1
|
Csergeová L, Krbušek D, Janoštiak R. CIP/KIP and INK4 families as hostages of oncogenic signaling. Cell Div 2024; 19:11. [PMID: 38561743 PMCID: PMC10985988 DOI: 10.1186/s13008-024-00115-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/12/2023] [Accepted: 03/25/2024] [Indexed: 04/04/2024] Open
Abstract
CIP/KIP and INK4 families of Cyclin-dependent kinase inhibitors (CKIs) are well-established cell cycle regulatory proteins whose canonical function is binding to Cyclin-CDK complexes and altering their function. Initial experiments showed that these proteins negatively regulate cell cycle progression and thus are tumor suppressors in the context of molecular oncology. However, expanded research into the functions of these proteins showed that most of them have non-canonical functions, both cell cycle-dependent and independent, and can even act as tumor enhancers depending on their posttranslational modifications, subcellular localization, and cell state context. This review aims to provide an overview of canonical as well as non-canonical functions of CIP/KIP and INK4 families of CKIs, discuss the potential avenues to promote their tumor suppressor functions instead of tumor enhancing ones, and how they could be utilized to design improved treatment regimens for cancer patients.
Collapse
Affiliation(s)
- Lucia Csergeová
- BIOCEV-First Faculty of Medicine, Charles University, Prague, Czechia
| | - David Krbušek
- BIOCEV-First Faculty of Medicine, Charles University, Prague, Czechia
| | | |
Collapse
|
2
|
Kumar VHS, Wang H, Nielsen L. Adaptive immune responses are altered in adult mice following neonatal hyperoxia. Physiol Rep 2019; 6. [PMID: 29368801 PMCID: PMC5789729 DOI: 10.14814/phy2.13577] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/13/2017] [Revised: 12/17/2017] [Accepted: 12/18/2017] [Indexed: 01/25/2023] Open
Abstract
Premature infants with bronchopulmonary dysplasia (BPD), are at risk for frequent respiratory infections and reduced pulmonary function. We studied whether neonatal hyperoxia disrupts adaptive immune responses in adult mice, contributing to higher respiratory‐related morbidities seen in these infants. Newborn mice litters were randomized at 3 days to 85% O2 or room air (RA) for 12 days. Whole lung mRNA was isolated in both the groups at 2 weeks and 3 months. Gene expression for T‐cell and B‐cell adaptive immune response was performed by real‐time PCR and qRT‐PCR; protein expression (p21, IL4, IL10, IL27, cd4) was performed by enzyme immunoassay along with p21 immunohistochemistry. Hyperoxia increased expression of p21 and decreased expression of 19 genes representing T/B‐cell activation by ≥ fourfold; three of them significantly (Rag1, Cd1d1, Cd28) compared to the RA group at 2 weeks. Despite RA recovery, the expression of IFNγ, IL27, and CD40 was significantly reduced at 3 months in the hyperoxia group. Expression of p21 was significantly higher and IL27 protein lower at 2 weeks following hyperoxia. Adult mice exposed to neonatal hyperoxia had lower IL4 and IL10 in the lung at 3 months. Adaptive immune responses are developmentally regulated and neonatal hyperoxia suppresses expression of genes involved in T‐/B‐cell activation with continued alterations in gene expression at 3 months. Dysfunction of adaptive immune responses increases the risk for susceptibility to infection in premature infants.
