1
|
Van Campenhout R, Leroy K, Cooreman A, Tabernilla A, Cogliati B, Kadam P, Vinken M. Connexin-Based Channels in the Liver. Compr Physiol 2022; 12:4147-4163. [PMID: 35950654 DOI: 10.1002/cphy.c220007] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022]
Abstract
Connexin proteins oligomerize in hexameric structures called connexin hemichannels, which then dock to form gap junctions. Gap junctions direct cell-cell communication by allowing the exchange of small molecules and ions between neighboring cells. In this way, hepatic gap junctions support liver homeostasis. Besides serving as building blocks for gap junctions, connexin hemichannels provide a pathway between the intracellular and the extracellular environment. The activation of connexin hemichannels is associated with acute and chronic liver pathologies. This article discusses the role of gap junctions and connexin hemichannels in the liver. © 2022 American Physiological Society. Compr Physiol 12:1-17, 2022.
Collapse
Affiliation(s)
- Raf Van Campenhout
- Entity of In Vitro Toxicology and Dermato-Cosmetology, Department of Pharmaceutical and Pharmacological Sciences, Vrije Universiteit Brussel, Brussels, Belgium
| | - Kaat Leroy
- Entity of In Vitro Toxicology and Dermato-Cosmetology, Department of Pharmaceutical and Pharmacological Sciences, Vrije Universiteit Brussel, Brussels, Belgium
| | - Axelle Cooreman
- Entity of In Vitro Toxicology and Dermato-Cosmetology, Department of Pharmaceutical and Pharmacological Sciences, Vrije Universiteit Brussel, Brussels, Belgium
| | - Andrés Tabernilla
- Entity of In Vitro Toxicology and Dermato-Cosmetology, Department of Pharmaceutical and Pharmacological Sciences, Vrije Universiteit Brussel, Brussels, Belgium
| | - Bruno Cogliati
- School of Veterinary Medicine and Animal Science, Department of Pathology, University of São Paulo, São Paulo, Brazil
| | - Prashant Kadam
- Entity of In Vitro Toxicology and Dermato-Cosmetology, Department of Pharmaceutical and Pharmacological Sciences, Vrije Universiteit Brussel, Brussels, Belgium
| | - Mathieu Vinken
- Entity of In Vitro Toxicology and Dermato-Cosmetology, Department of Pharmaceutical and Pharmacological Sciences, Vrije Universiteit Brussel, Brussels, Belgium
| |
Collapse
|
2
|
McDaniel K, Meng F, Wu N, Sato K, Venter J, Bernuzzi F, Invernizzi P, Zhou T, Kyritsi K, Wan Y, Huang Q, Onori P, Francis H, Gaudio E, Glaser S, Alpini G. Forkhead box A2 regulates biliary heterogeneity and senescence during cholestatic liver injury in mice‡. Hepatology 2017; 65:544-559. [PMID: 27639079 PMCID: PMC5258713 DOI: 10.1002/hep.28831] [Citation(s) in RCA: 37] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/07/2016] [Revised: 08/01/2016] [Accepted: 09/01/2016] [Indexed: 12/14/2022]
Abstract
UNLABELLED Biliary-committed progenitor cells (small mouse cholangiocytes; SMCCs) from small bile ducts are more resistant to hepatobiliary injury than large mouse cholangiocytes (LGCCs) from large bile ducts. The definitive endoderm marker, forkhead box A2 (FoxA2), is the key transcriptional factor that regulates cell differentiation and tissue regeneration. Our aim was to characterize the translational role of FoxA2 during cholestatic liver injury. Messenger RNA expression in SMCCs and LGCCs was assessed by polymerase chain reaction (PCR) array analysis. Liver tissues and hepatic stellate cells (HSCs) from primary sclerosing cholangitis (PSC) and primary biliary cholangitis (PBC) patients were tested by real-time PCR for methylation, senescence, and fibrosis markers. Bile duct ligation (BDL) and multidrug resistance protein 2 (MDR2) knockout mice (MDR2-/- ) were used as animal models of cholestatic liver injury with or without healthy transplanted large or small cholangiocytes. We demonstrated that FoxA2 was notably enhanced in murine liver progenitor cells and SMCCs and was silenced in human PSC and PBC liver tissues relative to respective controls that are correlated with the epigenetic methylation enzymes, DNA methyltransferase (DNMT) 1 and DNMT3B. Serum alanine aminotransferase and aspartate aminotransferase levels in nonobese diabetic/severe combined immunodeficiency mice engrafted with SMCCs post-BDL showed significant changes compared to vehicle-treated mice, along with improved liver fibrosis. Enhanced expression of FoxA2 was observed in BDL mouse liver after SMCC cell therapy. Furthermore, activation of fibrosis signaling pathways were observed in BDL/MDR2-/- mouse liver as well as in isolated HSCs by laser capture microdissection, and these signals were recovered along with reduced hepatic senescence and enhanced hepatic stellate cellular senescence after SMCC engraft. CONCLUSION The definitive endoderm marker and the positive regulator of biliary development, FoxA2, mediates the therapeutic effect of biliary-committed progenitor cells during cholestatic liver injury. (Hepatology 2017;65:544-559).
