1
|
Tang N, Cheng L, Hao J, Xu B, Pan X, Wei X, Wu H, Wang H. Development of CAR-T cell therapy for NF1/SWN-related nerve sheath tumor treatment. Acta Neuropathol Commun 2025; 13:45. [PMID: 40025578 PMCID: PMC11871713 DOI: 10.1186/s40478-025-01965-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/31/2024] [Accepted: 02/18/2025] [Indexed: 03/04/2025] Open
Abstract
Neurofibromatosis type 1 (NF1) and schwannomatosis (SWN) are rare genetic disorders with distinct genetic etiologies. Both syndromes are predominantly characterized by the development of multiple benign nerve sheath tumors, which typically arise from cranial/peripheral nerves. The management of NF1/SWN-associated benign nerve sheath tumors pose a substantial clinical challenge. In recent years, immunotherapy has demonstrated significant efficacy in treating various tumors, but its application to NF1/SWN has not been explored. In this study, we first evaluated the feasibility of chimeric antigen receptor (CAR)-T cell therapy for the treatment of benign NF1/SWN-related nerve sheath tumor by analyzing the expression of multiple antigens in 85 tumor samples. Our findings revealed that epidermal growth factor receptor (EGFR/HER1) was highly expressed in most samples, indicating its potential as an ideal target for CAR-T cell therapy. Additionally, TGFβ1 and PDL1, key inhibitory regulators of T cell function within solid tumor microenvironment (TME), were universally overexpressed in these samples, highlighting the immunosuppressive nature of NF1/SWN tumors. To target HER1, we constructed CARs using three distinct scFvs (806, E2 and NEC). All three types of CAR-T cells demonstrated significant tumor-eliminating capability against NF1/SWN tumor cell lines, with 806 CAR-T cells showing the highest efficacy. Considering the immunosuppressive TME, we knocked out TGFBR2 and/or PDCD1 in 806 CAR-T cells using CRISPR/Cas9. Their anti-tumor efficacy was further evaluated using a 3D tumor spheroid model, and the gene-edited 806 CAR-T cells exhibited superior anti-tumor efficacy. In conclusion, we identified HER1 as a target for CAR-T cell therapy in NF1/SWN-related nerve sheath tumors, and developed anti-HER1 CAR-T cells that effectively eliminated NF1/SWN tumor cells, providing a promising therapeutic strategy for patients with these conditions.
Collapse
Affiliation(s)
- Na Tang
- State Key Laboratory of Organ Regeneration and Reconstruction, Institute of Zoology, Chinese Academy of Sciences, Beijing, 100101, China.
- Beijing Institute for Stem Cell and Regenerative Medicine, Beijing, 100101, China.
| | - Lei Cheng
- Department of Neurosurgery, Xuanwu Hospital, China International Neuroscience Institute, Capital Medical University, Beijing, 100053, China
| | - Jiawei Hao
- State Key Laboratory of Organ Regeneration and Reconstruction, Institute of Zoology, Chinese Academy of Sciences, Beijing, 100101, China
- University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Beilei Xu
- State Key Laboratory of Organ Regeneration and Reconstruction, Institute of Zoology, Chinese Academy of Sciences, Beijing, 100101, China
| | - Xi Pan
- State Key Laboratory of Organ Regeneration and Reconstruction, Institute of Zoology, Chinese Academy of Sciences, Beijing, 100101, China
- University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Xiaofei Wei
- Beijing Cord Blood Bank, Beijing, 100176, China
| | - Hao Wu
- Department of Neurosurgery, Xuanwu Hospital, China International Neuroscience Institute, Capital Medical University, Beijing, 100053, China.
| | - Haoyi Wang
- State Key Laboratory of Organ Regeneration and Reconstruction, Institute of Zoology, Chinese Academy of Sciences, Beijing, 100101, China.
- Beijing Institute for Stem Cell and Regenerative Medicine, Beijing, 100101, China.
- University of Chinese Academy of Sciences, Beijing, 100049, China.
| |
Collapse
|
2
|
Wei CJ, Yan C, Tang Y, Wang W, Gu YH, Ren JY, Cui XW, Lian X, Liu J, Wang HJ, Gu B, Zan T, Li QF, Wang ZC. Computed Tomography-Based Differentiation of Benign and Malignant Craniofacial Lesions in Neurofibromatosis Type I Patients: A Machine Learning Approach. Front Oncol 2020; 10:1192. [PMID: 32850344 PMCID: PMC7411852 DOI: 10.3389/fonc.2020.01192] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/18/2020] [Accepted: 06/12/2020] [Indexed: 01/30/2023] Open
Abstract
Background: Because neurofibromatosis type I (NF1) is a cancer predisposition disease, it is important to distinguish between benign and malignant lesions, especially in the craniofacial area. Purpose: The purpose of this study is to improve effectiveness in the diagnostic performance in discriminating malignant from benign craniofacial lesions based on computed tomography (CT) using a Keras-based machine-learning model. Methods: The Keras-based machine learning technique, a neural network package in the Python language, was used to train the diagnostic model on CT datasets. Fifty NF1 patients with benign craniofacial neurofibromas and six NF1 patients with malignant peripheral nerve sheath tumors (MPNSTs) were selected as the training set. Three validation cohorts were used: validation cohort 1 (random selection of 90% of the patients in the training cohort), validation cohort 2 (an independent cohort of 9 NF1 patients with benign craniofacial neurofibromas and 11 NF1 patients with MPNST), and validation cohort 3 (eight NF1 patients with MPNST, not restricted to the craniofacial area). Sensitivity and specificity were tested using validation cohorts 1 and 2, and generalizability was evaluated using validation cohort 3. Results: A total of 59 NF1 patients with benign neurofibroma and 23 NF1 patients with MPNST were included. A Keras-based machine-learning model was successfully established using the training cohort. The accuracy was 96.99 and 100% in validation cohorts 1 and 2, respectively, discriminating NF1-related benign and malignant craniofacial lesions. However, the accuracy of this model was significantly reduced to 51.72% in the identification of MPNSTs in different body regions. Conclusion: The Keras-based machine learning technique showed the potential of robust diagnostic performance in the differentiation of craniofacial MPNSTs and benign neurofibromas in NF1 patients using CT images. However, the model has limited generalizability when applied to other body areas. With more clinical data accumulating in the model, this system may support clinical doctors in the primary screening of true MPNSTs from benign lesions in NF1 patients.
