1
|
Nakra T, Jassim M, Yadav R, Agarwala S, Das P, Nilima N, Sreenivas V, Chopra A, Dattagupta S, Iyer VK. Study of WNT and NOTCH Signaling Pathways in Hepatoblastoma: Role in Diagnosis and Prognosis. Int J Surg Pathol 2025:10668969251346938. [PMID: 40491264 DOI: 10.1177/10668969251346938] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/11/2025]
Abstract
Background. Hepatoblastoma has an aggressive course in a subset of children. Studying various markers related to the signaling pathways can aid in understanding its pathogenesis at the molecular level and may pave the way for targeted therapy. We conducted this study to evaluate the immunohistochemical expression of markers related to WNT and NOTCH signaling pathways in hepatoblastoma and to compare them among its histological subtypes. Methods. The specimens of hepatoblastoma diagnosed over a period of 8 years were retrieved. Clinicoradiological data was obtained. Slides were reviewed and detailed histopathological parameters, diagnosis, and subtypes were reevaluated. Immunohistochemistry for β-catenin, CCND1, glutamine synthetase, MYC, AXIN2, NOTCH2, DLK1, and HES1 was performed. Statistical analysis was done. Results. A total of 51 samples of hepatoblastoma were included in the study. Mixed epithelial-mesenchymal hepatoblastoma was the most common histologic subtype. PRETEXT IV, high-risk group, high mitotic index, and less differentiated histologic subtype were associated with worse outcomes. β-catenin, AXIN2, CCND1, expression was more in less differentiated subtypes. MYC, HES1, and glutamine synthetase expression was more common in the fetal component. NOTCH2 and DLK1 expression was seen across all types. A statistically significant association was observed among AXIN2 expression with β-catenin, CCND1, and MYC nuclear expression. Mean overall survival was 66.6 months and mean event-free survival was 54.7 months. Conclusions. The NOTCH pathway converges with the WNT pathway. Differential expression of the immunohistochemical markers of these pathways helps in the semiquantitation of various epithelial components, guides adjuvant treatment, and patient prognostication.
Collapse
Affiliation(s)
- Tripti Nakra
- Department of Pathology All India Institute of Medical Sciences, New Delhi, India
| | - Mohamed Jassim
- Department of Pathology All India Institute of Medical Sciences, New Delhi, India
| | - Rajni Yadav
- Department of Pathology All India Institute of Medical Sciences, New Delhi, India
| | - Sandeep Agarwala
- Department of Paediatric Surgery, All India Institute of Medical Sciences, New Delhi, India
| | - Prasenjit Das
- Department of Pathology All India Institute of Medical Sciences, New Delhi, India
| | - Nilima Nilima
- Department of Biostatistics, All India Institute of Medical Sciences, New Delhi, India
| | | | - Anita Chopra
- Laboratory Oncology Unit, All India Institute of Medical Sciences, New Delhi, India
| | - S Dattagupta
- Department of Pathology All India Institute of Medical Sciences, New Delhi, India
| | - Venkateswaran K Iyer
- Department of Pathology All India Institute of Medical Sciences, New Delhi, India
| |
Collapse
|
2
|
Fan L, Na J, Shi T, Liao Y. Hepatoblastoma: From Molecular Mechanisms to Therapeutic Strategies. Curr Oncol 2025; 32:149. [PMID: 40136353 PMCID: PMC11941340 DOI: 10.3390/curroncol32030149] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/16/2025] [Revised: 02/23/2025] [Accepted: 03/02/2025] [Indexed: 03/27/2025] Open
Abstract
Hepatoblastoma (HB) is the most common malignant liver tumor in children under five years of age. Although globally rare, it accounts for a large proportion of liver cancer in children and has poor survival rates in high-risk and metastatic cases. This review discusses the molecular mechanisms, diagnostic methods, and therapeutic strategies of HB. Mutations in the CTNNB1 gene and the activation of the Wnt/β-catenin pathway are essential genetic factors. Furthermore, genetic syndromes like Beckwith-Wiedemann syndrome (BWS) and Familial Adenomatous Polyposis (FAP) considerably heighten the risk of associated conditions. Additionally, epigenetic mechanisms, such as DNA methylation and the influence of non-coding RNAs (ncRNAs), are pivotal drivers of tumor development. Diagnostics include serum biomarkers, immunohistochemistry (IHC), and imaging techniques. Standard treatments are chemotherapy, surgical resection, and liver transplantation (LT). Emerging therapies like immunotherapy and targeted treatments offer hope against chemotherapy resistance. Future research will prioritize personalized medicine, novel biomarkers, and molecular-targeted therapies to improve survival outcomes.
Collapse
Affiliation(s)
- Ling Fan
- State Key Laboratory of Targeting Oncology, Guangxi Medical University, Nanning 530021, China; (L.F.); (J.N.)
- National Center for International Research of Bio-Targeting Theranostics, Guangxi Medical University, Nanning 530021, China
- Guangxi Key Laboratory of Bio-Targeting Theranostics, Guangxi Medical University, Nanning 530021, China
- Collaborative Innovation Center for Targeting Tumor Diagnosis and Therapy, Guangxi Medical University, Nanning 530021, China
- Guangxi Talent Highland of Major New Drugs Innovation and Development, Guangxi Medical University, Nanning 530021, China
| | - Jintong Na
- State Key Laboratory of Targeting Oncology, Guangxi Medical University, Nanning 530021, China; (L.F.); (J.N.)
- National Center for International Research of Bio-Targeting Theranostics, Guangxi Medical University, Nanning 530021, China
- Guangxi Key Laboratory of Bio-Targeting Theranostics, Guangxi Medical University, Nanning 530021, China
- Collaborative Innovation Center for Targeting Tumor Diagnosis and Therapy, Guangxi Medical University, Nanning 530021, China
- Guangxi Talent Highland of Major New Drugs Innovation and Development, Guangxi Medical University, Nanning 530021, China
| | - Tieliu Shi
- State Key Laboratory of Targeting Oncology, Guangxi Medical University, Nanning 530021, China; (L.F.); (J.N.)
