1
|
American Diabetes Association Professional Practice Committee, ElSayed NA, Aleppo G, Bannuru RR, Bruemmer D, Collins BS, Ekhlaspour L, Hilliard ME, Johnson EL, Khunti K, Lingvay I, Matfin G, McCoy RG, Perry ML, Pilla SJ, Polsky S, Prahalad P, Pratley RE, Segal AR, Seley JJ, Selvin E, Stanton RC, Gabbay RA. 6. Glycemic Goals and Hypoglycemia: Standards of Care in Diabetes-2024. Diabetes Care 2024; 47:S111-S125. [PMID: 38078586 PMCID: PMC10725808 DOI: 10.2337/dc24-s006] [Citation(s) in RCA: 173] [Impact Index Per Article: 173.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/18/2023]
Abstract
The American Diabetes Association (ADA) "Standards of Care in Diabetes" includes the ADA's current clinical practice recommendations and is intended to provide the components of diabetes care, general treatment goals and guidelines, and tools to evaluate quality of care. Members of the ADA Professional Practice Committee, an interprofessional expert committee, are responsible for updating the Standards of Care annually, or more frequently as warranted. For a detailed description of ADA standards, statements, and reports, as well as the evidence-grading system for ADA's clinical practice recommendations and a full list of Professional Practice Committee members, please refer to Introduction and Methodology. Readers who wish to comment on the Standards of Care are invited to do so at professional.diabetes.org/SOC.
Collapse
|
2
|
ElSayed NA, Aleppo G, Aroda VR, Bannuru RR, Brown FM, Bruemmer D, Collins BS, Hilliard ME, Isaacs D, Johnson EL, Kahan S, Khunti K, Leon J, Lyons SK, Perry ML, Prahalad P, Pratley RE, Seley JJ, Stanton RC, Gabbay RA. 6. Glycemic Targets: Standards of Care in Diabetes-2023. Diabetes Care 2023; 46:S97-S110. [PMID: 36507646 PMCID: PMC9810469 DOI: 10.2337/dc23-s006] [Citation(s) in RCA: 372] [Impact Index Per Article: 186.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Abstract
The American Diabetes Association (ADA) "Standards of Care in Diabetes" includes the ADA's current clinical practice recommendations and is intended to provide the components of diabetes care, general treatment goals and guidelines, and tools to evaluate quality of care. Members of the ADA Professional Practice Committee, a multidisciplinary expert committee, are responsible for updating the Standards of Care annually, or more frequently as warranted. For a detailed description of ADA standards, statements, and reports, as well as the evidence-grading system for ADA's clinical practice recommendations and a full list of Professional Practice Committee members, please refer to Introduction and Methodology. Readers who wish to comment on the Standards of Care are invited to do so at professional.diabetes.org/SOC.
Collapse
|
3
|
Mishra S, Streeter PR. Targeted delivery of harmine to xenografted human pancreatic islets promotes robust cell proliferation. Sci Rep 2022; 12:19127. [PMID: 36351917 PMCID: PMC9646720 DOI: 10.1038/s41598-022-19453-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/27/2021] [Accepted: 08/29/2022] [Indexed: 11/11/2022] Open
Abstract
Type 1 diabetes (T1D) occurs as a consequence of the autoimmune destruction of insulin-producing pancreatic beta (β) cells and commonly presents with insulin deficiency and unregulated glycemic control. Despite improvements in the medical management of T1D, life-threatening complications are still common. Beta-cell replication to replace lost cells may be achieved by using small-molecule mitogenic drugs, like harmine. However, the safe and effective delivery of such drugs to beta cells remains a challenge. This work aims to deploy an antibody conjugated nanocarrier platform to achieve cell-specific delivery of candidate therapeutic and imaging agents to pancreatic endocrine cells. We approached this goal by generating core-shell type micellar nanocarriers composed of the tri-block copolymer, Pluronic®F127 (PEO100-PPO65-PEO100). We decorated these nanocarriers with a pancreatic endocrine cell-selective monoclonal antibody (HPi1), with preference for beta cells, to achieve active targeting. The PPO-based hydrophobic core allows encapsulation of various hydrophobic cargoes, whereas the PEO-based hydrophilic shell curbs the protein adhesion, hence prolonging the nanocarriers' systemic circulation time. The nancarriers were loaded with quantum