diabetes Mellitus from a Mediterranean Area. Nutrients 2024; 16:1805. [PMID: 38931159 PMCID: PMC11206394 DOI: 10.3390/nu16121805] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/09/2024] [Revised: 05/31/2024] [Accepted: 06/05/2024] [Indexed: 06/28/2024] Open
Abstract
Lipid functions can be influenced by genetics, age, disease states, and lifestyle factors, particularly dietary patterns, which are crucial in diabetes management. Lipidomics is an expanding field involving the comprehensive exploration of lipids from biological samples. In this cross-sectional study, 396 participants from a Mediterranean region, including individuals with type 1 diabetes (T1D), type 2 diabetes (T2D), and non-diabetic individuals, underwent lipidomic profiling and dietary assessment. Participants completed validated food frequency questionnaires, and lipid analysis was conducted using ultra-high-performance liquid chromatography coupled with mass spectrometry (UHPLC/MS). Multiple linear regression models were used to determine the association between lipid features and dietary patterns. Across all subjects, acylcarnitines (AcCa) and triglycerides (TG) displayed negative associations with the alternate Healthy Eating Index (aHEI), indicating a link between lipidomic profiles and dietary habits. Various lipid species (LS) showed positive and negative associations with dietary carbohydrates, fats, and proteins. Notably, in the interaction analysis between diabetes and the aHEI, we found some lysophosphatidylcholines (LPC) that showed a similar direction with respect to aHEI in non-diabetic individuals and T2D subjects, while an opposite direction was observed in T1D subjects. The study highlights the significant association between lipidomic profiles and dietary habits in people with and without diabetes, particularly emphasizing the role of healthy dietary choices, as reflected by the aHEI, in modulating lipid concentrations. These findings underscore the importance of dietary interventions to improve metabolic health outcomes, especially in the context of diabetes management.
Collapse
Affiliation(s)
- Marina Idalia Rojo-López
- Institut de Recerca Sant Pau (IR SANT PAU), Sant Quintí 77-79, 08041 Barcelona, Spain; (M.I.R.-L.); (M.B.-A.); (J.R.); (M.A.); (J.J.)
| | - Maria Barranco-Altirriba
- Institut de Recerca Sant Pau (IR SANT PAU), Sant Quintí 77-79, 08041 Barcelona, Spain; (M.I.R.-L.); (M.B.-A.); (J.R.); (M.A.); (J.J.)
- B2SLab, Departament d’Enginyeria de Sistemes, Automàtica i Informàtica Industrial, Universitat Politècnica de Catalunya, 08028 Barcelona, Spain
- Networking Biomedical Research Centre in the Subject Area of Bioengineering, Biomaterials and Nanomedicine (CIBER-BBN), 28029 Barcelona, Spain
| | - Joana Rossell
- Institut de Recerca Sant Pau (IR SANT PAU), Sant Quintí 77-79, 08041 Barcelona, Spain; (M.I.R.-L.); (M.B.-A.); (J.R.); (M.A.); (J.J.)
- Centro de Investigación Biomédica en Red de Diabetes y Enfermedades Metabólicas Asociadas, Instituto de Salud Carlos III, 28029 Madrid, Spain;
| | - Maria Antentas
- Institut de Recerca Sant Pau (IR SANT PAU), Sant Quintí 77-79, 08041 Barcelona, Spain; (M.I.R.-L.); (M.B.-A.); (J.R.); (M.A.); (J.J.)
| | - Esmeralda Castelblanco
- Department of Internal Medicine, Endocrinology, Metabolism and Lipid Research Division, Washington University School of Medicine, St. Louis, MO 63110, USA;
| | - Oscar Yanes
- Centro de Investigación Biomédica en Red de Diabetes y Enfermedades Metabólicas Asociadas, Instituto de Salud Carlos III, 28029 Madrid, Spain;
- Department of Electronic Engineering, Institut d’Investigació Sanitària Pere Virgili (IISPV), Universitat Rovira i Virgili, 43007 Tarragona, Spain
| | - Ralf J. M. Weber
- School of Biosciences, University of Birmingham, Edgbaston, Birmingham B15 2TT, UK; (R.J.M.W.); (G.R.L.); (C.W.); (W.B.D.)
