1
|
Jakab M, Rostalski T, Lee KH, Mogler C, Augustin HG. Tie2 Receptor in Tumor-Infiltrating Macrophages Is Dispensable for Tumor Angiogenesis and Tumor Relapse after Chemotherapy. Cancer Res 2022; 82:1353-1364. [PMID: 35373291 PMCID: PMC9762345 DOI: 10.1158/0008-5472.can-21-3181] [Citation(s) in RCA: 15] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/22/2021] [Revised: 12/05/2021] [Accepted: 01/18/2022] [Indexed: 01/07/2023]
Abstract
Tumor relapse after chemotherapy relies on the reconstruction of damaged tumor vasculature. In this context, proangiogenic Tie2-expressing macrophages have been suggested to serve as crucial instructors of tumor revascularization by secreting angiogenic factors while being closely associated with the vessel wall. Although the proangiogenic nature of Tie2+ macrophages is well described, the functional contribution of macrophage Tie2 expression remains elusive. Here, we employed a Cre-loxP system to specifically delete Tie2 in macrophages. In multiple syngeneic solid tumor models and two distinct chemotherapeutic treatment regimens, macrophage-expressed Tie2 did not contribute to primary tumor growth, tumor revascularization after chemotherapy, tumor recurrence, or metastasis. Exposing cultured murine macrophage cell lines and bone marrow-derived macrophages to hypoxia or stimulating them with Ang2 did not induce expression of Tie2 at the RNA or protein level. Furthermore, a comprehensive meta-analysis of publicly available single cell RNA sequencing datasets of human and murine tumor-infiltrating CD11b+ myeloid cells did not reveal a transcriptionally distinct macrophage population marked by the expression of Tie2. Collectively, these data question the previously reported critical role of Tie2-expressing macrophages for tumor angiogenesis and tumor relapse after chemotherapy. Moreover, lack of Tie2 inducibility and absence of Tie2-positive macrophages in multiple recently published tumor studies refute a possible prognostic value of macrophage-expressed Tie2. SIGNIFICANCE Multiple preclinical tumor models, cell stimulation experiments, and meta-analysis of published tumor single cell RNA sequencing data challenge the reported role of Tie2-positive macrophages for tumor angiogenesis, metastasis, and relapse after chemotherapy. See related commentary by Zhang and Brekken, p. 1172.
Collapse
Affiliation(s)
- Moritz Jakab
- European Center for Angioscience (ECAS), Medical Faculty Mannheim, Heidelberg University, Heidelberg, Germany
- Division of Vascular Oncology and Metastasis, German Cancer Research Center Heidelberg (DKFZ-ZMBH Alliance), Heidelberg, Germany
- Faculty of Biosciences, Heidelberg University, Heidelberg, Germany
| | - Till Rostalski
- European Center for Angioscience (ECAS), Medical Faculty Mannheim, Heidelberg University, Heidelberg, Germany
- Division of Vascular Oncology and Metastasis, German Cancer Research Center Heidelberg (DKFZ-ZMBH Alliance), Heidelberg, Germany
| | - Ki Hong Lee
- European Center for Angioscience (ECAS), Medical Faculty Mannheim, Heidelberg University, Heidelberg, Germany
- Division of Vascular Oncology and Metastasis, German Cancer Research Center Heidelberg (DKFZ-ZMBH Alliance), Heidelberg, Germany
- Faculty of Biosciences, Heidelberg University, Heidelberg, Germany
| | - Carolin Mogler
- Institute of Pathology, TUM School of Medicine, Munich, Germany
| | - Hellmut G. Augustin
- European Center for Angioscience (ECAS), Medical Faculty Mannheim, Heidelberg University, Heidelberg, Germany
- Division of Vascular Oncology and Metastasis, German Cancer Research Center Heidelberg (DKFZ-ZMBH Alliance), Heidelberg, Germany
| |
Collapse
|
2
|
Landers-Ramos RQ, Sapp RM, Shill DD, Hagberg JM, Prior SJ. Exercise and Cardiovascular Progenitor Cells. Compr Physiol 2019; 9:767-797. [PMID: 30892694 DOI: 10.1002/cphy.c180030] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
Autologous stem/progenitor cell-based methods to restore blood flow and function to ischemic tissues are clinically appealing for the substantial proportion of the population with cardiovascular diseases. Early preclinical and case studies established the therapeutic potential of autologous cell therapies for neovascularization in ischemic tissues. However, trials over the past ∼15 years reveal the benefits of such therapies to be much smaller than originally estimated and a definitive clinical benefit is yet to be established. Recently, there has been an emphasis on improving the number and function of cells [herein generally referred to as circulating angiogenic cells (CACs)] used for autologous cell therapies. CACs include of several subsets of circulating cells, including endothelial progenitor cells, with proangiogenic potential that is largely exerted through paracrine functions. As exercise is known to improve CV outcomes such as angiogenesis and endothelial function, much attention is being given to exercise to improve the number and function of CACs. Accordingly, there is a growing body of evidence that acute, short-term, and chronic exercise have beneficial effects on the number and function of different subsets of CACs. In particular, recent studies show that aerobic exercise training can increase the number of CACs in circulation and enhance the function of isolated CACs as assessed in ex vivo assays. This review summarizes the roles of different subsets of CACs and the effects of acute and chronic exercise on CAC number and function, with a focus on the number and paracrine function of circulating CD34+ cells, CD31+ cells, and CD62E+ cells. © 2019 American Physiological Society. Compr Physiol 9:767-797, 2019.