Collapse
Affiliation(s)
| | - Huamei Wang
- Department of Pediatrics, University at Buffalo, Buffalo, New York
| | - Lori Nielsen
- Department of Pediatrics, University at Buffalo, Buffalo, New York
| |
Collapse
|
3
|
Natarajan V, Ha AW, Dong Y, Reddy NM, Ebenezer DL, Kanteti P, Reddy SP, Usha Raj J, Lei Z, Maienschein-Cline M, Arbieva Z, Harijith A. Expression profiling of genes regulated by sphingosine kinase1 signaling in a murine model of hyperoxia induced neonatal bronchopulmonary dysplasia. BMC Genomics 2017; 18:664. [PMID: 28851267 PMCID: PMC5576338 DOI: 10.1186/s12864-017-4048-0] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/09/2017] [Accepted: 08/10/2017] [Indexed: 12/20/2022] Open
Abstract
BACKGROUND Sphingosine- 1-Phosphate (S1P) is a bioactive lipid and an intracellular as well as an extracellular signaling molecule. S1P ligand specifically binds to five related cell surface G-protein-coupled receptors (S1P1-5). S1P levels are tightly regulated by its synthesis catalyzed by sphingosine kinases (SphKs) 1 & 2 and catabolism by S1P phosphatases, lipid phosphate phosphatases and S1P lyase. We previously reported that knock down of SphK1 (Sphk1 -/- ) in a neonatal mouse BPD model conferred significant protection against hyperoxia induced lung injury. To better understand the underlying molecular mechanisms, genome-wide gene expression profiling was performed on mouse lung tissue using Affymetrix MoGene 2.0 array. RESULTS Two-way ANOVA analysis was performed and differentially expressed genes under hyperoxia were identified using Sphk1 -/- mice and their wild type (WT) equivalents. Pathway (PW) enrichment analyses identified several signaling pathways that are likely to play a key role in hyperoxia induced lung injury in the neonates. These included signaling pathways that were anticipated such as those involved in lipid signaling, cell cycle regulation, DNA damage/apoptosis, inflammation/immune response, and cell adhesion/extracellular matrix (ECM) remodeling. We noted hyperoxia induced downregulation of the expression of genes related to mitotic spindle formation in the WT which was not observed in Sphk1 -/- neonates. Our data clearly suggests a role for SphK1 in neonatal hyperoxic lung injury through elevated inflammation and apoptosis in lung tissue. Further, validation by RT-PCR on 24 differentially expressed genes showed 83% concordance both in terms of fold change and vectorial changes. Our findings are in agreement with previously reported human BPD microarray data and completely support our published in vivo findings. In addition, the data also revealed a significant role for additional unanticipitated signaling pathways involving Wnt and GADD45. CONCLUSION Using SphK1 knockout mice and differential gene expression analysis, we have shown here that S1P/SphK1 signaling plays a key role in promoting hyperoxia induced DNA damage, inflammation, apoptosis and ECM remodeling in neonatal lungs. It also appears to suppress pro-survival cellular responses involved in normal lung development. We therefore propose SphK1 as a therapeutic target for the development drugs to combat BPD.
Collapse
Affiliation(s)
- Viswanathan Natarajan
- Departments of Medicine, University of Illinois, Chicago, IL 60612 USA
- Department of Pharmacology, University of Illinois, Chicago, IL 60612 USA
- Department of Biochemistry and Molecular genetics, University of Illinois, Chicago, IL 60612 USA
| | - Alison W. Ha
- Departments of Medicine, University of Illinois, Chicago, IL 60612 USA
| | - Yangbasai Dong
- Departments of Medicine, University of Illinois, Chicago, IL 60612 USA
| | - Narsa M. Reddy
- Department of Pharmacology, University of Illinois, Chicago, IL 60612 USA
| | - David L. Ebenezer
- Department of Biochemistry and Molecular genetics, University of Illinois, Chicago, IL 60612 USA
| | - Prasad Kanteti
- Department of Pharmacology, University of Illinois, Chicago, IL 60612 USA
| | - Sekhar P. Reddy
- Departments of Medicine, University of Illinois, Chicago, IL 60612 USA
| | - J. Usha Raj
- Departments of Medicine, University of Illinois, Chicago, IL 60612 USA
| | - Zhengdeng Lei
- Department of Center for Research Informatics, University of Illinois at Chicago, Chicago, IL 60612 USA
| | - Mark Maienschein-Cline
- Department of Center for Research Informatics, University of Illinois at Chicago, Chicago, IL 60612 USA
| | - Zarema Arbieva
- Department of CoreGenomics Facility, University of Illinois, Chicago, IL 60612 USA
| | - Anantha Harijith
- Department of Pharmacology, University of Illinois, Chicago, IL 60612 USA
- Department of Pediatrics, University of Illinois, Room # 3140, COMRB Building, 909, South Wolcott Avenue, Chicago, IL 60612 USA
| |
Collapse
|
4
|
Resseguie EA, Brookes PS, O’Reilly MA. SMG-1 kinase attenuates mitochondrial ROS production but not cell respiration deficits during hyperoxia. Exp Lung Res 2017; 43:229-239. [PMID: 28749708 PMCID: PMC5956894 DOI: 10.1080/01902148.2017.1339143] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/24/2017] [Accepted: 06/02/2017] [Indexed: 12/29/2022]
Abstract
PURPOSE Supplemental oxygen (hyperoxia) used to treat individuals in respiratory distress causes cell injury by enhancing the production of toxic reactive oxygen species (ROS) and inhibiting mitochondrial respiration. The suppressor of morphogenesis of genitalia (SMG-1) kinase is activated during hyperoxia and promotes cell survival by phosphorylating the tumor suppressor p53 on serine 15. Here, we investigate whether SMG-1 and p53 blunt this vicious cycle of progressive ROS production and decline in mitochondrial respiration seen during hyperoxia. MATERIALS AND METHODS Human lung adenocarcinoma A549 and H1299 or colon carcinoma HCT116 cells were depleted of SMG-1, UPF-1, or p53 using RNA interference, and then exposed to room air (21% oxygen) or hyperoxia (95% oxygen). Immunoblotting was used to evaluate protein expression; a Seahorse Bioanalyzer was used to assess cellular respiration; and flow cytometry was used to evaluate fluorescence intensity of cells stained with mitochondrial or redox sensitive dyes. RESULTS Hyperoxia increased mitochondrial and cytoplasmic ROS and suppressed mitochondrial respiration without changing mitochondrial mass or membrane potential. Depletion of SMG-1 or its cofactor, UPF1, significantly enhanced hyperoxia-induced mitochondrial but not cytosolic ROS abundance. They did not affect mitochondrial mass, membrane potential, or hyperoxia-induced deficits in mitochondrial respiration. Genetic depletion of p53 in A549 cells and ablation of the p53 gene in H1299 or HCT116 cells revealed that SMG-1 influences mitochondrial ROS through activation of p53. CONCLUSIONS Our findings show that hyperoxia does not promote a vicious cycle of progressive mitochondrial ROS and dysfunction because SMG-1-p53 signaling attenuates production of mitochondrial ROS without preserving respiration. This suggests antioxidant therapies that blunt ROS production during hyperoxia may not suffice to restore cellular respiration.