Collapse
Affiliation(s)
- Kelly McDaniel
- Research, Central Texas Veterans Health Care System, Temple, TX, USA,Department of Medicine, Baylor Scott & White Health Digestive Disease Research Center, Texas A&M HSC and Baylor Scott & White Health, Temple, TX, USA,Research Institute, Baylor Scott & White Health, Temple, TX, USA
| | - Fanyin Meng
- Research, Central Texas Veterans Health Care System, Temple, TX, USA,Department of Medicine, Baylor Scott & White Health Digestive Disease Research Center, Texas A&M HSC and Baylor Scott & White Health, Temple, TX, USA,Research Institute, Baylor Scott & White Health, Temple, TX, USA
| | - Nan Wu
- Department of Medicine, Baylor Scott & White Health Digestive Disease Research Center, Texas A&M HSC and Baylor Scott & White Health, Temple, TX, USA
| | - Keisaku Sato
- Department of Medicine, Baylor Scott & White Health Digestive Disease Research Center, Texas A&M HSC and Baylor Scott & White Health, Temple, TX, USA
| | - Julie Venter
- Department of Medicine, Baylor Scott & White Health Digestive Disease Research Center, Texas A&M HSC and Baylor Scott & White Health, Temple, TX, USA
| | - Francesca Bernuzzi
- Liver Unit and Center for Autoimmune Liver Diseases, Humanitas Clinical and Research Center, Rozzano, Milan, Italy
| | - Pietro Invernizzi
- Liver Unit and Center for Autoimmune Liver Diseases, Humanitas Clinical and Research Center, Rozzano, Milan, Italy
| | - Tianhao Zhou
- Department of Medicine, Baylor Scott & White Health Digestive Disease Research Center, Texas A&M HSC and Baylor Scott & White Health, Temple, TX, USA
| | - Konstantina Kyritsi
- Department of Medicine, Baylor Scott & White Health Digestive Disease Research Center, Texas A&M HSC and Baylor Scott & White Health, Temple, TX, USA
| | - Ying Wan
- Research Institute, Baylor Scott & White Health, Temple, TX, USA,Department of Pathophysiology, Key Lab for Shock and Microcirculation Research of Guangdong Province, Southern Medical University, Guangzhou, China
| | - Qiaobing Huang
- Department of Pathophysiology, Key Lab for Shock and Microcirculation Research of Guangdong Province, Southern Medical University, Guangzhou, China
| | - Paolo Onori
- Department of Anatomical, Histological, Forensic Medicine and Orthopedics Sciences, Sapienza, Rome, Italy
| | - Heather Francis
- Research, Central Texas Veterans Health Care System, Temple, TX, USA,Department of Medicine, Baylor Scott & White Health Digestive Disease Research Center, Texas A&M HSC and Baylor Scott & White Health, Temple, TX, USA,Research Institute, Baylor Scott & White Health, Temple, TX, USA
| | - Eugenio Gaudio
- Department of Anatomical, Histological, Forensic Medicine and Orthopedics Sciences, Sapienza, Rome, Italy
| | - Shannon Glaser
- Research, Central Texas Veterans Health Care System, Temple, TX, USA,Department of Medicine, Baylor Scott & White Health Digestive Disease Research Center, Texas A&M HSC and Baylor Scott & White Health, Temple, TX, USA
| | - Gianfranco Alpini
- Research, Central Texas Veterans Health Care System, Temple, TX, USA,Department of Medicine, Baylor Scott & White Health Digestive Disease Research Center, Texas A&M HSC and Baylor Scott & White Health, Temple, TX, USA
| |
Collapse
|
3
|
Housset C, Chrétien Y, Debray D, Chignard N. Functions of the Gallbladder. Compr Physiol 2016; 6:1549-77. [PMID: 27347902 DOI: 10.1002/cphy.c150050] [Citation(s) in RCA: 115] [Impact Index Per Article: 12.8] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/29/2022]
Abstract
