1
|
Berner J, Weiss T, Sorger H, Rifatbegovic F, Kauer M, Windhager R, Dohnal A, Ambros PF, Ambros IM, Boztug K, Steinberger P, Taschner‐Mandl S. Human repair-related Schwann cells adopt functions of antigen-presenting cells in vitro. Glia 2022; 70:2361-2377. [PMID: 36054432 PMCID: PMC9804420 DOI: 10.1002/glia.24257] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/17/2022] [Revised: 07/16/2022] [Accepted: 07/25/2022] [Indexed: 01/05/2023]
Abstract
The plastic potential of Schwann cells (SCs) is increasingly recognized to play a role after nerve injury and in diseases of the peripheral nervous system. Reports on the interaction between immune cells and SCs indicate their involvement in inflammatory processes. However, the immunocompetence of human SCs has been primarily deduced from neuropathies, but whether after nerve injury SCs directly regulate an adaptive immune response is unknown. Here, we performed comprehensive analysis of immunomodulatory capacities of human repair-related SCs (hrSCs), which recapitulate SC response to nerve injury in vitro. We used our well-established culture model of primary hrSCs from human peripheral nerves and analyzed the transcriptome, secretome, and cell surface proteins for pathways and markers relevant in innate and adaptive immunity, performed phagocytosis assays, and monitored T-cell subset activation in allogeneic co-cultures. Our findings show that hrSCs are phagocytic, which is in line with high MHCII expression. Furthermore, hrSCs express co-regulatory proteins, such as CD40, CD80, B7H3, CD58, CD86, and HVEM, release a plethora of chemoattractants, matrix remodeling proteins and pro- as well as anti-inflammatory cytokines, and upregulate the T-cell inhibiting PD-L1 molecule upon pro-inflammatory stimulation with IFNγ. In contrast to monocytes, hrSC alone are not sufficient to trigger allogenic CD4+ and CD8+ T-cells, but limit number and activation status of exogenously activated T-cells. This study demonstrates that hrSCs possess features and functions typical for professional antigen-presenting cells in vitro, and suggest a new role of these cells as negative regulators of T-cell immunity during nerve regeneration.
Collapse
Affiliation(s)
- Jakob Berner
- St. Anna Children's Cancer Research Institute (CCRI)ViennaAustria
- St. Anna Children's HospitalViennaAustria
| | - Tamara Weiss
- St. Anna Children's Cancer Research Institute (CCRI)ViennaAustria
- Department of Plastic, Reconstructive and Aesthetic SurgeryMedical University of Vienna
| | - Helena Sorger
- St. Anna Children's Cancer Research Institute (CCRI)ViennaAustria
| | | | - Max Kauer
- St. Anna Children's Cancer Research Institute (CCRI)ViennaAustria
| | - Reinhard Windhager
- Department of Orthopedics and Trauma SurgeryMedical University of ViennaViennaAustria
| | - Alexander Dohnal
- St. Anna Children's Cancer Research Institute (CCRI)ViennaAustria
| | - Peter F. Ambros
- St. Anna Children's Cancer Research Institute (CCRI)ViennaAustria
| | - Inge M. Ambros
- St. Anna Children's Cancer Research Institute (CCRI)ViennaAustria
| | - Kaan Boztug
- St. Anna Children's Cancer Research Institute (CCRI)ViennaAustria
- St. Anna Children's HospitalViennaAustria
- Ludwig Boltzmann Institute for Rare and Undiagnosed Diseases (LBI‐RUD)ViennaAustria
- Center for Molecular Medicine (CeMM)ViennaAustria
| | | | | |
Collapse
|
2
|
Burgos-Panadero R, El Moukhtari SH, Noguera I, Rodríguez-Nogales C, Martín-Vañó S, Vicente-Munuera P, Cañete A, Navarro S, Blanco-Prieto MJ, Noguera R. Unraveling the extracellular matrix-tumor cell interactions to aid better targeted therapies for neuroblastoma. Int J Pharm 2021; 608:121058. [PMID: 34461172 DOI: 10.1016/j.ijpharm.2021.121058] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/03/2021] [Revised: 08/24/2021] [Accepted: 08/25/2021] [Indexed: 12/17/2022]
Abstract
Treatment in children with high-risk neuroblastoma remains largely unsuccessful due to the development of metastases and drug resistance. The biological complexity of these tumors and their microenvironment represent one of the many challenges to face. Matrix glycoproteins such as vitronectin act as bridge elements between extracellular matrix and tumor cells and can promote tumor cell spreading. In this study, we established through a clinical cohort and preclinical models that the interaction of vitronectin and its ligands, such as αv integrins, are related to the stiffness of the extracellular matrix in high-risk neuroblastoma. These marked alterations found in the matrix led us to specifically target tumor cells within these altered matrices by employing nanomedicine and combination therapy. Loading the conventional cytotoxic drug etoposide into nanoparticles significantly increased its efficacy in neuroblastoma cells. We noted high synergy between etoposide and cilengitide, a high-affinity cyclic pentapeptide αv integrin antagonist. The results of this study highlight the need to characterize cell-extracellular matrix interactions, to improve patient care in high-risk neuroblastoma.