- National Center for International Research of Bio-Targeting Theranostics, Guangxi Medical University, Nanning 530021, China
- Guangxi Key Laboratory of Bio-Targeting Theranostics, Guangxi Medical University, Nanning 530021, China
- Collaborative Innovation Center for Targeting Tumor Diagnosis and Therapy, Guangxi Medical University, Nanning 530021, China
- Guangxi Talent Highland of Major New Drugs Innovation and Development, Guangxi Medical University, Nanning 530021, China
- Center for Bioinformatics and Computational Biology, Shanghai Key Laboratory of Regulatory Biology, The Institute of Biomedical Sciences and School of Life Sciences, East China Normal University, Shanghai 200241, China
- Key Laboratory of Advanced Theory and Application in Statistics and Data Science (MOE), School of Statistics, East China Normal University, Shanghai 200062, China
| | - Yuan Liao
- State Key Laboratory of Targeting Oncology, Guangxi Medical University, Nanning 530021, China; (L.F.); (J.N.)
- National Center for International Research of Bio-Targeting Theranostics, Guangxi Medical University, Nanning 530021, China
- Guangxi Key Laboratory of Bio-Targeting Theranostics, Guangxi Medical University, Nanning 530021, China
- Collaborative Innovation Center for Targeting Tumor Diagnosis and Therapy, Guangxi Medical University, Nanning 530021, China
- Guangxi Talent Highland of Major New Drugs Innovation and Development, Guangxi Medical University, Nanning 530021, China
| |
Collapse
|
3
|
Wei JH, Qiao YL, Xu S, Zou Y, Ni HF, Wu LZ, Tao ZZ, Jiao WE, Chen SM. Specific knockout of Notch2 in Treg cells significantly inhibits the growth and proliferation of head and neck squamous cell carcinoma in mice. Int Immunopharmacol 2023; 123:110705. [PMID: 37523971 DOI: 10.1016/j.intimp.2023.110705] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/27/2023] [Revised: 07/02/2023] [Accepted: 07/23/2023] [Indexed: 08/02/2023]
Abstract
OBJECTIVE To investigate the effect of Notch2 gene knockout in Treg cells on head and neck squamous cell carcinoma (HNSCC) in mice. METHODS A mouse model of HNSCC was constructed. Flow cytometry and immunofluorescence were used to examine the numbers of related immune cells and programmed cell death in tumor cells in the spleen and tumor microenvironment of mice. Western blotting was used to measure the expression of related proteins in tumor tissues. RESULTS The tumor volume of regulatory T (Treg) cell-specific Notch2-knockout mice (experimental group) was significantly smaller than that of control mice (control group) (P < 0.05). Compared with those in the control group, the number of Treg cells and the expression of Ki67 in Treg cells in the spleen and tumor tissue were significantly decreased in the experimental group, while the numbers of CD45+ hematopoietic cells, CD4+ T cells, CD8+ T cells, T helper 1 (Th1) cells, CD11b+ cells (macrophages), and CD11b+CD11c+ cells (dendritic cells) and the expression of Ki67 in CD4+ T cells and CD8+ T cells were significantly increased (P < 0.05). There was no significant difference in the number of Th2 cells between the two groups (P > 0.05). Immunofluorescence analysis showed that the numbers of CD4+ T cells and CD8+ T cells in the tumor tissue in the experimental group were significantly higher than those in the control group (P < 0.05). Compared with that in the control group, programmed cell death in the experimental group was significantly increased (P < 0.05). Moreover, the expression levels of NLRP3, Caspase-1 and GSDMD in the tumor tissues of the experimental group were higher than those in the control group (P < 0.01), while the expression levels of BCL2, Bax, ATG5, LC3 and p62 were not significantly different (P > 0.05). CONCLUSIONS Specific knockout of the Notch2 gene in Treg cells significantly decreases the function of Treg cells, inhibits the growth of HNSCC and improves the immune microenvironment in mice, thus effectively treating HNSCC.
Collapse
Affiliation(s)
- Jun-Hua Wei
- Department of Otolaryngology-Head and Neck Surgery, Renmin Hospital of Wuhan University, 238 Jie-Fang Road, Wuhan, Hubei 430060, PR China
| | - Yue-Long Qiao
- Department of Otolaryngology-Head and Neck Surgery, Renmin Hospital of Wuhan University, 238 Jie-Fang Road, Wuhan, Hubei 430060, PR China
| | - Shan Xu
- Department of Otolaryngology-Head and Neck Surgery, Renmin Hospital of Wuhan University, 238 Jie-Fang Road, Wuhan, Hubei 430060, PR China
| | - You Zou
- Department of Otolaryngology-Head and Neck Surgery, Renmin Hospital of Wuhan University, 238 Jie-Fang Road, Wuhan, Hubei 430060, PR China
| | - Hai-Feng Ni
- Department of Otolaryngology Head and Neck Surgery, Affiliated Hangzhou First People's Hospital, Zhejiang University School of Medicine, Hangzhou, Zhejiang 310006, PR China
| | - Li-Zhi Wu
- Department of Otolaryngology-Head and Neck Surgery, Renmin Hospital of Wuhan University, 238 Jie-Fang Road, Wuhan, Hubei 430060, PR China
| | - Ze-Zhang Tao
- Department of Otolaryngology-Head and Neck Surgery, Renmin Hospital of Wuhan University, 238 Jie-Fang Road, Wuhan, Hubei 430060, PR China; Institute of Otolaryngology-Head and Neck Surgery, Renmin Hospital of Wuhan University, 238 Jie-Fang Road, Wuhan, Hubei 430060, PR China
| | - Wo-Er Jiao
- Department of Otolaryngology-Head and Neck Surgery, Renmin Hospital of Wuhan University, 238 Jie-Fang Road, Wuhan, Hubei 430060, PR China.