dots (QDots) that allowed nanocarrier detection both in-vitro and in-vivo. In-vitro studies revealed that HPi1 conjugated nanocarriers could target endocrine cells in dispersed islet cell preparations with a high degree of specificity, with beta cells exhibiting a fluorescent quantum dot signal that was approximately five orders of magnitude greater than the signal associated with alpha cells. In vivo endocrine cell targeting studies demonstrated that the HPi1 conjugated nanocarriers could significantly accumulate at the islet xenograft site. For drug delivery studies, the nanocarriers were loaded with harmine. We demonstrated that HPi1 conjugated nanocarriers successfully targeted and delivered harmine to human endocrine cells in a human islet xenograft model. In this model, targeted harmine delivery yielded an ~ 41-fold increase in the number of BrdU positive cells in the human islet xenograft than that observed in untreated control mice. By contrast, non-targeted harmine yielded an ~ 9-fold increase in BrdU positive cells. We conclude that the nanocarrier platform enabled cell-selective targeting of xenografted human pancreatic endocrine cells and the selective delivery of the hydrophobic drug harmine to those cells. Further, the dramatic increase in proliferation with targeted harmine, a likely consequence of achieving higher local drug concentrations, supports the concept that targeted drug delivery may promote more potent biological responses when using harmine and/or other drugs than non-targeting approaches. These results suggest that this targeted drug delivery platform may apply in drug screening, beta cell regenerative therapies, and/or diagnostic imaging in patients with type 1 diabetes.
Collapse
Affiliation(s)
- Swati Mishra
- grid.5288.70000 0000 9758 5690Brenden-Colson Center for Pancreatic Care, Oregon Health and Science University, Portland, OR USA ,grid.5288.70000 0000 9758 5690Department of Pediatrics, Papé Family Pediatric Research Institute, Oregon Stem Cell Center, Oregon Health and Science University, Portland, OR USA
| | - Philip R. Streeter
- grid.5288.70000 0000 9758 5690Department of Pediatrics, Papé Family Pediatric Research Institute, Oregon Stem Cell Center, Oregon Health and Science University, Portland, OR USA
| |
Collapse
|
4
|
American Diabetes Association Professional Practice Committee. 6. Glycemic Targets: Standards of Medical Care in Diabetes-2022. Diabetes Care 2022; 45:S83-S96. [PMID: 34964868 DOI: 10.2337/dc22-s006] [Citation(s) in RCA: 411] [Impact Index Per Article: 137.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 02/03/2023]
Abstract
The American Diabetes Association (ADA) "Standards of Medical Care in Diabetes" includes the ADA's current clinical practice recommendations and is intended to provide the components of diabetes care, general treatment goals and guidelines, and tools to evaluate quality of care. Members of the ADA Professional Practice Committee, a multidisciplinary expert committee (https://doi.org/10.2337/dc22-SPPC), are responsible for updating the Standards of Care annually, or more frequently as warranted. For a detailed description of ADA standards, statements, and reports, as well as the evidence-grading system for ADA's clinical practice recommendations, please refer to the Standards of Care Introduction (https://doi.org/10.2337/dc22-SINT). Readers who wish to comment on the Standards of Care are invited to do so at professional.diabetes.org/SOC.
Collapse
|
5
|
Abstract
This review focuses on the human pancreatic islet-including its structure, cell composition, development, function, and dysfunction. After providing a historical timeline of key discoveries about human islets over the past century, we describe new research approaches and technologies that are being used to study human islets and how these are providing insight into human islet physiology and pathophysiology. We also describe changes or adaptations in human islets in response to physiologic challenges such as pregnancy, aging, and insulin resistance and discuss islet changes in human diabetes of many forms. We outline current and future interventions being developed to protect, restore, or replace human islets. The review also highlights unresolved questions about human islets and proposes areas where additional research on human islets is needed.