- Phenome Centre Birmingham, University of Birmingham, Edgbaston, Birmingham B15 2TT, UK
- Institute of Metabolism and Systems Research, University of Birmingham, Edgbaston, Birmingham B15 2TT, UK
| | - Gavin R. Lloyd
- School of Biosciences, University of Birmingham, Edgbaston, Birmingham B15 2TT, UK; (R.J.M.W.); (G.R.L.); (C.W.); (W.B.D.)
- Phenome Centre Birmingham, University of Birmingham, Edgbaston, Birmingham B15 2TT, UK
- Institute of Metabolism and Systems Research, University of Birmingham, Edgbaston, Birmingham B15 2TT, UK
| | - Catherine Winder
- School of Biosciences, University of Birmingham, Edgbaston, Birmingham B15 2TT, UK; (R.J.M.W.); (G.R.L.); (C.W.); (W.B.D.)
- Phenome Centre Birmingham, University of Birmingham, Edgbaston, Birmingham B15 2TT, UK
- Centre for Metabolomics Research, Department of Biochemistry, Cell and Systems Biology, Institute of Systems, Molecular and Integrative Biology, University of Liverpool, Liverpool L69 7ZB, UK
| | - Warwick B. Dunn
- School of Biosciences, University of Birmingham, Edgbaston, Birmingham B15 2TT, UK; (R.J.M.W.); (G.R.L.); (C.W.); (W.B.D.)
- Phenome Centre Birmingham, University of Birmingham, Edgbaston, Birmingham B15 2TT, UK
- Centre for Metabolomics Research, Department of Biochemistry, Cell and Systems Biology, Institute of Systems, Molecular and Integrative Biology, University of Liverpool, Liverpool L69 7ZB, UK
| | - Josep Julve
- Institut de Recerca Sant Pau (IR SANT PAU), Sant Quintí 77-79, 08041 Barcelona, Spain; (M.I.R.-L.); (M.B.-A.); (J.R.); (M.A.); (J.J.)
- Centro de Investigación Biomédica en Red de Diabetes y Enfermedades Metabólicas Asociadas, Instituto de Salud Carlos III, 28029 Madrid, Spain;
| | - Minerva Granado-Casas
- Centro de Investigación Biomédica en Red de Diabetes y Enfermedades Metabólicas Asociadas, Instituto de Salud Carlos III, 28029 Madrid, Spain;
- Department of Nursing and Physiotherapy, University of Lleida, 25198 Lleida, Spain
- Research Group of Health Care (GreCS), IRBLleida, 25198 Lleida, Spain
| | - Dídac Mauricio
- Institut de Recerca Sant Pau (IR SANT PAU), Sant Quintí 77-79, 08041 Barcelona, Spain; (M.I.R.-L.); (M.B.-A.); (J.R.); (M.A.); (J.J.)
- Centro de Investigación Biomédica en Red de Diabetes y Enfermedades Metabólicas Asociadas, Instituto de Salud Carlos III, 28029 Madrid, Spain;
- Department of Endocrinology and Nutrition, Hospital de la Santa Creu i Sant Pau, 08041 Barcelona, Spain
- Faculty of Medicine, University of Vic (UVIC/UCC), 08500 Vic, Spain
| |
Collapse
|
8
|
Cristodoro M, Zambella E, Fietta I, Inversetti A, Di Simone N. Dietary Patterns and Fertility. BIOLOGY 2024; 13:131. [PMID: 38392349 PMCID: PMC10886842 DOI: 10.3390/biology13020131] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/21/2024] [Revised: 02/15/2024] [Accepted: 02/16/2024] [Indexed: 02/24/2024]
Abstract
Diet has a key role in the reproductive axis both in males and females. This review aims to analyze the impacts of different dietary patterns on fertility. It appears that the Mediterranean diet has a predominantly protective role against infertility, while the Western diet seems to be a risk factor for infertility. Moreover, we focus attention also on dietary patterns in different countries of the World (Middle Eastern diet, Asian diet). In particular, when analyzing single nutrients, a diet rich in saturated fatty acids, cholesterol, animal proteins, and carbohydrates with high glycemic index is highly associated with male and female infertility. Finally, we evaluate the effects of vegetarian, vegan, and ketogenic diets on fertility, which seem to be still unclear. We believe that comprehension of the molecular mechanisms involved in infertility will lead to more effective and targeted treatments for infertile couples.
