1
|
Paz-García M, Povo-Retana A, Jaén RI, Prieto P, Peraza DA, Zaragoza C, Hernandez-Jimenez M, Pineiro D, Regadera J, García-Bermejo ML, Rodríguez-Serrano EM, Sánchez-García S, Moro MA, Lizasoaín I, Delgado C, Valenzuela C, Boscá L. Beneficial effect of TLR4 blockade by a specific aptamer antagonist after acute myocardial infarction. Biomed Pharmacother 2023; 158:114214. [PMID: 36916435 DOI: 10.1016/j.biopha.2023.114214] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/19/2022] [Revised: 12/28/2022] [Accepted: 01/02/2023] [Indexed: 01/05/2023] Open
Abstract
Experimental evidence indicates that the control of the inflammatory response after myocardial infarction is a key strategy to reduce cardiac injury. Cellular damage after blood flow restoration in the heart promotes sterile inflammation through the release of molecules that activate pattern recognition receptors, among which TLR4 is the most prominent. Transient regulation of TLR4 activity has been considered one of the potential therapeutic interventions with greater projection towards the clinic. In this regard, the characterization of an aptamer (4FT) that acts as a selective antagonist for human TLR4 has been investigated in isolated macrophages from different species and in a rat model of cardiac ischemia/reperfusion (I/R). The binding kinetics and biological responses of murine and human macrophages treated with 4FT show great affinity and significant inhibition of TLR4 signaling including the NF-κB pathway and the LPS-dependent increase in the plasma membrane currents (Kv currents). In the rat model of I/R, administration of 4FT following reoxygenation shows amelioration of cardiac injury function and markers, a process that is significantly enhanced when the second dose of 4FT is administered 24 h after reperfusion of the heart. Parameters such as cardiac injury biomarkers, infiltration of circulating inflammatory cells, and the expression of genes associated with the inflammatory onset are significantly reduced. In addition, the expression of anti-inflammatory genes, such as IL-10, and pro-resolution molecules, such as resolvin D1 are enhanced after 4FT administration. These results indicate that targeting TLR4 with 4FT offers new therapeutic opportunities to prevent cardiac dysfunction after infarction.
Collapse
Affiliation(s)
- Marta Paz-García
- Instituto de Investigaciones Biomédicas Alberto Sols, CSIC-UAM, Arturo Duperier 4, 28029 Madrid, Spain
| | - Adrián Povo-Retana
- Instituto de Investigaciones Biomédicas Alberto Sols, CSIC-UAM, Arturo Duperier 4, 28029 Madrid, Spain
| | - Rafael I Jaén
- Instituto de Investigaciones Biomédicas Alberto Sols, CSIC-UAM, Arturo Duperier 4, 28029 Madrid, Spain
| | - Patricia Prieto
- Pharmacology, Pharmacognosy and Botany Department, Faculty of Pharmacy, Complutense University of Madrid, 28040 Madrid, Spain
| | - Diego A Peraza
- Instituto de Investigaciones Biomédicas Alberto Sols, CSIC-UAM, Arturo Duperier 4, 28029 Madrid, Spain
| | - Carlos Zaragoza
- Departamento de Cardiología, Unidad de Investigación Mixta Universidad Francisco de Vitoria, 28223 Madrid, Spain; Centro de Investigación Biomédica en Red de Enfermedades Cardiovasculares (CIBERCV), Av. Monforte de Lemos 3-5, P-11, 28029 Madrid, Spain
| | | | - David Pineiro
- AptaTargets SL, Av del Cardenal Herrera Oria, 298, 28035 Madrid, Spain
| | - Javier Regadera
- Department of Anatomy, Faculty of Medicine, Autonomous University of Madrid, 28029 Madrid, Spain
| | - María L García-Bermejo
- Instituto Ramón y Cajal de Investigación Sanitaria (IRYCIS), RICORS2040, Ctra de Colmenar Viejo, 28034 Madrid, Spain
| | - E Macarena Rodríguez-Serrano
- Instituto Ramón y Cajal de Investigación Sanitaria (IRYCIS), RICORS2040, Ctra de Colmenar Viejo, 28034 Madrid, Spain