Collapse
Affiliation(s)
- Emily A. Resseguie
- Department of Environmental Medicine, The University of Rochester, Rochester, New York, USA
| | - Paul S. Brookes
- Department of Anesthesiology, The University of Rochester, Rochester, New York, USA
| | - Michael A. O’Reilly
- Department of Environmental Medicine, The University of Rochester, Rochester, New York, USA
- Department of Pediatrics, The University of Rochester, Rochester, New York, USA
| |
Collapse
|
5
|
Forred BJ, Daugaard DR, Titus BK, Wood RR, Floen MJ, Booze ML, Vitiello PF. Detoxification of Mitochondrial Oxidants and Apoptotic Signaling Are Facilitated by Thioredoxin-2 and Peroxiredoxin-3 during Hyperoxic Injury. PLoS One 2017; 12:e0168777. [PMID: 28045936 PMCID: PMC5207683 DOI: 10.1371/journal.pone.0168777] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/20/2016] [Accepted: 12/06/2016] [Indexed: 01/22/2023] Open
Abstract
Mitochondria play a fundamental role in the regulation of cell death during accumulation of oxidants. High concentrations of atmospheric oxygen (hyperoxia), used clinically to treat tissue hypoxia in premature newborns, is known to elicit oxidative stress and mitochondrial injury to pulmonary epithelial cells. A consequence of oxidative stress in mitochondria is the accumulation of peroxides which are detoxified by the dedicated mitochondrial thioredoxin system. This system is comprised of the oxidoreductase activities of peroxiredoxin-3 (Prx3), thioredoxin-2 (Trx2), and thioredoxin reductase-2 (TrxR2). The goal of this study was to understand the role of the mitochondrial thioredoxin system and mitochondrial injuries during hyperoxic exposure. Flow analysis of the redox-sensitive, mitochondrial-specific fluorophore, MitoSOX, indicated increased levels of mitochondrial oxidant formation in human adenocarcinoma cells cultured in 95% oxygen. Increased expression of Trx2 and TrxR2 in response to hyperoxia were not attributable to changes in mitochondrial mass, suggesting that hyperoxic upregulation of mitochondrial thioredoxins prevents accumulation of oxidized Prx3. Mitochondrial oxidoreductase activities were modulated through pharmacological inhibition of TrxR2 with auranofin and genetically through shRNA knockdown of Trx2 and Prx3. Diminished Trx2 and Prx3 expression was associated with accumulation of mitochondrial superoxide; however, only shRNA knockdown of Trx2 increased susceptibility to hyperoxic cell death and increased phosphorylation of apoptosis signal-regulating kinase-1 (ASK1). In conclusion, the mitochondrial thioredoxin system regulates hyperoxic-mediated death of pulmonary epithelial cells through detoxification of oxidants and regulation of redox-dependent apoptotic signaling.