Collapse
Affiliation(s)
- Rebeca Burgos-Panadero
- Department of Pathology, Medical School, University of Valencia - INCLIVA Biomedical Health Research Institute, 46010 Valencia, Spain; Low Prevalence Tumors, Centro de investigación biomédica en red de cáncer (CIBERONC), Instituto de Salud Carlos III, 28029 Madrid, Spain.
| | - Souhaila H El Moukhtari
- Department of Pharmaceutical Technology and Chemistry, School of Pharmacy and Nutrition, University of Navarra, 31008 Pamplona, Spain; Instituto de Investigación Sanitaria de Navarra (IdiSNA), 31008 Pamplona, Spain.
| | - Inmaculada Noguera
- Central Support Service for Experimental Research (SCSIE), University of Valencia, Burjassot, Valencia, Spain.
| | - Carlos Rodríguez-Nogales
- Department of Pharmaceutical Technology and Chemistry, School of Pharmacy and Nutrition, University of Navarra, 31008 Pamplona, Spain; Instituto de Investigación Sanitaria de Navarra (IdiSNA), 31008 Pamplona, Spain.
| | - Susana Martín-Vañó
- Department of Pathology, Medical School, University of Valencia - INCLIVA Biomedical Health Research Institute, 46010 Valencia, Spain; Low Prevalence Tumors, Centro de investigación biomédica en red de cáncer (CIBERONC), Instituto de Salud Carlos III, 28029 Madrid, Spain.
| | - Pablo Vicente-Munuera
- Instituto de Biomedicina de Sevilla (IBiS), Hospital Universitario Virgen del Rocío/CSIC/Universidad de Sevilla and Departamento de Biología Celular, Universidad de Sevilla, Seville 41013, Spain.
| | - Adela Cañete
- Pediatric Oncology, La Fe Hospital, Av. Fernando Abril Martorell 106, 46026 Valencia, Spain.
| | - Samuel Navarro
- Department of Pathology, Medical School, University of Valencia - INCLIVA Biomedical Health Research Institute, 46010 Valencia, Spain; Low Prevalence Tumors, Centro de investigación biomédica en red de cáncer (CIBERONC), Instituto de Salud Carlos III, 28029 Madrid, Spain.
| | - María J Blanco-Prieto
- Department of Pharmaceutical Technology and Chemistry, School of Pharmacy and Nutrition, University of Navarra, 31008 Pamplona, Spain; Instituto de Investigación Sanitaria de Navarra (IdiSNA), 31008 Pamplona, Spain.
| | - Rosa Noguera
- Department of Pathology, Medical School, University of Valencia - INCLIVA Biomedical Health Research Institute, 46010 Valencia, Spain; Low Prevalence Tumors, Centro de investigación biomédica en red de cáncer (CIBERONC), Instituto de Salud Carlos III, 28029 Madrid, Spain.
| |
Collapse
|
3
|
Schwann cell plasticity regulates neuroblastic tumor cell differentiation via epidermal growth factor-like protein 8. Nat Commun 2021; 12:1624. [PMID: 33712610 PMCID: PMC7954855 DOI: 10.1038/s41467-021-21859-0] [Citation(s) in RCA: 56] [Impact Index Per Article: 14.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/02/2020] [Accepted: 02/17/2021] [Indexed: 01/31/2023] Open
Abstract
Adult Schwann cells (SCs) possess an inherent plastic potential. This plasticity allows SCs to acquire repair-specific functions essential for peripheral nerve regeneration. Here, we investigate whether stromal SCs in benign-behaving peripheral neuroblastic tumors adopt a similar cellular state. We profile ganglioneuromas and neuroblastomas, rich and poor in SC stroma, respectively, and peripheral nerves after injury, rich in repair SCs. Indeed, stromal SCs in ganglioneuromas and repair SCs share the expression of nerve repair-associated genes. Neuroblastoma cells, derived from aggressive tumors, respond to primary repair-related SCs and their secretome with increased neuronal differentiation and reduced proliferation. Within the pool of secreted stromal and repair SC factors, we identify EGFL8, a matricellular protein with so far undescribed function, to act as neuritogen and to rewire cellular signaling by activating kinases involved in neurogenesis. In summary, we report that human SCs undergo a similar adaptive response in two patho-physiologically distinct situations, peripheral nerve injury and tumor development.