The gallbladder stores and concentrates bile between meals. Gallbladder motor function is regulated by bile acids via the membrane bile acid receptor, TGR5, and by neurohormonal signals linked to digestion, for example, cholecystokinin and FGF15/19 intestinal hormones, which trigger gallbladder emptying and refilling, respectively. The cycle of gallbladder filling and emptying controls the flow of bile into the intestine and thereby the enterohepatic circulation of bile acids. The gallbladder also largely contributes to the regulation of bile composition by unique absorptive and secretory capacities. The gallbladder epithelium secretes bicarbonate and mucins, which both provide cytoprotection against bile acids. The reversal of fluid transport from absorption to secretion occurs together with bicarbonate secretion after feeding, predominantly in response to an adenosine 3',5'-cyclic monophosphate (cAMP)-dependent pathway triggered by neurohormonal factors, such as vasoactive intestinal peptide. Mucin secretion in the gallbladder is stimulated predominantly by calcium-dependent pathways that are activated by ATP present in bile, and bile acids. The gallbladder epithelium has the capacity to absorb cholesterol and provides a cholecystohepatic shunt pathway for bile acids. Changes in gallbladder motor function not only can contribute to gallstone disease, but also subserve protective functions in multiple pathological settings through the sequestration of bile acids and changes in the bile acid composition. Cholecystectomy increases the enterohepatic recirculation rates of bile acids leading to metabolic effects and an increased risk of nonalcoholic fatty liver disease, cirrhosis, and small-intestine carcinoid, independently of cholelithiasis. Among subjects with gallstones, cholecystectomy remains a priority in those at risk of gallbladder cancer, while others could benefit from gallbladder-preserving strategies. © 2016 American Physiological Society. Compr Physiol 6:1549-1577, 2016.
Collapse
Affiliation(s)
- Chantal Housset
- Sorbonne Universités, UPMC Univ Paris 06, INSERM, UMR_S 938, Centre de Recherche Saint-Antoine, Institute of Cardiometabolism and Nutrition (ICAN), Paris, France.,Assistance Publique-Hôpitaux de Paris, Hôpital Saint-Antoine, Centre de Référence Maladies Rares (CMR) des Maladies Inflammatoires des Voies Biliaires (MIVB), Service d'Hépatologie, Paris, France
| | - Yues Chrétien
- Sorbonne Universités, UPMC Univ Paris 06, INSERM, UMR_S 938, Centre de Recherche Saint-Antoine, Institute of Cardiometabolism and Nutrition (ICAN), Paris, France.,Assistance Publique-Hôpitaux de Paris, Hôpital Saint-Antoine, Centre de Référence Maladies Rares (CMR) des Maladies Inflammatoires des Voies Biliaires (MIVB), Service d'Hépatologie, Paris, France
| | - Dominique Debray
- Sorbonne Universités, UPMC Univ Paris 06, INSERM, UMR_S 938, Centre de Recherche Saint-Antoine, Institute of Cardiometabolism and Nutrition (ICAN), Paris, France.,Assistance Publique-Hôpitaux de Paris, Hôpital Necker Enfants Malades, Medical-Surgical Center, Hepatology and Transplantation, Paris, France
| | - Nicolas Chignard
- Sorbonne Universités, UPMC Univ Paris 06, INSERM, UMR_S 938, Centre de Recherche Saint-Antoine, Institute of Cardiometabolism and Nutrition (ICAN), Paris, France
| |
Collapse
|
4
|
Lugli N, Kamileri I, Keogh A, Malinka T, Sarris ME, Talianidis I, Schaad O, Candinas D, Stroka D, Halazonetis TD. R-spondin 1 and noggin facilitate expansion of resident stem cells from non-damaged gallbladders. EMBO Rep 2016; 17:769-79. [PMID: 26993089 PMCID: PMC5341509 DOI: 10.15252/embr.201642169] [Citation(s) in RCA: 57] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/04/2016] [Accepted: 02/26/2016] [Indexed: 12/16/2022] Open
Abstract