Collapse
Affiliation(s)
- Cheng-Jiang Wei
- Department of Plastic and Reconstructive Surgery, Shanghai Ninth People's Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Cheng Yan
- Department of Radiology, Zhongshan Hospital, Fudan University, Shanghai, China.,Shanghai Institute of Medical Imaging, Fudan University, Shanghai, China.,Department of Medical Imaging, Shanghai Medical College, Fudan University, Shanghai, China
| | - Yan Tang
- Department of Radiology, Shanghai Ninth People's Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Wei Wang
- Department of Plastic and Reconstructive Surgery, Shanghai Ninth People's Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Yi-Hui Gu
- Department of Plastic and Reconstructive Surgery, Shanghai Ninth People's Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Jie-Yi Ren
- Department of Plastic and Reconstructive Surgery, Shanghai Ninth People's Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Xi-Wei Cui
- Department of Plastic and Reconstructive Surgery, Shanghai Ninth People's Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Xiang Lian
- Department of Plastic and Reconstructive Surgery, Shanghai Ninth People's Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Jin Liu
- Department of Plastic and Reconstructive Surgery, Shanghai Ninth People's Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Hui-Jing Wang
- Department of Plastic and Reconstructive Surgery, Shanghai Ninth People's Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Bin Gu
- Department of Plastic and Reconstructive Surgery, Shanghai Ninth People's Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Tao Zan
- Department of Plastic and Reconstructive Surgery, Shanghai Ninth People's Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Qing-Feng Li
- Department of Plastic and Reconstructive Surgery, Shanghai Ninth People's Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Zhi-Chao Wang
- Department of Plastic and Reconstructive Surgery, Shanghai Ninth People's Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| |
Collapse
|
3
|
Wei CJ, Gu SC, Ren JY, Gu YH, Xu XW, Chou X, Lian X, Huang X, Li HZ, Gao YS, Gu B, Zan T, Wang ZC, Li QF. The impact of host immune cells on the development of neurofibromatosis type 1: The abnormal immune system provides an immune microenvironment for tumorigenesis. Neurooncol Adv 2020; 1:vdz037. [PMID: 32642666 PMCID: PMC7212924 DOI: 10.1093/noajnl/vdz037] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/09/2023] Open
Abstract
AbstractThe immune system plays an essential role in the development of tumors, which has been demonstrated in multiple types of cancers. Consistent with this, immunotherapies with targets that disrupt these mechanisms and turn the immune system against developing cancers have been proven effective. In neurofibromatosis type 1 (NF1), an autosomal dominant genetic disorder, the understanding of the complex interactions of the immune system is incomplete despite the discovery of the pivotal role of immune cells in the tumor microenvironment. Individuals with NF1 show a loss of the NF1 gene in nonneoplastic cells, including immune cells, and the aberrant immune system exhibits intriguing interactions with NF1. This review aims to provide an update on recent studies showing the bilateral influences of NF1 mutations on immune cells and how the abnormal immune system promotes the development of NF1 and NF1-related tumors. We then discuss the immune receptors major histocompatibility complex class I and II and the PD-L1 mechanism that shield NF1 from immunosurveillance and enable the immune escape of tumor tissues. Clarification of the latest understanding of the mechanisms underlying the effects of the abnormal immune system on promoting the development of NF1 will indicate potential future directions for further studies and new immunotherapies.
Collapse
Affiliation(s)
- Cheng-Jiang Wei
- Department of Plastic and Reconstructive Surgery, Shanghai Ninth People’s Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, People’s Republic of China
| | - Shu-Chen Gu
- Department of Plastic and Reconstructive Surgery, Shanghai Ninth People’s Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, People’s Republic of China
| | - Jie-Yi Ren
- Department of Plastic and Reconstructive Surgery, Shanghai Ninth People’s Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, People’s Republic of China
| | - Yi-Hui Gu
- Department of Plastic and Reconstructive Surgery, Shanghai Ninth People’s Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, People’s Republic of China
| | - Xiang-Wen Xu
- Department of Plastic and Reconstructive Surgery, Shanghai Ninth People’s Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, People’s Republic of China
| | - Xin Chou
- Department of Plastic and Reconstructive Surgery, Shanghai Ninth People’s Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, People’s Republic of China
| | - Xiang Lian
- Department of Plastic and Reconstructive Surgery, Shanghai Ninth People’s Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, People’s Republic of China
| | - Xin Huang
- Department of Plastic and Reconstructive Surgery, Shanghai Ninth People’s Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, People’s Republic of China
| | - Hai-Zhou Li
- Department of Plastic and Reconstructive Surgery, Shanghai Ninth People’s Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, People’s Republic of China
| | - Ya-Shan Gao
- Department of Plastic and Reconstructive Surgery, Shanghai Ninth People’s Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, People’s Republic of China
| | - Bin Gu
- Department of Plastic and Reconstructive Surgery, Shanghai Ninth People’s Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, People’s Republic of China
| | - Tao Zan
- Department of Plastic and Reconstructive Surgery, Shanghai Ninth People’s Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, People’s Republic of China
| | - Zhi-Chao Wang
- Department of Plastic and Reconstructive Surgery, Shanghai Ninth People’s Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, People’s Republic of China
- Corresponding Authors: Zhichao Wang, MD, MPH and Qing-Feng Li, MD, PhD, Department of Plastic and Reconstructive Surgery, Shanghai Ninth People’s Hospital, Shanghai Jiao Tong University School of Medicine, 639 Zhizaoju Road, Shanghai 200011, People’s Republic of China (; )
| | - Qing-Feng Li
- Department of Plastic and Reconstructive Surgery, Shanghai Ninth People’s Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, People’s Republic of China
- Corresponding Authors: Zhichao Wang, MD, MPH and Qing-Feng Li, MD, PhD, Department of Plastic and Reconstructive Surgery, Shanghai Ninth People’s Hospital, Shanghai Jiao Tong University School of Medicine, 639 Zhizaoju Road, Shanghai 200011, People’s Republic of China (; )
| |
Collapse
|
4
|
Fletcher JS, Wu J, Jessen WJ, Pundavela J, Miller JA, Dombi E, Kim MO, Rizvi TA, Chetal K, Salomonis N, Ratner N. Cxcr3-expressing leukocytes are necessary for neurofibroma formation in mice. JCI Insight 2019; 4:e98601. [PMID: 30728335 PMCID: PMC6413799 DOI: 10.1172/jci.insight.98601] [Citation(s) in RCA: 23] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/22/2017] [Accepted: 12/20/2018] [Indexed: 12/17/2022] Open
Abstract
Plexiform neurofibroma is a major contributor to morbidity in patients with neurofibromatosis type I (NF1). Macrophages and mast cells infiltrate neurofibroma, and data from mouse models implicate these leukocytes in neurofibroma development. Antiinflammatory therapy targeting these cell populations has been suggested as a means to prevent neurofibroma development. Here, we compare gene expression in Nf1-mutant nerves, which invariably form neurofibroma, and show disruption of neuron-glial cell interactions and immune cell infiltration to mouse models, which rarely progresses to neurofibroma with or without disruption of neuron-glial cell interactions. We find that the chemokine Cxcl10 is uniquely upregulated in NF1 mice that invariably develop neurofibroma. Global deletion of the CXCL10 receptor Cxcr3 prevented neurofibroma development in these neurofibroma-prone mice, and an anti-Cxcr3 antibody somewhat reduced tumor numbers. Cxcr3 expression localized to T cells and DCs in both inflamed nerves and neurofibromas, and Cxcr3 expression was necessary to sustain elevated macrophage numbers in Nf1-mutant nerves. To our knowledge, these data support a heretofore-unappreciated role for T cells and DCs in neurofibroma initiation.