Collapse
|
4
|
Javanmardi N, Fransson S, Djos A, Umapathy G, Östensson M, Milosevic J, Borenäs M, Hallberg B, Kogner P, Martinsson T, Palmer RH. Analysis of ALK, MYCN, and the ALK ligand ALKAL2 (FAM150B/AUGα) in neuroblastoma patient samples with chromosome arm 2p rearrangements. Genes Chromosomes Cancer 2020; 59:50-57. [PMID: 31340081 DOI: 10.1002/gcc.22790] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/10/2019] [Revised: 07/15/2019] [Accepted: 07/15/2019] [Indexed: 01/24/2023] Open
Abstract
Gain of chromosome arm 2p is a previously described entity in neuroblastoma (NB). This genomic address is home to two important oncogenes in NB-MYCN and anaplastic lymphoma kinase (ALK). MYCN amplification is a critical prognostic factor coupled with poor prognosis in NB. Mutation of the ALK receptor tyrosine kinase has been described in both somatic and familial NB. Here, ALK activation occurs in the context of the full-length receptor, exemplified by activating point mutations in NB. ALK overexpression and activation, in the absence of genetic mutation has also been described in NB. In addition, the recently identified ALK ligand ALKAL2 (previously described as FAM150B and AUGα) is also found on the distal portion of 2p, at 2p25. Here we analyze 356 NB tumor samples and discuss observations indicating that gain of 2p has implications for the development of NB. Finally, we put forward the hypothesis that the effect of 2p gain may result from a combination of MYCN, ALK, and the ALK ligand ALKAL2.
Collapse
Affiliation(s)
- Niloufar Javanmardi
- Department of Laboratory Medicine, Institute of Biomedicine, Sahlgrenska Academy, University of Gothenburg, Gothenburg, Sweden
| | - Susanne Fransson
- Department of Laboratory Medicine, Institute of Biomedicine, Sahlgrenska Academy, University of Gothenburg, Gothenburg, Sweden
| | - Anna Djos
- Department of Laboratory Medicine, Institute of Biomedicine, Sahlgrenska Academy, University of Gothenburg, Gothenburg, Sweden
| | - Ganesh Umapathy
- Department of Medical Biochemistry and Cell Biology, Institute of Biomedicine, Sahlgrenska Academy, University of Gothenburg, Gothenburg, Sweden
| | - Malin Östensson
- Bioinformatics Core Facility, Sahlgrenska Academy, University of Gothenburg, Gothenburg, Sweden
| | - Jelena Milosevic
- Childhood Cancer Research Unit, Department of Women's and Children's Health, Karolinska Institutet, Stockholm, Sweden
| | - Marcus Borenäs
- Department of Medical Biochemistry and Cell Biology, Institute of Biomedicine, Sahlgrenska Academy, University of Gothenburg, Gothenburg, Sweden
| | - Bengt Hallberg
- Department of Medical Biochemistry and Cell Biology, Institute of Biomedicine, Sahlgrenska Academy, University of Gothenburg, Gothenburg, Sweden
| | - Per Kogner
- Childhood Cancer Research Unit, Department of Women's and Children's Health, Karolinska Institutet, Stockholm, Sweden
| | - Tommy Martinsson
- Department of Laboratory Medicine, Institute of Biomedicine, Sahlgrenska Academy, University of Gothenburg, Gothenburg, Sweden
| | - Ruth H Palmer
- Department of Medical Biochemistry and Cell Biology, Institute of Biomedicine, Sahlgrenska Academy, University of Gothenburg, Gothenburg, Sweden
| |
Collapse
|
5
|
Sagasser J, Ma BN, Baecker D, Salcher S, Hermann M, Lamprecht J, Angerer S, Obexer P, Kircher B, Gust R. A New Approach in Cancer Treatment: Discovery of Chlorido[ N, N'-disalicylidene-1,2-phenylenediamine]iron(III) Complexes as Ferroptosis Inducers. J Med Chem 2019; 62:8053-8061. [PMID: 31369259 DOI: 10.1021/acs.jmedchem.9b00814] [Citation(s) in RCA: 49] [Impact Index Per Article: 8.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
Abstract
Chlorido[N,N'-disalicylidene-1,2-phenylenediamine]iron(III) complexes generate lipid-based ROS and induce ferroptosis in leukemia and neuroblastoma cell lines. The extent of ferroptosis on the mode of action is regulated by simple modifications of the substituents at the 1,2-phenylenediamine moiety. In HL-60 cells, the unsubstituted lead exclusively caused ferroptosis. For instance, a 4-F substituent shifted the mode of action toward both ferroptosis and necroptosis, while the analogously chlorinated derivative exerted only necroptosis. Remarkably, cell-death in NB1 neuroblastoma cells was solely induced by ferroptosis, independent of the used substituents. The effects were higher than that of the therapeutically applied drug cisplatin. These data clearly demonstrate for the first time that not only iron ions but also iron salophene complexes are potent ferroptosis inducers, which can be optimized as antitumor agents.
