1
|
Cai X, Wei W, Liu Z, Bai Z, Lei J, Xiao J. In Situ Imaging of Pathological Collagen by Electrostatic Repulsion-Destabilized Peptide Probes. ACS APPLIED BIO MATERIALS 2020; 3:7492-7499. [DOI: 10.1021/acsabm.0c00710] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Affiliation(s)
- Xiangdong Cai
- State Key Laboratory of Applied Organic Chemistry, Key Laboratory of Nonferrous Metal Chemistry and Resources Utilization of Gansu Province, College of Chemistry and Chemical Engineering, Lanzhou University, Lanzhou 730000, P. R. China
| | - Wenyu Wei
- State Key Laboratory of Applied Organic Chemistry, Key Laboratory of Nonferrous Metal Chemistry and Resources Utilization of Gansu Province, College of Chemistry and Chemical Engineering, Lanzhou University, Lanzhou 730000, P. R. China
| | - Zhao Liu
- The First Hospital of Lanzhou University, Lanzhou 730000, P. R. China
| | - Zhongtian Bai
- The First Hospital of Lanzhou University, Lanzhou 730000, P. R. China
| | - Junqiang Lei
- The First Hospital of Lanzhou University, Lanzhou 730000, P. R. China
| | - Jianxi Xiao
- State Key Laboratory of Applied Organic Chemistry, Key Laboratory of Nonferrous Metal Chemistry and Resources Utilization of Gansu Province, College of Chemistry and Chemical Engineering, Lanzhou University, Lanzhou 730000, P. R. China
| |
Collapse
|
2
|
Toss MS, Miligy IM, Gorringe KL, AlKawaz A, Mittal K, Aneja R, Ellis IO, Green AR, Roxanis I, Rakha EA. Geometric characteristics of collagen have independent prognostic significance in breast ductal carcinoma in situ: an image analysis study. Mod Pathol 2019; 32:1473-1485. [PMID: 31175326 DOI: 10.1038/s41379-019-0296-7] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/14/2019] [Revised: 05/01/2019] [Accepted: 05/02/2019] [Indexed: 12/30/2022]
Abstract
Collagen plays a key role in normal and malignant tissue homeostasis. While the prognostic significance of collagen fiber remodeling in invasive breast cancer has been studied, its role in ductal carcinoma in situ (DCIS) remains poorly defined. Using image analysis, we aimed to evaluate the prognostic significance of the geometric characteristics of collagen surrounding DCIS. A large well-characterized cohort of DCIS comprising pure DCIS (n = 610) and DCIS coexisting with invasive carcinoma (n = 180) were histochemically stained for collagen using picrosirius red. ImageJ software was used to assess collagen density, degree of collagen fiber dispersion and directionality in relation to DCIS ducts' boundary. We developed a collagen prognostic index and evaluated its prognostic significance. A poor index was observed in 24% of the pure DCIS and was associated with determinants of high-risk DCIS including higher nuclear grade, comedo type necrosis, hormonal receptor negativity, HER2 positivity and high proliferation index. High collagen prognostic index was associated with the collagen remodeling protein prolyl-4-hydroxlase alpha subunit 2 and the hypoxia-related protein hypoxia inducible factor 1α. DCIS coexisting with invasive breast cancer had a higher collagen prognostic index than pure DCIS ( p < 0.0001). High index was an independent poor prognostic factor for DCIS recurrence for all recurrences (HR = 2.3, p = 0.005) and just invasive recurrences (HR = 3.4, p = 0.003). Interaction between collagen prognostic index and radiotherapy showed that the index was associated with poor outcome even with adjuvant radiotherapy ( p = 0.0001). Collagen reorganization around DCIS is associated with poor outcome and provides a potential predictor for disease progression and resistance to radiotherapy. Mechanistic studies are warranted to decipher the underlying mechanisms.
Collapse
Affiliation(s)
- Michael S Toss
- Nottingham Breast Cancer Research Centre, Division of Cancer and Stem Cells, School of Medicine, The University of Nottingham, Nottingham City Hospital, Nottingham, UK.,Histopathology Department, South Egypt Cancer Institute, Assiut University, Assiut, Egypt
| | - Islam M Miligy
- Nottingham Breast Cancer Research Centre, Division of Cancer and Stem Cells, School of Medicine, The University of Nottingham, Nottingham City Hospital, Nottingham, UK.,Histopathology Department, Faculty of Medicine, Menoufia University, Menoufia, Egypt
| | - Kylie L Gorringe
- Cancer Genomics Program, Peter MacCallum Cancer Centre, Melbourne, VIC, Australia.,The Sir Peter MacCallum Department of Oncology, University of Melbourne, Parkville, VIC, Australia
| | - Abdulbaqi AlKawaz
- Nottingham Breast Cancer Research Centre, Division of Cancer and Stem Cells, School of Medicine, The University of Nottingham, Nottingham City Hospital, Nottingham, UK.,College of Dentistry, Al Mustansiriya University, Baghdad, Iraq
| | | | - Ritu Aneja
- Georgia State University, Atlanta, GA, USA
| | - Ian O Ellis
- Nottingham Breast Cancer Research Centre, Division of Cancer and Stem Cells, School of Medicine, The University of Nottingham, Nottingham City Hospital, Nottingham, UK
| | - Andrew R Green
- Nottingham Breast Cancer Research Centre, Division of Cancer and Stem Cells, School of Medicine, The University of Nottingham, Nottingham City Hospital, Nottingham, UK
| | - Ioannis Roxanis
- Institute of Cancer Research, London, UK.,Royal Free London NHS Foundation Trust, London, UK
| | - Emad A Rakha
- Nottingham Breast Cancer Research Centre, Division of Cancer and Stem Cells, School of Medicine, The University of Nottingham, Nottingham City Hospital, Nottingham, UK. .,Histopathology Department, Faculty of Medicine, Menoufia University, Menoufia, Egypt.