Collapse
Affiliation(s)
- Martina Cristodoro
- Department of Biomedical Sciences, Humanitas University, Via Rita Levi Montalcini 4, Pieve Emanuele, 20072 Milano, Italy
| | - Enrica Zambella
- Department of Biomedical Sciences, Humanitas University, Via Rita Levi Montalcini 4, Pieve Emanuele, 20072 Milano, Italy
| | - Ilaria Fietta
- Department of Biomedical Sciences, Humanitas University, Via Rita Levi Montalcini 4, Pieve Emanuele, 20072 Milano, Italy
| | - Annalisa Inversetti
- Department of Biomedical Sciences, Humanitas University, Via Rita Levi Montalcini 4, Pieve Emanuele, 20072 Milano, Italy
- IRCCS Humanitas Research Hospital, Via Manzoni 56, 20089 Rozzano, Italy
| | - Nicoletta Di Simone
- Department of Biomedical Sciences, Humanitas University, Via Rita Levi Montalcini 4, Pieve Emanuele, 20072 Milano, Italy
- IRCCS Humanitas Research Hospital, Via Manzoni 56, 20089 Rozzano, Italy
| |
Collapse
|
9
|
Rovayo A, Toledo E, Razquin C. Lipidome and inflammation interplay: the role of diet in this relationship. Curr Opin Lipidol 2024; 35:20-24. [PMID: 37938937 DOI: 10.1097/mol.0000000000000909] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/10/2023]
Abstract
PURPOSE OF REVIEW The aim of this review was to provide an overview of the role of novel lipid biomarkers from the circulating lipidome in inflammatory processes and the impact that dietary patterns may have on the lipidome. RECENT FINDINGS Inflammation is a process that underlies many acute and chronic diseases, contributing to their development and severity. Finding novel molecules which serve as biomarkers and which are involved in inflammation is very useful, since they offer us both preventive or therapeutic targets and reveal mechanisms of action. Recently, several studies have found circulating lipid molecules that are implicated in inflammatory processes of different diseases, such as cardiovascular diseases, type 2 diabetes, COVID-19 or other respiratory infectious diseases. As such, ceramides, triacylglicerides or lysophosphatidylcholines have been associated with inflammation in a different manner depending on the stage of inflammation. The study of dietary patterns, especially healthy ones as the Mediterranean or the Nordic diets, has shown the impact that dietary habits may have on the lipidomic profile of individuals. CONCLUSIONS Healthy dietary patterns have been suggested to exert beneficial effects in the circulating lipid profile. Studying the circulating lipidome could help to find new biomarkers of underlying inflammation, especially in cases of chronic low-grade inflammatory diseases in which it is more difficult to detect.
Collapse
Affiliation(s)
- Anacristina Rovayo
- IdiSNA, Pamplona
- Department of Preventive Medicine and Public Health, University of Navarra, Pamplona
| | - Estefanía Toledo
- IdiSNA, Pamplona
- Department of Preventive Medicine and Public Health, University of Navarra, Pamplona
- CIBER de Fisiopatología de la Obesidad y Nutrición, Instituto de Salud Carlos III, Madrid, Spain
| | - Cristina Razquin
- IdiSNA, Pamplona
- Department of Preventive Medicine and Public Health, University of Navarra, Pamplona
- CIBER de Fisiopatología de la Obesidad y Nutrición, Instituto de Salud Carlos III, Madrid, Spain
| |
Collapse
|