Collapse
Affiliation(s)
- Jessica Sagasser
- Department of Pharmaceutical Chemistry, Institute of Pharmacy, CMBI-Center for Molecular Biosciences Innsbruck , University of Innsbruck, CCB-Center for Chemistry and Biomedicine , Innrain 80-82 , 6020 Innsbruck , Austria
| | - Benjamin N Ma
- Department of Pharmaceutical Chemistry, Institute of Pharmacy, CMBI-Center for Molecular Biosciences Innsbruck , University of Innsbruck, CCB-Center for Chemistry and Biomedicine , Innrain 80-82 , 6020 Innsbruck , Austria
| | - Daniel Baecker
- Department of Pharmaceutical Chemistry, Institute of Pharmacy, CMBI-Center for Molecular Biosciences Innsbruck , University of Innsbruck, CCB-Center for Chemistry and Biomedicine , Innrain 80-82 , 6020 Innsbruck , Austria
| | - Stefan Salcher
- Tyrolean Cancer Research Institute , Innrain 66 , 6020 Innsbruck , Austria
| | - Martin Hermann
- Department of Anesthesiology and Critical Care Medicine , Medical University Innsbruck , Anichstraße 35 , 6020 Innsbruck , Austria
| | - Julia Lamprecht
- Tyrolean Cancer Research Institute , Innrain 66 , 6020 Innsbruck , Austria
| | - Stefanie Angerer
- Tyrolean Cancer Research Institute , Innrain 66 , 6020 Innsbruck , Austria.,Immunobiology and Stem Cell Laboratory, Department of Internal Medicine V (Hematology and Oncology) , Medical University Innsbruck , Anichstraße 35 , 6020 Innsbruck , Austria
| | - Petra Obexer
- Tyrolean Cancer Research Institute , Innrain 66 , 6020 Innsbruck , Austria.,Department of Pediatrics II , Medical University Innsbruck , Innrain 66 , 6020 Innsbruck , Austria
| | - Brigitte Kircher
- Tyrolean Cancer Research Institute , Innrain 66 , 6020 Innsbruck , Austria.,Immunobiology and Stem Cell Laboratory, Department of Internal Medicine V (Hematology and Oncology) , Medical University Innsbruck , Anichstraße 35 , 6020 Innsbruck , Austria
| | - Ronald Gust
- Department of Pharmaceutical Chemistry, Institute of Pharmacy, CMBI-Center for Molecular Biosciences Innsbruck , University of Innsbruck, CCB-Center for Chemistry and Biomedicine , Innrain 80-82 , 6020 Innsbruck , Austria
| |
Collapse
|
6
|
Hagenbuchner J, Lungkofler L, Kiechl-Kohlendorfer U, Viola G, Ferlin MG, Ausserlechner MJ, Obexer P. The tubulin inhibitor MG-2477 induces autophagy-regulated cell death, ROS accumulation and activation of FOXO3 in neuroblastoma. Oncotarget 2018; 8:32009-32026. [PMID: 28415610 PMCID: PMC5458265 DOI: 10.18632/oncotarget.16434] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/21/2016] [Accepted: 03/08/2017] [Indexed: 12/29/2022] Open
Abstract
Neuroblastoma is the most frequent extra-cranial solid tumor in children with still high mortality in stage M. Here we studied the tubulin-inhibitor MG-2477 as a possible therapeutic agent for neuroblastoma therapy and uncovered that MG-2477 induces death in neuroblastoma cells independent of PKB-activation status and stage. MG-2477 triggers within 30 minutes extensive autophagosome-formation that finally leads to cell death associated with mitotic catastrophe. Autophagy is critical for MG-2477-induced death and is regulated by the BH3-only protein PMAIP1/NOXA which sequesters the anti-apoptotic BCL2-protein BCLXL and thereby displaces and activates the autophagy-regulator BECN1/beclin1. Knockdown of NOXA or overexpression of its pro-survival binding partners MCL1 and BCLXL counteracts MG-2477-induced cell death. MG-2477 also rapidly induces the repression of the anti-apoptotic protein Survivin, which promotes autophagy and cell death. We further observed the accumulation of reactive oxygen species (ROS) that triggers autophagy induction suggesting a change of the PI3 kinase-III/BECN1 complex and activates the transcription factor FOXO3, which contributes to final cell death induction. The combined data suggest that MG-2477 induces a sequential process of ROS-accumulation, autophagy and FOXO3-activation that leads to cell death in neuroblastoma cells.