| | - Sergio Sánchez-García
- Instituto de Investigaciones Biomédicas Alberto Sols, CSIC-UAM, Arturo Duperier 4, 28029 Madrid, Spain
| | - María A Moro
- Centro Nacional de Investigaciones Cardiovasculares, Melchor Fernández Almagro, 28029 Madrid, Spain
| | - Ignacio Lizasoaín
- Departamento de Farmacología y Toxicología, Facultad de Medicina Universidad Complutense Madrid, Instituto de Investigación Hospital 12 de Octubre, Madrid, Spain
| | - Carmen Delgado
- Instituto de Investigaciones Biomédicas Alberto Sols, CSIC-UAM, Arturo Duperier 4, 28029 Madrid, Spain; Centro de Investigación Biomédica en Red de Enfermedades Cardiovasculares (CIBERCV), Av. Monforte de Lemos 3-5, P-11, 28029 Madrid, Spain
| | - Carmen Valenzuela
- Instituto de Investigaciones Biomédicas Alberto Sols, CSIC-UAM, Arturo Duperier 4, 28029 Madrid, Spain; Centro de Investigación Biomédica en Red de Enfermedades Cardiovasculares (CIBERCV), Av. Monforte de Lemos 3-5, P-11, 28029 Madrid, Spain
| | - Lisardo Boscá
- Instituto de Investigaciones Biomédicas Alberto Sols, CSIC-UAM, Arturo Duperier 4, 28029 Madrid, Spain; Centro de Investigación Biomédica en Red de Enfermedades Cardiovasculares (CIBERCV), Av. Monforte de Lemos 3-5, P-11, 28029 Madrid, Spain; Unidad de Biomedicina (Unidad Asociada al CSIC) de la Universidad de Las Palmas de Gran Canaria, Las Palmas, Spain.
| |
Collapse
|
2
|
Ashton KJ, Reichelt ME, Mustafa SJ, Teng B, Ledent C, Delbridge LMD, Hofmann PA, Morrison RR, Headrick JP. Transcriptomic effects of adenosine 2A receptor deletion in healthy and endotoxemic murine myocardium. Purinergic Signal 2016; 13:27-49. [PMID: 27696085 DOI: 10.1007/s11302-016-9536-1] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/26/2016] [Accepted: 09/09/2016] [Indexed: 12/25/2022] Open
Abstract
Influences of adenosine 2A receptor (A2AR) activity on the cardiac transcriptome and genesis of endotoxemic myocarditis are unclear. We applied transcriptomic profiling (39 K Affymetrix arrays) to identify A2AR-sensitive molecules, revealed by receptor knockout (KO), in healthy and endotoxemic hearts. Baseline cardiac function was unaltered and only 37 A2AR-sensitive genes modified by A2AR KO (≥1.2-fold change, <5 % FDR); the five most induced are Mtr, Ppbp, Chac1, Ctsk and Cnpy2 and the five most repressed are Hp, Yipf4, Acta1, Cidec and Map3k2. Few canonical paths were impacted, with altered Gnb1, Prkar2b, Pde3b and Map3k2 (among others) implicating modified G protein/cAMP/PKA and cGMP/NOS signalling. Lipopolysaccharide (LPS; 20 mg/kg) challenge for 24 h modified >4100 transcripts in wild-type (WT) myocardium (≥1.5-fold change, FDR < 1 %); the most induced are Lcn2 (+590); Saa3 (+516); Serpina3n (+122); Cxcl9 (+101) and Cxcl1 (+89) and the most repressed are Car3 (-38); Adipoq (-17); Atgrl1/Aplnr (-14); H19 (-11) and Itga8 (-8). Canonical responses centred on inflammation, immunity, cell death and remodelling, with pronounced amplification of toll-like receptor (TLR) and underlying JAK-STAT, NFκB and MAPK pathways, and a 'cardio-depressant' profile encompassing suppressed ß-adrenergic, PKA and Ca2+ signalling, electromechanical and mitochondrial function (and major shifts in transcripts impacting function/injury including Lcn2, S100a8/S100a9, Icam1/Vcam and Nox2 induction, and Adipoq, Igf1 and Aplnr repression). Endotoxemic responses were selectively modified by A2AR KO, supporting inflammatory suppression via A2AR sensitive shifts in regulators of NFκB and JAK-STAT signalling (IκBζ, IκBα, STAT1, CDKN1a and RRAS2) without impacting the cardio-depressant gene profile. Data indicate A2ARs exert minor effects in un-stressed myocardium and selectively suppress NFκB and JAK-STAT signalling and cardiac injury without influencing cardiac depression in endotoxemia.