Collapse
Affiliation(s)
- Benjamin J. Forred
- Children’s Health Research Center, Sanford Research, Sioux Falls, South Dakota, United States of America
| | - Darwin R. Daugaard
- Children’s Health Research Center, Sanford Research, Sioux Falls, South Dakota, United States of America
| | - Brianna K. Titus
- Children’s Health Research Center, Sanford Research, Sioux Falls, South Dakota, United States of America
| | - Ryan R. Wood
- Children’s Health Research Center, Sanford Research, Sioux Falls, South Dakota, United States of America
| | - Miranda J. Floen
- Children’s Health Research Center, Sanford Research, Sioux Falls, South Dakota, United States of America
| | - Michelle L. Booze
- Children’s Health Research Center, Sanford Research, Sioux Falls, South Dakota, United States of America
| | - Peter F. Vitiello
- Children’s Health Research Center, Sanford Research, Sioux Falls, South Dakota, United States of America
- Department of Pediatrics, University of South Dakota Sanford School of Medicine, Sioux Falls, South Dakota, United States of America
| |
Collapse
|
6
|
Biology of the cell cycle inhibitor p21CDKN1A: molecular mechanisms and relevance in chemical toxicology. Arch Toxicol 2014; 89:155-78. [DOI: 10.1007/s00204-014-1430-4] [Citation(s) in RCA: 127] [Impact Index Per Article: 11.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/04/2014] [Accepted: 12/03/2014] [Indexed: 02/07/2023]
|
7
|
Floen MJ, Forred BJ, Bloom EJ, Vitiello PF. Thioredoxin-1 redox signaling regulates cell survival in response to hyperoxia. Free Radic Biol Med 2014; 75:167-77. [PMID: 25106706 PMCID: PMC4174305 DOI: 10.1016/j.freeradbiomed.2014.07.023] [Citation(s) in RCA: 30] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/01/2014] [Revised: 06/28/2014] [Accepted: 07/18/2014] [Indexed: 02/07/2023]
Abstract
The most common form of newborn chronic lung disease, bronchopulmonary dysplasia (BPD), is thought to be caused by oxidative disruption of lung morphogenesis, which results in decreased pulmonary vasculature and alveolar simplification. Although cellular redox status is known to regulate cellular proliferation and differentiation, redox-sensitive pathways associated with these processes in developing pulmonary epithelium are unknown. Redox-sensitive pathways are commonly regulated by cysteine thiol modifications. Therefore two thiol oxidoreductase systems, thioredoxin and glutathione, were chosen to elucidate the roles of these pathways on cell death. Studies herein indicate that thiol oxidation contributes to cell death through impaired activity of glutathione-dependent and thioredoxin (Trx) systems and altered signaling through redox-sensitive pathways. Free thiol content decreased by 71% with hyperoxic (95% oxygen) exposure. Increased cell death was observed during oxygen exposure when either the Trx or the glutathione-dependent system was pharmacologically inhibited with aurothioglucose (ATG) or buthionine sulfoximine, respectively. However, inhibition of the Trx system yielded the smallest decrease in free thiol content (1.44% with ATG treatment vs 21.33% with BSO treatment). Although Trx1 protein levels were unchanged, Trx1 function was impaired during hyperoxic treatment as indicated by progressive cysteine oxidation. Overexpression of Trx1 in H1299 cells utilizing an inducible construct increased cell survival during hyperoxia, whereas siRNA knockdown of Trx1 during oxygen treatment reduced cell viability. Overall, this indicated that a comparatively small pool of proteins relies on Trx redox functions to mediate cell survival in hyperoxia, and the protective functions of Trx1 are progressively lost by its oxidative inhibition. To further elucidate the role of Trx1, potential Trx1 redox protein-protein interactions mediating cytoprotection and cell survival pathways were determined by utilizing a substrate trap (mass action trapping) proteomics approach. With this method, known Trx1 targets were detected, including peroxiredoxin-1as well as novel targets, including two HSP90 isoforms (HSP90AA1 and HSP90AB1). Reactive cysteines within the structure of HSP90 are known to modulate its ATPase-dependent chaperone activity through disulfide formation and S-nitrosylation. Whereas HSP90 expression is unchanged at the protein level during hyperoxic exposure, siRNA knockdown significantly increased hyperoxic cell death by 2.5-fold, indicating cellular dependence on HSP90 chaperone functions in response to hyperoxic exposure. These data support the hypothesis that hyperoxic impairment of Trx1 has a negative impact on HSP90-oxidative responses critical to cell survival, with potential implications for pathways implicated in lung development and the pathogenesis of BPD.