Collapse
Affiliation(s)
- Judith Hagenbuchner
- Department of Pediatrics II, Medical University Innsbruck, Innsbruck, Austria
| | | | | | - Giampietro Viola
- Department of Woman's and Child's Health, Oncohematology Laboratory University of Padova, Padova, Italy
| | - Maria Grazia Ferlin
- Department of Pharmaceutical and Pharmacological Sciences, University of Padova, Padova, Italy
| | | | - Petra Obexer
- Department of Pediatrics II, Medical University Innsbruck, Innsbruck, Austria.,Tyrolean Cancer Research Institute, Innsbruck, Austria
| |
Collapse
|
7
|
Hagenbuchner J, Rupp M, Salvador C, Meister B, Kiechl-Kohlendorfer U, Müller T, Geiger K, Sergi C, Obexer P, Ausserlechner MJ. Nuclear FOXO3 predicts adverse clinical outcome and promotes tumor angiogenesis in neuroblastoma. Oncotarget 2016; 7:77591-77606. [PMID: 27769056 PMCID: PMC5363607 DOI: 10.18632/oncotarget.12728] [Citation(s) in RCA: 27] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/07/2016] [Accepted: 10/03/2016] [Indexed: 12/30/2022] Open
Abstract
Neuroblastoma is the most frequent, extracranial solid tumor in children with still poor prognosis in stage IV disease. In this study, we analyzed FOXO3-phosphorylation and cellular localization in tumor biopsies and determined the function of this homeostasis regulator in vitro and in vivo. FOXO3-phosphorylation at threonine-32 (T32) and nuclear localization in biopsies significantly correlated with stage IV disease. DNA-damaging drugs induced nuclear accumulation of FOXO3, which was associated with elevated T32-phosphorylation in stage IV-derived neuroblastoma cells, thereby reflecting the in situ results. In contrast, hypoxic conditions repressed PKB-activity and caused dephosphorylation of FOXO3 in both, stroma-like SH-EP and high-stage-derived STA-NB15 cells. The activation of an ectopically-expressed FOXO3 in these cells reduced viability at normoxia, but promoted growth at hypoxic conditions and elevated VEGF-C-expression. In chorioallantoic membrane (CAM) assays STA-NB15 tumors with ectopic FOXO3 showed increased micro-vessel formation and, when xenografted into nude mice, a gene-dosage-dependent effect of FOXO3 in high-stage STA-NB15 cells became evident: low-level activation increased tumor-vascularization, whereas hyper-activation repressed tumor growth.The combined data suggest that, depending on the mode and intensity of activation, cellular FOXO3 acts as a homeostasis regulator promoting tumor growth at hypoxic conditions and tumor angiogenesis in high-stage neuroblastoma.
Collapse
Affiliation(s)
- Judith Hagenbuchner
- Departments of Pediatrics II, Medical University Innsbruck, Innsbruck, Austria
| | - Martina Rupp
- Departments of Pediatrics II, Medical University Innsbruck, Innsbruck, Austria
- Pediatrics I, Medical University Innsbruck, Innsbruck, Austria
| | | | | | | | - Thomas Müller
- Pediatrics I, Medical University Innsbruck, Innsbruck, Austria
| | | | - Consolato Sergi
- Walter C. Mackenzie Centre, University of Alberta, Edmonton, Canada
| | - Petra Obexer
- Departments of Pediatrics II, Medical University Innsbruck, Innsbruck, Austria
- Tyrolean Cancer Research Institute, Innsbruck, Austria
| | - Michael J. Ausserlechner
- Pediatrics I, Medical University Innsbruck, Innsbruck, Austria
- Tyrolean Cancer Research Institute, Innsbruck, Austria
| |
Collapse
|
8
|
Weiss T, Taschner-Mandl S, Bileck A, Slany A, Kromp F, Rifatbegovic F, Frech C, Windhager R, Kitzinger H, Tzou CH, Ambros PF, Gerner C, Ambros IM. Proteomics and transcriptomics of peripheral nerve tissue and cells unravel new aspects of the human Schwann cell repair phenotype. Glia 2016; 64:2133-2153. [DOI: 10.1002/glia.23045] [Citation(s) in RCA: 57] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/18/2016] [Revised: 07/21/2016] [Accepted: 07/26/2016] [Indexed: 11/09/2022]
Affiliation(s)
- Tamara Weiss
- Children's Cancer Research Institute; Vienna Austria
| | | | - Andrea Bileck
- Department of Analytical Chemistry; University of Vienna; Vienna Austria
| | - Astrid Slany
- Department of Analytical Chemistry; University of Vienna; Vienna Austria
| | - Florian Kromp
- Children's Cancer Research Institute; Vienna Austria
| | | | | | - Reinhard Windhager
- Department of Orthopedic Surgery; Medical University of Vienna; Vienna Austria
| | - Hugo Kitzinger
- Department of Plastic and Reconstructive Surgery; Medical University of Vienna; Vienna Austria
| | - Chieh-Han Tzou
- Department of Plastic and Reconstructive Surgery; Medical University of Vienna; Vienna Austria
| | - Peter F. Ambros
- Children's Cancer Research Institute; Vienna Austria
- Department of Pediatrics; Medical University of Vienna; Vienna Austria
| | - Christopher Gerner
- Department of Analytical Chemistry; University of Vienna; Vienna Austria
| | | |
Collapse
|
9
|
Durbas M, Horwacik I, Boratyn E, Rokita H. Downregulation of the PHLDA1 gene in IMR-32 neuroblastoma cells increases levels of Aurora A, TRKB and affects proteins involved in apoptosis and autophagy pathways. Int J Oncol 2016; 49:823-37. [PMID: 27278006 DOI: 10.3892/ijo.2016.3572] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/25/2016] [Accepted: 05/20/2016] [Indexed: 11/06/2022] Open
Abstract
We have recently shown that mRNA and protein of PHLDA1 (pleckstrin-homology-like domain family A, member 1) were by far the most upregulated molecules upon treatment of IMR-32 cells with the anti-GD2 ganglioside monoclonal antibody 14G2a. Hence, we decided to study functions of PHLDA1 using human neuroblastoma IMR-32 cells as a model. Here, we show that constitutive expression of mRNA and protein of the PHLDA1 gene in IMR-32 cells was inversely correlated with transcript of the AURKA gene and Aurora A oncoprotein. Next, we silenced PHLDA1 expression in IMR-32 cells using an shRNA interference method. We report that IMR-32 cells with stable downregulation of PHLDA1 showed enhanced cellular ATP levels and an increase in mitochondrial membrane potential, as compared to control and non-transduced cells. We demonstrated that downregulation of PHLDA1 leads to a significant increase in expression of Aurora A and TRKB that are markers of poor prognosis in neuroblastoma. Also, we measured an increase in Aurora A and Akt kinases phosphorylation in the cells. Most importantly, PHLDA1-silenced cells were less susceptible to apoptosis than control cells, as shown by the lower expression of cleaved caspase-3 and PARP as well as a decreased activity of caspase-3 and -7. Our study negatively correlates expression of PHLDA1 and Aurora A in IMR-32 cells and sheds new light on functions of PHLDA1 in the neuroblastoma tumor cells, suggesting its role as a pro-apoptotic protein. Additionally, our results show possible links of the protein to regulation of features of mitochondria and formation of autophagosomes.