Collapse
Affiliation(s)
- Jonathan S. Fletcher
- Division of Experimental Hematology and Cancer Biology, Cincinnati Children’s Hospital Medical Center, University of Cincinnati College of Medicine, Cincinnati, Ohio, USA
- Immunology Graduate Program, University of Cincinnati College of Medicine, Cincinnati, Ohio, USA
| | - Jianqiang Wu
- Division of Experimental Hematology and Cancer Biology, Cincinnati Children’s Hospital Medical Center, University of Cincinnati College of Medicine, Cincinnati, Ohio, USA
| | - Walter J. Jessen
- Division of Experimental Hematology and Cancer Biology, Cincinnati Children’s Hospital Medical Center, University of Cincinnati College of Medicine, Cincinnati, Ohio, USA
- Laboratory Corporation of America Holdings, Burlington, North Carolina, USA
| | - Jay Pundavela
- Division of Experimental Hematology and Cancer Biology, Cincinnati Children’s Hospital Medical Center, University of Cincinnati College of Medicine, Cincinnati, Ohio, USA
| | - Jacob A. Miller
- Division of Experimental Hematology and Cancer Biology, Cincinnati Children’s Hospital Medical Center, University of Cincinnati College of Medicine, Cincinnati, Ohio, USA
| | - Eva Dombi
- Center for Cancer Research, National Cancer Institute, Bethesda, Maryland, USA
| | - Mi-Ok Kim
- UCSF Helen Diller Family Comprehensive Cancer Center, Department of Epidemiology and Biostatistics, UCSF, San Francisco, California, USA
| | - Tilat A. Rizvi
- Division of Experimental Hematology and Cancer Biology, Cincinnati Children’s Hospital Medical Center, University of Cincinnati College of Medicine, Cincinnati, Ohio, USA
| | - Kashish Chetal
- Division of Biomedical Informatics, Cincinnati Children’s Hospital Medical Center, University of Cincinnati College of Medicine, Cincinnati, Ohio, USA
| | - Nathan Salomonis
- Division of Biomedical Informatics, Cincinnati Children’s Hospital Medical Center, University of Cincinnati College of Medicine, Cincinnati, Ohio, USA
| | - Nancy Ratner
- Division of Experimental Hematology and Cancer Biology, Cincinnati Children’s Hospital Medical Center, University of Cincinnati College of Medicine, Cincinnati, Ohio, USA
| |
Collapse
|
5
|
Haworth KB, Arnold MA, Pierson CR, Choi K, Yeager ND, Ratner N, Roberts RD, Finlay JL, Cripe TP. Immune profiling of NF1-associated tumors reveals histologic subtype distinctions and heterogeneity: implications for immunotherapy. Oncotarget 2017; 8:82037-82048. [PMID: 29137242 PMCID: PMC5669868 DOI: 10.18632/oncotarget.18301] [Citation(s) in RCA: 37] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/14/2016] [Accepted: 04/16/2017] [Indexed: 01/01/2023] Open
Abstract
Successful treatment of neurofibromatosis type 1 (NF1)-associated tumors poses a significant clinical challenge. While the primary underlying genetic defect driving RAS signaling is well described, recent evidence suggests immune dysfunction contributes to tumor pathogenesis and malignant transformation. As immunologic characterizations, prognostic and predictive of immunotherapeutic clinical response in other cancers, are not fully described for benign and malignant NF1-related tumors, we sought to define their immunologic profiles. We determined the expression of human leukocyte antigen (HLA)-A/-B/-C, β-2-microglobulin (B2M), and T cell inhibitory ligands PD-L1 and CTLA-4 by microarray gene analysis and flow cytometry. We examined HLA-A/-B/-C, B2M, and PD-L1 expression on thirty-six NF1-associated tumor samples by immunohistochemistry, and correlated these with tumoral CD4+, CD8+, FOXP3+, CD56+, and CD45RO+ lymphocytic infiltrates. We evaluated several tumors from a single patient, observing trends of increasing immunogenicity over time, even with disease progression. We observed similarly immunogenic profiles for malignant peripheral nerve sheath tumors (MPNST) and nodular and plexiform neurofibromas, contrasting with diffuse neurofibromas. These studies suggest that while immunotherapies may offer some benefit for MPNST and nodular and plexiform neurofibromas, tumor heterogeneity might pose a significant clinical challenge to this novel therapeutic approach.