Collapse
Affiliation(s)
- John T Walker
- Department of Molecular Physiology and Biophysics, Vanderbilt University School of Medicine, Nashville, Tennessee, USA
| | - Diane C Saunders
- Division of Diabetes, Endocrinology and Metabolism, Department of Medicine, Vanderbilt University Medical Center, Nashville, Tennessee, USA
| | - Marcela Brissova
- Department of Molecular Physiology and Biophysics, Vanderbilt University School of Medicine, Nashville, Tennessee, USA
| | - Alvin C Powers
- Department of Molecular Physiology and Biophysics, Vanderbilt University School of Medicine, Nashville, Tennessee, USA
- Division of Diabetes, Endocrinology and Metabolism, Department of Medicine, Vanderbilt University Medical Center, Nashville, Tennessee, USA
- VA Tennessee Valley Healthcare System, Nashville, Tennessee, USA
| |
Collapse
|
6
|
Satin LS, Soleimanpour SA, Walker EM. New Aspects of Diabetes Research and Therapeutic Development. Pharmacol Rev 2021; 73:1001-1015. [PMID: 34193595 PMCID: PMC8274312 DOI: 10.1124/pharmrev.120.000160] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022] Open
Abstract
Both type 1 and type 2 diabetes mellitus are advancing at exponential rates, placing significant burdens on health care networks worldwide. Although traditional pharmacologic therapies such as insulin and oral antidiabetic stalwarts like metformin and the sulfonylureas continue to be used, newer drugs are now on the market targeting novel blood glucose-lowering pathways. Furthermore, exciting new developments in the understanding of beta cell and islet biology are driving the potential for treatments targeting incretin action, islet transplantation with new methods for immunologic protection, and the generation of functional beta cells from stem cells. Here we discuss the mechanistic details underlying past, present, and future diabetes therapies and evaluate their potential to treat and possibly reverse type 1 and 2 diabetes in humans. SIGNIFICANCE STATEMENT: Diabetes mellitus has reached epidemic proportions in the developed and developing world alike. As the last several years have seen many new developments in the field, a new and up to date review of these advances and their careful evaluation will help both clinical and research diabetologists to better understand where the field is currently heading.
Collapse
Affiliation(s)
- Leslie S Satin
- Department of Pharmacology (L.S.S.), Division of Metabolism, Endocrinology, and Diabetes, Department of Internal Medicine (L.S.S., S.A.S., E.M.W.), and Brehm Diabetes Center (L.S.S., S.A.S., E.M.W.), University of Michigan Medical School, Ann Arbor, Michigan; and VA Ann Arbor Healthcare System, Ann Arbor, Michigan (S.A.S.) ; ;
| | - Scott A Soleimanpour
- Department of Pharmacology (L.S.S.), Division of Metabolism, Endocrinology, and Diabetes, Department of Internal Medicine (L.S.S., S.A.S., E.M.W.), and Brehm Diabetes Center (L.S.S., S.A.S., E.M.W.), University of Michigan Medical School, Ann Arbor, Michigan; and VA Ann Arbor Healthcare System, Ann Arbor, Michigan (S.A.S.)