Collapse
Affiliation(s)
- Rian Q Landers-Ramos
- University of Maryland School of Public Health, Department of Kinesiology, College Park, Maryland, USA.,Education and Clinical Center, Baltimore Veterans Affairs Geriatric Research, Baltimore, Maryland, USA.,University of Maryland School of Medicine, Department of Medicine, Baltimore, Maryland, USA
| | - Ryan M Sapp
- University of Maryland School of Public Health, Department of Kinesiology, College Park, Maryland, USA
| | - Daniel D Shill
- University of Maryland School of Public Health, Department of Kinesiology, College Park, Maryland, USA
| | - James M Hagberg
- University of Maryland School of Public Health, Department of Kinesiology, College Park, Maryland, USA
| | - Steven J Prior
- University of Maryland School of Public Health, Department of Kinesiology, College Park, Maryland, USA.,Education and Clinical Center, Baltimore Veterans Affairs Geriatric Research, Baltimore, Maryland, USA.,University of Maryland School of Medicine, Department of Medicine, Baltimore, Maryland, USA
| |
Collapse
|
3
|
Vascular endothelial growth factor modified macrophages transdifferentiate into endothelial-like cells and decrease foam cell formation. Biosci Rep 2017; 37:BSR20170002. [PMID: 28536311 PMCID: PMC5479018 DOI: 10.1042/bsr20170002] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/03/2017] [Revised: 05/20/2017] [Accepted: 05/22/2017] [Indexed: 12/30/2022] Open
Abstract
Macrophages are largely involved in the whole process of atherosclerosis from an initiation lesion to an advanced lesion. Endothelial disruption is the initial step and macrophage-derived foam cells are the hallmark of atherosclerosis. Promotion of vascular integrity and inhibition of foam cell formation are two important strategies for preventing atherosclerosis. How can we inhibit even the reverse negative role of macrophages in atherosclerosis? The present study was performed to investigate if overexpressing endogenous human vascular endothelial growth factor (VEGF) could facilitate transdifferentiation of macrophages into endothelial-like cells (ELCs) and inhibit foam cell formation. We demonstrated that VEGF-modified macrophages which stably overexpressed human VEGF (hVEGF165) displayed a high capability to alter their phenotype and function into ELCs in vitro. Exogenous VEGF could not replace endogenous VEGF to induce the transdifferentiation of macrophages into ELCs in vitro. We further showed that VEGF-modified macrophages significantly decreased cytoplasmic lipid accumulation after treatment with oxidized LDL (ox-LDL). Moreover, down-regulation of CD36 expression in these cells was probably one of the mechanisms of reduction in foam cell formation. Our results provided the in vitro proof of VEGF-modified macrophages as atheroprotective therapeutic cells by both promotion of vascular repair and inhibition of foam cell formation.
Collapse
|
4
|
Corliss BA, Azimi MS, Munson J, Peirce SM, Murfee WL. Macrophages: An Inflammatory Link Between Angiogenesis and Lymphangiogenesis. Microcirculation 2016; 23:95-121. [PMID: 26614117 PMCID: PMC4744134 DOI: 10.1111/micc.12259] [Citation(s) in RCA: 239] [Impact Index Per Article: 26.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/27/2015] [Accepted: 11/23/2015] [Indexed: 12/14/2022]
Abstract
Angiogenesis and lymphangiogenesis often occur in response to tissue injury or in the presence of pathology (e.g., cancer), and it is these types of environments in which macrophages are activated and increased in number. Moreover, the blood vascular microcirculation and the lymphatic circulation serve as the conduits for entry and exit for monocyte-derived macrophages in nearly every tissue and organ. Macrophages both affect and are affected by the vessels through which they travel. Therefore, it is not surprising that examination of macrophage behaviors in both angiogenesis and lymphangiogenesis has yielded interesting observations that suggest macrophages may be key regulators of these complex growth and remodeling processes. In this review, we will take a closer look at macrophages through the lens of angiogenesis and lymphangiogenesis, examining how their dynamic behaviors may regulate vessel sprouting and function. We present macrophages as a cellular link that spatially and temporally connects angiogenesis with lymphangiogenesis, in both physiological growth and in pathological adaptations, such as tumorigenesis. As such, attempts to therapeutically target macrophages in order to affect these processes may be particularly effective, and studying macrophages in both settings will accelerate the field's understanding of this important cell type in health and disease.