Collapse
Affiliation(s)
- Kellie B Haworth
- Division of Hematology, Oncology, Blood and Marrow Transplant, Department of Pediatrics, Nationwide Children's Hospital, Columbus, Ohio, USA.,Center for Childhood Cancer and Blood Diseases, The Research Institute, Nationwide Children's Hospital, Columbus, Ohio, USA
| | - Michael A Arnold
- Division of Anatomic Pathology, Department of Pathology and Laboratory Medicine, Nationwide Children's Hospital, Columbus, Ohio, USA.,Department of Pathology, The Ohio State University College of Medicine, Columbus, Ohio, USA
| | - Christopher R Pierson
- Division of Anatomic Pathology, Department of Pathology and Laboratory Medicine, Nationwide Children's Hospital, Columbus, Ohio, USA.,Department of Pathology, The Ohio State University College of Medicine, Columbus, Ohio, USA.,Division of Anatomy, Department of Biomedical Education and Anatomy, The Ohio State University College of Medicine, Columbus, Ohio, USA
| | - Kwangmin Choi
- Division of Experimental Hematology and Cancer Biology, Cincinnati Children's Hospital Medical Center, Cincinnati, Ohio, USA
| | - Nicholas D Yeager
- Division of Hematology, Oncology, Blood and Marrow Transplant, Department of Pediatrics, Nationwide Children's Hospital, Columbus, Ohio, USA
| | - Nancy Ratner
- Division of Experimental Hematology and Cancer Biology, Cincinnati Children's Hospital Medical Center, Cincinnati, Ohio, USA
| | - Ryan D Roberts
- Division of Hematology, Oncology, Blood and Marrow Transplant, Department of Pediatrics, Nationwide Children's Hospital, Columbus, Ohio, USA.,Center for Childhood Cancer and Blood Diseases, The Research Institute, Nationwide Children's Hospital, Columbus, Ohio, USA
| | - Jonathan L Finlay
- Division of Hematology, Oncology, Blood and Marrow Transplant, Department of Pediatrics, Nationwide Children's Hospital, Columbus, Ohio, USA
| | - Timothy P Cripe
- Division of Hematology, Oncology, Blood and Marrow Transplant, Department of Pediatrics, Nationwide Children's Hospital, Columbus, Ohio, USA.,Center for Childhood Cancer and Blood Diseases, The Research Institute, Nationwide Children's Hospital, Columbus, Ohio, USA
| |
Collapse
|
6
|
Wu J, Liu W, Williams JP, Ratner N. EGFR-Stat3 signalling in nerve glial cells modifies neurofibroma initiation. Oncogene 2016; 36:1669-1677. [PMID: 27748759 DOI: 10.1038/onc.2016.386] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/15/2016] [Revised: 09/02/2016] [Accepted: 09/04/2016] [Indexed: 02/06/2023]
Abstract
Neurofibromatosis type 1 (NF1) is an inherited disease in which affected patients are predisposed to develop benign Schwann cell (SC) tumours called neurofibromas. In the mouse, loss of Nf1 in the SC lineage causes neurofibroma formation. The tyrosine kinase receptor EGFR is expressed in Schwann cell precursors (SCP), which have been implicated in plexiform neurofibroma initiation. To test if EGFR activity affects neurofibroma initiation, size, and/or number, we studied mice expressing human EGFR in SCs and SCP in the context of mice that form neurofibromas. Neurofibroma number increased in homozygous CNP-hEGFR mice versus heterozygous littermates, and neurofibroma number and size increased when CNP-hEGFR was crossed to Nf1fl/fl;DhhCre mice. Conversely, diminished EGFR signalling in Nf1fl/fl;DhhCre;Wa2/+ mice decreased neurofibroma number. In vivo transplantation verified the correlation between EGFR activity and neurofibroma formation. Mechanistically, expression of CNP-hEGFR increased SCP/neurofibroma-initiating cell self-renewal, a surrogate for tumour initiation, and activated P-Stat3. Further, Il-6 reinforced Jak2/Stat3 activation in SCPs and SCs. These gain- and loss-of function assays show that levels of tyrosine kinase expression in SCPs modify neurofibroma initiation.
Collapse
Affiliation(s)
- J Wu
- Division of Experimental Hematology and Cancer Biology, Cancer and Blood Diseases Institute, Cincinnati Children's Hospital Research Foundation, Cincinnati Children's Hospital, University of Cincinnati, Cincinnati, OH, USA
| | - W Liu
- Division of Experimental Hematology and Cancer Biology, Cancer and Blood Diseases Institute, Cincinnati Children's Hospital Research Foundation, Cincinnati Children's Hospital, University of Cincinnati, Cincinnati, OH, USA
| | - J P Williams
- Division of Experimental Hematology and Cancer Biology, Cancer and Blood Diseases Institute, Cincinnati Children's Hospital Research Foundation, Cincinnati Children's Hospital, University of Cincinnati, Cincinnati, OH, USA
| | - N Ratner
- Division of Experimental Hematology and Cancer Biology, Cancer and Blood Diseases Institute, Cincinnati Children's Hospital Research Foundation, Cincinnati Children's Hospital, University of Cincinnati, Cincinnati, OH, USA
| |
Collapse
|
7
|
Du X, Yang J, Ylipää A, Zhu Z. Genomic amplification and high expression of EGFR are key targetable oncogenic events in malignant peripheral nerve sheath tumor. J Hematol Oncol 2013; 6:93. [PMID: 24341609 PMCID: PMC3878771 DOI: 10.1186/1756-8722-6-93] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/21/2013] [Accepted: 12/13/2013] [Indexed: 12/15/2022] Open
Abstract
Background The dismal outcome of malignant peripheral nerve sheath tumor (MPNST) highlights the necessity of finding new therapeutic methods to benefit patients with this aggressive sarcoma. Our purpose was to investigate epidermal growth factor receptor (EGFR) as a potential therapeutic target in MPNSTs. Patients and methods We performed a microarray based-comparative genomic hybridization (aCGH) profiling of two cohorts of primary MPNST tissue samples including 25 patients treated at The University of Texas MD Anderson Cancer Center (MD Anderson) and 26 patients from Tianjin Medical University Cancer Institute & Hospital (TMUCIH). Fluorescence in situ hybridization (FISH) method was used to validate the gene amplification detected by aCGH analysis. Another independent cohort of 56 formalin fixed paraffin embedded (FFPE) MPNST samples was obtained to explore EGFR protein expression by immunohistochemical analysis. Cell biology detection and validation were performed on human MPNST cell lines ST88-14 and STS26T. Results aCGH and pathway analysis of the 51 MPNSTs identified significant gene amplification events in EGFR pathway, including frequent amplifications of EGFR gene itself, which was subsequently validated by FISH assay. High expression of EGFR protein was associated with poor disease-free and overall survival of human MPNST patients. In human MPNST cell lines ST88-14 and STS26T, inhibition of EGFR by siRNA or Gefitinib led to decreased cell proliferation, migration, and invasion accompanied by attenuation of PI3K/AKT and MAPK pathways. Conclusion These results suggest that EGFR is a potential therapeutic target for MPNST.