| |
Collapse
|
3
|
Goldbloom-Helzner L, Hao D, Wang A. Developing Regenerative Treatments for Developmental Defects, Injuries, and Diseases Using Extracellular Matrix Collagen-Targeting Peptides. Int J Mol Sci 2019; 20:4072. [PMID: 31438477 PMCID: PMC6747276 DOI: 10.3390/ijms20174072] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/30/2019] [Revised: 08/19/2019] [Accepted: 08/20/2019] [Indexed: 12/11/2022] Open
Abstract
Collagen is the most widespread extracellular matrix (ECM) protein in the body and is important in maintaining the functionality of organs and tissues. Studies have explored interventions using collagen-targeting tissue engineered techniques, using collagen hybridizing or collagen binding peptides, to target or treat dysregulated or injured collagen in developmental defects, injuries, and diseases. Researchers have used collagen-targeting peptides to deliver growth factors, drugs, and genetic materials, to develop bioactive surfaces, and to detect the distribution and status of collagen. All of these approaches have been used for various regenerative medicine applications, including neovascularization, wound healing, and tissue regeneration. In this review, we describe in depth the collagen-targeting approaches for regenerative therapeutics and compare the benefits of using the different molecules for various present and future applications.
Collapse
Affiliation(s)
- Leora Goldbloom-Helzner
- Surgical Bioengineering Laboratory, Department of Surgery, School of Medicine, University of California Davis, Sacramento, CA 95817, USA
- Department of Biomedical Engineering, University of California Davis, Davis, CA 95616, USA
- Institute for Pediatric Regenerative Medicine, Shriners Hospitals for Children, Sacramento, CA 95817, USA
| | - Dake Hao
- Surgical Bioengineering Laboratory, Department of Surgery, School of Medicine, University of California Davis, Sacramento, CA 95817, USA
- Department of Biomedical Engineering, University of California Davis, Davis, CA 95616, USA
- Institute for Pediatric Regenerative Medicine, Shriners Hospitals for Children, Sacramento, CA 95817, USA
| | - Aijun Wang
- Surgical Bioengineering Laboratory, Department of Surgery, School of Medicine, University of California Davis, Sacramento, CA 95817, USA.
- Department of Biomedical Engineering, University of California Davis, Davis, CA 95616, USA.
- Institute for Pediatric Regenerative Medicine, Shriners Hospitals for Children, Sacramento, CA 95817, USA.
| |
Collapse
|
4
|
Caron JM, Han X, Contois L, Vary CPH, Brooks PC. The HU177 Collagen Epitope Controls Melanoma Cell Migration and Experimental Metastasis by a CDK5/YAP-Dependent Mechanism. THE AMERICAN JOURNAL OF PATHOLOGY 2018; 188:2356-2368. [PMID: 30118657 PMCID: PMC6180252 DOI: 10.1016/j.ajpath.2018.06.017] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/21/2018] [Revised: 06/11/2018] [Accepted: 06/15/2018] [Indexed: 12/17/2022]
Abstract
Stromal components not only help form the structure of neoplasms such as melanomas, but they also functionally contribute to their malignant phenotype. Thus, uncovering signaling pathways that integrate the behavior of both tumor and stromal cells may provide unique opportunities for the development of more effective strategies to control tumor progression. In this regard, extracellular matrix-mediated signaling plays a role in coordinating the behavior of both tumor and stromal cells. Here, evidence is provided that targeting a cryptic region of the extracellular matrix protein collagen (HU177 epitope) inhibits melanoma tumor growth and metastasis and reduces angiogenesis and the accumulation of α-SMA-expressing stromal cell in these tumors. The current study suggests that the ability of the HU177 epitope to control melanoma cell migration and metastasis depends on the transcriptional coactivator Yes-associated protein (YAP). Melanoma cell interactions with the HU177 epitope promoted nuclear accumulation of YAP by a cyclin-dependent kinase-5-associated mechanism. These findings provide new insights into the mechanism by which the anti-HU177 antibody inhibits metastasis, and uncovers an unknown signaling pathway by which the HU177 epitope selectively reprograms melanoma cells by regulating nuclear localization of YAP. This study helps to define a potential new therapeutic strategy to control melanoma tumor growth and metastasis that might be used alone or in combination with other therapeutics.
Collapse
Affiliation(s)
- Jennifer M Caron
- Center for Molecular Medicine, Maine Medical Center Research Institute, Scarborough, Maine
| | - XiangHua Han
- Center for Molecular Medicine, Maine Medical Center Research Institute, Scarborough, Maine
| | - Liangru Contois
- Center for Molecular Medicine, Maine Medical Center Research Institute, Scarborough, Maine
| | - Calvin P H Vary
- Center for Molecular Medicine, Maine Medical Center Research Institute, Scarborough, Maine
| | - Peter C Brooks
- Center for Molecular Medicine, Maine Medical Center Research Institute, Scarborough, Maine.