Collapse
Affiliation(s)
- Bruce A. Corliss
- Department of Biomedical Engineering, 415 Lane Road, University of Virginia, Charlottesville, VA 22908
| | - Mohammad S. Azimi
- Department of Biomedical Engineering, 500 Lindy Boggs Energy Center, Tulane University, New Orleans, LA 70118
| | - Jenny Munson
- Department of Biomedical Engineering, 415 Lane Road, University of Virginia, Charlottesville, VA 22908
| | - Shayn M. Peirce
- Department of Biomedical Engineering, 415 Lane Road, University of Virginia, Charlottesville, VA 22908
| | - Walter Lee Murfee
- Department of Biomedical Engineering, 500 Lindy Boggs Energy Center, Tulane University, New Orleans, LA 70118
| |
Collapse
|
5
|
Collet G, Szade K, Nowak W, Klimkiewicz K, El Hafny-Rahbi B, Szczepanek K, Sugiyama D, Weglarczyk K, Foucault-Collet A, Guichard A, Mazan A, Nadim M, Fasani F, Lamerant-Fayel N, Grillon C, Petoud S, Beloeil JC, Jozkowicz A, Dulak J, Kieda C. Endothelial precursor cell-based therapy to target the pathologic angiogenesis and compensate tumor hypoxia. Cancer Lett 2015; 370:345-57. [PMID: 26577811 DOI: 10.1016/j.canlet.2015.11.008] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/06/2015] [Revised: 11/04/2015] [Accepted: 11/04/2015] [Indexed: 01/08/2023]
Abstract
Hypoxia-inducing pathologies as cancer develop pathologic and inefficient angiogenesis which rules tumor facilitating microenvironment, a key target for therapy. As such, the putative ability of endothelial precursor cells (EPCs) to specifically home to hypoxic sites of neovascularization prompted to design optimized, site-specific, cell-mediated, drug-/gene-targeting approach. Thus, EPC lines were established from aorta-gonad-mesonephros (AGM) of murine 10.5 dpc and 11.5 dpc embryo when endothelial repertoire is completed. Lines representing early endothelial differentiation steps were selected: MAgEC10.5 and MagEC11.5. Distinct in maturation, they differently express VEGF receptors, VE-cadherin and chemokine/receptors. MAgEC11.5, more differentiated than MAgEC 10.5, displayed faster angiogenesis in vitro, different response to hypoxia and chemokines. Both MAgEC lines cooperated to tube-like formation with mature endothelial cells and invaded tumor spheroids through a vasculogenesis-like process. In vivo, both MAgEC-formed vessels established blood flow. Intravenously injected, both MAgECs invaded Matrigel(TM)-plugs and targeted tumors. Here we show that EPCs (MAgEC11.5) target tumor angiogenesis and allow local overexpression of hypoxia-driven soluble VEGF-receptor2 enabling drastic tumor growth reduction. We propose that such EPCs, able to target tumor angiogenesis, could act as therapeutic gene vehicles to inhibit tumor growth by vessel normalization resulting from tumor hypoxia alleviation.
Collapse
Affiliation(s)
- Guillaume Collet
- Centre for Molecular Biophysics, Cell Recognition and Glycobiology, UPR4301-CNRS, rue Charles Sadron, Orléans 45071, France; Faculty of Biochemistry, Biophysics and Biotechnology, Jagiellonian University, ul. Gronostajowa 7, Kraków 30387, Poland
| | - Krzysztof Szade
- Centre for Molecular Biophysics, Cell Recognition and Glycobiology, UPR4301-CNRS, rue Charles Sadron, Orléans 45071, France; Faculty of Biochemistry, Biophysics and Biotechnology, Jagiellonian University, ul. Gronostajowa 7, Kraków 30387, Poland
| | - Witold Nowak
- Centre for Molecular Biophysics, Cell Recognition and Glycobiology, UPR4301-CNRS, rue Charles Sadron, Orléans 45071, France; Faculty of Biochemistry, Biophysics and Biotechnology, Jagiellonian University, ul. Gronostajowa 7, Kraków 30387, Poland
| | - Krzysztof Klimkiewicz
- Centre for Molecular Biophysics, Cell Recognition and Glycobiology, UPR4301-CNRS, rue Charles Sadron, Orléans 45071, France; Faculty of Biochemistry, Biophysics and Biotechnology, Jagiellonian University, ul. Gronostajowa 7, Kraków 30387, Poland
| | - Bouchra El Hafny-Rahbi
- Centre for Molecular Biophysics, Cell Recognition and Glycobiology, UPR4301-CNRS, rue Charles Sadron, Orléans 45071, France
| | - Karol Szczepanek
- Centre for Molecular Biophysics, Cell Recognition and Glycobiology, UPR4301-CNRS, rue Charles Sadron, Orléans 45071, France; Faculty of Biochemistry, Biophysics and Biotechnology, Jagiellonian University, ul. Gronostajowa 7, Kraków 30387, Poland
| | - Daisuke Sugiyama
- Division of Hematopoietic Stem Cells, Kyushu University Faculty of Medical Sciences, Maidashi, Higashi-Ku, Fukuoka 812-8582, Japan