| | - Emily M Walker
- Department of Pharmacology (L.S.S.), Division of Metabolism, Endocrinology, and Diabetes, Department of Internal Medicine (L.S.S., S.A.S., E.M.W.), and Brehm Diabetes Center (L.S.S., S.A.S., E.M.W.), University of Michigan Medical School, Ann Arbor, Michigan; and VA Ann Arbor Healthcare System, Ann Arbor, Michigan (S.A.S.) ; ;
| |
Collapse
|
7
|
Chen CC, Peng SJ, Wu PY, Chien HJ, Lee CY, Chung MH, Tang SC. Heterogeneity and neurovascular integration of intraportally transplanted islets revealed by 3-D mouse liver histology. Am J Physiol Endocrinol Metab 2021; 320:E1007-E1019. [PMID: 33900850 DOI: 10.1152/ajpendo.00605.2020] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
Abstract
Intraportal islet transplantation has been clinically applied for treatment of unstable type 1 diabetes. However, in the liver, systematic assessment of the dispersed islet grafts and the graft-hepatic integration remains difficult, even in animal models. This is due to the lack of global and in-depth analyses of the transplanted islets and their microenvironment. Here, we apply three-dimensional (3-D) mouse liver histology to investigate the islet graft microstructure, vasculature, and innervation. Streptozotocin-induced diabetic mice were used in syngeneic intraportal islet transplantation to achieve euglycemia. Optically cleared livers were prepared to enable 3-D morphological and quantitative analyses of the engrafted islets. 3-D image data reveal the clot- and plaque-like islet grafts in the liver: the former are derived from islet emboli and associated with ischemia, whereas the latter (minority) resemble the plaques on the walls of portal vessels (e.g., at the bifurcation) with mild, if any, perigraft tissue damage. Three weeks after transplantation, both types of grafts are revascularized, yet significantly more lymphatics are associated with the plaque- than clot-like grafts. Regarding the islet reinnervation, both types of grafts connect to the periportal nerve plexus and develop peri- and intragraft innervation. Specifically, the sympathetic axons and varicosities contact the α-cells, highlighting the graft-host neural integration. We present the heterogeneity of the intraportally transplanted islets and the graft-host neurovascular integration in mice. Our work provides the technical and morphological foundation for future high-definitional 3-D tissue and cellular analyses of human islet grafts in the liver.NEW & NOTEWORTHY Modern 3-D histology identifies the clot- and plaque-like islet grafts in the mouse liver, which otherwise cannot be distinguished with the standard microtome-based histology. The two types of grafts are similar in blood microvessel density and sympathetic reinnervation. Their differences, however, are their locations, severity of associated liver injury, and access to lymphatic vessels. Our work provides the technical and morphological foundation for future high-definitional 3-D tissue/cellular analyses of human islet grafts in the liver.
Collapse
Affiliation(s)
- Chien-Chia Chen
- Department of Surgery, National Taiwan University Hospital, Taipei, Taiwan
| | - Shih-Jung Peng
- Department of Medical Science, National Tsing Hua University, Hsinchu, Taiwan
| | - Pei-Yu Wu
- Department of Surgery, National Taiwan University Hospital, Taipei, Taiwan
| | - Hung-Jen Chien
- Institute of Biotechnology, National Tsing Hua University, Hsinchu, Taiwan
| | - Chih-Yuan Lee
- Department of Surgery, National Taiwan University Hospital, Taipei, Taiwan
| | - Mei-Hsin Chung
- Institute of Biotechnology, National Tsing Hua University, Hsinchu, Taiwan
- Department of Pathology, National Taiwan University Hospital-Hsinchu Branch, Hsinchu, Taiwan
| | - Shiue-Cheng Tang
- Department of Medical Science, National Tsing Hua University, Hsinchu, Taiwan
- Institute of Biotechnology, National Tsing Hua University, Hsinchu, Taiwan
| |
Collapse
|
8
|
Abstract
The American Diabetes Association (ADA) "Standards of Medical Care in Diabetes" includes the ADA's current clinical practice recommendations and is intended to provide the components of diabetes care, general treatment goals and guidelines, and tools to evaluate quality of care. Members of the ADA Professional Practice Committee, a multidisciplinary expert committee (https://doi.org/10.2337/dc21-SPPC), are responsible for updating the Standards of Care annually, or more frequently as warranted. For a detailed description of ADA standards, statements, and reports, as well as the evidence-grading system for ADA's clinical practice recommendations, please refer to the Standards of Care Introduction (https://doi.org/10.2337/dc21-SINT). Readers who wish to comment on the Standards of Care are invited to do so at professional.diabetes.org/SOC.