Collapse
Affiliation(s)
- Miranda J Floen
- Basic Biomedical Sciences and The University of South Dakota Sanford School of Medicine, Sioux Falls, SD 57105, USA
| | - Benjamin J Forred
- Children׳s Health Research Center, Sanford Research, Sioux Falls, SD 57104, USA
| | - Elliot J Bloom
- Children׳s Health Research Center, Sanford Research, Sioux Falls, SD 57104, USA
| | - Peter F Vitiello
- Department of Pediatrics, The University of South Dakota Sanford School of Medicine, Sioux Falls, SD 57105, USA; Children׳s Health Research Center, Sanford Research, Sioux Falls, SD 57104, USA.
| |
Collapse
|
8
|
A mortalin/HSPA9-mediated switch in tumor-suppressive signaling of Raf/MEK/extracellular signal-regulated kinase. Mol Cell Biol 2013; 33:4051-67. [PMID: 23959801 DOI: 10.1128/mcb.00021-13] [Citation(s) in RCA: 61] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Dysregulated Raf/MEK/extracellular signal-regulated kinase (ERK) signaling, a common hallmark of tumorigenesis, can trigger innate tumor-suppressive mechanisms, which must be inactivated for carcinogenesis to occur. This innate tumor-suppressive signaling may provide a potential therapeutic target. Here we report that mortalin (HSPA9/GRP75/PBP74) is a novel negative regulator of Raf/MEK/ERK and may provide a target for the reactivation of tumor-suppressive signaling of the pathway in cancer. We found that mortalin is present in the MEK1/MEK2 proteome and is upregulated in human melanoma biopsy specimens. In different MEK/ERK-activated cancer cell lines, mortalin depletion induced cell death and growth arrest, which was accompanied by increased p21(CIP1) transcription and MEK/ERK activity. Remarkably, MEK/ERK activity was necessary for mortalin depletion to induce p21(CIP1) expression in B-Raf(V600E)-transformed cancer cells regardless of their p53 status. In contrast, in cell types exhibiting normal MEK/ERK status, mortalin overexpression suppressed B-Raf(V600E)- or ΔRaf-1:ER-induced MEK/ERK activation, p21(CIP1) expression, and cell cycle arrest. Other HSP70 family chaperones could not effectively replace mortalin for p21(CIP1) regulation, suggesting a unique role for mortalin. These findings reveal a novel mechanism underlying p21(CIP1) regulation in MEK/ERK-activated cancer and identify mortalin as a molecular switch that mediates the tumor-suppressive versus oncogenic result of dysregulated Raf/MEK/ERK signaling. Our study also demonstrates that p21(CIP1) has dual effects under mortalin-depleted conditions, i.e., mediating cell cycle arrest while limiting cell death.
Collapse
|
9
|
Schwingshackl A, Teng B, Ghosh M, West AN, Makena P, Gorantla V, Sinclair SE, Waters CM. Regulation and function of the two-pore-domain (K2P) potassium channel Trek-1 in alveolar epithelial cells. Am J Physiol Lung Cell Mol Physiol 2011; 302:L93-L102. [PMID: 21949155 DOI: 10.1152/ajplung.00078.2011] [Citation(s) in RCA: 27] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/06/2023] Open
Abstract
Hyperoxia can lead to a myriad of deleterious effects in the lung including epithelial damage and diffuse inflammation. The specific mechanisms by which hyperoxia promotes these pathological changes are not completely understood. Activation of ion channels has been proposed as one of the mechanisms required for cell activation and mediator secretion. The two-pore-domain K(+) channel (K2P) Trek-1 has recently been described in lung epithelial cells, but its function remains elusive. In this study we hypothesized that hyperoxia affects expression of Trek-1 in alveolar epithelial cells and that Trek-1 is involved in regulation of cell proliferation and cytokine secretion. We found gene expression of several K2P channels in mouse alveolar epithelial cells (MLE-12), and expression of Trek-1 was significantly downregulated in cultured cells and lungs of mice exposed to hyperoxia. Similarly, proliferation cell nuclear antigen (PCNA) and Cyclin D1 expression were downregulated by exposure to hyperoxia. We developed an MLE-12 cell line deficient in Trek-1 expression using shRNA and found that Trek-1 deficiency resulted in increased cell proliferation and upregulation of PCNA but not Cyclin D1. Furthermore, IL-6 and regulated on activation normal T-expressed and presumably secreted (RANTES) secretion was decreased in Trek-1-deficient cells, whereas release of monocyte chemoattractant protein-1 was increased. Release of KC/IL-8 was not affected by Trek-1 deficiency. Overall, deficiency of Trek-1 had a more pronounced effect on mediator secretion than exposure to hyperoxia. This is the first report suggesting that the K(+) channel Trek-1 could be involved in regulation of alveolar epithelial cell proliferation and cytokine secretion, but a direct association with hyperoxia-induced changes in Trek-1 levels remains elusive.