| | - Kazimierz Weglarczyk
- Centre for Molecular Biophysics, Cell Recognition and Glycobiology, UPR4301-CNRS, rue Charles Sadron, Orléans 45071, France
| | - Alexandra Foucault-Collet
- Centre for Molecular Biophysics, Cell Recognition and Glycobiology, UPR4301-CNRS, rue Charles Sadron, Orléans 45071, France
| | - Alan Guichard
- Centre for Molecular Biophysics, Cell Recognition and Glycobiology, UPR4301-CNRS, rue Charles Sadron, Orléans 45071, France
| | - Andrzej Mazan
- Centre for Molecular Biophysics, Cell Recognition and Glycobiology, UPR4301-CNRS, rue Charles Sadron, Orléans 45071, France; Faculty of Biochemistry, Biophysics and Biotechnology, Jagiellonian University, ul. Gronostajowa 7, Kraków 30387, Poland
| | - Mahdi Nadim
- Centre for Molecular Biophysics, Cell Recognition and Glycobiology, UPR4301-CNRS, rue Charles Sadron, Orléans 45071, France
| | - Fabienne Fasani
- Centre for Molecular Biophysics, Cell Recognition and Glycobiology, UPR4301-CNRS, rue Charles Sadron, Orléans 45071, France
| | - Nathalie Lamerant-Fayel
- Centre for Molecular Biophysics, Cell Recognition and Glycobiology, UPR4301-CNRS, rue Charles Sadron, Orléans 45071, France
| | - Catherine Grillon
- Centre for Molecular Biophysics, Cell Recognition and Glycobiology, UPR4301-CNRS, rue Charles Sadron, Orléans 45071, France
| | - Stéphane Petoud
- Centre for Molecular Biophysics, Cell Recognition and Glycobiology, UPR4301-CNRS, rue Charles Sadron, Orléans 45071, France
| | - Jean-Claude Beloeil
- Centre for Molecular Biophysics, Cell Recognition and Glycobiology, UPR4301-CNRS, rue Charles Sadron, Orléans 45071, France
| | - Alicja Jozkowicz
- Faculty of Biochemistry, Biophysics and Biotechnology, Jagiellonian University, ul. Gronostajowa 7, Kraków 30387, Poland; Malopolska Biotechnology Centre, Jagiellonian University, Gronostajowa 7A, Kraków 30387, Poland
| | - Jozef Dulak
- Faculty of Biochemistry, Biophysics and Biotechnology, Jagiellonian University, ul. Gronostajowa 7, Kraków 30387, Poland; Malopolska Biotechnology Centre, Jagiellonian University, Gronostajowa 7A, Kraków 30387, Poland.
| | - Claudine Kieda
- Centre for Molecular Biophysics, Cell Recognition and Glycobiology, UPR4301-CNRS, rue Charles Sadron, Orléans 45071, France; Malopolska Biotechnology Centre, Jagiellonian University, Gronostajowa 7A, Kraków 30387, Poland.
| |
Collapse
|
6
|
Mathieu E, Battiston KG, McBane JE, Davidson L, Suuronen EJ, Santerre JP, Labow RS. Characterization of a degradable polar hydrophobic ionic polyurethane with circulating angiogenic cells in vitro. JOURNAL OF BIOMATERIALS SCIENCE-POLYMER EDITION 2014; 25:1159-73. [PMID: 24898697 DOI: 10.1080/09205063.2014.923367] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/25/2022]
Abstract
This study investigated the interaction of human circulating angiogenic cells (CACs) with a degradable polar hydrophobic ionic polyurethane (D-PHI) which has been previously shown to exhibit anti-inflammatory character and favorable interactions with human endothelial cells (ECs). Given the implication of the CACs in microvessel development it was of intrinsic interest to expand our knowledge of D-PHI biocompatibility with this relevant primary cell involved in angiogenesis. The findings will be compared to a well-established benchmark substrate for CACs, fibronectin-coated tissue culture polystyrene (TCPS). Immunoblotting analysis showed that CACs were a heterogeneous population of cells composed mostly of monocytic cells expressing the CD14 marker. Assessment of the cytokine release profile, using ELISA, showed that D-PHI supported a higher concentration of interleukin-10 (IL-10) when compared to the concentration of tumor necrosis factor alpha, which is indicative of an anti-inflammatory phenotype, and was different from the response with TCPS. It was found that the CACs were attached to D-PHI and remained viable and functional (nitric oxide production) during the seven days of culture. However, there did not appear to be any significant proliferation on D-PHI, contrary to the CAC growth on fibronectin-coated TCPS. It was concluded that D-PHI displayed some of the qualities suitable to enable the retention of CACs onto this substrate, as well as maintaining an anti-inflammatory phenotype, characteristics which have been reported to be important for angiogenesis in vivo.