Pioneering studies within the last few years have allowed the in vitro expansion of tissue‐specific adult stem cells from a variety of endoderm‐derived organs, including the stomach, small intestine, and colon. Expansion of these cells requires activation of the receptor Lgr5 by its ligand R‐spondin 1 and is likely facilitated by the fact that in healthy adults the stem cells in these organs are highly proliferative. In many other adult organs, such as the liver, proliferating cells are normally not abundant in adulthood. However, upon injury, the liver has a strong regenerative potential that is accompanied by the emergence of Lgr5‐positive stem cells; these cells can be isolated and expanded in vitro as organoids. In an effort to isolate stem cells from non‐regenerating mouse livers, we discovered that healthy gallbladders are a rich source of stem/progenitor cells that can be propagated in culture as organoids for more than a year. Growth of these organoids was stimulated by R‐spondin 1 and noggin, whereas in the absence of these growth factors, the organoids differentiated partially toward the hepatocyte fate. When transplanted under the liver capsule, gallbladder‐derived organoids maintained their architecture for 2 weeks. Furthermore, single cells prepared from dissociated organoids and injected into the mesenteric vein populated the liver parenchyma of carbon tetrachloride‐treated mice. Human gallbladders were also a source of organoid‐forming stem cells. Thus, under specific growth conditions, stem cells can be isolated from healthy gallbladders, expanded almost indefinitely in vitro, and induced to differentiate toward the hepatocyte lineage.
Collapse
Affiliation(s)
- Natalia Lugli
- Department of Molecular Biology, University of Geneva, Geneva, Switzerland National Centre of Competence in Research "Frontiers in Genetics", Geneva, Switzerland
| | - Irene Kamileri
- Department of Molecular Biology, University of Geneva, Geneva, Switzerland
| | - Adrian Keogh
- Department of Clinical Research, Clinic of Visceral Surgery and Medicine, University of Bern, Bern, Switzerland
| | - Thomas Malinka
- Department of Clinical Research, Clinic of Visceral Surgery and Medicine, University of Bern, Bern, Switzerland
| | | | | | - Olivier Schaad
- Department of Biochemistry, University of Geneva, Geneva, Switzerland
| | - Daniel Candinas
- Department of Clinical Research, Clinic of Visceral Surgery and Medicine, University of Bern, Bern, Switzerland
| | - Deborah Stroka
- Department of Clinical Research, Clinic of Visceral Surgery and Medicine, University of Bern, Bern, Switzerland
| | | |
Collapse
|
5
|
Manohar R, Li Y, Fohrer H, Guzik L, Stolz DB, Chandran UR, LaFramboise WA, Lagasse E. Identification of a candidate stem cell in human gallbladder. Stem Cell Res 2015; 14:258-69. [PMID: 25765520 DOI: 10.1016/j.scr.2014.12.003] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/26/2014] [Revised: 12/11/2014] [Accepted: 12/12/2014] [Indexed: 12/20/2022] Open
Abstract
There are currently no reports of identification of stem cells in human gallbladder. The differences between human gallbladder and intrahepatic bile duct (IHBD) cells have also not been explored. The goals of this study were to evaluate if human fetal gallbladder contains a candidate stem cell population and if fetal gallbladder cells are distinct from fetal IHBD cells. We found that EpCAM+CD44+CD13+ cells represent the cell population most enriched for clonal self-renewal from primary gallbladder. Primary EpCAM+CD44+CD13+ cells gave rise to EpCAM+CD44+CD13+ and EpCAM+CD44+CD13- cells in vitro, and gallbladder cells expanded in vitro exhibited short-term engraftment in vivo. Last, we found that CD13, CD227, CD66, CD26 and CD49b were differentially expressed between gallbladder and IHBD cells cultured in vitro indicating clear phenotypic differences between the two cell populations. Microarray analyses of expanded cultures confirmed that both cell types have unique transcriptional profiles with predicted functional differences in lipid, carbohydrate, nucleic acid and drug metabolism. In conclusion, we have isolated a distinct clonogenic population of epithelial cells from primary human fetal gallbladder with stem cell characteristics and found it to be unique compared to IHBD cells.