Collapse
Affiliation(s)
- Małgorzata Durbas
- Laboratory of Molecular Genetics and Virology, Faculty of Biochemistry, Biophysics and Biotechnology, Jagiellonian University, 30-387 Kraków, Poland
| | - Irena Horwacik
- Laboratory of Molecular Genetics and Virology, Faculty of Biochemistry, Biophysics and Biotechnology, Jagiellonian University, 30-387 Kraków, Poland
| | - Elżbieta Boratyn
- Laboratory of Molecular Genetics and Virology, Faculty of Biochemistry, Biophysics and Biotechnology, Jagiellonian University, 30-387 Kraków, Poland
| | - Hanna Rokita
- Laboratory of Molecular Genetics and Virology, Faculty of Biochemistry, Biophysics and Biotechnology, Jagiellonian University, 30-387 Kraków, Poland
| |
Collapse
|
10
|
Hagenbuchner J, Kiechl-Kohlendorfer U, Obexer P, Ausserlechner MJ. BIRC5/Survivin as a target for glycolysis inhibition in high-stage neuroblastoma. Oncogene 2015; 35:2052-61. [DOI: 10.1038/onc.2015.264] [Citation(s) in RCA: 49] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/03/2015] [Revised: 06/03/2015] [Accepted: 06/06/2015] [Indexed: 12/19/2022]
|
11
|
Rogers DA, Schor NF. Kidins220/ARMS is expressed in neuroblastoma tumors and stabilizes neurotrophic signaling in a human neuroblastoma cell line. Pediatr Res 2013; 74:517-24. [PMID: 23999075 PMCID: PMC3968798 DOI: 10.1038/pr.2013.146] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/02/2012] [Accepted: 05/21/2013] [Indexed: 12/26/2022]
Abstract
BACKGROUND Neurotrophic signaling is an important factor in the survival of developing neurons, and the expression of neurotrophic receptors correlates with prognosis in neuroblastoma. Kinase D-interacting substrate of 220 kDa (Kidins220) associates with neurotrophic receptors and stabilizes them, but the expression and function of Kidins220 in neuroblastoma are unknown. METHODS We study Kidins220 expression in human neuroblastoma cell lines and tumor samples by western blotting and microarray analyses. We determine the functional consequences of downregulation of Kidins220 for response of cell lines to oxidative stress, chemotherapeutic treatment, and neurotrophins using small interfering RNA silencing and by measuring cell survival, signaling, and migration. RESULTS Kidins220 is expressed in all neuroblastoma tumors and cell lines studied. Downregulation of Kidins220 leads to attenuation of nerve growth factor (NGF)-induced, but not brain-derived neurotrophic factor (BDNF)-induced, MAPK signaling. However, downregulation of Kidins220 does not alter the response to chemotherapeutic drugs or oxidative stress or affect cellular motility. CONCLUSION Kidins220 is expressed in neuroblastoma tumors and stabilizes NGF-induced, but not BDNF-induced, survival signaling in neuroblastoma cell lines.