Collapse
Affiliation(s)
- Andreas Schwingshackl
- Department of Pediatrics, University of Tennessee Health Science Center, Memphis, Tennessee 38111, USA.
| | | | | | | | | | | | | | | |
Collapse
|
10
|
Rogers LK, Valentine CJ, Pennell M, Velten M, Britt RD, Dingess K, Zhao X, Welty SE, Tipple TE. Maternal docosahexaenoic acid supplementation decreases lung inflammation in hyperoxia-exposed newborn mice. J Nutr 2011; 141:214-22. [PMID: 21178083 PMCID: PMC3021441 DOI: 10.3945/jn.110.129882] [Citation(s) in RCA: 40] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022] Open
Abstract
DHA is a long-chain fatty acid that has potent antiinflammatory properties. Whereas maternal DHA dietary supplementation has been shown to improve cognitive development in infants fed DHA-supplemented milk, the antiinflammatory effects of maternal DHA supplementation on the developing fetus and neonate have not been extensively explored. Pregnant C3H/HeN dams were fed purified control or DHA-supplemented diets (~0.25% of total fat) at embryonic d 16 and consumed these diets throughout the study. At birth, the nursing mouse pups were placed in room air (RA; 21% O(2)) or >95% O(2) (hyperoxia) for up to 7 d. These studies tested the hypothesis that maternal DHA supplementation would decrease inflammation and improve alveolarization in the lungs of newborn mouse pups exposed to hyperoxia. Survival, inflammatory responses, and lung growth were compared among control diet/RA, DHA/RA, control/O(2), and DHA/O(2) pups. There were fewer neutrophils and macrophages in lung tissues from pups nursed by DHA-supplemented dams than in those nursed by dams fed the control diet at 7 d of hyperoxia exposure (P < 0.015). Although differences due to hyperoxia exposure were observed, maternal diet did not affect keratinocyte-derived chemokine, macrophage inflammatory protein-2, IL-1β, or TNFα mRNA levels in pup tissues. Hyperoxia also induced NF-κB activity, but maternal diet did not affect NF-κB or PPARγ activities. In mice, DHA supplementation decreases leukocyte infiltration in the offspring exposed to hyperoxia, suggesting a potential role for DHA supplementation as a therapy to reduce inflammation in preterm infants.
Collapse
Affiliation(s)
- Lynette K. Rogers
- Center for Perinatal Research,To whom correspondence should be addressed. E-mail:
| | - Christina J. Valentine
- Center for Clinical and Translational Research, The Research Institute at Nationwide Children’s Hospital, The Ohio State University, Columbus, OH 43205
| | - Michael Pennell
- College of Public Health, Division of Biostatistics, The Ohio State University, Columbus, OH 43205
| | | | | | | | - Xuilan Zhao
- Institute of Toxicology, School of Public Health, Shandong University, Jinan, P.R. China 250100
| | | | | |
Collapse
|
11
|
Wu YCM, O'Reilly MA. Bcl-X(L) is the primary mediator of p21 protection against hyperoxia-induced cell death. Exp Lung Res 2010; 37:82-91. [PMID: 21128858 DOI: 10.3109/01902148.2010.521617] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
Abstract
A tight balance between anti- and proapoptotic members of the Bcl-2 family controls cell survival and death. Exposure to hyperoxia shifts this balance towards a prodeath state that ultimately activates Bak- and Bax-dependent cell death. Mechanisms underlying this shift are undefined; however, the cell cycle inhibitor p21 delays the loss of antiapoptotic Mcl-1 and Bcl-X(L), and protects against hyperoxia. Here, H1299 human lung adenocarcinoma cells are used to investigate how these and other members of the Bcl-2 family cooperate with p21 to protect against hyperoxia. Expression of antiapoptotic Mcl-1 and Bcl-X(L), but not Bcl-2 or A1, declined during hyperoxia, whereas proapoptotic Bak, but not Bax, increased. Conditional overexpression of p21 selectively delayed the loss of Mcl-1 and Bcl-X(L), without affecting expression of the other members. siRNA knockdown of Mcl-1 and Bcl-X(L) sensitized cells to hyperoxia, but only the loss of Bcl-X(L) ablated the protective effects of p21. Conversely, overexpression of Mcl-1 and Bcl-X(L) protected against hyperoxia, but only Bcl-X(L) bound Bak and Bax. Altogether, these data suggest that Bcl-X(L) is the primary mediator by which p21 protects against hyperoxia-induced Bak/Bax-dependent cell death.