| | - Shi-Ming Chen
- Department of Otolaryngology-Head and Neck Surgery, Renmin Hospital of Wuhan University, 238 Jie-Fang Road, Wuhan, Hubei 430060, PR China; Institute of Otolaryngology-Head and Neck Surgery, Renmin Hospital of Wuhan University, 238 Jie-Fang Road, Wuhan, Hubei 430060, PR China.
| |
Collapse
|
4
|
Pituitary Tumor-Transforming Gene 1/Delta like Non-Canonical Notch Ligand 1 Signaling in Chronic Liver Diseases. Int J Mol Sci 2022; 23:ijms23136897. [PMID: 35805898 PMCID: PMC9267054 DOI: 10.3390/ijms23136897] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/14/2022] [Revised: 06/17/2022] [Accepted: 06/18/2022] [Indexed: 02/06/2023] Open
Abstract
The management of chronic liver diseases (CLDs) remains a challenge, and identifying effective treatments is a major unmet medical need. In the current review we focus on the pituitary tumor transforming gene (PTTG1)/delta like non-canonical notch ligand 1 (DLK1) axis as a potential therapeutic target to attenuate the progression of these pathological conditions. PTTG1 is a proto-oncogene involved in proliferation and metabolism. PTTG1 expression has been related to inflammation, angiogenesis, and fibrogenesis in cancer and experimental fibrosis. On the other hand, DLK1 has been identified as one of the most abundantly expressed PTTG1 targets in adipose tissue and has shown to contribute to hepatic fibrosis by promoting the activation of hepatic stellate cells. Here, we extensively analyze the increasing amount of information pointing to the PTTG1/DLK1 signaling pathway as an important player in the regulation of these disturbances. These data prompted us to hypothesize that activation of the PTTG1/DLK1 axis is a key factor upregulating the tissue remodeling mechanisms characteristic of CLDs. Therefore, disruption of this signaling pathway could be useful in the therapeutic management of CLDs.
Collapse
|
5
|
Kawaguchi K, Kaneko S. Notch Signaling and Liver Cancer. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2020; 1287:69-80. [PMID: 33034027 DOI: 10.1007/978-3-030-55031-8_6] [Citation(s) in RCA: 21] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
Abstract
Interactions between liver cells are closely regulated by Notch signaling. Notch signaling has been reported clinically related to bile duct hypogenesis in Alagille syndrome, which is caused by mutations in the Jagged1 gene. Notch activation and hepatocarcinogenesis are closely associated since cancer signaling is affected by the development of liver cells and cancer stem cells. Gene expression and genomic analysis using a microarray revealed that abnormalities in Notch-related genes were associated with the aggressiveness of liver cancer. This pattern was also accompanied with α-fetoprotein- and EpCAM-expressing phenotypes in vitro, in vivo, and in clinical tissues. Hepatitis B or C virus chronic infection or alcohol- or steatosis-related liver fibrosis induces liver cancer. Previous reports demonstrated that HBx, a hepatitis B virus protein, was associated with Jagged1 expression. We found that the Jagged1 and Notch1 signaling pathways were closely associated with the transcription of covalently closed circular hepatitis B virus DNA, which regulated cAMP response element-binding protein, thereby affecting Notch1 regulation by the E3 ubiquitin ligase ITCH. This viral pathogenesis in hepatocytes induces liver cancer. In conclusion, Notch signaling exerts various actions and is a clinical signature associated with hepatocarcinogenesis and liver context-related developmental function.
Collapse
Affiliation(s)
- Kazunori Kawaguchi
- Department of Gastroenterology, Kanazawa University Graduate School of Medical Sciences, Kanazawa, Japan
| | - Shuichi Kaneko
- Department of Gastroenterology, Kanazawa University Graduate School of Medical Sciences, Kanazawa, Japan.
| |
Collapse
|
6
|
Xie F, Zhang L, Yao Q, Shan L, Liu J, Dong N, Liang J. TUG1 Promoted Tumor Progression by Sponging miR-335-5p and Regulating CXCR4-Mediated Infiltration of Pro-Tumor Immunocytes in CTNNB1-Mutated Hepatoblastoma. Onco Targets Ther 2020; 13:3105-3115. [PMID: 32341656 PMCID: PMC7166065 DOI: 10.2147/ott.s234819] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/16/2019] [Accepted: 03/06/2020] [Indexed: 12/21/2022] Open
Abstract
Introduction HB presents with the highest frequency of CTNNB1 mutations, resulting in activation of Wnt signaling pathway. A number of studies have demonstrated CTNNB1 mutation contributed to the development of HB. However, limited research explored the function of lncRNAs in HB with CTNNB1 mutation. Methods We screened lncRNA expression profiles in CTNNB1-mutated HB samples and identified lncRNAs associated with malignant phenotype in HB. The association between lncRNA and immune microenvironment was investigated. The biological function of lncRNA was further explored using in vitro experiments. Results TUG1 was identified as onco-lncRNA in CTNNB1-mutated HB. TUG1 was shown to be associated with the infiltration of pro-tumor immunocytes via regulating the expression of CXCR4, a chemokine receptor playing a critical role in regulation of immune microenvironment. Inhibiting TUG1 could increase endogenous levels of miR-335-5p and consequently downregulating CXCR4, a direct target of miR-335-5p. Conclusion Our findings provide evidence for TUG1 mediating infiltration of pro-tumor immunocytes in HB patients carrying CTNNB1 mutation. TUG1-miR-335-5p-CXCR4 axis might be a promising immunological target for the treatment of HB patients.