Collapse
Affiliation(s)
- Eva Mathieu
- a Division of Cardiac Surgery , University of Ottawa Heart Institute , Ottawa , Canada
| | | | | | | | | | | | | |
Collapse
|
7
|
Munster M, Fremder E, Miller V, Ben-Tsedek N, Davidi S, Scherer SJ, Shaked Y. Anti-VEGF-A affects the angiogenic properties of tumor-derived microparticles. PLoS One 2014; 9:e95983. [PMID: 24752333 PMCID: PMC3994111 DOI: 10.1371/journal.pone.0095983] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/27/2014] [Accepted: 04/01/2014] [Indexed: 11/26/2022] Open
Abstract
Tumor derived microparticles (TMPs) have recently been shown to contribute to tumor re-growth partially by inducing the mobilization and tumor homing of specific bone marrow derived pro-angiogenic cells (BMDCs). Since antiangiogenic drugs block proangiogenic BMDC mobilization and tumor homing, we asked whether TMPs from cells exposed to an antiangiogenic drug may affect BMDC activity and trafficking. Here we show that the level of VEGF-A is reduced in TMPs from EMT/6 breast carcinoma cells exposed to the anti-VEGF-A antibody, B20. Consequently, these TMPs exhibit reduced angiogenic potential as evaluated by a Matrigel plug and Boyden chamber assays. Consistently, BMDC mobilization, tumor angiogenesis, microvessel density and BMDC-colonization in growing tumors are reduced in mice inoculated with TMPs from B20-exposed cells as compared to mice inoculated with control TMPs. Collectively, our results suggest that the neutralization of VEGF-A in cultured tumor cells can block TMP-induced BMDC mobilization and colonization of tumors and hence provide another mechanism of action by which antiangiogenic drugs act to inhibit tumor growth and angiogenesis.
Collapse
Affiliation(s)
- Michal Munster
- Department of Molecular pharmacology, Rappaport Faculty of Medicine, Technion, Haifa, Israel
| | - Ella Fremder
- Department of Molecular pharmacology, Rappaport Faculty of Medicine, Technion, Haifa, Israel
| | - Valeria Miller
- Department of Molecular pharmacology, Rappaport Faculty of Medicine, Technion, Haifa, Israel
| | - Neta Ben-Tsedek
- Department of Molecular pharmacology, Rappaport Faculty of Medicine, Technion, Haifa, Israel
| | - Shiri Davidi
- Department of Molecular pharmacology, Rappaport Faculty of Medicine, Technion, Haifa, Israel
| | | | - Yuval Shaked
- Department of Molecular pharmacology, Rappaport Faculty of Medicine, Technion, Haifa, Israel
| |
Collapse
|
8
|
Abstract
Tumor-associated macrophages (TAMs) derived from primary tumors are believed to facilitate circulating tumor cell (CTC) seeding of distant metastases, but the mechanisms of these processes are poorly understood. Although many studies have focused on the migration of CTCs, less attention has been given to TAMs that, like CTCs, derive from tumor sites. Using precision microfilters under low-flow conditions, we isolated circulating cancer-associated macrophage-like cells (CAMLs) from the peripheral blood of patients with breast, pancreatic, or prostate cancer. CAMLs, which are not found in healthy individuals, were found to express epithelial, monocytic, and endothelial protein markers and were observed bound to CTCs in circulation. These data support the hypothesis that disseminated TAMs can be used as a biomarker of advanced disease and suggest that they have a participatory role in tumor cell migration.
Collapse
|
9
|
Kawamoto T, Sasajima J, Sugiyama Y, Nakamura K, Tanabe H, Fujiya M, Nata T, Iuchi Y, Ashida T, Torimoto Y, Mizukami Y, Kohgo Y. Ex vivo activation of angiogenic property in human peripheral blood-derived monocytes by thrombopoietin. Int J Hematol 2013; 98:417-29. [DOI: 10.1007/s12185-013-1423-8] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/13/2012] [Revised: 08/21/2013] [Accepted: 08/23/2013] [Indexed: 12/22/2022]
|
10
|
Du J, Liu L, Lay F, Wang Q, Dou C, Zhang X, Hosseini SM, Simon A, Rees DJ, Ahmed AK, Sebastian R, Sarkar K, Milner S, Marti GP, Semenza GL, Harmon JW. Combination of HIF-1α gene transfection and HIF-1-activated bone marrow-derived angiogenic cell infusion improves burn wound healing in aged mice. Gene Ther 2013; 20:1070-6. [DOI: 10.1038/gt.2013.32] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/21/2013] [Revised: 05/10/2013] [Accepted: 05/15/2013] [Indexed: 01/13/2023]
|
11
|
Abstract
BACKGROUND The role of bone marrow-derived cells in stimulating angiogenesis, vascular repair or remodelling has been well established, but the nature of the circulating angiogenic cells is still controversial. DESIGN The existing literature on different cell types that contribute to angiogenesis in multiple pathologies, most notably ischaemic and tumour angiogenesis, is reviewed, with a focus on subtypes of angiogenic mononuclear cells and their local recruitment and activation. RESULTS A large number of different cells of myeloid origin support angiogenesis without incorporating permanently into the newly formed vessel, which distinguishes these circulating angiogenic cells (CAC) from endothelial progenitor cells (EPC). Although CAC frequently express individual endothelial markers, they all share multiple characteristics of monocytes and only express a limited set of discriminative surface markers in the circulation. When cultured ex vivo, or surrounding the angiogenic vessel in vivo, however, many of them acquire similar additional markers, making their discrimination in situ difficult. CONCLUSION Different subsets of monocytes show angiogenic properties, but the distinct microenvironment, in vitro or in vivo, is needed for the development of their pro-angiogenic function.