Collapse
Affiliation(s)
| | - Jilong Yang
- Department of Bone and Soft Tissue Tumor, National Clinical Cancer Research Center, Tianjin Medical University Cancer Institute & Hospital, Tianjin 300060, China.
| | | | | |
Collapse
|
8
|
Malignant peripheral nerve sheath tumor invasion requires aberrantly expressed EGF receptors and is variably enhanced by multiple EGF family ligands. J Neuropathol Exp Neurol 2013; 72:219-33. [PMID: 23399900 DOI: 10.1097/nen.0b013e3182859939] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022] Open
Abstract
Aberrant epidermal growth factor receptor (EGFR) expression promotes the pathogenesis of malignant peripheral nerve sheath tumors (MPNSTs), the most common malignancy associated with neurofibromatosis type 1, but the mechanisms by which EGFR expression promotes MPNST pathogenesis are poorly understood. We hypothesized that inappropriately expressed EGFRs promote MPNST invasion and found that these kinases are concentrated in MPNST invadopodia in vitro. Epidermal growth factor receptor knockdown inhibited the migration of unstimulated MPNST cells in vitro, and exogenous EGF further enhanced MPNST migration in a substrate-specific manner, promoting migration on laminin and, to a lesser extent, collagen. In this setting, EGF acts as a chemotactic factor. We also found that the 7 known EGFR ligands (EGF, betacellulin, epiregulin, heparin-binding EGF, transforming growth factor-α [TGF-α], amphiregulin, and epigen) variably enhanced MPNST migration in a concentration-dependent manner, with TGF-α being particularly potent. With the exception of epigen, these factors similarly promoted the migration of nonneoplastic Schwann cells. Although transcripts encoding all 7 EGFR ligands were detected in human MPNST cells and tumor tissues, only TGF-α was consistently overexpressed and was found to colocalize with EGFR in situ. These data indicate that constitutive EGFR activation, potentially driven by autocrine or paracrine TGF-α signaling, promotes the aggressive invasive behavior characteristic of MPNSTs.
Collapse
|
9
|
Mast cells can contribute to axon-glial dissociation and fibrosis in peripheral nerve. ACTA ACUST UNITED AC 2012; 3:233-44. [PMID: 18634614 DOI: 10.1017/s1740925x08000021] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/01/2023]
Abstract
Expression of the human epidermal growth factor receptor (EGFR) in murine Schwann cells results in loss of axon-Schwann cell interactions and collagen deposition, modeling peripheral nerve response to injury and tumorigenesis. Mast cells infiltrate nerves in all three situations. We show that mast cells are present in normal mouse peripheral nerve beginning at 4 weeks of age, and that the number of mast-cells in EGFR(+) nerves increases abruptly at 5-6 weeks of age as axons and Schwann cells dissociate. The increase in mast cell number is preceded and accompanied by elevated levels of mRNAs encoding the mast-cell chemoattractants Rantes, SCF and VEGF. Genetic ablation of mast cells and bone marrow reconstitution in W(41) x EGFR(+) mice indicate a role for mast cells in loss of axon-Schwann cell interactions and collagen deposition. Pharmacological stabilization of mast cells by disodium cromoglycate administration to EGFR(+) mice also diminished loss of axon-Schwann cell interaction. Together these three lines of evidence support the hypothesis that mast cells can contribute to alterations in peripheral nerves.
Collapse
|
10
|
Wu J, Dombi E, Jousma E, Dunn RS, Lindquist D, Schnell BM, Kim MO, Kim A, Widemann BC, Cripe TP, Ratner N. Preclincial testing of sorafenib and RAD001 in the Nf(flox/flox) ;DhhCre mouse model of plexiform neurofibroma using magnetic resonance imaging. Pediatr Blood Cancer 2012; 58:173-80. [PMID: 21319287 PMCID: PMC3128176 DOI: 10.1002/pbc.23015] [Citation(s) in RCA: 53] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/18/2010] [Accepted: 12/10/2010] [Indexed: 01/03/2023]
Abstract
BACKGROUND Neurofibromatosis type 1 (NF1) is an inherited disease predisposing affected patients to variable numbers of benign neurofibromas. To date there are no effective chemotherapeutic drugs available for this slow growing tumor. Molecularly targeted agents that aim to slow neurofibroma growth are being tested in clinical trials. So preclinical models for testing potential therapies are urgently needed to prioritize drugs for clinical trials of neurofibromas. PROCEDURE We used magnetic resonance imaging (MRI) to monitor neurofibroma development in the Nf1(flox/flox) ;DhhCre mouse model of GEM grade I neurofibroma. Based on studies implicating mTOR and Raf signaling in NF1 mutant cells, we tested the therapeutic effect of RAD001 and Sorafenib in this model. Mice were scanned to establish growth rate followed by 8 weeks of drug treatment, then re-imaged after the last dose of drug treatment. Tumor volumes were determined by volumetric measurement. RESULTS We found that rate of tumor growth varied among mice, as it does in human patients. RAD001 inhibited its predicted target pS6K, yet there was no significant decrease in the tumor volume in RAD001 treated mice compared to the vehicle control group. Sorafenib inhibited cyclinD1 expression and cell proliferation in tumors, and volumetric measurements identified significant decreases in tumor volume in some mice. CONCLUSION The data demonstrate that volumetric MRI analysis can be used to monitor the therapeutic effect in the preclinical neurofibroma drug screening, and suggest that Sorafenib might have clinical activity in some neurofibromas.