| |
Collapse
|
5
|
Mortimer GM, Minchin RF. Cryptic epitopes and functional diversity in extracellular proteins. Int J Biochem Cell Biol 2016; 81:112-120. [DOI: 10.1016/j.biocel.2016.10.020] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/01/2016] [Revised: 10/24/2016] [Accepted: 10/25/2016] [Indexed: 01/28/2023]
|
6
|
Wahyudi H, Reynolds AA, Li Y, Owen SC, Yu SM. Targeting collagen for diagnostic imaging and therapeutic delivery. J Control Release 2016; 240:323-331. [PMID: 26773768 PMCID: PMC4936964 DOI: 10.1016/j.jconrel.2016.01.007] [Citation(s) in RCA: 92] [Impact Index Per Article: 10.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/25/2015] [Revised: 01/05/2016] [Accepted: 01/05/2016] [Indexed: 12/22/2022]
Abstract
As the most abundant protein in mammals and a major structural component in extracellular matrix, collagen holds a pivotal role in tissue development and maintaining the homeostasis of our body. Persistent disruption to the balance between collagen production and degradation can cause a variety of diseases, some of which can be fatal. Collagen remodeling can lead to either an overproduction of collagen which can cause excessive collagen accumulation in organs, common to fibrosis, or uncontrolled degradation of collagen seen in degenerative diseases such as arthritis. Therefore, the ability to monitor the state of collagen is crucial for determining the presence and progression of numerous diseases. This review discusses the implications of collagen remodeling and its detection methods with specific focus on targeting native collagens as well as denatured collagens. It aims to help researchers understand the pathobiology of collagen-related diseases and create novel collagen targeting therapeutics and imaging modalities for biomedical applications.
Collapse
Affiliation(s)
- Hendra Wahyudi
- Department of Bioengineering, University of Utah, Salt Lake City, UT 84112, USA
| | - Amanda A Reynolds
- Department of Bioengineering, University of Utah, Salt Lake City, UT 84112, USA
| | - Yang Li
- Department of Bioengineering, University of Utah, Salt Lake City, UT 84112, USA
| | - Shawn C Owen
- Department of Pharmaceutics and Pharmaceutical Chemistry, University of Utah, Salt Lake City, UT 84112, USA
| | - S Michael Yu
- Department of Bioengineering, University of Utah, Salt Lake City, UT 84112, USA.
| |
Collapse
|
7
|
McFerrin HE, Olson SD, Gutschow MV, Semon JA, Sullivan DE, Prockop DJ. Rapidly self-renewing human multipotent marrow stromal cells (hMSC) express sialyl Lewis X and actively adhere to arterial endothelium in a chick embryo model system. PLoS One 2014; 9:e105411. [PMID: 25144321 PMCID: PMC4140774 DOI: 10.1371/journal.pone.0105411] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/21/2014] [Accepted: 07/23/2014] [Indexed: 01/07/2023] Open
Abstract
BACKGROUND There have been conflicting observations regarding the receptors utilized by human multipotent mesenchymal bone marrow stromal cells (hMSC) to adhere to endothelial cells (EC). To address the discrepancies, we performed experiments with cells prepared with a standardized, low-density protocol preserving a sub-population of small cells that are rapidly self-renewing. METHODS Sialyl Lewis X (SLeX) and α4 integrin expression were determined by flow cytometry. Fucosyltransferase expression was determined by quantitative realtime RT-PCR. Cell adhesion assays were carried out with a panel of endothelial cells from arteries, veins and the microvasculature in vitro. In vivo experiments were performed to determine single cell interactions in the chick embryo chorioallantoic membrane (CAM). The CAM is a well-characterized respiratory organ allowing for time-lapse image acquisition of large numbers of cells treated with blocking antibodies against adhesion molecules expressed on hMSC. RESULTS hMSC expressed α4 integrin, SLeX and fucosyltransferase 4 and adhered to human EC from arteries, veins and the microvasculature under static conditions in vitro. In vivo, hMSC rolled on and adhered to arterioles in the chick embryo CAM, whereas control melanoma cells embolized. Inhibition of α4 integrin and/or SLeX with blocking antibodies reduced rolling and adhesion in arterioles and increased embolism of hMSC. CONCLUSIONS The results demonstrated that rapidly self-renewing hMSC were retained in the CAM because they rolled on and adhered to respiratory arteriolar EC in an α4 integrin- and SLeX-dependent manner. It is therefore important to select cells based on their cell adhesion receptor profile as well as size depending on the intended target of the cell and the injection route.
Collapse
Affiliation(s)
- Harris E. McFerrin
- Xavier University of Louisiana, Biology Department, New Orleans, Louisiana, United States of America
- Center for Stem Cell Research and Regenerative Medicine, Tulane University School of Medicine, New Orleans, Louisiana, United States of America
- Department of Microbiology and Immunology, Tulane University School of Medicine, New Orleans, Louisiana, United States of America
- * E-mail:
| | - Scott D. Olson
- Program in Regenerative Medicine, University of Texas Medical School at Houston, Houston, Texas, United States of America
| | - Miriam V. Gutschow
- Stanford Department of Bioengineering, Stanford University, Stanford, California, United States of America
| | - Julie A. Semon
- Center for Stem Cell Research and Regenerative Medicine, Tulane University School of Medicine, New Orleans, Louisiana, United States of America
| | - Deborah E. Sullivan
- Center for Stem Cell Research and Regenerative Medicine, Tulane University School of Medicine, New Orleans, Louisiana, United States of America
- Department of Microbiology and Immunology, Tulane University School of Medicine, New Orleans, Louisiana, United States of America
| | - Darwin J. Prockop
- Texas A & M Health Science Center College of Medicine Institute for Regenerative Medicine at Scott & White, Temple, Texas, United States of America
| |
Collapse
|
8
|
Favreau AJ, Vary CPH, Brooks PC, Sathyanarayana P. Cryptic collagen IV promotes cell migration and adhesion in myeloid leukemia. Cancer Med 2014; 3:265-72. [PMID: 24519883 PMCID: PMC3987076 DOI: 10.1002/cam4.203] [Citation(s) in RCA: 28] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/25/2013] [Revised: 12/23/2013] [Accepted: 01/07/2014] [Indexed: 12/21/2022] Open
Abstract
Previously, we showed that discoidin domain receptor 1 (DDR1), a class of collagen-activated receptor tyrosine kinase (RTK) was highly upregulated on bone marrow (BM)-derived CD33+ leukemic blasts of acute myeloid leukemia (AML) patients. Herein as DDR1 is a class of collagen-activated RTK, we attempt to understand the role of native and remodeled collagen IV in BM microenvironment and its functional significance in leukemic cells. Exposure to denatured collagen IV significantly increased the migration and adhesion of K562 cells, which also resulted in increased activation of DDR1 and AKT. Further, levels of MMP9 were increased in conditioned media (CM) of denatured collagen IV exposed cells. Mass spectrometric liquid chromatography/tandem mass spectrometry QSTAR proteomic analysis revealed exclusive presence of Secretogranin 3 and InaD-like protein in the denatured collagen IV CM. Importantly, BM samples of AML patients exhibited increased levels of remodeled collagen IV compared to native as analyzed via anti-HUIV26 antibody. Taken together, for the first time, we demonstrate that remodeled collagen IV is a potent activator of DDR1 and AKT that also modulates both migration and adhesion of myeloid leukemia cells. Additionally, high levels of the HUIV26 cryptic collagen IV epitope are expressed in BM of AML patients. Further understanding of this phenomenon may lead to the development of therapeutic agents that directly modulate the BM microenvironment and attenuate leukemogenesis.