Collapse
Affiliation(s)
- Julie Favre
- Department of Molecular Cell Biology and Immunology, VU University Medical Center, Amsterdam, the Netherlands
| | | | | |
Collapse
|
12
|
Generation of functional blood vessels from a single c-kit+ adult vascular endothelial stem cell. PLoS Biol 2012; 10:e1001407. [PMID: 23091420 PMCID: PMC3473016 DOI: 10.1371/journal.pbio.1001407] [Citation(s) in RCA: 122] [Impact Index Per Article: 9.4] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/04/2011] [Accepted: 09/05/2012] [Indexed: 12/22/2022] Open
Abstract
Adult vascular endothelial stem cells are shown to reside in the blood vessel wall endothelium. When isolated, these cells are capable of clonal expansion and generate functional blood vessels in vivo. In adults, the growth of blood vessels, a process known as angiogenesis, is essential for organ growth and repair. In many disorders including cancer, angiogenesis becomes excessive. The cellular origin of new vascular endothelial cells (ECs) during blood vessel growth in angiogenic situations has remained unknown. Here, we provide evidence for adult vascular endothelial stem cells (VESCs) that reside in the blood vessel wall endothelium. VESCs constitute a small subpopulation within CD117+ (c-kit+) ECs capable of undergoing clonal expansion while other ECs have a very limited proliferative capacity. Isolated VESCs can produce tens of millions of endothelial daughter cells in vitro. A single transplanted c-kit-expressing VESC by the phenotype lin−CD31+CD105+Sca1+CD117+ can generate in vivo functional blood vessels that connect to host circulation. VESCs also have long-term self-renewal capacity, a defining functional property of adult stem cells. To provide functional verification on the role of c-kit in VESCs, we show that a genetic deficit in endothelial c-kit expression markedly decreases total colony-forming VESCs. In vivo, c-kit expression deficit resulted in impaired EC proliferation and angiogenesis and retardation of tumor growth. Isolated VESCs could be used in cell-based therapies for cardiovascular repair to restore tissue vascularization after ischemic events. VESCs also provide a novel cellular target to block pathological angiogenesis and cancer growth. Angiogenesis—the growth of blood vessels—is essential for organ growth and repair, but also occurs during tumorigenesis and in certain inflammatory disorders. All blood vessels are lined by endothelial cells (ECs)—thin, flattened cells that form a continuous monolayer throughout the entire circulatory system. The cellular origin of new vascular ECs during blood vessel growth in angiogenic situations in adults is a matter of debate. New ECs could develop, in principle, from as yet undiscovered stem cells, as is well documented for the differentiated cells of skin or epithelia, or by the duplication of existing differentiated ECs. Here, we provide evidence for the existence of vascular endothelial stem cells (VESCs) that reside in the adult blood vessel wall endothelium. VESCs constitute a small subpopulation of ECs capable of clonal expansion, while other ECs have a very limited proliferative capacity. When isolated, these VESCs can produce tens of millions of endothelial daughter cells, and a single transplanted VESC can generate in vivo functional blood vessels that connect to host blood circulation. Isolated VESCs could be used in cell-based therapies for cardiovascular repair to restore tissue vascularization following ischemia and could also be pursued as a novel cellular target of inhibition to block pathological angiogenesis, for example during tumor growth.
Collapse
|
13
|
Takaku M, Tomita S, Kurobe H, Kihira Y, Morimoto A, Higashida M, Ikeda Y, Ushiyama A, Hashimoto I, Nakanishi H, Tamaki T. Systemic preconditioning by a prolyl hydroxylase inhibitor promotes prevention of skin flap necrosis via HIF-1-induced bone marrow-derived cells. PLoS One 2012; 7:e42964. [PMID: 22880134 PMCID: PMC3413653 DOI: 10.1371/journal.pone.0042964] [Citation(s) in RCA: 32] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/23/2012] [Accepted: 07/16/2012] [Indexed: 01/07/2023] Open
Abstract
Background Local skin flaps often present with flap necrosis caused by critical disruption of the blood supply. Although animal studies demonstrate enhanced angiogenesis in ischemic tissue, no strategy for clinical application of this phenomenon has yet been defined. Hypoxia-inducible factor 1 (HIF-1) plays a pivotal role in ischemic vascular responses, and its expression is induced by the prolyl hydroxylase inhibitor dimethyloxalylglycine (DMOG). We assessed whether preoperative stabilization of HIF-1 by systemic introduction of DMOG improves skin flap survival. Methods and Results Mice with ischemic skin flaps on the dorsum were treated intraperitoneally with DMOG 48 hr prior to surgery. The surviving area with neovascularization of the ischemic flaps was significantly greater in the DMOG-treated mice. Significantly fewer apoptotic cells were present in the ischemic flaps of DMOG-treated mice. Interestingly, marked increases in circulating endothelial progenitor cells (EPCs) and bone marrow proliferative progenitor cells were observed within 48 hr after DMOG treatment. Furthermore, heterozygous HIF-1α-deficient mice exhibited smaller surviving flap areas, fewer circulating EPCs, and larger numbers of apoptotic cells than did wild-type mice, while DMOG pretreatment of the mutant mice completely restored these parameters. Finally, reconstitution of wild-type mice with the heterozygous deficient bone marrow cells significantly decreased skin flap survival. Conclusion We demonstrated that transient activation of the HIF signaling pathway by a single systemic DMOG treatment upregulates not only anti-apoptotic pathways but also enhances neovascularization with concomitant increase in the numbers of bone marrow-derived progenitor cells.