Collapse
Affiliation(s)
- Jianqiang Wu
- Divisions of Experimental Hematology and Cancer Biology, Department of Pediatrics, Cincinnati Children's Hospital Research Foundation, Cincinnati Children's Hospital Medical Center, 3333 Burnet Ave., Cincinnati, OH 45229, USA
| | - Eva Dombi
- Pediatric Oncology Branch, National Cancer Institute, CRC 1-3872, 10 Center Drive, Bethesda, MD 20892, USA
| | - Edwin Jousma
- Divisions of Experimental Hematology and Cancer Biology, Department of Pediatrics, Cincinnati Children's Hospital Research Foundation, Cincinnati Children's Hospital Medical Center, 3333 Burnet Ave., Cincinnati, OH 45229, USA
| | - R. Scott Dunn
- Department of Radiology, Cincinnati Children's Hospital Research Foundation, Cincinnati Children's Hospital Medical Center, 3333 Burnet Ave., Cincinnati, OH 45229, USA
| | - Diana Lindquist
- Department of Radiology, Cincinnati Children's Hospital Research Foundation, Cincinnati Children's Hospital Medical Center, 3333 Burnet Ave., Cincinnati, OH 45229, USA
| | - Beverly M. Schnell
- Divisions of Biostatistics and Epidemiology, Department of Pediatrics, Cincinnati Children's Hospital Research Foundation, Cincinnati Children's Hospital Medical Center, 3333 Burnet Ave., Cincinnati, OH 45229, USA
| | - Mi-Ok Kim
- Divisions of Biostatistics and Epidemiology, Department of Pediatrics, Cincinnati Children's Hospital Research Foundation, Cincinnati Children's Hospital Medical Center, 3333 Burnet Ave., Cincinnati, OH 45229, USA
| | - AeRang Kim
- Pediatric Oncology Branch, National Cancer Institute, CRC 1-3872, 10 Center Drive, Bethesda, MD 20892, USA
| | - Brigitte C. Widemann
- Pediatric Oncology Branch, National Cancer Institute, CRC 1-3872, 10 Center Drive, Bethesda, MD 20892, USA
| | - Timothy P. Cripe
- Divisions of Experimental Hematology and Cancer Biology, Department of Pediatrics, Cincinnati Children's Hospital Research Foundation, Cincinnati Children's Hospital Medical Center, 3333 Burnet Ave., Cincinnati, OH 45229, USA
| | - Nancy Ratner
- Divisions of Experimental Hematology and Cancer Biology, Department of Pediatrics, Cincinnati Children's Hospital Research Foundation, Cincinnati Children's Hospital Medical Center, 3333 Burnet Ave., Cincinnati, OH 45229, USA
| |
Collapse
|
11
|
Frequent EGFR Positivity and Overexpression in High-Grade Areas of Human MPNSTs. Sarcoma 2011; 2008:849156. [PMID: 18769552 PMCID: PMC2526168 DOI: 10.1155/2008/849156] [Citation(s) in RCA: 28] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/22/2007] [Revised: 03/28/2008] [Accepted: 07/07/2008] [Indexed: 11/17/2022] Open
Abstract
Malignant peripheral nerve sheath tumours (MPNSTs) are highly malignant and resistant. Transformation might implicate up regulation of epidermal growth factor receptor (EGFR). Fifty-two MPNST samples were studied for EGFR, Ki-67, p53, and survivin expression by immunohistochemistry and for EGFR amplification by in situ hybridization. Results were correlated with clinical data. EGFR RNA was also quantified by RT-PCR in 20 other MPNSTs and 14 dermal neurofibromas. Half of the patients had a neurofibromatosis type 1 (NF1). EGFR expression, detected in 86% of MPNSTs, was more frequent in NF1 specimens and closely associated with high-grade and p53-positive areas. MPNSTs expressed more EGFR transcripts than neurofibromas. No amplification of EGFR locus was observed. NF1 status was the only prognostic factor in multivariate analysis, with median survivals of 18 and 43 months for patients with or without NF1. Finally, EGFR might become a new target for MPNSTs treatment, especially in NF1-associated MPNSTs.
Collapse
|
12
|
Riccardi VM. Neurofibromatosis type 1 is a disorder of dysplasia: the importance of distinguishing features, consequences, and complications. ACTA ACUST UNITED AC 2010; 88:9-14. [PMID: 19691086 DOI: 10.1002/bdra.20616] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/28/2022]
Abstract
BACKGROUND The disorder neurofibromatosis type 1 (NF1) is caused by mutations in the NF1 gene, which influences the availability of activated Ras and the latter's control of cellular proliferation. Emphasis on this aspect of NF1 has focused attention on the tumor suppression function of NF1 and thereby displaced attention from the gene's role in initial normal tissue formation, maintenance, and repair. METHODS Clinical and neuroimaging data systematically compiled over more than 30 years are analyzed to document the involvement of multiple organs and tissues, often with an embryonic origin. In addition, recent literature based on selective knockout mouse experiments is cited to corroborate embryonic dysplasia as an element of NF1 pathogenesis. RESULTS Tissue dysplasia, both ab initio and as part of tissue maintenance and wound healing, is a key clinical and pathogenetic aspect of NF1 and thereby provides a rationale for differentiating the elements of NF1 into features, consequences, and complications. CONCLUSIONS NF1 is a histogenesis control gene that also has properties that overlap with those of a tumor suppressor gene. Both its neoplastic and dysplastic manifestations become more amenable to understanding and treatment if they are differentiated at three levels--specifically, features, consequences and complications.
Collapse
|
13
|
Sabbioni G, Rani N, Devescovi V. Neurofibromatosis with unilateral lower limb gigantism. Musculoskelet Surg 2009; 94:41-4. [PMID: 19921528 DOI: 10.1007/s12306-009-0049-8] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/29/2009] [Accepted: 10/19/2009] [Indexed: 11/26/2022]
Abstract
The case of a 3-year-old child diagnosed with Type 1 neurofibromatosis is presented, showing pigmented birthmarks and gigantism of the left lower limb associated with the presence of multiple neurofibromas. Increased bone growth appears to be the direct or indirect consequence of a still undefined paracrine effect of nerve tumor cells.