Collapse
Affiliation(s)
- Kevin J Ashton
- Faculty of Health Sciences and Medicine, Bond University, Gold Coast, QLD, Australia
| | - Melissa E Reichelt
- School of Biomedical Sciences, University of Queensland, Brisbane, QLD, Australia
| | - S Jamal Mustafa
- Department of Physiology and Pharmacology, West Virginia University, Morgantown, WV, USA
| | - Bunyen Teng
- Department of Physiology and Pharmacology, West Virginia University, Morgantown, WV, USA
| | | | - Lea M D Delbridge
- Department of Physiology, University of Melbourne, Parkville, VIC, Australia
| | - Polly A Hofmann
- Department of Physiology, University of Tennessee Health Science Center, Memphis, TN, USA
| | - R Ray Morrison
- Division of Critical Care Medicine, St. Jude Children's Research Hospital, Memphis, TN, USA
| | - John P Headrick
- Heart Foundation Research Center, Griffith University, Southport, QLD, 4217, Australia.
| |
Collapse
|
3
|
Wang GQ, Tang T, Wang ZS, Liu YY, Wang L, Luo PF, Xia ZF. Overexpression of Hypo-Phosphorylated IκBβ at Ser313 Protects the Heart against Sepsis. PLoS One 2016; 11:e0160860. [PMID: 27508931 PMCID: PMC4979969 DOI: 10.1371/journal.pone.0160860] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/18/2016] [Accepted: 07/26/2016] [Indexed: 12/21/2022] Open
Abstract
IκBβis an inhibitor of nuclear factor kappa B(NF-κB) and participates in the cardiac response to sepsis. However, the role of the hypo-phosphorylated form of IκBβ at Ser313, which can be detected during sepsis, is unknown. Here, we examined the effects of IκBβ with a mutation at Ser313→Ala313 on cardiac damage induced by sepsis. Transgenic (Tg) mice were generated to overexpress IκBβ, in which Ser-313 is replaced with alanine ubiquitously, in order to mimic the hypo-phosphorylated form of IκBβ. Survival analysis showed that Tg mice exhibited decreased inflammatory cytokine levels and decreased rates of mortality in comparison to wild type (WT) mice, after sepsis in a cecal-ligation and puncture model (CLP). Compared to WT septic mice, sepsis in Tg mice resulted in improved cardiac functions, lower levels of troponin I and decreased rates of cardiomyocyte apoptosis, compared to WT mice. The increased formation of autophagicvacuoles detected with electron microscopy demonstrated the enhancement of cardiac autophagy. This phenomenon was further confirmed by the differential expression of genes related to autophagy, such as LC3, Atg5, Beclin-1, and p62. The increased expression of Cathepsin L(Ctsl), a specific marker for mitochondrial stress response, may be associated with the beneficial effects of the hypo-phosphorylated form of IκBβ. Our observations suggest that the hypo-phosphorylated form of IκBβ at Ser313 is beneficial to the heart in sepsis through inhibition of apoptosisand enhancement of autophagy in mutated IκBβ transgenic mice.