Collapse
Affiliation(s)
- Rohan Manohar
- McGowan Institute for Regenerative Medicine, Department of Pathology, University of Pittsburgh School of Medicine, Pittsburgh PA, USA.
| | - Yaming Li
- McGowan Institute for Regenerative Medicine, Department of Pathology, University of Pittsburgh School of Medicine, Pittsburgh PA, USA.
| | - Helene Fohrer
- McGowan Institute for Regenerative Medicine, Department of Pathology, University of Pittsburgh School of Medicine, Pittsburgh PA, USA.
| | - Lynda Guzik
- McGowan Institute for Regenerative Medicine, Department of Pathology, University of Pittsburgh School of Medicine, Pittsburgh PA, USA.
| | - Donna Beer Stolz
- Center for Biological Imaging, Department of Cell Biology and Physiology, University of Pittsburgh School of Medicine, Pittsburgh, PA, USA.
| | - Uma R Chandran
- Department of Biomedical Informatics, University of Pittsburgh School of Medicine, Pittsburgh, PA, USA; University of Pittsburgh Cancer Institute, Hillman Cancer Center, Pittsburgh, PA, USA.
| | - William A LaFramboise
- University of Pittsburgh Cancer Institute, Hillman Cancer Center, Pittsburgh, PA, USA; Clinical Genomics Facility, University of Pittsburgh School of Medicine, Pittsburgh, PA, USA.
| | - Eric Lagasse
- McGowan Institute for Regenerative Medicine, Department of Pathology, University of Pittsburgh School of Medicine, Pittsburgh PA, USA.
| |
Collapse
|
6
|
Tomasetti C, Vogelstein B. Cancer etiology. Variation in cancer risk among tissues can be explained by the number of stem cell divisions. Science 2015; 347:78-81. [PMID: 25554788 PMCID: PMC4446723 DOI: 10.1126/science.1260825] [Citation(s) in RCA: 1260] [Impact Index Per Article: 126.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
Some tissue types give rise to human cancers millions of times more often than other tissue types. Although this has been recognized for more than a century, it has never been explained. Here, we show that the lifetime risk of cancers of many different types is strongly correlated (0.81) with the total number of divisions of the normal self-renewing cells maintaining that tissue's homeostasis. These results suggest that only a third of the variation in cancer risk among tissues is attributable to environmental factors or inherited predispositions. The majority is due to "bad luck," that is, random mutations arising during DNA replication in normal, noncancerous stem cells. This is important not only for understanding the disease but also for designing strategies to limit the mortality it causes.
Collapse
Affiliation(s)
- Cristian Tomasetti
- Division of Biostatistics and Bioinformatics, Department of Oncology, Sidney Kimmel Cancer Center, Johns Hopkins University School of Medicine and Department of Biostatistics, Johns Hopkins Bloomberg School of Public Health, 550 North Broadway, Baltimore, MD 21205, USA.
| | - Bert Vogelstein
- Ludwig Center for Cancer Genetics and Therapeutics and Howard Hughes Medical Institute, Johns Hopkins Kimmel Cancer Center, 1650 Orleans Street, Baltimore, MD 21205, USA.