Collapse
Affiliation(s)
- Amanda J Favreau
- Center for Molecular Medicine, Maine Medical Center Research Institute, Scarborough, 04074, Maine; The Graduate School of Biomedical Science and Engineering, University of Maine, Orono, 04469, Maine
| | | | | | | |
Collapse
|
9
|
Collagen as a double-edged sword in tumor progression. Tumour Biol 2013; 35:2871-82. [PMID: 24338768 PMCID: PMC3980040 DOI: 10.1007/s13277-013-1511-7] [Citation(s) in RCA: 397] [Impact Index Per Article: 33.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/12/2013] [Accepted: 12/03/2013] [Indexed: 12/11/2022] Open
Abstract
It has been recognized that cancer is not merely a disease of tumor cells, but a disease of imbalance, in which stromal cells and tumor microenvironment play crucial roles. Extracellular matrix (ECM) as the most abundant component in tumor microenvironment can regulate tumor cell behaviors and tissue tension homeostasis. Collagen constitutes the scaffold of tumor microenvironment and affects tumor microenvironment such that it regulates ECM remodeling by collagen degradation and re-deposition, and promotes tumor infiltration, angiogenesis, invasion and migration. While collagen was traditionally regarded as a passive barrier to resist tumor cells, it is now evident that collagen is also actively involved in promoting tumor progression. Collagen changes in tumor microenvironment release biomechanical signals, which are sensed by both tumor cells and stromal cells, trigger a cascade of biological events. In this work, we discuss how collagen can be a double-edged sword in tumor progression, both inhibiting and promoting tumor progression at different stages of cancer development.
Collapse
|
10
|
Duperret EK, Ridky TW. Focal adhesion complex proteins in epidermis and squamous cell carcinoma. Cell Cycle 2013; 12:3272-85. [PMID: 24036537 DOI: 10.4161/cc.26385] [Citation(s) in RCA: 25] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022] Open
Abstract
Focal adhesions (FAs) are large, integrin-containing, multi-protein assemblies spanning the plasma membrane that link the cellular cytoskeleton to surrounding extracellular matrix. They play critical roles in adhesion and cell signaling and are major regulators of epithelial homeostasis, tissue response to injury, and tumorigenesis. Most integrin subunits and their associated FA proteins are expressed in skin, and murine genetic models have provided insight into the functional roles of FAs in normal and neoplastic epidermis. Here, we discuss the roles of these proteins in normal epidermal proliferation, adhesion, wound healing, and cancer. While many downstream signaling mechanisms remain unclear, the critically important roles of FAs are highlighted by the development of therapeutics targeting FAs for human cancer.
Collapse
|
11
|
Superficial spreading and nodular melanoma are distinct biological entities: a challenge to the linear progression model. Melanoma Res 2012; 22:1-8. [PMID: 22108608 DOI: 10.1097/cmr.0b013e32834e6aa0] [Citation(s) in RCA: 54] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Abstract
The classification of melanoma subtypes into prognostically relevant and therapeutically insightful categories has been a challenge since the first description of melanoma in the 1800s. One limitation has been the assumption that the two most common histological subtypes of melanoma, superficial spreading and nodular, evolve according to a linear model of progression, as malignant melanocytes spread radially and then invade vertically. However, recent clinical, pathological, and molecular data indicate that these two histological subtypes might evolve as distinct entities. Here, we review the published data that support distinct molecular characterization of superficial spreading and nodular melanoma, the clinical significance of this distinction including prognostic relevance and the therapeutic implications.
Collapse
|
12
|
Jonasch E, Futreal A, Davis I, Bailey S, Kim WY, Brugarolas J, Giaccia A, Kurban G, Pause A, Frydman J, Zurita A, Rini BI, Sharma P, Atkins M, Walker C, Rathmell WK. State of the science: an update on renal cell carcinoma. Mol Cancer Res 2012; 10:859-80. [PMID: 22638109 PMCID: PMC3399969 DOI: 10.1158/1541-7786.mcr-12-0117] [Citation(s) in RCA: 123] [Impact Index Per Article: 9.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/22/2023]
Abstract
Renal cell carcinomas (RCC) are emerging as a complex set of diseases that are having a major socioeconomic impact and showing a continued rise in incidence throughout the world. As the field of urologic oncology faces these trends, several major genomic and mechanistic discoveries are altering our core understanding of this multitude of cancers, including several new rare subtypes of renal cancers. In this review, these new findings are examined and placed in the context of the well-established association of clear cell RCC (ccRCC) with mutations in the von Hippel-Lindau (VHL) gene and resultant aberrant hypoxia inducible factor (HIF) signaling. The impact of novel ccRCC-associated genetic lesions on chromatin remodeling and epigenetic regulation is explored. The effects of VHL mutation on primary ciliary function, extracellular matrix homeostasis, and tumor metabolism are discussed. Studies of VHL proteostasis, with the goal of harnessing the proteostatic machinery to refunctionalize mutant VHL, are reviewed. Translational efforts using molecular tools to elucidate discriminating features of ccRCC tumors and develop improved prognostic and predictive algorithms are presented, and new therapeutics arising from the earliest molecular discoveries in ccRCC are summarized. By creating an integrated review of the key genomic and molecular biological disease characteristics of ccRCC and placing these data in the context of the evolving therapeutic landscape, we intend to facilitate interaction among basic, translational, and clinical researchers involved in the treatment of this devastating disease, and accelerate progress toward its ultimate eradication.