Collapse
|
9
|
Zhang Q, Dou H, Rorsman P. 'Resistance is futile?' - paradoxical inhibitory effects of K ATP channel closure in glucagon-secreting α-cells. J Physiol 2020; 598:4765-4780. [PMID: 32716554 PMCID: PMC7689873 DOI: 10.1113/jp279775] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/25/2020] [Accepted: 07/24/2020] [Indexed: 12/12/2022] Open
Abstract
By secreting insulin and glucagon, the β- and α-cells of the pancreatic islets play a central role in the regulation of systemic metabolism. Both cells are equipped with ATP-regulated potassium (KATP ) channels that are regulated by the intracellular ATP/ADP ratio. In β-cells, KATP channels are active at low (non-insulin-releasing) glucose concentrations. An increase in glucose leads to KATP channel closure, membrane depolarization and electrical activity that culminates in elevation of [Ca2+ ]i and initiation of exocytosis of the insulin-containing secretory granules. The α-cells are also equipped with KATP channels but they are under strong tonic inhibition at low glucose, explaining why α-cells are electrically active under hypoglycaemic conditions and generate large Na+ - and Ca2+ -dependent action potentials. Closure of residual KATP channel activity leads to membrane depolarization and an increase in action potential firing but this stimulation of electrical activity is associated with inhibition rather than acceleration of glucagon secretion. This paradox arises because membrane depolarization reduces the amplitude of the action potentials by voltage-dependent inactivation of the Na+ channels involved in action potential generation. Exocytosis in α-cells is tightly linked to the opening of voltage-gated P/Q-type Ca2+ channels, the activation of which is steeply voltage-dependent. Accordingly, the inhibitory effect of the reduced action potential amplitude exceeds the stimulatory effect resulting from the increased action potential frequency. These observations highlight a previously unrecognised role of the action potential amplitude as a key regulator of pancreatic islet hormone secretion.
Collapse
Affiliation(s)
- Quan Zhang
- Oxford Centre for Diabetes, Endocrinology and Metabolism, Radcliffe Department of Medicine, University of Oxford, Churchill Hospital, Oxford, OX3 7LE, UK
| | - Haiqiang Dou
- Metabolic Physiology Unit, Institute of Neuroscience and Physiology, University of Göteborg, PO Box 430, Göteborg, SE-405 30, Sweden
| | - Patrik Rorsman
- Oxford Centre for Diabetes, Endocrinology and Metabolism, Radcliffe Department of Medicine, University of Oxford, Churchill Hospital, Oxford, OX3 7LE, UK.,Metabolic Physiology Unit, Institute of Neuroscience and Physiology, University of Göteborg, PO Box 430, Göteborg, SE-405 30, Sweden
| |
Collapse
|
10
|
Abstract
The American Diabetes Association (ADA) "Standards of Medical Care in Diabetes" includes the ADA's current clinical practice recommendations and is intended to provide the components of diabetes care, general treatment goals and guidelines, and tools to evaluate quality of care. Members of the ADA Professional Practice Committee, a multidisciplinary expert committee (https://doi.org/10.2337/dc20-SPPC), are responsible for updating the Standards of Care annually, or more frequently as warranted. For a detailed description of ADA standards, statements, and reports, as well as the evidence-grading system for ADA's clinical practice recommendations, please refer to the Standards of Care Introduction (https://doi.org/10.2337/dc20-SINT). Readers who wish to comment on the Standards of Care are invited to do so at professional.diabetes.org/SOC.