Collapse
Affiliation(s)
- Guang-Qing Wang
- Department of Burn Surgery, Changhai Hospital, Second Military Medical University, Shanghai, China
| | - Tao Tang
- Department of Surgery, 91528 Hospital of PLA, Shanghai, China
| | - Zhong-Shan Wang
- Department of Burn Surgery, Changhai Hospital, Second Military Medical University, Shanghai, China
| | - Ying-Ying Liu
- Department of Burn Surgery, Changhai Hospital, Second Military Medical University, Shanghai, China
| | - Li Wang
- Department of Burn Surgery, Changhai Hospital, Second Military Medical University, Shanghai, China
| | - Peng-Fei Luo
- Department of Burn Surgery, Changhai Hospital, Second Military Medical University, Shanghai, China
| | - Zhao-Fan Xia
- Department of Burn Surgery, Changhai Hospital, Second Military Medical University, Shanghai, China
- * E-mail:
| |
Collapse
|
4
|
TNF-like weak inducer of apoptosis aggravates left ventricular dysfunction after myocardial infarction in mice. Mediators Inflamm 2014; 2014:131950. [PMID: 24692845 PMCID: PMC3945977 DOI: 10.1155/2014/131950] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/15/2013] [Revised: 12/27/2013] [Accepted: 12/30/2013] [Indexed: 11/17/2022] Open
Abstract
Background. TNF-like weak inducer of apoptosis (TWEAK) has recently been shown to be potentially involved in adverse cardiac remodeling. However, neither the exact role of TWEAK itself nor of its receptor Fn14 in this setting is known. Aim of the Study. To analyze the effects of sTWEAK on myocardial function and gene expression in response to experimental myocardial infarction in mice. Results. TWEAK directly suppressed the expression of PGC-1α and genes of oxidative phosphorylation (OXPHOS) in cardiomyocytes. Systemic sTWEAK application after MI resulted in reduced left ventricular function and increased mortality without changes in interstitial fibrosis or infarct size. Molecular analysis revealed decreased phosphorylation of PI3K/Akt and ERK1/2 pathways associated with reduced expression of PGC-1α and PPARα. Likewise, expression of OXPHOS genes such as atp5O, cycs, cox5b, and ndufb5 was also reduced. Fn14 −/− mice showed significantly improved left ventricular function and PGC-1α levels after MI compared to their respective WT littermates (Fn14 +/+). Finally, inhibition of intrinsic TWEAK with anti-TWEAK antibodies resulted in improved left ventricular function and survival. Conclusions. TWEAK exerted maladaptive effects in mice after myocardial infarction most likely via direct effects on cardiomyocytes. Analysis of the potential mechanisms revealed that TWEAK reduced metabolic adaptations to increased cardiac workload by inhibition of PGC-1α.
Collapse
|
5
|
Trypanosoma cruzi infection and endothelin-1 cooperatively activate pathogenic inflammatory pathways in cardiomyocytes. PLoS Negl Trop Dis 2013; 7:e2034. [PMID: 23409199 PMCID: PMC3566987 DOI: 10.1371/journal.pntd.0002034] [Citation(s) in RCA: 30] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/17/2012] [Accepted: 12/12/2012] [Indexed: 12/15/2022] Open
Abstract
Trypanosoma cruzi, the causative agent of Chagas' disease, induces multiple responses in the heart, a critical organ of infection and pathology in the host. Among diverse factors, eicosanoids and the vasoactive peptide endothelin-1 (ET-1) have been implicated in the pathogenesis of chronic chagasic cardiomyopathy. In the present study, we found that T. cruzi infection in mice induces myocardial gene expression of cyclooxygenase-2 (Cox2) and thromboxane synthase (Tbxas1) as well as endothelin-1 (Edn1) and atrial natriuretic peptide (Nppa). T. cruzi infection and ET-1 cooperatively activated the Ca2+/calcineurin (Cn)/nuclear factor of activated T cells (NFAT) signaling pathway in atrial myocytes, leading to COX-2 protein expression and increased eicosanoid (prostaglandins E2 and F2α, thromboxane A2) release. Moreover, T. cruzi infection of ET-1-stimulated cardiomyocytes resulted in significantly enhanced production of atrial natriuretic peptide (ANP), a prognostic marker for impairment in cardiac function of chagasic patients. Our findings support an important role for the Ca2+/Cn/NFAT cascade in T. cruzi-mediated myocardial production of inflammatory mediators and may help define novel therapeutic targets. Chronic cardiomyopathy is the most common and severe manifestation of human Chagas' disease, caused by the protozoan parasite Trypanosoma cruzi. Among diverse inflammation-promoting moieties, eicosanoids and the vasoactive peptide endothelin-1 (ET-1) have been implicated in its pathogenesis. Nevertheless, the link between these two factors has not yet been identified. In the present study, we found that T. cruzi infection induces gene expression of ET-1 and eicosanoid-forming enzymes in the heart of infected mice. We also demonstrated that HL-1 atrial myocytes respond to ET-1 stimulus and T. cruzi infection by induction of cyclooxygenase-2 through activation of the Ca2+/calcineurin/NFAT intracellular signaling pathway. Moreover, the cooperation between T. cruzi and ET-1 leads to overproduction of eicosanoids (prostaglandins E2 and F2α, thromboxane A2) and the pro-hypertrophic atrial natriuretic peptide. Our results support an important role for NFAT in T. cruzi plus ET-1-dependent induction of key agents of pathogenesis in chronic chagasic cardiomyopathy. Identification of the Ca2+/calcineurin/NFAT cascade as mediator of cardiovascular pathology in Chagas' disease advances our understanding of host-parasite interrelationship and may help define novel potential targets for therapeutic interventions to ameliorate or prevent cardiomyopathy during chronic T. cruzi infection.