Collapse
Affiliation(s)
| | | | - Ian Davis
- UNC Lineberger Comprehensive Cancer Center, Chapel Hill, NC
| | - Sean Bailey
- UNC Lineberger Comprehensive Cancer Center, Chapel Hill, NC
| | - William Y. Kim
- UNC Lineberger Comprehensive Cancer Center, Chapel Hill, NC
| | | | | | | | | | | | | | - Brian I. Rini
- Cleveland Clinic Taussig Cancer Center, Cleveland, OH
| | - Pam Sharma
- University of Texas-Houston Medical Center, Houston, TX
| | | | - Cheryl Walker
- University of Texas-Houston Medical Center, Houston, TX
| | | |
Collapse
|
13
|
Abstract
The various types of cells that comprise the tumor mass all carry molecular markers that are not expressed or are expressed at much lower levels in normal cells. These differentially expressed molecules can be used as docking sites to concentrate drug conjugates and nanoparticles at tumors. Specific markers in tumor vessels are particularly well suited for targeting because molecules at the surface of blood vessels are readily accessible to circulating compounds. The increased concentration of a drug in the site of disease made possible by targeted delivery can be used to increase efficacy, reduce side effects, or achieve some of both. We review the recent advances in this delivery approach with a focus on the use of molecular markers of tumor vasculature as the primary target and nanoparticles as the delivery vehicle.
Collapse
Affiliation(s)
- Erkki Ruoslahti
- Vascular Mapping Center, Sanford-Burnham Medical Research Institute, University of California, Santa Barbara, Santa Barbara, CA 93106, USA.
| | | | | |
Collapse
|
14
|
O'Brien J, Lyons T, Monks J, Lucia MS, Wilson RS, Hines L, Man YG, Borges V, Schedin P. Alternatively activated macrophages and collagen remodeling characterize the postpartum involuting mammary gland across species. THE AMERICAN JOURNAL OF PATHOLOGY 2010; 176:1241-55. [PMID: 20110414 DOI: 10.2353/ajpath.2010.090735] [Citation(s) in RCA: 218] [Impact Index Per Article: 14.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/22/2023]
Abstract
Recent pregnancy correlates with decreased survival for breast cancer patients compared with non-pregnancy-associated breast cancer. We hypothesize that postpartum mammary involution induces metastasis through wound-healing programs known to promote cancer. It is unknown whether alternatively activated M2 macrophages, immune cells important in wound-healing and experimental tumorigenesis that also predict poor prognosis for breast cancer patients, are recruited to the normal involuting gland. Macrophage markers CD68, CSF-1R, and F4/80 were examined across the pregnancy and involution cycle in rodent and human mammary tissues. Quantitative immunohistochemistry revealed up to an eightfold increase in macrophage number during involution, which returned to nulliparous levels with full regression. The involution macrophages exhibit an M2 phenotype as determined by high arginase-1 and low inducible nitric oxide synthase staining in rodent tissue, and by mannose receptor expression in human breast tissue. M2 cytokines IL-4 and IL-13 also peaked during involution. Extracellular matrix (ECM) isolated from involuting rat mammary glands was chemotactic for macrophages compared with nulliparous mammary ECM. Fibrillar collagen levels and proteolysis increased dramatically during involution, and denatured collagen I acted as a strong chemoattractant for macrophages in cell culture, suggesting proteolyzed fibrillar collagen as a candidate ECM mediator of macrophage recruitment. M2 macrophages, IL-4, IL-13, fibrillar collagen accumulation, and proteolysis of collagen are all components of tumor promotional microenvironments, and thus may mediate promotion of breast cancers arising in the postpartum setting.