Collapse
Affiliation(s)
- Fujing Xie
- Department of Pediatrics, Liaocheng People's Hospital, Liaocheng 252000, Shandong Province, People's Republic of China
| | - Lianhai Zhang
- Department of Pediatric Surgery, Liaocheng People's Hospital, Liaocheng 252000, Shandong Province, People's Republic of China
| | - Qing Yao
- Medical College of Xi'an Jiaotong University, Xi'an 710061, Shaanxi Province, People's Republic of China
| | - Liyu Shan
- Medical College of Xi'an Jiaotong University, Xi'an 710061, Shaanxi Province, People's Republic of China
| | - Jike Liu
- Department of Pediatric Surgery, Liaocheng People's Hospital, Liaocheng 252000, Shandong Province, People's Republic of China
| | - Nanhai Dong
- Department of Clinical Laboratory, Liaocheng People's Hospital, Liaocheng 252000, Shandong Province, People's Republic of China
| | - Jun Liang
- Department of Pediatrics, Liaocheng People's Hospital, Liaocheng 252000, Shandong Province, People's Republic of China
| |
Collapse
|
7
|
Zhang S, Zhang J, Evert K, Li X, Liu P, Kiss A, Schaff Z, Ament C, Zhang Y, Serra M, Evert M, Chen N, Xu F, Chen X, Tao J, Calvisi DF, Cigliano A. The Hippo Effector Transcriptional Coactivator with PDZ-Binding Motif Cooperates with Oncogenic β-Catenin to Induce Hepatoblastoma Development in Mice and Humans. THE AMERICAN JOURNAL OF PATHOLOGY 2020; 190:1397-1413. [PMID: 32283103 DOI: 10.1016/j.ajpath.2020.03.011] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/25/2020] [Revised: 03/08/2020] [Accepted: 03/12/2020] [Indexed: 02/05/2023]
Abstract
Hepatoblastoma (HB) is the most common pediatric liver tumor. Though Wnt/β-catenin and Hippo cascades are implicated in HB development, studies on crosstalk between β-catenin and Hippo downstream effector transcriptional coactivator with PDZ-binding motif (TAZ) in HB are lacking. Expression levels of TAZ and β-catenin in human HB specimens were assessed by immunohistochemistry. Functional interplay between TAZ and β-catenin was determined by overexpression of an activated form of TAZ (TAZS89A), either alone or combined with an oncogenic form of β-catenin (ΔN90-β-catenin), in mouse liver via hydrodynamic transfection. Activation of TAZ often co-occurred with that of β-catenin in clinical specimens. Although the overexpression of TAZS89A alone did not induce hepatocarcinogenesis, concomitant overexpression of TAZS89A and ΔN90-β-catenin triggered the development of HB lesions exhibiting both epithelial and mesenchymal features. Mechanistically, TAZ/β-catenin-driven HB development required TAZ interaction with transcriptional enhanced associate domain factors. Blockade of the Notch cascade did not inhibit TAZ/β-catenin-dependent HB formation in mice but suppressed the mesenchymal phenotype. Neither Yes-associated protein nor heat shock factor 1 depletion affected HB development in TAZ/β-catenin mice. In human HB cell lines, silencing of TAZ resulted in decreased cell growth, which was further reduced when TAZ knockdown was associated with suppression of either β-catenin or Yes-associated protein. Overall, our study identified TAZ as a crucial oncogene in HB development and progression.
Collapse
Affiliation(s)
- Shu Zhang
- Cancer Center and State Key Laboratory of Biotherapy, West China Hospital, Sichuan University, Chengdu, PR China; Department of Bioengineering and Therapeutic Sciences and Liver Center, University of California, San Francisco, San Francisco, California
| | - Jie Zhang
- Department of Bioengineering and Therapeutic Sciences and Liver Center, University of California, San Francisco, San Francisco, California; Department of Thoracic Oncology II, Key Laboratory of Carcinogenesis and Translational Research, Ministry of Education, Peking University Cancer Hospital and Institute, Beijing, PR China
| | - Katja Evert
- Institute of Pathology, University of Regensburg, Regensburg, Germany
| | - Xiaolei Li
- Department of Thyroid and Breast Surgery, The 960th Hospital of the PLA, Jinan, PR China
| | - Pin Liu
- Department of Pediatrics, Zhongnan Hospital of Wuhan University, Wuhan, PR China
| | - Andras Kiss
- Second Department of Pathology, Semmelweis University, Budapest, Hungary
| | - Zsuzsa Schaff
- Second Department of Pathology, Semmelweis University, Budapest, Hungary
| | - Cindy Ament
- Institute of Pathology, University of Regensburg, Regensburg, Germany
| | - Yi Zhang
- Department of Bioengineering and Therapeutic Sciences and Liver Center, University of California, San Francisco, San Francisco, California; Key Laboratory of Biorheological Science and Technology, Ministry of Education, College of Bioengineering, Chongqing University, Chongqing, PR China
| | - Monica Serra
- Department of Medical, Surgical, and Experimental Sciences, University of Sassari, Sassari, Italy
| | - Matthias Evert
- Institute of Pathology, University of Regensburg, Regensburg, Germany
| | - Nianyong Chen
- Cancer Center and State Key Laboratory of Biotherapy, West China Hospital, Sichuan University, Chengdu, PR China
| | - Feng Xu
- Lung Cancer Center, West China Hospital, Sichuan University, Chengdu, PR China
| | - Xin Chen
- Department of Bioengineering and Therapeutic Sciences and Liver Center, University of California, San Francisco, San Francisco, California
| | - Junyan Tao
- Department of Pathology, University of Pittsburgh School of Medicine, Pittsburgh, Pennsylvania.
| | - Diego F Calvisi
- Department of Medical, Surgical, and Experimental Sciences, University of Sassari, Sassari, Italy.