Collapse
Affiliation(s)
- Mitsuru Takaku
- Department of Plastic and Reconstructive Surgery, The University of Tokushima Graduate School, Tokushima, Japan
| | - Shuhei Tomita
- Department of Pharmacology, The University of Tokushima Graduate School, Tokushima, Japan
- * E-mail:
| | - Hirotsugu Kurobe
- Department of Cardiovascular Surgery, The University of Tokushima Graduate School, Tokushima, Japan
| | - Yoshitaka Kihira
- Department of Pharmacology, The University of Tokushima Graduate School, Tokushima, Japan
| | - Atsushi Morimoto
- Department of Plastic and Reconstructive Surgery, The University of Tokushima Graduate School, Tokushima, Japan
| | - Mayuko Higashida
- Nutrition and Metabolism, Institute of Health Biosciences, The University of Tokushima Graduate School, Tokushima, Japan
| | - Yasumasa Ikeda
- Department of Pharmacology, The University of Tokushima Graduate School, Tokushima, Japan
| | - Akira Ushiyama
- Department of Environmental Health, National Institute of Public Health, Saitama, Japan
| | - Ichiro Hashimoto
- Department of Plastic and Reconstructive Surgery, The University of Tokushima Graduate School, Tokushima, Japan
| | - Hideki Nakanishi
- Department of Plastic and Reconstructive Surgery, The University of Tokushima Graduate School, Tokushima, Japan
| | - Toshiaki Tamaki
- Department of Pharmacology, The University of Tokushima Graduate School, Tokushima, Japan
| |
Collapse
|
14
|
Hagensen MK, Vanhoutte PM, Bentzon JF. Arterial endothelial cells: still the craftsmen of regenerated endothelium. Cardiovasc Res 2012; 95:281-9. [PMID: 22652005 DOI: 10.1093/cvr/cvs182] [Citation(s) in RCA: 31] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/31/2023] Open
Abstract
For more than a decade, a prevailing hypothesis in research related to arterial disease has been that circulating endothelial progenitor cells (EPCs) provide protection by their innate ability to replace dysfunctional or damaged endothelium. This paradigm has led to extensive investigation of EPCs in the hope of finding therapeutic targets to control their homing and differentiation. However, from the very beginning, the nomenclature and the phenotype of EPCs have been subject to controversy and there are currently no specific markers that can unambiguously identify these cells. Moreover, many of the initial observations that EPCs differentiate to endothelial cells in the course of arterial disease have been criticized for methodological problems. The present review discusses the contrasting experimental evidence as to the role of EPCs in contributing to relining of the endothelium and highlights some of the methodological pitfalls and terminological ambiguities that confuse the field.
Collapse
Affiliation(s)
- Mette K Hagensen
- Atherosclerosis Research Unit, Institute of Clinical Medicine and Department of Cardiology, Aarhus University Hospital, Brendstrupgaardsvej, Skejby, Aarhus N, Denmark.
| | | | | |
Collapse
|
15
|
Sarkar K, Rey S, Zhang X, Sebastian R, Marti GP, Fox-Talbot K, Cardona AV, Du J, Tan YS, Liu L, Lay F, Gonzalez FJ, Harmon JW, Semenza GL. Tie2-dependent knockout of HIF-1 impairs burn wound vascularization and homing of bone marrow-derived angiogenic cells. Cardiovasc Res 2011; 93:162-9. [PMID: 22028336 DOI: 10.1093/cvr/cvr282] [Citation(s) in RCA: 24] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/22/2022] Open
Abstract
AIMS Hypoxia-inducible factor 1 (HIF-1) is a heterodimer composed of HIF-1α and HIF-1β subunits. HIF-1 is known to promote tissue vascularization by activating the transcription of genes encoding angiogenic factors, which bind to receptors on endothelial cells (ECs) and bone marrow-derived angiogenic cells (BMDACs). In this study, we analysed whether HIF-1 activity in the responding ECs and BMDACs is also required for cutaneous vascularization during burn wound healing. METHODS AND RESULTS We generated mice with floxed alleles at the Hif1a or Arnt locus encoding HIF-1α and HIF-1β, respectively. Expression of Cre recombinase was driven by the Tie2 gene promoter, which is expressed in ECs and bone marrow cells. Tie2Cre(+) and Tie2Cre(-) mice were subjected to burn wounds of reproducible diameter and depth. Deficiency of HIF-1α or HIF-1β in Tie2-lineage cells resulted in delayed wound closure, reduced vascularization, decreased cutaneous blood flow, impaired BMDAC mobilization, and decreased BMDAC homing to burn wounds. CONCLUSION HIF-1 activity in Tie2-lineage cells is required for the mobilization and homing of BMDACs to cutaneous burn wounds and for the vascularization of burn wound tissue.