Collapse
Affiliation(s)
- Jenean O'Brien
- Department of Medicine, Division of Medical Oncology, University of Colorado Denver, Mail Stop 8117, RC-1 S, 8401K, 12801 E. 17 Avenue, UCD, Aurora, CO 80045, USA
| | | | | | | | | | | | | | | | | |
Collapse
|
15
|
In vitro impact of a whey protein isolate (WPI) and collagen hydrolysates (CHs) on B16F10 melanoma cells proliferation. J Dermatol Sci 2009; 56:51-7. [DOI: 10.1016/j.jdermsci.2009.06.016] [Citation(s) in RCA: 34] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/18/2008] [Revised: 06/15/2009] [Accepted: 06/30/2009] [Indexed: 11/20/2022]
|
16
|
Mueller J, Gaertner FC, Blechert B, Janssen KP, Essler M. Targeting of Tumor Blood Vessels: A Phage-Displayed Tumor-Homing Peptide Specifically Binds to Matrix Metalloproteinase-2-Processed Collagen IV and Blocks Angiogenesis In vivo. Mol Cancer Res 2009; 7:1078-85. [DOI: 10.1158/1541-7786.mcr-08-0538] [Citation(s) in RCA: 40] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
|
17
|
Ng B, Zakrzewski J, Warycha M, Christos PJ, Bajorin DF, Shapiro RL, Berman RS, Pavlick AC, Polsky D, Mazumdar M, Montgomery A, Liebes L, Brooks PC, Osman I. Shedding of distinct cryptic collagen epitope (HU177) in sera of melanoma patients. Clin Cancer Res 2008; 14:6253-8. [PMID: 18829505 DOI: 10.1158/1078-0432.ccr-07-4992] [Citation(s) in RCA: 14] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/29/2023]
Abstract
PURPOSE Extracellular matrix remodeling during tumor growth plays an important role in angiogenesis. Our preclinical data suggest that a newly identified cryptic epitope (HU177) within collagen type IV regulates endothelial and melanoma cell adhesion in vitro and angiogenesis in vivo. In this study, we investigated the clinical relevance of HUI77 shedding in melanoma patient sera. EXPERIMENTAL DESIGN Serum samples from 291 melanoma patients prospectively enrolled at the New York University Medical Center and 106 control subjects were analyzed for HU177 epitope concentration by a newly developed sandwich ELISA assay. HU177 serum levels were then correlated with clinical and pathologic parameters. RESULTS Mean HU177 epitope concentration was 5.8 ng/mL (range, 0-139.8 ng/mL). A significant correlation was observed between HU177 concentration and nodular melanoma histologic subtype [nodular, 10.3 +/- 1.6 ng/mL (mean +/- SE); superficial spreading melanoma, 4.5 +/- 1.1 ng/mL; all others, 6.1 +/- 2.1 ng/mL; P = 0.01 by ANOVA test]. Increased HU177 shedding also correlated with tumor thickness (< or =1.00 mm, 3.8 +/- 1.1 ng/mL; 1.01-3.99 mm, 8.7 +/- 1.3 ng/mL; > or =4.00 mm, 10.3 +/- 2.4 ng/mL; P = 0.003 by ANOVA). After multivariate analysis controlling for thickness, the correlation between higher HU177 concentration and nodular subtype remained significant (P = 0.03). The mean HU177 epitope concentration in control subjects was 2.4 ng/mL. CONCLUSIONS We report that primary melanoma can induce detectable changes in systemic levels of cryptic epitope shedding. Our data also support that nodular melanoma might be biologically distinct compared with superficial spreading type melanoma. As targeted interventions against cryptic collagen epitopes are currently undergoing phase I clinical trial testing, these findings indicate that patients with nodular melanoma may be more susceptible to such targeted therapies.
Collapse
Affiliation(s)
- Bruce Ng
- Department of Dermatology, New York University School of Medicine, 522 First Avenue, New York, NY 10016, USA
| | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
18
|
Cretu A, Brooks PC. Impact of the non-cellular tumor microenvironment on metastasis: potential therapeutic and imaging opportunities. J Cell Physiol 2008; 213:391-402. [PMID: 17657728 DOI: 10.1002/jcp.21222] [Citation(s) in RCA: 50] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/28/2022]
Abstract
Evidence is accumulating that the malignant phenotype of a given tumor is dependent not only on the intrinsic characteristics of tumor cells, but also on the cooperative interactions of non-neoplastic cells, soluble secreted factors and the non-cellular solid-state ECM network that comprise the tumor microenvironment. Given the ability of the tumor microenvironment to regulate the cellular phenotype, recent efforts have focused on understanding the molecular mechanisms by which cells sense, assimilate, interpret, and ultimately respond to their immediate surroundings. Exciting new studies are beginning to unravel the complex interactions between the numerous cell types and regulatory factors within the tumor microenvironment that function cooperatively to control tumor cell invasion and metastasis. Here, we will focus on studies concerning a common theme, which is the central importance of the non-cellular solid-state compartment as a master regulator of the malignant phenotype. We will highlight the non-cellular solid-state compartment as a relatively untapped source of therapeutic and imaging targets and how cellular interactions with these targets may regulate tumor metastasis.
Collapse
Affiliation(s)
- Alexandra Cretu
- Department of Radiation Oncology, NYU Cancer Institute, New York University School of Medicine, New York, New York 10016, USA.
| | | |
Collapse
|
19
|
Cretu A, Roth JM, Caunt M, Akalu A, Policarpio D, Formenti S, Gagne P, Liebes L, Brooks PC. Disruption of Endothelial Cell Interactions with the Novel HU177 Cryptic Collagen Epitope Inhibits Angiogenesis. Clin Cancer Res 2007; 13:3068-78. [PMID: 17505010 DOI: 10.1158/1078-0432.ccr-06-2342] [Citation(s) in RCA: 26] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
PURPOSE The importance of cellular communication with the extracellular matrix in regulating cellular invasion is well established. Selective disruption of communication links between cells and the local microenvironment by specifically targeting non-cellular matrix-immobilized cryptic extracellular matrix epitopes may represent an effective new clinical approach to limit tumor-associated angiogenesis. Therefore, we sought to determine whether the HU177 cryptic collagen epitope plays a functional role in regulating angiogenesis in vivo. EXPERIMENTAL DESIGN We examined the expression and characterized the HU177 cryptic collagen epitope in vitro and in vivo using immunohistochemistry and ELISA. We examined potential mechanisms by which this cryptic collagen epitope may regulate angiogenesis using in vitro cell adhesion, migration, proliferation, and biochemical assays. Finally, we examined the whether blocking cellular interactions with the HU177 cryptic epitope plays a role in angiogenesis and tumor growth in vivo using the chick embryo model. RESULTS The HU177 cryptic epitope was selectively exposed within tumor blood vessel extracellular matrix, whereas little was associated with quiescent vessels. An antibody directed to this cryptic site selectively inhibited endothelial cell adhesion, migration, and proliferation on denatured collagen type IV and induced increased levels of cyclin-dependent kinase inhibitor p27(KIP1). Systemic administration of mAb HU177 inhibited cytokine- and tumor-induced angiogenesis in vivo. CONCLUSIONS We provide evidence for a new functional cryptic regulatory element within collagen IV that regulates tumor angiogenesis. These findings suggest a novel and highly selective approach for regulating angiogenesis by targeting a non-cellular cryptic collagen epitope.