Collapse
|
6
|
Chen HN, Wang DJ, Ren MY, Wang QL, Sui SJ. TWEAK/Fn14 promotes the proliferation and collagen synthesis of rat cardiac fibroblasts via the NF-кB pathway. Mol Biol Rep 2012; 39:8231-41. [PMID: 22555979 DOI: 10.1007/s11033-012-1671-3] [Citation(s) in RCA: 43] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/01/2011] [Accepted: 04/18/2012] [Indexed: 10/28/2022]
Abstract
We wished to elucidate a potential role of the tumor necrosis factor-like weak inducer of apoptosis (TWEAK)/fibroblast growth factor-inducible molecule 14 (Fn14) axis in myocardial fibrosis. Stimulation of neonatal rat cardiac fibroblasts (CFs) with TWEAK could increase CFs numbers and collagen synthesis. Conversely, when CFs were pretreated with siRNA against Fn14, induction of cell proliferation and collagen synthesis by TWEAK were inhibited. Pretreatment with TWEAK on CFs induced activation of the nuclear factor-kappaB (NF-кB) pathway and subsequently increased the production of metalloproteinase-9 (MMP-9). Cell treatment with siRNA against Fn14 led to inhibition of the NF-кB pathway. Additionally, after stimulation of cell with ammonium pyrrolidine dithiocarbamate, cell proliferation and collagen synthesis induced by NF-кB and the upregulation of MMP-9 production were inhibited. The present study suggested that the TWEAK/Fn14 axis increased cell proliferation and collagen synthesis by activating the NF-кB pathway and increasing MMP-9 activity. This axis may be important for regulating myocardial fibrosis.
Collapse
Affiliation(s)
- Hui-Na Chen
- Department of Cardiology, Second Hospital of Shandong University, 247 Beiyuan Street, Jinan 250033, China
| | | | | | | | | |
Collapse
|
7
|
Sanz AB, Sanchez-Niño MD, Izquierdo MC, Jakubowski A, Justo P, Blanco-Colio LM, Ruiz-Ortega M, Selgas R, Egido J, Ortiz A. TWEAK activates the non-canonical NFkappaB pathway in murine renal tubular cells: modulation of CCL21. PLoS One 2010; 5:e8955. [PMID: 20126461 PMCID: PMC2813291 DOI: 10.1371/journal.pone.0008955] [Citation(s) in RCA: 81] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/27/2009] [Accepted: 01/04/2010] [Indexed: 12/21/2022] Open
Abstract
TWEAK is a member of the TNF superfamily of cytokines that contribute to kidney tubulointerstitial injury. It has previously been reported that TWEAK induces transient nuclear translocation of RelA and expression of RelA-dependent cytokines in renal tubular cells. Additionally, TWEAK induced long-lasting NFκB activation suggestive of engagement of the non-canonical NFκB pathway. We now explore TWEAK-induced activation of NFκB2 and RelB, as well as expression of CCL21, a T-cell chemotactic factor, in cultured murine tubular epithelial cells and in healthy kidneys in vivo. In cultured tubular cells, TWEAK and TNFα activated different DNA-binding NFκB complexes. TWEAK-induced sustained NFκB activation was associated with NFκB2 p100 processing to p52 via proteasome and nuclear translocation and DNA-binding of p52 and RelB. TWEAK, but not TNFα used as control), induced a delayed increase in CCL21a mRNA (3.5±1.22-fold over control) and CCL21 protein (2.5±0.8-fold over control), which