Collapse
Affiliation(s)
- Giacomo Sabbioni
- Clinica Ortopedica e Traumatologica I, Laboratorio di Fisopatologia Ortopedica e Medicina Rigenerativa, Istituto Ortopedico Rizzoli, Università di Bologna, Via Pupilli 1, 40136, Bologna, Italy.
| | | | | |
Collapse
|
14
|
Abstract
Neurofibromas are benign tumors of peripheral nerve that occur sporadically or in patients with the autosomal dominant tumor predisposition syndrome neurofibromatosis type 1 (NF1). Multiple neurofibroma subtypes exist which differ in their site of occurrence, their association with NF1, and their tendency to undergo transformation to become malignant peripheral nerve sheath tumors (MPNSTs), the most common malignancy associated with NF1. Most NF1 patients carry a constitutional mutation of the NF1 tumor suppressor gene. Neurofibromas develop in these patients when an unknown cell type in the Schwann cell lineage loses its remaining functional NF1 gene and initiates a complex series of interactions with other cell types; these interactions may be influenced by aberrant expression of growth factors and growth factor receptors and the action of modifier genes. Cells within certain neurofibroma subtypes subsequently accumulate additional mutations affecting the p19(ARF)-MDM2-TP53 and p16INK4A-Rb signaling cascades, mutations of other as yet unidentified genes, and amplification of growth factor receptor genes, resulting in their transformation into MPNSTs. These observations have been validated using a variety of transgenic and knockout mouse models that recapitulate neurofibroma and MPNST pathogenesis. A new generation of mouse models is also providing important new insights into the identity of the cell type in the Schwann cell lineage that gives rise to neurofibromas. Our improving understanding of the mechanisms underlying the pathogenesis of neurofibromas and MPNSTs raises intriguing new questions about the origin and pathogenesis of these neoplasms and establishes models for the development of new therapies targeting these neoplasms.
Collapse
Affiliation(s)
- Steven L Carroll
- Division of Neuropathology, Department of Pathology, University of Alabama at Birmingham, Birmingham, Alabama 35294-0017, USA.
| | | |
Collapse
|
15
|
Dilworth JT, Wojtkowiak JW, Mathieu P, Tainsky MA, Reiners JJ, Mattingly RR, Hancock CN. Suppression of proliferation of two independent NF1 malignant peripheral nerve sheath tumor cell lines by the pan-ErbB inhibitor CI-1033. Cancer Biol Ther 2008; 7:1938-46. [PMID: 18927496 DOI: 10.4161/cbt.7.12.6942] [Citation(s) in RCA: 13] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022] Open
Abstract
Neurofibromatosis Type 1 (NF1) is characterized by the abnormal proliferation of neuroectodermal tissues and the development of certain tumors, particularly neurofibromas, which may progress into malignant peripheral nerve sheath tumors (MPNSTs). Effective pharmacological therapy for the treatment of NF1 tumors is currently unavailable and the prognosis for patients with MPNSTs is poor. Loss of neurofibromin correlates with increased expression of the epidermal growth factor receptor (EGFR) and ErbB2 tyrosine kinases and these kinases have been shown to promote NF1 tumor-associated pathologies in vivo. We show here that while NF1 MPNST cells have higher EGFR expression levels and are more sensitive to EGF when compared to a non-NF1 MPNST cell line, the ability of the EGFR inhibitor gefitinib to selectively inhibit NF1 MPNST cell proliferation is marginal. We also show that NF1 MPNST proliferation correlates with activated ErbB2 and can be suppressed by nanomolar concentrations of the pan-ErbB inhibitor CI-1033 (canertinib). Consequently, targeting both EGFR and ErbB2 may prove an effective strategy for suppressing NF1 MPNST tumor growth in vivo.
Collapse
Affiliation(s)
- Joshua T Dilworth
- Department of Pharmacology, Wayne State University School of Medicine, Detroit, Michigan 48201, USA
| | | | | | | | | | | | | |
Collapse
|
16
|
Williams JP, Wu J, Johansson G, Rizvi TA, Miller SC, Geiger H, Malik P, Li W, Mukouyama YS, Cancelas JA, Ratner N. Nf1 mutation expands an EGFR-dependent peripheral nerve progenitor that confers neurofibroma tumorigenic potential. Cell Stem Cell 2008; 3:658-69. [PMID: 19041782 PMCID: PMC3487385 DOI: 10.1016/j.stem.2008.10.003] [Citation(s) in RCA: 39] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/08/2006] [Revised: 09/09/2008] [Accepted: 10/03/2008] [Indexed: 01/22/2023]
Abstract
Defining growth factor requirements for progenitors facilitates their characterization and amplification. We characterize a peripheral nervous system embryonic dorsal root ganglion progenitor population using in vitro clonal sphere-formation assays. Cells differentiate into glial cells, smooth muscle/fibroblast (SM/Fb)-like cells, and neurons. Genetic and pharmacologic tools revealed that sphere formation requires signaling from the EGFR tyrosine kinase. Nf1 loss of function amplifies this progenitor pool, which becomes hypersensitive to growth factors and confers tumorigenesis. DhhCre;Nf1(fl/fl) mouse neurofibromas contain a progenitor population with similar growth requirements, potential, and marker expression. In humans, NF1 mutation predisposes to benign neurofibromas, incurable peripheral nerve tumors. Prospective identification of human EGFR(+);P75(+) neurofibroma cells enriched EGF-dependent sphere-forming cells. Neurofibroma spheres contain glial-like progenitors that differentiate into neurons and SM/Fb-like cells in vitro and form benign neurofibroma-like lesions in nude mice. We suggest that expansion of an EGFR-expressing early glial progenitor contributes to neurofibroma formation.