Collapse
Affiliation(s)
- Yu-Chieh M Wu
- Department of Biomedical Genetics, School of Medicine and Dentistry, The University of Rochester, Rochester, New York 14642, USA
| | | |
Collapse
|
12
|
Staversky RJ, Vitiello PF, Yee M, Callahan LM, Dean DA, O'Reilly MA. Epithelial ablation of Bcl-XL increases sensitivity to oxygen without disrupting lung development. Am J Respir Cell Mol Biol 2009; 43:376-85. [PMID: 19880821 DOI: 10.1165/rcmb.2009-0165oc] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/27/2022] Open
Abstract
Recent studies indicate that the antiapoptotic Bcl-X(L), one of five isoforms expressed by the Bcl-X gene, protects a variety of cell lines exposed to hyperoxia. However, its role in lung development and protection against oxidative stress in vivo is not known. Here, we show Bcl-X(L) is the predominant isoform expressed in the lung, and the only isoform detected in respiratory epithelium. Because loss of Bcl-X(L) is embryonically lethal, Bcl-X(L) was ablated throughout the respiratory epithelium by mating mice with a floxed exon II of the Bcl-X gene with mice expressing Cre under control of the surfactant protein-C promoter. Interestingly, the loss of Bcl-X(L) in respiratory epithelium was perinatally lethal in approximately 50% of the expected offspring. However, some adult mice lacking the gene were obtained. The epithelial-specific ablation of Bcl-X(L) did not disrupt pulmonary function, the expression of epithelial cell-specific markers, or lung development. However, it shifted the lung toward a proapoptotic state, defined by a reduction in antiapoptotic Mcl-1, an increase in proapoptotic Bak, and increased sensitivity of the respiratory epithelium to hyperoxia. Intriguingly, increased 8-oxoguanine lesions seen during hyperoxia were also evident as lungs transitioned to room air at birth, a time when perinatal lethality in some mice lacking Bcl-X(L) was observed. These findings reveal that the epithelial-specific expression of Bcl-X(L) is not required for proper lung development, but functions to protect respiratory epithelial cells against oxygen-induced toxicity, such as during hyperoxia and the lung's first exposure to ambient air.
Collapse
|
13
|
Abstract
NUPR1, or p8 or com1, was first identified from rat pancreas during acute pancreatitis and later as a gene whose expression was upregulated in metastatic breast cancer cells. NUPR1 is a molecule whose expression is upregulated in response to stress and is hence influenced by the host microenvironment. While NUPR1 has been implicated in several diseases, there is no singular biochemical pathway that can be attributed to its role in cancer. NUPR1 has been found to aid the establishment of metastasis and to play a key role in the progression of several malignancies including those of breast, thyroid, brain and pancreas. NUPR1 has been implicated in inducing chemoresistance in pancreatic and breast cancer cells, protecting them from apoptosis and making tumor cells genetically unstable. In prostate cancer, however, NUPR1 appears to have tumor suppressive activity. Understanding the mechanism of action of the multifaceted functions of NUPR1 may open up new dimensions towards creating novel therapies against cancer as well as other pathologies. This review draws on several published studies on NUPR1, mainly in cancer biology, and assesses NUPR1 from the perspective of its functional role in making cancer cells resistant to the action of conventional chemotherapeutic drugs.
Collapse
|
14
|
Vitiello PF, Wu YCM, Staversky RJ, O’Reilly MA. p21(Cip1) protects against oxidative stress by suppressing ER-dependent activation of mitochondrial death pathways. Free Radic Biol Med 2009; 46:33-41. [PMID: 18948188 PMCID: PMC2631574 DOI: 10.1016/j.freeradbiomed.2008.09.022] [Citation(s) in RCA: 34] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/06/2008] [Revised: 08/04/2008] [Accepted: 09/11/2008] [Indexed: 01/23/2023]
Abstract
Although it is well established that the cell cycle inhibitor p21 protects against genotoxic stress by preventing the replication of damaged DNA, recent studies have shown that the cytoplasmic form can also protect. It protects by delaying the loss of the antiapoptotic proteins Mcl-1 and Bcl-X(L); however, the mechanism of regulation is unknown. Utilizing hyperoxia as a model of chronic oxidative stress and DNA damage, p21 was detected in the nucleus and cytoplasm and cytoplasmic expression of p21 was sufficient for cytoprotection. p21 was enriched in a subcellular fraction containing mitochondria and endoplasmic reticulum (ER), suggesting that it may be coordinating ER and mitochondrial stress pathways. Consistent with this, p21 suppressed hyperoxic downregulation of BiP and subsequent activation of ER stress signaling, which affected Mcl-1, but not Bcl-X(L); though both inhibited hyperoxic cell death. Taken together, these data show that p21 integrates the DNA damage response with ER stress signaling, which then regulates mitochondrial death pathways during chronic genotoxic stress.