| |
Collapse
|
7
|
Carpino G, Cardinale V, Gentile R, Onori P, Semeraro R, Franchitto A, Wang Y, Bosco D, Iossa A, Napoletano C, Cantafora A, D'Argenio G, Nuti M, Caporaso N, Berloco P, Venere R, Oikawa T, Reid L, Alvaro D, Gaudio E. Evidence for multipotent endodermal stem/progenitor cell populations in human gallbladder. J Hepatol 2014; 60:1194-202. [PMID: 24530598 DOI: 10.1016/j.jhep.2014.01.026] [Citation(s) in RCA: 56] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/02/2013] [Revised: 01/03/2014] [Accepted: 01/27/2014] [Indexed: 02/07/2023]
Abstract
BACKGROUND & AIMS Multipotent stem/progenitor cells are found in peribiliary glands throughout human biliary trees and are able to generate mature cells of hepato-biliary and pancreatic endocrine lineages. The presence of endodermal stem/progenitors in human gallbladder was explored. METHODS Gallbladders were obtained from organ donors and laparoscopic surgery for symptomatic cholelithiasis. Tissues or isolated cells were characterized by immunohistochemistry and flow cytometry. EpCAM+ (Epithelial Cell Adhesion Molecule) cells were immunoselected by magnetic microbeads, plated onto plastic in self-replication conditions and subsequently transferred to distinct serum-free, hormonally defined media tailored for differentiation to specific adult fates. In vivo studies were conducted in an experimental model of liver cirrhosis. RESULTS The gallbladder does not have peribiliary glands, but it has stem/progenitors organized instead in mucosal crypts. Most of these can be isolated by immune-selection for EpCAM. Approximately 10% of EpCAM+ cells in situ and of immunoselected EpCAM+ cells co-expressed multiple pluripotency genes and various stem cell markers; other EpCAM+ cells qualified as progenitors. Single EpCAM+ cells demonstrated clonogenic expansion ex vivo with maintenance of stemness in self-replication conditions. Freshly isolated or cultured EpCAM+ cells could be differentiated to multiple, distinct adult fates: cords of albumin-secreting hepatocytes, branching ducts of secretin receptor+ cholangiocytes, or glucose-responsive, insulin/glucagon-secreting neoislets. EpCAM+ cells transplanted in vivo in immune-compromised hosts gave rise to human albumin-producing hepatocytes and to human Cytokeratin7+ cholangiocytes occurring in higher numbers when transplanted in cirrhotic mice. CONCLUSIONS Human gallbladders contain easily isolatable cells with phenotypic and biological properties of multipotent, endodermal stem cells.
Collapse
Affiliation(s)
- Guido Carpino
- Department of Movement, Human and Health Sciences, Division of Health Sciences, University of Rome "Foro Italico", Rome, Italy
| | - Vincenzo Cardinale
- Department of Medico-Surgical Sciences and Biotechnologies, Polo Pontino, Sapienza University of Rome, Rome, Italy
| | - Raffaele Gentile
- Department of Medico-Surgical Sciences and Biotechnologies, Polo Pontino, Sapienza University of Rome, Rome, Italy
| | - Paolo Onori
- Department of Biotechnological and Applied Clinical Sciences, University of L'Aquila, L'Aquila, Italy; Department of Anatomical, Histological, Forensic Medicine and Orthopedics Sciences, Sapienza University of Rome, Rome, Italy
| | - Rossella Semeraro
- Department of Medico-Surgical Sciences and Biotechnologies, Polo Pontino, Sapienza University of Rome, Rome, Italy
| | - Antonio Franchitto
- Department of Anatomical, Histological, Forensic Medicine and Orthopedics Sciences, Sapienza University of Rome, Rome, Italy; Eleonora Lorillard Spencer-Cenci Foundation, Rome, Italy
| | - Yunfang Wang
- Department of Cell Biology and Physiology, Program in Molecular Biology and Biotechnology, UNC School of Medicine, Chapel Hill, NC 27599, United States
| | - Daniela Bosco