Collapse
MESH Headings
- Animals
- Cell Cycle/genetics
- Cell Differentiation/genetics
- Cell Lineage/genetics
- Cell Transformation, Neoplastic/genetics
- Cell Transformation, Neoplastic/metabolism
- Cells, Cultured
- ErbB Receptors/genetics
- ErbB Receptors/metabolism
- Female
- Ganglia, Spinal/cytology
- Ganglia, Spinal/metabolism
- Ganglia, Spinal/physiopathology
- Genetic Predisposition to Disease/genetics
- Humans
- Male
- Mice
- Mice, Knockout
- Mice, Nude
- Mutation/genetics
- Neurofibromatoses/genetics
- Neurofibromatoses/metabolism
- Neurofibromatoses/physiopathology
- Neurofibromin 1/genetics
- Neurofibromin 1/metabolism
- Peripheral Nerves/cytology
- Peripheral Nerves/metabolism
- Peripheral Nerves/physiopathology
- Sensory Receptor Cells/cytology
- Sensory Receptor Cells/metabolism
- Spheroids, Cellular/cytology
- Spheroids, Cellular/metabolism
- Stem Cells/cytology
- Stem Cells/metabolism
Collapse
Affiliation(s)
- Jon P. Williams
- Division of Experimental Hematology and Cancer Biology, Cincinnati Children’s Hospital Research Foundation, Cincinnati Children’s Hospital Medical Center, 3333 Burnet Ave., Cincinnati, OH 45229, USA
| | - Jianqiang Wu
- Division of Experimental Hematology and Cancer Biology, Cincinnati Children’s Hospital Research Foundation, Cincinnati Children’s Hospital Medical Center, 3333 Burnet Ave., Cincinnati, OH 45229, USA
| | - Gunnar Johansson
- Division of Experimental Hematology and Cancer Biology, Cincinnati Children’s Hospital Research Foundation, Cincinnati Children’s Hospital Medical Center, 3333 Burnet Ave., Cincinnati, OH 45229, USA
| | - Tilat A. Rizvi
- Division of Experimental Hematology and Cancer Biology, Cincinnati Children’s Hospital Research Foundation, Cincinnati Children’s Hospital Medical Center, 3333 Burnet Ave., Cincinnati, OH 45229, USA
| | - Shyra C. Miller
- Division of Experimental Hematology and Cancer Biology, Cincinnati Children’s Hospital Research Foundation, Cincinnati Children’s Hospital Medical Center, 3333 Burnet Ave., Cincinnati, OH 45229, USA
| | - Hartmut Geiger
- Division of Experimental Hematology and Cancer Biology, Cincinnati Children’s Hospital Research Foundation, Cincinnati Children’s Hospital Medical Center, 3333 Burnet Ave., Cincinnati, OH 45229, USA
| | - Punam Malik
- Division of Experimental Hematology and Cancer Biology, Cincinnati Children’s Hospital Research Foundation, Cincinnati Children’s Hospital Medical Center, 3333 Burnet Ave., Cincinnati, OH 45229, USA
| | - Wenling Li
- Laboratory of Developmental Biology, Genetics, and Developmental Biology Center, National Heart, Lung and Blood Institute, National Institutes of Health, Bethesda, MD, 20892, USA
| | - Yoh-suke Mukouyama
- Laboratory of Developmental Biology, Genetics, and Developmental Biology Center, National Heart, Lung and Blood Institute, National Institutes of Health, Bethesda, MD, 20892, USA
| | - Jose A. Cancelas
- Division of Experimental Hematology and Cancer Biology, Cincinnati Children’s Hospital Research Foundation, Cincinnati Children’s Hospital Medical Center, 3333 Burnet Ave., Cincinnati, OH 45229, USA
- Hoxworth Blood Center, College of Medicine, University of Cincinnati, Cincinnati, OH 45229-7013, USA
| | - Nancy Ratner
- Division of Experimental Hematology and Cancer Biology, Cincinnati Children’s Hospital Research Foundation, Cincinnati Children’s Hospital Medical Center, 3333 Burnet Ave., Cincinnati, OH 45229, USA
| |
Collapse
|
17
|
Wu J, Williams JP, Rizvi TA, Kordich JJ, Witte D, Meijer D, Stemmer-Rachamimov AO, Cancelas JA, Ratner N. Plexiform and dermal neurofibromas and pigmentation are caused by Nf1 loss in desert hedgehog-expressing cells. Cancer Cell 2008; 13:105-16. [PMID: 18242511 PMCID: PMC2846699 DOI: 10.1016/j.ccr.2007.12.027] [Citation(s) in RCA: 169] [Impact Index Per Article: 9.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/04/2007] [Revised: 10/12/2007] [Accepted: 12/26/2007] [Indexed: 12/14/2022]
Abstract
Neurofibromatosis type 1 (Nf1) mutation predisposes to benign peripheral nerve (glial) tumors called neurofibromas. The point(s) in development when Nf1 loss promotes neurofibroma formation are unknown. We show that inactivation of Nf1 in the glial lineage in vitro at embryonic day 12.5 + 1, but not earlier (neural crest) or later (mature Schwann cell), results in colony-forming cells capable of multilineage differentiation. In vivo, inactivation of Nf1 using a DhhCre driver beginning at E12.5 elicits plexiform neurofibromas, dermal neurofibromas, and pigmentation. Tumor Schwann cells uniquely show biallelic Nf1 inactivation. Peripheral nerve and tumors contain transiently proliferating Schwann cells that lose axonal contact, providing insight into early neurofibroma formation. We suggest that timing of Nf1 mutation is critical for neurofibroma formation.
Collapse
Affiliation(s)
- Jianqiang Wu
- Division of Experimental Hematology and Cancer Biology, University of Cincinnati College of Medicine, Cincinnati, Ohio, 45229
| | - Jon P. Williams
- Division of Experimental Hematology and Cancer Biology, University of Cincinnati College of Medicine, Cincinnati, Ohio, 45229
| | - Tilat A. Rizvi
- Division of Experimental Hematology and Cancer Biology, University of Cincinnati College of Medicine, Cincinnati, Ohio, 45229
| | - Jennifer J. Kordich
- Division of Experimental Hematology and Cancer Biology, University of Cincinnati College of Medicine, Cincinnati, Ohio, 45229
| | - David Witte
- Division of Pathology, Department of Pediatrics, Cincinnati Children’s Hospital, University of Cincinnati College of Medicine, Cincinnati, Ohio, 45229
| | - Dies Meijer
- Departments of Cell Biology and Genetics, Erasmus University Medical Center, 3000DR Rotterdam, Netherlands
| | - Anat O. Stemmer-Rachamimov
- Departments of Pathology, Massachusetts General Hospital and Harvard Medical School, Boston, Massachusetts
| | - Jose A. Cancelas
- Division of Experimental Hematology and Cancer Biology, University of Cincinnati College of Medicine, Cincinnati, Ohio, 45229
- Hoxworth Blood Center, University of Cincinnati College of Medicine, Cincinnati, Ohio, 45229
| | - Nancy Ratner
- Division of Experimental Hematology and Cancer Biology, University of Cincinnati College of Medicine, Cincinnati, Ohio, 45229
- Author for correspondence: Nancy Ratner: Tel: 513-636-9469
| |
Collapse
|