| | - Antonio Cigliano
- Institute of Pathology, University of Regensburg, Regensburg, Germany
| |
Collapse
|
8
|
Li H, Wang Y. Long Noncoding RNA (lncRNA) MIR22HG Suppresses Gastric Cancer Progression through Attenuating NOTCH2 Signaling. Med Sci Monit 2019; 25:656-665. [PMID: 30670679 PMCID: PMC6352764 DOI: 10.12659/msm.912813] [Citation(s) in RCA: 38] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/30/2022] Open
Abstract
BACKGROUND Long noncoding RNAs (lncRNAs) are important regulators in human disease, including cancers. LncRNA MIR22HG has been shown to inhibit the progression of endometrial carcinoma, lung cancer, and hepatocellular carcinoma. Its role in gastric cancer is unclear. This study investigated MIR22HG effects on gastric cancer. MATERIAL AND METHODS Gastric cancer tissues (n=43) and adjacent normal tissues (n=21) were collected. Patients' 5-year overall survival rate was analyzed. Human normal gastric mucosal cell line (GES-1) and gastric cancer cell lines (MKN-45, AGS, SGC-7901) were cultured. AGS and MKN-45 cells were transfected by pcDNA3 empty vector, pcDNA3-MIR22HG overexpression vector, MIR22HG siRNA and its negative control, NOTCH2 siRNA and its negative control, respectively. Proliferation was explored by CCK-8 assay. Migration and invasion were explored by Transwell. qRT-PCR and western blot were used to investigate mRNA and proteins expression, respectively. RESULTS MIR22HG expression was decreased in gastric cancer tissues and cells (P<0.05). Low MIR22HG expression indicated lower 5-year overall survival rate (P<0.05). Upregulation of MIR22HG inhibited AGS and MKN-45 cell proliferation, migration and invasion (all P<0.05). Downregulation of MIR22HG elevated AGS and MKN-45 cell proliferation, migration, and invasion (all P<0.05). MIR22HG negatively regulated NOTCH2 signaling. Silencing MIR22HG elevated HEY1 and nucleus NOTCH2 expression. Silencing of NOTCH2 suppressed AGS and MKN-45 cells proliferation, migration and invasion (all P<0.05). CONCLUSIONS LncRNA MIR22HG suppressed gastric cancer progression through attenuating NOTCH2 signaling.
Collapse
Affiliation(s)
- Huihui Li
- Department of Digestive System, Beilun People's Hospital, Ningbo, Zhejiang, China (mainland)
| | - Yue Wang
- Department of Pharmacology and Toxicology, Wright State University, Fairborn, OH, USA
| |
Collapse
|
9
|
Wang C, Zhang W, Zhang L, Chen X, Liu F, Zhang J, Guan S, Sun Y, Chen P, Wang D, Un Nesa E, Cheng Y, Yousef GM. miR-146a-5p mediates epithelial-mesenchymal transition of oesophageal squamous cell carcinoma via targeting Notch2. Br J Cancer 2016; 115:1548-1554. [PMID: 27832663 PMCID: PMC5155362 DOI: 10.1038/bjc.2016.367] [Citation(s) in RCA: 38] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/18/2016] [Revised: 09/27/2016] [Accepted: 10/08/2016] [Indexed: 02/08/2023] Open
Abstract
Background: Our previous study found that dysregulated microRNA-146a-5p (miR-146a-5p) is involved in oesophageal squamous cell cancer (ESCC) proliferation. This article aimed to evaluate its detailed mechanisms in ESCC epithelial–mesenchymal transition (EMT) progression. Methods: Invasion assay, qRT-PCR and western blotting were used to validate the roles of miR-146a-5p and Notch2 in EMT progression. miRNA target gene prediction databases and dual-luciferase reporter assay were used to validate the target gene. Results: miR-146a-5p inhibitor led to increase of invaded ESCC cells, while miR-146a-5p mimics inhibited invasion ability of ESCC cells. Protein level of E-cadherin decreased, whereas those of Snail and Vimentin increased in the anti-miR-146a-5p group, which demonstrated that miR-146a-5p inhibits EMT progression of ESCC cells. miRNA target gene prediction databases indicated the potential of Notch2 as a direct target gene of miR-146a-5p and dual-luciferase reporter assay validated it. Importantly, shRNA-Notch2 restrained EMT and partially abrogated the inhibiting effects of miR-146a-5p on EMT progression of ESCC cells. Conclusions: miR-146a-5p functions as a tumour-suppressive miRNA targeting Notch2 and inhibits the EMT progression of ESCC.
Collapse
Affiliation(s)
- Cong Wang
- Department of Radiation Oncology, Qilu Hospital of Shandong University, Jinan, Shandong, China
| | - Wenxue Zhang
- Department of Gastroenterology, Qilu Hospital of Shandong University, Jinan, Shandong, China
| | - Lin Zhang
- Department of Hematology, Qilu Hospital of Shandong University, Jinan, Shandong, China
| | - Xuan Chen
- Department of Radiation Oncology, Qilu Hospital of Shandong University, Jinan, Shandong, China
| | - Fang Liu
- Department of Imaging, Shandong Medical College, Jinan, Shandong, China
| | - Jing Zhang
- Department of Medical Genetics, National Key Laboratory of Medical Molecular Biology, Institute of Basic Medical Sciences Chinese Academy of Medical Sciences-School of Basic Medicine Peking Union Medical College, Beijing, China
| | - Shanghui Guan
- Department of Radiation Oncology, Qilu Hospital of Shandong University, Jinan, Shandong, China
| | - Yi Sun
- Department of Radiation Oncology, Qilu Hospital of Shandong University, Jinan, Shandong, China
| | - Pengxiang Chen
- Department of Radiation Oncology, Qilu Hospital of Shandong University, Jinan, Shandong, China
| | - Ding Wang
- Department of Laboratory Medicine, Qilu Hospital of Shandong University, Jinan, Shandong, China
| | - Effat Un Nesa
- Department of Radiation Oncology, Qilu Hospital of Shandong University, Jinan, Shandong, China
| | - Yufeng Cheng
- Department of Radiation Oncology, Qilu Hospital of Shandong University, Jinan, Shandong, China
| | - George M Yousef
- Department of Laboratory Medicine, and the Keenan Research Centre for Biomedical Science at the Li Ka Shing Knowledge Institute, St. Michael's Hospital, Toronto, Canada
| |
Collapse
|
10
|
Comerford SA, Hinnant EA, Chen Y, Bansal H, Klapproth S, Rakheja D, Finegold MJ, Lopez-Terrada D, O'Donnell KA, Tomlinson GE, Hammer RE. Hepatoblastoma modeling in mice places Nrf2 within a cancer field established by mutant β-catenin. JCI Insight 2016; 1:e88549. [PMID: 27734029 DOI: 10.1172/jci.insight.88549] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022] Open
Abstract
Aberrant wnt/β-catenin signaling and amplification/overexpression of Myc are associated with hepatoblastoma (HB), the most prevalent type of childhood liver cancer. To address their roles in the pathogenesis of HB, we generated mice in which Myc and mutant β-catenin were targeted to immature cells of the developing mouse liver. Perinatal coexpression of both genes promoted the preferential development of HBs over other tumor types in neonatal mice, all of which bore striking resemblance to their human counterparts. Integrated analysis indicated that tumors emerged as a consequence of Myc-driven alterations in hepatoblast fate in a background of pan-hepatic injury, inflammation, and nuclear factor (erythroid-derived 2)-like 2/Nrf2-dependent antioxidant signaling, which was specifically associated with expression of mutant β-catenin but not Myc. Immunoprofiling of human HBs confirmed that approximately 50% of tumors demonstrated aberrant activation of either Myc or Nfe2l2/Nrf2, while knockdown of Nrf2 in a cell line-derived from a human HB with NFE2L2 gene amplification reduced tumor cell growth and viability. Taken together, these data indicate that β-catenin creates a protumorigenic hepatic environment in part by indirectly activating Nrf2 and implicate oxidative stress as a possible driving force for a subset of β-catenin-driven liver tumors in children.