- Department of Experimental Medicine, Sapienza University of Rome, Rome, Italy
| | - Angelo Iossa
- Surgical-Medical Department for Digestive Diseases, Sapienza University of Rome, Rome, Italy
| | - Chiara Napoletano
- Department of Experimental Medicine, Sapienza University of Rome, Rome, Italy
| | - Alfredo Cantafora
- Division of Gastroenterology, Sapienza University of Rome, Rome, Italy
| | - Giuseppe D'Argenio
- Gastroenterology Unit, Department of Clinical and Experimental Medicine, Federico II University of Naples, Italy
| | - Marianna Nuti
- Department of Experimental Medicine, Sapienza University of Rome, Rome, Italy
| | - Nicola Caporaso
- Gastroenterology Unit, Department of Clinical and Experimental Medicine, Federico II University of Naples, Italy
| | - Pasquale Berloco
- Department of General Surgery and Organ Transplantation, Sapienza University of Rome, Rome, Italy
| | - Rosanna Venere
- Department of Medico-Surgical Sciences and Biotechnologies, Polo Pontino, Sapienza University of Rome, Rome, Italy
| | - Tsunekazu Oikawa
- Department of Cell Biology and Physiology, Program in Molecular Biology and Biotechnology, UNC School of Medicine, Chapel Hill, NC 27599, United States
| | - Lola Reid
- Department of Cell Biology and Physiology, Program in Molecular Biology and Biotechnology, UNC School of Medicine, Chapel Hill, NC 27599, United States
| | - Domenico Alvaro
- Department of Medico-Surgical Sciences and Biotechnologies, Polo Pontino, Sapienza University of Rome, Rome, Italy; Eleonora Lorillard Spencer-Cenci Foundation, Rome, Italy
| | - Eugenio Gaudio
- Department of Anatomical, Histological, Forensic Medicine and Orthopedics Sciences, Sapienza University of Rome, Rome, Italy.
| |
Collapse
|
8
|
Booth C, Soker T, Baptista P, Ross CL, Soker S, Farooq U, Stratta RJ, Orlando G. Liver bioengineering: Current status and future perspectives. World J Gastroenterol 2012; 18:6926-34. [PMID: 23322990 PMCID: PMC3531676 DOI: 10.3748/wjg.v18.i47.6926] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/03/2012] [Revised: 11/16/2012] [Accepted: 11/24/2012] [Indexed: 02/06/2023] Open
Abstract
The present review aims to illustrate the strategies that are being implemented to regenerate or bioengineer livers for clinical purposes. There are two general pathways to liver bioengineering and regeneration. The first consists of creating a supporting scaffold, either synthetically or by decellularization of human or animal organs, and seeding cells on the scaffold, where they will mature either in bioreactors or in vivo. This strategy seems to offer the quickest route to clinical translation, as demonstrated by the development of liver organoids from rodent livers which were repopulated with organ specific cells of animal and/or human origin. Liver bioengineering has potential for transplantation and for toxicity testing during preclinical drug development. The second possibility is to induce liver regeneration of dead or resected tissue by manipulating cell pathways. In fact, it is well known that the liver has peculiar regenerative potential which allows hepatocyte hyperplasia after amputation of liver volume. Infusion of autologous bone marrow cells, which aids in liver regeneration, into patients was shown to be safe and to improve their clinical condition, but the specific cells responsible for liver regeneration have not yet been determined and the underlying mechanisms remain largely unknown. A complete understanding of the cell pathways and dynamics and of the functioning of liver stem cell niche is necessary for the clinical translation of regenerative medicine strategies. As well, it will be crucial to elucidate the mechanisms through which cells interact with the extracellular matrix, and how this latter supports and drives cell fate.