Collapse
Affiliation(s)
- Danny A. Rogers
- Departments of Pediatrics, Neurology, and Neurobiology & Anatomy, University of Rochester Medical Center, Rochester, NY
| | - Nina F. Schor
- Departments of Pediatrics, Neurology, and Neurobiology & Anatomy, University of Rochester Medical Center, Rochester, NY
| |
Collapse
|
12
|
High anaplastic lymphoma kinase immunohistochemical staining in neuroblastoma and ganglioneuroblastoma is an independent predictor of poor outcome. THE AMERICAN JOURNAL OF PATHOLOGY 2011; 180:1223-1231. [PMID: 22203052 DOI: 10.1016/j.ajpath.2011.12.003] [Citation(s) in RCA: 46] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/28/2011] [Revised: 11/22/2011] [Accepted: 12/02/2011] [Indexed: 11/22/2022]
Abstract
Anaplastic lymphoma kinase (ALK) mutations occur in 3% to 11% of neuroblastoma (NBL) cases and are associated with high ALK levels. However, high ALK levels appear to be a mutation-independent hallmark of NBL. Evidence about the prognostic relevance of ALK mutations and ALK tumor positivity in patients with NBL has been inconclusive. In this study, we investigated the prognostic relevance of ALK positivity by IHC and ALK mutation status by PCR sequencing in 71 NBL, 12 ganglioneuroblastoma (GNBL), and 20 ganglioneuroma samples in a multivariate model. ALK mutations were present in 2 of 72 NBL and 2 of 12 GNBL samples, which all contained many ALK-positive cells (>50%). In addition, half of all NBL samples showed ALK positivity in most (>50%) of tumor cells, whereas half of the GNBL showed staining in <20% of the tumor cells. In most ganglioneuroma samples, a low percentage of tumor cells stained positive for ALK, which mainly involved ganglion cells. Higher percentages of ALK-positive cells in NBL and GNBL patient samples correlated with inferior survival in univariate and multivariate analyses with established prognostic factors, such as stage, age, and MYCN status. In conclusion, ALK positivity by IHC is an independent, poor prognostic factor in patients with GNBL and NBL. ALK IHC is an easy test suitable for future risk stratification in patients with NBL and GNBL.
Collapse
|
13
|
Storlazzi CT, Lonoce A, Guastadisegni MC, Trombetta D, D'Addabbo P, Daniele G, L'Abbate A, Macchia G, Surace C, Kok K, Ullmann R, Purgato S, Palumbo O, Carella M, Ambros PF, Rocchi M. Gene amplification as double minutes or homogeneously staining regions in solid tumors: origin and structure. Genome Res 2010; 20:1198-206. [PMID: 20631050 DOI: 10.1101/gr.106252.110] [Citation(s) in RCA: 178] [Impact Index Per Article: 11.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Abstract
Double minutes (dmin) and homogeneously staining regions (hsr) are the cytogenetic hallmarks of genomic amplification in cancer. Different mechanisms have been proposed to explain their genesis. Recently, our group showed that the MYC-containing dmin in leukemia cases arise by excision and amplification (episome model). In the present paper we investigated 10 cell lines from solid tumors showing MYCN amplification as dmin or hsr. Particularly revealing results were provided by the two subclones of the neuroblastoma cell line STA-NB-10, one showing dmin-only and the second hsr-only amplification. Both subclones showed a deletion, at 2p24.3, whose extension matched the amplicon extension. Additionally, the amplicon structure of the dmin and hsr forms was identical. This strongly argues that the episome model, already demonstrated in leukemias, applies to solid tumors as well, and that dmin and hsr are two faces of the same coin. The organization of the duplicated segments varied from very simple (no apparent changes from the normal sequence) to very complex. MYCN was always overexpressed (significantly overexpressed in three cases). The fusion junctions, always mediated by nonhomologous end joining, occasionally juxtaposed truncated genes in the same transcriptional orientation. Fusion transcripts involving NBAS (also known as NAG), FAM49A, BC035112 (also known as NCRNA00276), and SMC6 genes were indeed detected, although their role in the context of the tumor is not clear.
Collapse
|
14
|
Jeison M, Ash S, Halevy-Berko G, Mardoukh J, Luria D, Avigad S, Feinberg-Gorenshtein G, Goshen Y, Hertzel G, Kapelushnik J, Ben Barak A, Attias D, Steinberg R, Stein J, Stark B, Yaniv I. 2p24 Gain region harboring MYCN gene compared with MYCN amplified and nonamplified neuroblastoma: biological and clinical characteristics. THE AMERICAN JOURNAL OF PATHOLOGY 2010; 176:2616-25. [PMID: 20395439 DOI: 10.2353/ajpath.2010.090624] [Citation(s) in RCA: 25] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/29/2023]
Abstract
Although the role of MYCN amplification in neuroblastoma is well established, the biological and clinical characteristics of the 2p gain region harboring the MYCN gene remain unclear. The aim of this study was to compare the biological and clinical characteristics of these tumors with MYCN amplified and nonamplified neuroblastoma and to determine their impact on disease outcome. Samples from 177 patients were analyzed by fluorescence in situ hybridization, including MYCN, 1p, 17q, and 11q regions; 2p gain was identified in 25 patients, MYCN amplification in 31, and no amplification in 121 patients. Patients with 2p gain had a significantly worse 5-year event-free survival rate than patients with no MYCN amplified (P < 0.001), and an intermediate 5-year overall survival rate difference existed between the MYCN amplified tumors (P = 0.025) and nonamplified (P = 0.003) groups. All of the 2p gain samples were associated with segmental and/or numerical alterations in the other tested regions. The presence of segmental alterations with or without MYCN amplification was recently found to be the strongest predictor of relapse in a multivariate analysis. The results of the present study suggest that the determination of MYCN gene copy number relative to chromosome 2, when evaluating MYCN status at diagnosis, may help to reveal the underlying genetic pattern of these tumors and better understand their clinical behavior.