Collapse
|
11
|
Kudva YC, Nair KS. Diabetes Mellitus: A Perspective on the Post-Insulin Era. Mayo Clin Proc 2020; 95:15-21. [PMID: 31902410 DOI: 10.1016/j.mayocp.2019.11.016] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/19/2019] [Accepted: 11/19/2019] [Indexed: 01/10/2023]
Affiliation(s)
- Yogish C Kudva
- Division of Endocrinology and Metabolism, Mayo Clinic, Rochester, MN.
| | | |
Collapse
|
12
|
Abstract
The American Diabetes Association (ADA) "Standards of Medical Care in Diabetes" includes ADA's current clinical practice recommendations and is intended to provide the components of diabetes care, general treatment goals and guidelines, and tools to evaluate quality of care. Members of the ADA Professional Practice Committee, a multidisciplinary expert committee, are responsible for updating the Standards of Care annually, or more frequently as warranted. For a detailed description of ADA standards, statements, and reports, as well as the evidence-grading system for ADA's clinical practice recommendations, please refer to the Standards of Care Introduction Readers who wish to comment on the Standards of Care are invited to do so at professional.diabetes.org/SOC.
Collapse
|
13
|
Affiliation(s)
- Anna R Kahkoska
- Department of Nutrition, Gillings School of Global Public Health, University of North Carolina at Chapel Hill, Chapel Hill, NC
| | - John B Buse
- Department of Medicine, University of North Carolina School of Medicine, Chapel Hill, NC
| |
Collapse
|
14
|
Piemonti L, de Koning EJP, Berney T, Odorico JS, Markmann JF, Stock PG, Rickels MR. Defining outcomes for beta cell replacement therapy: a work in progress. Diabetologia 2018; 61:1273-1276. [PMID: 29511779 PMCID: PMC6467463 DOI: 10.1007/s00125-018-4588-0] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/11/2018] [Accepted: 02/14/2018] [Indexed: 12/18/2022]
Abstract
Defined outcomes for beta cell replacement therapy in the treatment of diabetes are critically needed. Progress towards the clinical acceptance of pancreas and islet transplantation has been hampered by the lack of clear definitions of functional and efficacy outcomes, as well as a lack of consistently applied glycaemic control metrics, together with poor alignment with the field of artificial insulin delivery/artificial pancreas development. To address this problem, the International Pancreas & Islet Transplant Association (IPITA) collaborated with the European Pancreas and Islet Transplant Association (EPITA) to develop a consensus for a joint statement on the definition of function and failure of beta cell replacement therapies, which is summarised in this commentary.
Collapse
Affiliation(s)
- Lorenzo Piemonti
- Diabetes Research Institute, IRCCS San Raffaele Scientific Institute, Via Olgettina 60, 20132, Milan, Italy.
- Vita-Salute San Raffaele University, Milan, Italy.
| | - Eelco J P de Koning
- Department of Medicine, Leiden University Medical Center, Leiden, the Netherlands
| | - Thierry Berney
- Division of Transplantation and Visceral Surgery, Department of Surgery, Geneva University Hospital, Geneva, Switzerland
| | - Jon S Odorico
- Division of Transplantation, Department of Surgery, University of Wisconsin School of Medicine and Public Health, Madison, WI, USA
| | - James F Markmann
- Division of Transplantation, Department of Surgery, Massachusetts General Hospital, Boston, MA, USA
| | - Peter G Stock
- Division of Transplantation, Department of Surgery, University of California at San Francisco, San Francisco, CA, USA
| | - Michael R Rickels
- Division of Endocrinology, Diabetes & Metabolism, Department of Medicine, University of Pennsylvania Perelman School of Medicine, Philadelphia, PA, USA
| |
Collapse
|
15
|
Benomar K, Chetboun M, Espiard S, Jannin A, Le Mapihan K, Gmyr V, Caiazzo R, Torres F, Raverdy V, Bonner C, D'Herbomez M, Pigny P, Noel C, Kerr-Conte J, Pattou F, Vantyghem MC. Purity of islet preparations and 5-year metabolic outcome of allogenic islet transplantation. Am J Transplant 2018; 18:945-951. [PMID: 28941330 DOI: 10.1111/ajt.14514] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/14/2017] [Revised: 08/23/2017] [Accepted: 09/04/2017] [Indexed: 01/25/2023]
Abstract
In allogenic islet transplantation (IT), high purity of islet preparations and low contamination by nonislet cells are generally favored. The aim of the present study was to analyze the relation between the purity of transplanted preparations and graft function during 5 years post-IT. Twenty-four patients with type 1 diabetes, followed for 5 years after IT, were enrolled. Metabolic parameters and daily insulin requirements were compared between patients who received islet preparations with a mean purity <50% (LOW purity) or ≥50% (HIGH purity). We also analyzed blood levels of carbohydrate antigen 19-9 (CA 19-9)-a biomarker of pancreatic ductal cells-and glucagon, before and after IT. At 5 years, mean hemoglobin A1c (HbA1c levels) (P = .01) and daily insulin requirements (P = .03) were lower in the LOW purity group. Insulin independence was more frequent in the LOW purity group (P < .05). CA19-9 and glucagon levels increased post-IT (P < .0001) and were inversely correlated with the degree of purity. Overall, our results suggest that nonislet cells have a beneficial effect on long-term islet graft function, possibly through ductal-to-endocrine cell differentiation. ClinicalTrial.gov NCT00446264 and NCT01123187.