Collapse
|
9
|
Manohar R, Komori J, Guzik L, Stolz DB, Chandran UR, LaFramboise WA, Lagasse E. Identification and expansion of a unique stem cell population from adult mouse gallbladder. Hepatology 2011; 54:1830-41. [PMID: 21793026 PMCID: PMC3205206 DOI: 10.1002/hep.24568] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Abstract
UNLABELLED The identification of resident stem cells in the mouse gallbladder is, to date, unexplored. In addition, the relationship between adult gallbladder stem cells and intrahepatic bile duct (IHBD) cells is not well understood. The aim of this study was to isolate stem cells from an adult mouse gallbladder and determine whether they were unique, compared to IHBD cells. By limiting dilution analyses and index sorts, we found that an EpCAM(+) CD49f(hi) epithelial cell subpopulation from primary gallbladder is enriched in colony-forming cells, compared to EpCAM(+) CD49f(lo) cells. EpCAM(+) CD49f(hi) cells expressed cluster of differentiation (CD)29, CD133, and stem cell antigen-1, but were negative for lineage markers CD31, CD45, and F4/80. Using a novel feeder cell-culture system, we observed long-term (>passage 20) and clonal expansion of the EpCAM(+) CD49f(hi) cells in vitro. In a matrigel differentiation assay, EpCAM(+) CD49f(+) cells expanding in vitro underwent organotypic morphogenesis forming ductular structures and cysts. These structures are similar to, and recapitulate a transport function of, primary gallbladder. EpCAM(+) CD49f(+) cells also engraft into the subcutaneous space of recipient mice. We compared primary gallbladder and IHBD cells by flow cytometry and found phenotypic differences in the expression of CD49f, CD49e, CD81, CD26, CD54, and CD166. In addition, oligonucleotide microarrays showed that the expanded EpCAM(+) CD49f(+) gallbladder cells and IHBD cells exhibit differences related to lipid and drug metabolism. Notable genes that were different are cytochrome P450, glutathione S-transferase, Indian hedgehog, and solute carrier family genes. CONCLUSION We have isolated an epithelial cell population from primary mouse gallbladder with stem cell characteristics and found it to be unique, compared to IHBD cells.
Collapse
Affiliation(s)
- Rohan Manohar
- McGowan Institute for Regenerative Medicine, Department of Pathology, University of Pittsburgh School of Medicine, Pittsburgh PA
| | - Junji Komori
- McGowan Institute for Regenerative Medicine, Department of Pathology, University of Pittsburgh School of Medicine, Pittsburgh PA
| | - Lynda Guzik
- McGowan Institute for Regenerative Medicine, Department of Pathology, University of Pittsburgh School of Medicine, Pittsburgh PA
| | - Donna Beer Stolz
- Center for Biological Imaging, Department of Cell Biology and Physiology, University of Pittsburgh School of Medicine, Pittsburgh, PA
| | - Uma R. Chandran
- Department of Biomedical Informatics, University of Pittsburgh School of Medicine, Pittsburgh, PA,University of Pittsburgh Cancer Institute, Hillman Cancer Center, Pittsburgh, PA
| | - William A. LaFramboise
- University of Pittsburgh Cancer Institute, Hillman Cancer Center, Pittsburgh, PA,Clinical Genomics Facility, University of Pittsburgh School of Medicine, Pittsburgh, PA
| | - Eric Lagasse
- McGowan Institute for Regenerative Medicine, Department of Pathology, University of Pittsburgh School of Medicine, Pittsburgh PA
| |
Collapse
|
10
|
Ezzat TM, Dhar DK, Newsome PN, Malagó M, Olde Damink SWM. Use of hepatocyte and stem cells for treatment of post-resectional liver failure: are we there yet? Liver Int 2011; 31:773-84. [PMID: 21645208 DOI: 10.1111/j.1478-3231.2011.02530.x] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
Post-operative liver failure following extensive resections for liver tumours is a rare but significant complication. The only effective treatment is liver transplantation (LT); however, there is a debate about its use given the high mortality compared with the outcomes of LT for chronic liver diseases. Cell therapy has emerged as a possible alternative to LT especially as endogenous hepatocyte proliferation is likely inhibited in the setting of prior chemo/radiotherapy. Both hepatocyte and stem cell transplantations have shown promising results in the experimental setting; however, there are few reports on their clinical application. This review identifies the potential stem cell sources in the body, and highlights the triggering factors that lead to their mobilization and integration in liver regeneration following major liver resections.
Collapse
Affiliation(s)
- Tarek M Ezzat
- HPB and Liver Transplantation Surgery, Royal Free Hospital, University College London, Pond Street, London, UK
| | | | | | | | | |
Collapse
|