Collapse
Affiliation(s)
- Alexandra Cretu
- Department of Radiation Oncology, The New York University Cancer Institute, New York University School of Medicine, New York, New York 10016, USA
| | | | | | | | | | | | | | | | | |
Collapse
|
20
|
Schedin P, O'Brien J, Rudolph M, Stein T, Borges V. Microenvironment of the involuting mammary gland mediates mammary cancer progression. J Mammary Gland Biol Neoplasia 2007; 12:71-82. [PMID: 17318269 DOI: 10.1007/s10911-007-9039-3] [Citation(s) in RCA: 117] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/20/2022] Open
Abstract
Breast cancer diagnosed after a completed pregnancy has higher metastatic potential and therefore a much poorer prognosis. We hypothesize that following pregnancy the process of mammary gland involution, which returns the gland to its pre-pregnant state, co-opts some of the programs of wound healing. The pro-inflammatory milieu that results, while physiologically normal, promotes tumor progression. In this review, the similarities between mammary gland involution after cessation of milk-production and pathological tissue remodeling are discussed in light of emerging data demonstrating a role for pathological tissue remodeling in cancer.
Collapse
Affiliation(s)
- Pepper Schedin
- AMC Cancer Research Center, University of Colorado Health Science Center, Aurora, CO, USA.
| | | | | | | | | |
Collapse
|
21
|
Mancuso MR, Davis R, Norberg SM, O’Brien S, Sennino B, Nakahara T, Yao VJ, Inai T, Brooks P, Freimark B, Shalinsky DR, Hu-Lowe DD, McDonald DM. Rapid vascular regrowth in tumors after reversal of VEGF inhibition. J Clin Invest 2007; 116:2610-21. [PMID: 17016557 PMCID: PMC1578604 DOI: 10.1172/jci24612] [Citation(s) in RCA: 633] [Impact Index Per Article: 35.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2005] [Accepted: 07/18/2006] [Indexed: 01/09/2023] Open
Abstract
Inhibitors of VEGF signaling can block angiogenesis and reduce tumor vascularity, but little is known about the reversibility of these changes after treatment ends. In the present study, regrowth of blood vessels in spontaneous RIP-Tag2 tumors and implanted Lewis lung carcinomas in mice was assessed after inhibition of VEGF receptor signaling by AG-013736 or AG-028262 for 7 days. Both agents caused loss of 50%-60% of tumor vasculature. Empty sleeves of basement membrane were left behind. Pericytes also survived but had less alpha-SMA immunoreactivity. One day after drug withdrawal, endothelial sprouts grew into empty sleeves of basement membrane. Vessel patency and connection to the bloodstream followed close behind. By 7 days, tumors were fully revascularized, and the pericyte phenotype returned to baseline. Importantly, the regrown vasculature regressed as much during a second treatment as it did in the first. Inhibition of MMPs or targeting of type IV collagen cryptic sites by antibody HUIV26 did not eliminate the sleeves or slow revascularization. These results suggest that empty sleeves of basement membrane and accompanying pericytes provide a scaffold for rapid revascularization of tumors after removal of anti-VEGF therapy and highlight their importance as potential targets in cancer therapy.
Collapse
MESH Headings
- Actins/metabolism
- Angiogenesis Inhibitors/pharmacology
- Angiogenesis Inhibitors/therapeutic use
- Animals
- Antibodies, Monoclonal/pharmacology
- Axitinib
- Basement Membrane/drug effects
- Basement Membrane/metabolism
- Basement Membrane/pathology
- Blood Vessels/drug effects
- Blood Vessels/metabolism
- Blood Vessels/pathology
- Carcinoma, Lewis Lung/blood supply
- Carcinoma, Lewis Lung/drug therapy
- Carcinoma, Lewis Lung/pathology
- Collagen Type IV/immunology
- Collagen Type IV/metabolism
- Endothelium, Vascular/drug effects
- Endothelium, Vascular/metabolism
- Endothelium, Vascular/pathology
- Imidazoles/pharmacology
- Imidazoles/therapeutic use
- Indazoles/pharmacology
- Indazoles/therapeutic use
- Insulinoma/blood supply
- Insulinoma/drug therapy
- Insulinoma/pathology
- Matrix Metalloproteinase Inhibitors
- Mice
- Mice, Inbred C57BL
- Mice, Transgenic
- Neoplasms/blood supply
- Neoplasms/drug therapy
- Neoplasms/pathology
- Neovascularization, Pathologic/drug therapy
- Neovascularization, Pathologic/metabolism
- Neovascularization, Pathologic/pathology
- Organic Chemicals/pharmacology
- Pericytes/drug effects
- Pericytes/metabolism
- Pericytes/pathology
- Platelet Endothelial Cell Adhesion Molecule-1/metabolism
- Receptor, Platelet-Derived Growth Factor beta/metabolism
- Receptors, Vascular Endothelial Growth Factor/antagonists & inhibitors
- Treatment Outcome
- Vascular Endothelial Growth Factor A/metabolism
- Vascular Endothelial Growth Factor Receptor-2/antagonists & inhibitors
- Vascular Endothelial Growth Factor Receptor-2/metabolism
Collapse
Affiliation(s)
- Michael R. Mancuso
- Cardiovascular Research Institute, Comprehensive Cancer Center, and Department of Anatomy, UCSF, San Francisco, California, USA.