Collapse
Affiliation(s)
- Peter F. Vitiello
- Department of Environmental Medicine, The University of Rochester, Rochester, NY 14642
- Department of Pediatrics, The University of Rochester, Rochester, NY 14642
| | - Yu-Chieh M. Wu
- Department of Biomedical Genetics, The University of Rochester, Rochester, NY 14642
| | | | - Michael A. O’Reilly
- Department of Environmental Medicine, The University of Rochester, Rochester, NY 14642
- Department of Pediatrics, The University of Rochester, Rochester, NY 14642
- Address Correspondence to: Michael A. O’Reilly, Ph.D., Department of Pediatrics, Box 850, The University of Rochester, 601 Elmwood Avenue, Rochester, NY 14642, Tel: (585) 275-5948, Fax: (585) 756-7780,
| |
Collapse
|
15
|
Gehen SC, Staversky RJ, Bambara RA, Keng PC, O'Reilly MA. hSMG-1 and ATM sequentially and independently regulate the G1 checkpoint during oxidative stress. Oncogene 2008; 27:4065-74. [PMID: 18332866 DOI: 10.1038/onc.2008.48] [Citation(s) in RCA: 45] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/29/2023]
Abstract
Genotoxic stress activates the phosphatidylinositol 3-kinase-like kinases (PIKKs) that phosphorylate proteins involved in cell cycle arrest, DNA repair and apoptosis. Previous work showed that the PIKK ataxia telangiectasia mutated (ATM) but not ATM and Rad3 related phosphorylates p53 (Ser15) during hyperoxia, a model of prolonged oxidative stress and DNA damage. Here, we show hSMG-1 is responsible for the rapid and early phosphorylation of p53 (Ser15) and that ATM helps maintain phosphorylation after 24 h. Despite reduced p53 phosphorylation and abundance in cells depleted of hSMG-1 or ATM, levels of the p53 target p21 were still elevated and the G(1) checkpoint remained intact. Conditional overexpression of p21 in p53-deficient cells revealed that hyperoxia also stimulates wortmannin-sensitive degradation of p21. siRNA depletion of hSMG-1 or ATM restored p21 stability and the G(1) checkpoint during hyperoxia. These findings establish hSMG-1 as a proximal regulator of DNA damage signaling and reveal that the G(1) checkpoint is tightly regulated during prolonged oxidative stress by both PIKK-dependent synthesis and proteolysis of p21.
Collapse
Affiliation(s)
- S C Gehen
- Department of Environmental Medicine, The University of Rochester, Rochester, NY 14642, USA
| | | | | | | | | |
Collapse
|
16
|
Vitiello PF, Staversky RJ, Keng PC, O’Reilly MA. PUMA inactivation protects against oxidative stress through p21/Bcl-XL inhibition of bax death. Free Radic Biol Med 2008; 44:367-74. [PMID: 18215742 PMCID: PMC2276618 DOI: 10.1016/j.freeradbiomed.2007.09.021] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/02/2007] [Revised: 09/05/2007] [Accepted: 09/21/2007] [Indexed: 01/10/2023]
Abstract
The tumor suppressor protein p53 activates growth arrest and proapoptotic genes in response to DNA damage. It is known that negative feedback by p21(Cip1/Waf1/Sdi1) represses p53-dependent transactivation of PUMA. The current study investigates PUMA feedback on p53 during oxidative stress from hyperoxia and the subsequent effects on cell survival mediated through p21 and Bcl-X(L). Deletion of PUMA in HCT116 colon carcinoma cells increased levels of p53 and p21, resulting in a larger G(1) population during hyperoxia. P21-dependent increase in Bcl-X(L) levels protected PUMA-deficient cells against hyperoxic cell death. Bax and Bak were both able to promote hyperoxic cell death. Bcl-X(L) protection against hyperoxic death was lost in cells lacking Bax, not PUMA, suggesting that Bcl-X(L) acts to inhibit Bax-dependent death. These results indicate that PUMA exerts a negative feedback on p53 and p21, leading to p21-dependent growth suppressive and survival changes. Enhanced survival was associated with increased Bcl-X(L) to block Bax activated cell death during oxidative stress.
Collapse
Affiliation(s)
- Peter F. Vitiello
- Department of Environmental Medicine, School of Medicine and Dentistry, The University of Rochester, Rochester NY 14642
| | - Rhonda J. Staversky
- Department of Pediatrics, School of Medicine and Dentistry, The University of Rochester, Rochester NY 14642
| | - Peter C. Keng
- Department of Radiation Oncology, School of Medicine and Dentistry, The University of Rochester, Rochester NY 14642
| | - Michael A. O’Reilly
- Department of Pediatrics, School of Medicine and Dentistry, The University of Rochester, Rochester NY 14642
- Address Correspondence to: Michael A. O’Reilly, Ph.D., Department of Pediatrics, Box 850, The University of Rochester, School of Medicine and Dentistry, 601 Elmwood Avenue, Rochester NY 14642, Tel: (585) 275-5948, Fax: (585) 756-7780,
| |
Collapse
|