Collapse
Affiliation(s)
- K Benomar
- Department of Endocrinology and Metabolism, CHRU Lille, Lille, France.,UMR 1190, Translational Research in Diabetes INSERM, Lille, France.,EGID (European Genomic Institute for Diabetes), Univ Lille, Lille, France
| | - M Chetboun
- UMR 1190, Translational Research in Diabetes INSERM, Lille, France.,EGID (European Genomic Institute for Diabetes), Univ Lille, Lille, France.,Department of Endocrine Surgery, CHRU Lille, Lille, France
| | - S Espiard
- Department of Endocrinology and Metabolism, CHRU Lille, Lille, France
| | - A Jannin
- Department of Endocrinology and Metabolism, CHRU Lille, Lille, France
| | - K Le Mapihan
- Department of Endocrinology and Metabolism, CHRU Lille, Lille, France
| | - V Gmyr
- UMR 1190, Translational Research in Diabetes INSERM, Lille, France.,EGID (European Genomic Institute for Diabetes), Univ Lille, Lille, France
| | - R Caiazzo
- UMR 1190, Translational Research in Diabetes INSERM, Lille, France.,EGID (European Genomic Institute for Diabetes), Univ Lille, Lille, France.,Department of Endocrine Surgery, CHRU Lille, Lille, France
| | - F Torres
- UMR 1190, Translational Research in Diabetes INSERM, Lille, France.,EGID (European Genomic Institute for Diabetes), Univ Lille, Lille, France.,Department of Endocrine Surgery, CHRU Lille, Lille, France
| | - V Raverdy
- UMR 1190, Translational Research in Diabetes INSERM, Lille, France.,EGID (European Genomic Institute for Diabetes), Univ Lille, Lille, France.,Department of Endocrine Surgery, CHRU Lille, Lille, France
| | - C Bonner
- UMR 1190, Translational Research in Diabetes INSERM, Lille, France.,EGID (European Genomic Institute for Diabetes), Univ Lille, Lille, France
| | - M D'Herbomez
- Department of Biology, CHRU Lille, Lille, France
| | - P Pigny
- Department of Biology, CHRU Lille, Lille, France
| | - C Noel
- Department of Nephrology and Transplantation, CHRU Lille, Lille, France
| | - J Kerr-Conte
- UMR 1190, Translational Research in Diabetes INSERM, Lille, France.,EGID (European Genomic Institute for Diabetes), Univ Lille, Lille, France
| | - F Pattou
- UMR 1190, Translational Research in Diabetes INSERM, Lille, France.,EGID (European Genomic Institute for Diabetes), Univ Lille, Lille, France.,Department of Endocrine Surgery, CHRU Lille, Lille, France
| | - M C Vantyghem
- Department of Endocrinology and Metabolism, CHRU Lille, Lille, France.,UMR 1190, Translational Research in Diabetes INSERM, Lille, France.,EGID (European Genomic Institute for Diabetes), Univ Lille, Lille, France
| |
Collapse
|
16
|
Abstract
The American Diabetes Association (ADA) "Standards of Medical Care in Diabetes" includes ADA's current clinical practice recommendations and is intended to provide the components of diabetes care, general treatment goals and guidelines, and tools to evaluate quality of care. Members of the ADA Professional Practice Committee, a multidisciplinary expert committee, are responsible for updating the Standards of Care annually, or more frequently as warranted. For a detailed description of ADA standards, statements, and reports, as well as the evidence-grading system for ADA's clinical practice recommendations, please refer to the Standards of Care Introduction Readers who wish to comment on the Standards of Care are invited to do so at professional.diabetes.org/SOC.