Departments of Radiation Oncology and Cell Biology, New York University Cancer Institute, New York, New York, USA.
Cell-Matrix Inc., a subsidiary of CancerVax, Carlsbad, California, USA.
Department of Research Pharmacology, Pfizer Global Research and Development, San Diego, California, USA
| | - Rachel Davis
- Cardiovascular Research Institute, Comprehensive Cancer Center, and Department of Anatomy, UCSF, San Francisco, California, USA.
Departments of Radiation Oncology and Cell Biology, New York University Cancer Institute, New York, New York, USA.
Cell-Matrix Inc., a subsidiary of CancerVax, Carlsbad, California, USA.
Department of Research Pharmacology, Pfizer Global Research and Development, San Diego, California, USA
| | - Scott M. Norberg
- Cardiovascular Research Institute, Comprehensive Cancer Center, and Department of Anatomy, UCSF, San Francisco, California, USA.
Departments of Radiation Oncology and Cell Biology, New York University Cancer Institute, New York, New York, USA.
Cell-Matrix Inc., a subsidiary of CancerVax, Carlsbad, California, USA.
Department of Research Pharmacology, Pfizer Global Research and Development, San Diego, California, USA
| | - Shaun O’Brien
- Cardiovascular Research Institute, Comprehensive Cancer Center, and Department of Anatomy, UCSF, San Francisco, California, USA.
Departments of Radiation Oncology and Cell Biology, New York University Cancer Institute, New York, New York, USA.
Cell-Matrix Inc., a subsidiary of CancerVax, Carlsbad, California, USA.
Department of Research Pharmacology, Pfizer Global Research and Development, San Diego, California, USA
| | - Barbara Sennino
- Cardiovascular Research Institute, Comprehensive Cancer Center, and Department of Anatomy, UCSF, San Francisco, California, USA.
Departments of Radiation Oncology and Cell Biology, New York University Cancer Institute, New York, New York, USA.
Cell-Matrix Inc., a subsidiary of CancerVax, Carlsbad, California, USA.
Department of Research Pharmacology, Pfizer Global Research and Development, San Diego, California, USA
| | - Tsutomu Nakahara
- Cardiovascular Research Institute, Comprehensive Cancer Center, and Department of Anatomy, UCSF, San Francisco, California, USA.
Departments of Radiation Oncology and Cell Biology, New York University Cancer Institute, New York, New York, USA.
Cell-Matrix Inc., a subsidiary of CancerVax, Carlsbad, California, USA.
Department of Research Pharmacology, Pfizer Global Research and Development, San Diego, California, USA
| | - Virginia J. Yao
- Cardiovascular Research Institute, Comprehensive Cancer Center, and Department of Anatomy, UCSF, San Francisco, California, USA.
Departments of Radiation Oncology and Cell Biology, New York University Cancer Institute, New York, New York, USA.
Cell-Matrix Inc., a subsidiary of CancerVax, Carlsbad, California, USA.
Department of Research Pharmacology, Pfizer Global Research and Development, San Diego, California, USA
| | - Tetsuichiro Inai
- Cardiovascular Research Institute, Comprehensive Cancer Center, and Department of Anatomy, UCSF, San Francisco, California, USA.
Departments of Radiation Oncology and Cell Biology, New York University Cancer Institute, New York, New York, USA.
Cell-Matrix Inc., a subsidiary of CancerVax, Carlsbad, California, USA.
Department of Research Pharmacology, Pfizer Global Research and Development, San Diego, California, USA
| | - Peter Brooks
- Cardiovascular Research Institute, Comprehensive Cancer Center, and Department of Anatomy, UCSF, San Francisco, California, USA.
Departments of Radiation Oncology and Cell Biology, New York University Cancer Institute, New York, New York, USA.
Cell-Matrix Inc., a subsidiary of CancerVax, Carlsbad, California, USA.
Department of Research Pharmacology, Pfizer Global Research and Development, San Diego, California, USA
| | - Bruce Freimark
- Cardiovascular Research Institute, Comprehensive Cancer Center, and Department of Anatomy, UCSF, San Francisco, California, USA.
Departments of Radiation Oncology and Cell Biology, New York University Cancer Institute, New York, New York, USA.
Cell-Matrix Inc., a subsidiary of CancerVax, Carlsbad, California, USA.
Department of Research Pharmacology, Pfizer Global Research and Development, San Diego, California, USA
| | - David R. Shalinsky
- Cardiovascular Research Institute, Comprehensive Cancer Center, and Department of Anatomy, UCSF, San Francisco, California, USA.
Departments of Radiation Oncology and Cell Biology, New York University Cancer Institute, New York, New York, USA.
Cell-Matrix Inc., a subsidiary of CancerVax, Carlsbad, California, USA.
Department of Research Pharmacology, Pfizer Global Research and Development, San Diego, California, USA
| | - Dana D. Hu-Lowe
- Cardiovascular Research Institute, Comprehensive Cancer Center, and Department of Anatomy, UCSF, San Francisco, California, USA.
Departments of Radiation Oncology and Cell Biology, New York University Cancer Institute, New York, New York, USA.
Cell-Matrix Inc., a subsidiary of CancerVax, Carlsbad, California, USA.
Department of Research Pharmacology, Pfizer Global Research and Development, San Diego, California, USA
| | - Donald M. McDonald
- Cardiovascular Research Institute, Comprehensive Cancer Center, and Department of Anatomy, UCSF, San Francisco, California, USA.
Departments of Radiation Oncology and Cell Biology, New York University Cancer Institute, New York, New York, USA.
Cell-Matrix Inc., a subsidiary of CancerVax, Carlsbad, California, USA.
Department of Research Pharmacology, Pfizer Global Research and Development, San Diego, California, USA
| |
Collapse
|