Collapse
Affiliation(s)
- Marta Jeison
- Ca-Cytogenetic Lab, Schneider Children's Medical Center of Israel, Kaplan St. 14, 49202 Petah Tikva, Israel.
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
15
|
Subramaniam MM, Piqueras M, Navarro S, Noguera R. Aberrant copy numbers of ALK gene is a frequent genetic alteration in neuroblastomas. Hum Pathol 2009; 40:1638-42. [PMID: 19656550 DOI: 10.1016/j.humpath.2009.05.002] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/17/2009] [Revised: 04/22/2009] [Accepted: 05/04/2009] [Indexed: 10/20/2022]
Abstract
A total of 50 neuroblastomas were assessed for frequency of ALK gene copy number aberrations by interphase fluorescence in situ hybridization using a break-apart fluorescence in situ hybridization probe. The data were compared with status of MYCN, 11q, 17q, and 1p36. We observed ALK aberrations (amplification, 1 of 45; gain, 15 of 45 and loss/imbalance, 11 of 45) in a total of 27 (60%) of 45 neuroblastomas. Synchronic MYCN and ALK aberrations accounted for 23 of 45 (51%) tumors; however, MYCN alterations were also detected in 11 (60%) of 18 tumors without ALK aberrations. Our data suggest that copy number aberrations of the ALK gene is a frequent genetic event in the development of neuroblastomas. In addition, no correlation was observed between ALK aberrations and alterations of 11q, 17q, and 1p36.
Collapse
|
16
|
High incidence of DNA mutations and gene amplifications of the ALK gene in advanced sporadic neuroblastoma tumours. Biochem J 2008; 416:153-9. [PMID: 18990089 DOI: 10.1042/bj20081834] [Citation(s) in RCA: 215] [Impact Index Per Article: 12.6] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022]
Abstract
ALK (anaplastic lymphoma kinase) is oncogenic in several tumours and has recently been identified as a predisposition gene for familial NB (neuroblastoma) harbouring mutations in the TKD (tyrosine kinase domain). We have analysed a large set of sporadic human NB primary tumours of all clinical stages for chromosomal re-arrangements using a CGH (comparative genomic hybridization) array (n=108) and mutations of the ALK gene (n=90), and expression of ALK and related genes (n=19). ALK amplification or in-gene re-arrangements were found in 5% of NB tumours and mutations were found in 11%, including two novel not previously published mutations in the TKD, c.3733T>A and c.3735C>A. DNA mutations in the TKD and gene amplifications were only found in advanced large primary tumours or metastatic tumours, and correlated with the expression levels of ALK and downstream genes as well as other unfavourable features, and poor outcome. The results of the present study support that the ALK protein contributes to NB oncogenesis providing a highly interesting putative therapeutic target in a subset of unfavourable NB tumours.
Collapse
|
17
|
Binomial mitotic segregation of MYCN-carrying double minutes in neuroblastoma illustrates the role of randomness in oncogene amplification. PLoS One 2008; 3:e3099. [PMID: 18769732 PMCID: PMC2518122 DOI: 10.1371/journal.pone.0003099] [Citation(s) in RCA: 32] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/14/2008] [Accepted: 08/08/2008] [Indexed: 01/31/2023] Open
Abstract
BACKGROUND Amplification of the oncogene MYCN in double minutes (DMs) is a common finding in neuroblastoma (NB). Because DMs lack centromeric sequences it has been unclear how NB cells retain and amplify extrachromosomal MYCN copies during tumour development. PRINCIPAL FINDINGS We show that MYCN-carrying DMs in NB cells translocate from the nuclear interior to the periphery of the condensing chromatin at transition from interphase to prophase and are preferentially located adjacent to the telomere repeat sequences of the chromosomes throughout cell division. However, DM segregation was not affected by disruption of the telosome nucleoprotein complex and DMs readily migrated from human to murine chromatin in human/mouse cell hybrids, indicating that they do not bind to specific positional elements in human chromosomes. Scoring DM copy-numbers in ana/telophase cells revealed that DM segregation could be closely approximated by a binomial random distribution. Colony-forming assay demonstrated a strong growth-advantage for NB cells with high DM (MYCN) copy-numbers, compared to NB cells with lower copy-numbers. In fact, the overall distribution of DMs in growing NB cell populations could be readily reproduced by a mathematical model assuming binomial segregation at cell division combined with a proliferative advantage for cells with high DM copy-numbers. CONCLUSION Binomial segregation at cell division explains the high degree of MYCN copy-number variability in NB. Our findings also provide a proof-of-principle for oncogene amplification through creation of genetic diversity by random events followed by Darwinian selection.
Collapse
|