Collapse
|
17
|
Hering BJ, Bridges ND, Eggerman TL, Ricordi C. Comment on Harlan. Islet Transplantation for Hypoglycemia Unawareness/Severe Hypoglycemia: Caveat Emptor. Diabetes Care 2016;39:1072-1074. Diabetes Care 2017; 40:e111-e112. [PMID: 28733382 PMCID: PMC5521970 DOI: 10.2337/dc16-2691] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 02/03/2023]
Affiliation(s)
- Bernhard J Hering
- Schulze Diabetes Institute and Department of Surgery, University of Minnesota, Minneapolis, MN
| | - Nancy D Bridges
- National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, MD
| | - Thomas L Eggerman
- National Institute of Diabetes and Digestive and Kidney Diseases, National Institutes of Health, Bethesda, MD
| | - Camillo Ricordi
- Diabetes Research Institute, Miller School of Medicine, University of Miami, Miami, FL
| | | |
Collapse
|
18
|
Harlan DM. Response to Comment on Harlan. Islet Transplantation for Hypoglycemia Unawareness/Severe Hypoglycemia: Caveat Emptor. Diabetes Care 2016;39:1072-1074. Diabetes Care 2017; 40:e113-e114. [PMID: 28733383 DOI: 10.2337/dci17-0013] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 02/03/2023]
Affiliation(s)
- David M Harlan
- Diabetes Center of Excellence, University of Massachusetts Medical School, Worcester, MA
| |
Collapse
|
19
|
Robertson RP. Spontaneous Hypoglycemia After Islet Transplantation: The Case For Using Non-Hepatic Sites. J Clin Endocrinol Metab 2016; 101:3571-3574. [PMID: 27610653 PMCID: PMC5052339 DOI: 10.1210/jc.2016-2850] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
Abstract
This Perspective provides a brief history of intrahepatic alloislet and autoislet transplantation in humans and an update of the recent success rates. It also examines the important role that hypoglycemia plays in clinical outcomes. On the one hand, recurrent serious hypoglycemic episodes related to insulin therapy are a major criterion for alloislet transplantation. On the other hand, spontaneous clinical hypoglycemia, perhaps related to the accompanying Roux-en-Y procedure for total pancreatectomy, is a complication of autoislet transplantation. Complex alterations in glucagon secretion compromise counter-regulation of hypoglycemia in both situations. The glucagon response to hypoglycemia is intrinsically defective in type 1 diabetes before transplant because of the absence of physiological regulation of α-cell secretion by neighboring β-cells. Glucagon secretion from intrahepatic islets during systemic hypoglycemia is also defective, although β-cells in the graft are normally regulated by glucose and arginine. My personal perspective is that the latter is caused by intrahepatic glycogenolysis stimulated by systemic hypoglycemia with consequent increases in intrahepatic glucose flux, which incorrectly signals intrahepatic α-cells to be quiescent. This defect is liver-specific, which strongly suggests modifying the current approach to islet transplantation by placing a portion of allo- and autoislets in nonhepatic sites in addition to hepatic sites to ensure physiological glucagon secretion as a strategy to ameliorate post-transplant hypoglycemia.
Collapse
Affiliation(s)
- R Paul Robertson
- Pacific NW Diabetes Research Institute, Divisions of Endocrinology and Metabolism, Universities of Washington and Minnesota, Seattle, Washington 98122
| |
Collapse
|