Collapse
Affiliation(s)
| | - Elizabeth A Hinnant
- Department of Biochemistry, University of Texas Southwestern Medical Center, Dallas, Texas, USA
| | - Yidong Chen
- Department of Epidemiology and Biostatistics and.,Greehey Children's Cancer Research Institute, University of Texas Health Science Center at San Antonio, San Antonio, Texas, USA
| | - Hima Bansal
- Greehey Children's Cancer Research Institute, University of Texas Health Science Center at San Antonio, San Antonio, Texas, USA
| | | | - Dinesh Rakheja
- Department of Pathology, University of Texas Southwestern Medical Center, Dallas, Texas, USA
| | | | - Dolores Lopez-Terrada
- Department of Pathology, and.,Department of Pediatrics, Baylor College of Medicine, Texas Children's Hospital, Houston, Texas, USA
| | - Kathryn A O'Donnell
- Department of Molecular Biology.,Harold C. Simmons Comprehensive Cancer Center, University of Texas Southwestern Medical Center, Dallas, Texas, USA
| | - Gail E Tomlinson
- Greehey Children's Cancer Research Institute, University of Texas Health Science Center at San Antonio, San Antonio, Texas, USA.,Department of Pediatrics, University of Texas Health Science Center at San Antonio and Greehey Children's Cancer Research Institute, San Antonio, Texas, USA
| | - Robert E Hammer
- Department of Biochemistry, University of Texas Southwestern Medical Center, Dallas, Texas, USA
| |
Collapse
|
11
|
Wu WR, Zhang R, Shi XD, Yi C, Xu LB, Liu C. Notch2 is a crucial regulator of self-renewal and tumorigenicity in human hepatocellular carcinoma cells. Oncol Rep 2016; 36:181-8. [PMID: 27221981 DOI: 10.3892/or.2016.4831] [Citation(s) in RCA: 24] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/28/2015] [Accepted: 02/11/2016] [Indexed: 11/05/2022] Open
Abstract
The Notch pathway plays an important role in both stem cell biology and cancer. Notch2 was reported to be upregulated in human hepatocellular carcinoma (HCC) tissues. However, the biological function of Notch2 in human HCC cells has not yet been documented. The aim of this study was to investigate its possible function on the progression of human HCC cells. The expression of Notch2 was detected in four human HCC cell lines by western blotting. Next, Notch2 was knocked down by small interference RNA (siRNA) in human HCC cells. The role of Notch2 in human HCC cells was investigated by cell proliferation assay, colony formation assay, chemoresistance and xenograft formation assay. In the present study, western blotting revealed that the expression of Notch2 was upregulated in human HCC cell lines. Genetic depletion of Notch2 in HCC cells not only resulted in significantly inhibited proliferation, cell cycle progression and colony formation ability but also increased its sensitivity to 5-fluorouracil (5-FU) compared with controls. In addition, upregulation of Notch2 was discovered in CD90 positive HCC cells, CD90 is a marker of hepatic stem cells. Most importantly, knockdown of Notch2 in HCC cells impaired the tumor formation in vivo. Taken together, our findings indicate that Notch2 may confer stemness properties in HCC; downregulation of Notch2 inhibited the proliferation and tumor formation of HCC cells and increase their sensitivity to 5-FU, suggesting Notch2 as a potential therapeutic target for HCC.