was prevented by inhibition of the proteasome, or siRNA targeting of NIK or RelB, but not by RelA inhibition with parthenolide. A second NFκB2-dependent chemokine, CCL19, was upregulates by TWEAK, but not by TNFα. However, both cytokines promoted chemokine RANTES expression (3-fold mRNA at 24 h). In vivo, TWEAK induced nuclear NFκB2 and RelB translocation and CCL21a mRNA (1.5±0.3-fold over control) and CCL21 protein (1.6±0.5-fold over control) expression in normal kidney. Increased tubular nuclear RelB and tubular CCL21 expression in acute kidney injury were decreased by neutralization (2±0.9 vs 1.3±0.6-fold over healthy control) or deficiency of TWEAK (2±0.9 vs 0.8±0.6-fold over healthy control). Moreover, anti-TWEAK treatment prevented the recruitment of T cells to the kidney in this model (4.1±1.4 vs 1.8±1-fold over healthy control). Our results thus identify TWEAK as a regulator of non-canonical NFκB activation and CCL21 expression in tubular cells thus promoting lymphocyte recruitment to the kidney during acute injury.
Collapse
Affiliation(s)
- Ana B. Sanz
- Servicio de Nefrologia, Fundación para la Investigación Biomédica del Hospital Universitario La Paz, Madrid, Spain
| | - Maria D. Sanchez-Niño
- Fundación Jiménez Díaz, Universidad Autónoma de Madrid, Fundación Renal Iñigo Alvarez de Toledo, Madrid, Spain
| | - Maria C. Izquierdo
- Fundación Jiménez Díaz, Universidad Autónoma de Madrid, Fundación Renal Iñigo Alvarez de Toledo, Madrid, Spain
| | - Aniela Jakubowski
- Department of Immunobiology, Biogen Idec, Inc., Cambridge, Massachusetts, United States of America
| | - Pilar Justo
- Fundación Jiménez Díaz, Universidad Autónoma de Madrid, Fundación Renal Iñigo Alvarez de Toledo, Madrid, Spain
| | - Luis M. Blanco-Colio
- Fundación Jiménez Díaz, Universidad Autónoma de Madrid, Fundación Renal Iñigo Alvarez de Toledo, Madrid, Spain
| | - Marta Ruiz-Ortega
- Fundación Jiménez Díaz, Universidad Autónoma de Madrid, Fundación Renal Iñigo Alvarez de Toledo, Madrid, Spain
| | - Rafael Selgas
- Servicio de Nefrologia, Fundación para la Investigación Biomédica del Hospital Universitario La Paz, Madrid, Spain
| | - Jesús Egido
- Fundación Jiménez Díaz, Universidad Autónoma de Madrid, Fundación Renal Iñigo Alvarez de Toledo, Madrid, Spain
| | - Alberto Ortiz
- Fundación Jiménez Díaz, Universidad Autónoma de Madrid, Fundación Renal Iñigo Alvarez de Toledo, Madrid, Spain
- * E-mail:
| |
Collapse
|
8
|
Chorianopoulos E, Heger T, Lutz M, Frank D, Bea F, Katus HA, Frey N. FGF-inducible 14-kDa protein (Fn14) is regulated via the RhoA/ROCK kinase pathway in cardiomyocytes and mediates nuclear factor-kappaB activation by TWEAK. Basic Res Cardiol 2009; 105:301-13. [DOI: 10.1007/s00395-009-0046-y] [Citation(s) in RCA: 82] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/10/2009] [Revised: 07/03/2009] [Accepted: 07/07/2009] [Indexed: 11/30/2022]
|
9
|
Can troponin identify those critically ill septic patients who would benefit most from activated protein C treatment? Crit Care Med 2009; 37:367-8. [PMID: 19112310 DOI: 10.1097/ccm.0b013e31819350c7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
|