Collapse
Affiliation(s)
- Wen-Rui Wu
- Guangdong Provincial Key Laboratory of Malignant Tumor Epigenetics and Gene Regulation and Department of Pancreato-Biliary Surgery, SunYat-sen Memorial Hospital, SunYat-sen University, Guangzhou, Guangdong 510120, P.R. China
| | - Rui Zhang
- SunYat-sen Memorial Hospital, SunYat-sen University, Guangzhou, Guangdong 510120, P.R. China
| | - Xiang-De Shi
- SunYat-sen Memorial Hospital, SunYat-sen University, Guangzhou, Guangdong 510120, P.R. China
| | - Cao Yi
- Department of Emergency, SunYat-sen Memorial Hospital, SunYat-sen University, Guangzhou, Guangdong 510120, P.R. China
| | - Lei-Bo Xu
- SunYat-sen Memorial Hospital, SunYat-sen University, Guangzhou, Guangdong 510120, P.R. China
| | - Chao Liu
- SunYat-sen Memorial Hospital, SunYat-sen University, Guangzhou, Guangdong 510120, P.R. China
| |
Collapse
|
12
|
Wang C, Li Q, Liu F, Chen X, Liu B, Nesa EU, Guan S, Han L, Tan B, Wang N, Wang X, Song Q, Jia Y, Wang J, Lu M, Cheng Y. Notch2 as a promising prognostic biomarker for oesophageal squamous cell carcinoma. Sci Rep 2016; 6:25722. [PMID: 27158037 PMCID: PMC4860585 DOI: 10.1038/srep25722] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/21/2015] [Accepted: 04/21/2016] [Indexed: 12/28/2022] Open
Abstract
We aimed to examine Notch2 expression in oesophageal squamous cell carcinoma (ESCC) patients and to evaluate its prognostic potential. Immunohistochemical (IHC) staining, quantitative real-time polymerase chain reaction (qRT-PCR) and western blot analysis were utilized to investigate the Notch2 expression status and prognostic value. Furtherly, CCK8 and clonogenic assays were conducted to determine if Notch2 inhibition by shRNA could lead to a decrease in the proliferation and survival of ESCC cells. A notably higher Notch2 expression level was found in ESCC tissues at the mRNA (P < 0.0001) and protein levels (IHC: P = 0.004; western blot: P = 0.021). Log-rank analysis demonstrated that Notch2 overexpression was significantly associated with worse overall survival (OS) (29.1% vs. 49.1%; P = 0.013) and progression-free survival (PFS) (15.3% vs. 34.4%; P = 0.006) rates in ESCC patients. The multivariate analysis revealed Notch2 as an independent prognostic factor for OS and PFS (P = 0.002 and 0.006, resp.). Besides, in vitro assays showed that OD450 values and colony formations were significantly reduced in Notch2-shRNA group (all P < 0.0001). In conclusion, these results show that Notch2 is up-regulated in ESCC tissues and could serve as a promising biomarker for identifying individuals with poor prognostic potential.
Collapse
Affiliation(s)
- Cong Wang
- Department of Radiation Oncology, Qilu Hospital of Shandong University, Jinan, Shandong, 250012, China
| | - Qingbao Li
- Department of Cardiac Surgery, Shandong Provincial Hospital Affiliated to Shandong University, Jinan, Shandong, 250021, People's Republic of China
| | - Fang Liu
- Department of Imaging, Shandong Medical College, Jinan, Shandong, 250002, China
| | - Xuan Chen
- Department of Radiation Oncology, Qilu Hospital of Shandong University, Jinan, Shandong, 250012, China
| | - Bowen Liu
- Department of Radiation Oncology, Qilu Hospital of Shandong University, Jinan, Shandong, 250012, China
| | - Effat Un Nesa
- Department of Radiation Oncology, Qilu Hospital of Shandong University, Jinan, Shandong, 250012, China
| | - Shanghui Guan
- Department of Radiation Oncology, Qilu Hospital of Shandong University, Jinan, Shandong, 250012, China
| | - Lihui Han
- Department of Radiation Oncology, Qilu Hospital of Shandong University, Jinan, Shandong, 250012, China
| | - Bingxu Tan
- Department of Radiation Oncology, Qilu Hospital of Shandong University, Jinan, Shandong, 250012, China
| | - Nana Wang
- Department of Radiation Oncology, Qilu Hospital of Shandong University, Jinan, Shandong, 250012, China
| | - Xintong Wang
- Department of Radiation Oncology, Shandong Cancer Hospital and Institute, Jinan, Shandong, 250117, China
| | - Qingxu Song
- Department of Radiation Oncology, Qilu Hospital of Shandong University, Jinan, Shandong, 250012, China
| | - Yibin Jia
- Department of Radiation Oncology, Qilu Hospital of Shandong University, Jinan, Shandong, 250012, China
| | - Jianbo Wang
- Department of Radiation Oncology, Qilu Hospital of Shandong University, Jinan, Shandong, 250012, China
| | - Ming Lu
- Department of Thoracic Surgery, Qilu Hospital of Shandong University, Jinan, Shandong, 250012, China
| | - Yufeng Cheng
- Department of Radiation Oncology, Qilu Hospital of Shandong University, Jinan, Shandong, 250012, China
| |
Collapse
|
13
|
Gil-García B, Baladrón V. The complex role of NOTCH receptors and their ligands in the development of hepatoblastoma, cholangiocarcinoma and hepatocellular carcinoma. Biol Cell 2015; 108:29-40. [DOI: 10.1111/boc.201500029] [Citation(s) in RCA: 28] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/21/2015] [Accepted: 11/24/2015] [Indexed: 12/12/2022]
Affiliation(s)
- Borja Gil-García
- Laboratory of Biochemistry and Molecular Biology; Department of Inorganic and Organic Chemistry and Biochemistry; Medical School/CRIB/Biomedicine Unit; University of Castilla-La Mancha (UCLM)/CSIC; 02008, Albacete Spain
| | - Victoriano Baladrón
- Laboratory of Biochemistry and Molecular Biology; Department of Inorganic and Organic Chemistry and Biochemistry; Medical School/CRIB/Biomedicine Unit; University of Castilla-La Mancha (UCLM)/CSIC; 02008, Albacete Spain
| |
Collapse
|
14
|
Hayashi Y, Osanai M, Lee GH. NOTCH2 signaling confers immature morphology and aggressiveness in human hepatocellular carcinoma cells. Oncol Rep 2015; 34:1650-8. [PMID: 26252838 PMCID: PMC4564075 DOI: 10.3892/or.2015.4171] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/07/2015] [Accepted: 06/22/2015] [Indexed: 12/20/2022] Open
Abstract
The NOTCH family of membranous receptors plays key roles during development and carcinogenesis. Since NOTCH2, yet not NOTCH1 has been shown essential for murine hepatogenesis, NOTCH2 rather than NOTCH1 may be more relevant to human hepatocarcinogenesis; however, no previous studies have supported this hypothesis. We therefore assessed the role of NOTCH2 in human hepatocellular carcinoma (HCC) by immunohistochemistry and cell culture. Immunohistochemically, 19% of primary HCCs showed nuclear staining for NOTCH2, indicating activated NOTCH2 signaling. NOTCH2-positive HCCs were on average in more advanced clinical stages, and exhibited more immature cellular morphology, i.e. higher nuclear-cytoplasmic ratios and nuclear densities. Such features were not evident in NOTCH1‑positive HCCs. In human HCC cell lines, abundant NOTCH2 expression was associated with anaplasia, represented by loss of E-cadherin. When NOTCH2 signaling was stably downregulated in HLF cells, an anaplastic HCC cell line, the cells were attenuated in potential for in vitro invasiveness and migration, as well as in vivo tumorigenicity accompanied by histological maturation. Generally, inverse results were obtained for a differentiated HCC cell line, Huh7, manipulated to overexpress activated NOTCH2. These findings suggested that the NOTCH2 signaling may confer aggressive behavior and immature morphology in human HCC cells.
Collapse
Affiliation(s)
- Yoshihiro Hayashi
- Department of Pathology, Kochi University School of Medicine, Kohasu, Oko-cho, Nankoku, Kochi 783-8505, Japan
| | - Makoto Osanai
- Department of Pathology, Kochi University School of Medicine, Kohasu, Oko-cho, Nankoku, Kochi 783-8505, Japan
| | - Gang-Hong Lee
- Department of Pathology, Kochi University School of Medicine, Kohasu, Oko-cho, Nankoku, Kochi 783-8505, Japan
| |
Collapse
|
15
|
Finegold MJ, López-Terrada DH. Hepatic Tumors in Childhood. PATHOLOGY OF PEDIATRIC GASTROINTESTINAL AND LIVER DISEASE 2014:547-614. [DOI: 10.1007/978-3-642-54053-0_14] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/04/2025]
|
16
|
Ortica S, Tarantino N, Aulner N, Israël A, Gupta-Rossi N. The 4 Notch receptors play distinct and antagonistic roles in the proliferation and hepatocytic differentiation of liver progenitors. FASEB J 2013; 28:603-14. [PMID: 24145721 DOI: 10.1096/fj.13-235903] [Citation(s) in RCA: 30] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/29/2022]
Abstract
The Notch signaling pathway is involved in liver development and regeneration. Here, we investigate the role of the 4 mammalian Notch paralogs in the regulation of hepatoblast proliferation and hepatocytic differentiation. Our model is based on bipotential mouse embryonic liver (BMEL) progenitors that can differentiate into hepatocytes or cholangiocytes in vitro and in vivo. BMEL cells were subjected to Notch antagonists or agonists. Blocking Notch activation with a γ-secretase inhibitor, at 50 μM for 48 h, reduced cell growth by 50%. S-phase entry was impaired, but no apoptosis was induced. A systematic paralog-specific strategy was set using lentiviral transduction with constitutively active forms of each Notch receptor along with inhibition of endogenous Notch signaling. This assay demonstrates that proliferation of BMEL cells requires Notch2 and Notch4 activity, resulting in significant down-regulation of p27(Kip1) and p57(Kip2) cyclin-dependent kinase inhibitors. Conversely, Notch3-expressing cells proliferate less and express 3-fold higher levels of p57(Kip2). The Notch3 cells present a hepatocyte-like morphology, enhanced multinucleation, and a ploidy shift. Moreover, Notch3 activity is conducive to hepatocytic differentiation in vitro, while its paralogs impede this fate. Our study provides the first evidence of a functional diversity among the mammalian Notch homologues in the proliferation and hepatocytic-lineage commitment of liver progenitors.
Collapse
Affiliation(s)
- Sara Ortica
- 1Unité de Signalisation Moléculaire et Activation Cellulaire, URA 2582 CNRS, Institut Pasteur, 25 rue du Dr Roux, 75724 Paris Cedex 15, France.
| | | | | | | | | |
Collapse
|
17
|
Falix FA, Aronson DC, Lamers WH, Gaemers IC. Possible roles of DLK1 in the Notch pathway during development and disease. Biochim Biophys Acta Mol Basis Dis 2012; 1822:988-95. [PMID: 22353464 DOI: 10.1016/j.bbadis.2012.02.003] [Citation(s) in RCA: 101] [Impact Index Per Article: 7.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/12/2011] [Revised: 01/18/2012] [Accepted: 02/06/2012] [Indexed: 12/13/2022]
Abstract
The Delta-Notch pathway is an evolutionarily conserved signaling pathway which controls a broad range of developmental processes including cell fate determination, terminal differentiation and proliferation. In mammals, four Notch receptors (NOTCH1-4) and five activating canonical ligands (JAGGED1, JAGGED2, DLL1, DLL3 and DLL4) have been described. The precise function of noncanonical Notch ligands remains unclear. Delta-like 1 homolog (DLK1), the best studied noncanonical Notch ligand, has been shown to act as an inhibitor of Notch signaling in vitro, but its function in vivo is poorly understood. In this review we summarize Notch signaling during development and highlight recent studies in DLK1expression that reveal new insights into its function.
Collapse
Affiliation(s)
- Farah A Falix
- Tytgat Institute for Liver and Intestinal Research, Academic Medical Center, Amsterdam, The Netherlands
| | | | | | | |
Collapse
|
18
|
Abstract
Hepatoblastoma is the most common liver tumor of early childhood. According to recent studies its incidence seems to be increasing in North America and Europe. Since new histological variants have been described recently the formerly clear-cut distinction of hepatoblastoma and hepatocellular carcinoma may not be valid anymore and a new histological classification will be inaugurated by an international working group. Recent research identified prognostically relevant gene signatures as well as potential molecular targets for therapy of hepatoblastoma. The multicentric study groups in the USA, Europe and Japan recommend cisplatin based chemotherapy for neoadjuvant and adjuvant treatment. However, their risk stratification systems and general treatment strategies differ substantially. Therefore the four groups agreed to pool their patients' data for an analysis of prognostic criteria which can be used for defining common risk groups. While 90% of standard risk and 65% of high risk hepatoblastomas can be cured, the still dismal outcome of multifocal disseminated and metastasising tumors warrants the investigation of new cytotoxic drugs and substances against specific molecular targets.
Collapse
|