Collapse
Affiliation(s)
- Kakali Sarkar
- Vascular Program, Institute for Cell Engineering, The Johns Hopkins University School of Medicine, Baltimore, MD 21205, USA
| | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
16
|
Rey S, Luo W, Shimoda LA, Semenza GL. Metabolic reprogramming by HIF-1 promotes the survival of bone marrow-derived angiogenic cells in ischemic tissue. Blood 2011; 117:4988-98. [PMID: 21389314 PMCID: PMC3100705 DOI: 10.1182/blood-2010-11-321190] [Citation(s) in RCA: 50] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/29/2010] [Accepted: 03/01/2011] [Indexed: 01/17/2023] Open
Abstract
A major obstacle to using bone marrow cell-based therapies for ischemic cardiovascular disease is that transplanted cells must survive in an ischemic microenvironment characterized by low oxygen, glucose, and pH. We demonstrate that treatment of bone marrow-derived angiogenic cells (BMDACs) with dimethyloxalylglycine, an α-ketoglutarate antagonist that induces hypoxia-inducible factor 1 (HIF-1) activity, results in metabolic reprogramming of these cells, with increased glucose uptake, decreased O(2) consumption, increased lactate production, decreased reactive oxygen species, and increased intracellular pH. These effects are dependent on HIF-1, which transactivates target genes encoding metabolic enzymes and membrane transporters. Dimethyloxalylglycine-treated BMDACs have a significant survival advantage under conditions of low O(2) and low pH ex vivo and in ischemic tissue. Combined HIF-1α-based gene and cell therapy reduced tissue necrosis even when BMDAC donors and ischemic recipient mice were 17 months old, suggesting that this approach may have therapeutic utility in elderly patients with critical limb ischemia.
Collapse
Affiliation(s)
- Sergio Rey
- Institute for Cell Engineering, Johns Hopkins University Schoolof Medicine, Baltimore, MD, USA
| | | | | | | |
Collapse
|
17
|
Zhang X, Sarkar K, Rey S, Sebastian R, Andrikopoulou E, Marti GP, Fox-Talbot K, Semenza GL, Harmon JW. Aging impairs the mobilization and homing of bone marrow-derived angiogenic cells to burn wounds. J Mol Med (Berl) 2011; 89:985-95. [PMID: 21499736 DOI: 10.1007/s00109-011-0754-2] [Citation(s) in RCA: 43] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/12/2011] [Revised: 03/09/2011] [Accepted: 03/14/2011] [Indexed: 12/24/2022]
Abstract
Impaired wound healing in the elderly represents a major clinical problem. Delineating the cellular and molecular mechanisms by which aging impairs wound healing may lead to the development of improved treatment strategies for elderly patients with non-healing wounds. Neovascularization is an essential step in wound healing, and bone marrow-derived angiogenic cells (BMDACs) play an important role in vascularization. Using a mouse full-thickness burn wound model, we demonstrate that perfusion and vascularization of burn wounds were impaired by aging and were associated with dramatically reduced mobilization of BMDACs bearing the cell surface molecules CXCR4 and Sca1. Expression of stromal-derived factor 1 (SDF-1), the cytokine ligand for CXCR4, was significantly decreased in peripheral blood and burn wounds of old mice. Expression of hypoxia-inducible factor (HIF)-1α was detected in burn wounds from young (2-month-old), but not old (2-year-old), mice. When BMDACs from young donor mice were injected intravenously, homing to burn wound tissue was impaired in old recipient mice, whereas the age of the BMDAC donor mice had no effect on homing. Our results indicate that aging impairs burn wound vascularization by impairing the mobilization of BMDACs and their homing to burn wound tissue as a result of impaired HIF-1 induction and SDF-1 signaling.
Collapse
Affiliation(s)
- Xianjie Zhang
- Hendrix Burn Laboratory, Department of Surgery, Johns Hopkins Bayview Medical Center, Baltimore, MD 21224, USA
| | | | | | | | | | | | | | | | | |
Collapse
|
18
|
Abstract
The concept of using stem cells for cardiovascular repair holds great potential, but uncertainties in preclinical experiments must be addressed before their therapeutic application. Contemporary proteomic techniques can help to characterize cell preparations more thoroughly and identify some of the potential causes that may lead to a high failure rate in clinical trials. The first part of this review discusses the broader application of proteomics to stem cell research by providing an overview of the main proteomic technologies and how they might help the translation of stem cell therapy. The second part focuses on the controversy about endothelial progenitor cells (EPCs) and raises cautionary flags for marker assignment and assessment of cell purity. A proteomics-led approach in early outgrowth EPCs has already raised the awareness that markers used to define their endothelial potential may arise from an uptake of platelet proteins. A platelet microparticle-related transfer of endothelial characteristics to mononuclear cells can result in a misinterpretation of the assay. The necessity to perform counterstaining for platelet markers in this setting is not fully appreciated. Similarly, the presence of platelets and platelet microparticles is not taken into consideration when functional improvements are directly attributed to EPCs, whereas saline solutions or plain medium serve as controls. Thus, proteomics shed new light on the caveats of a common stem cell assay in cardiovascular research, which might explain some of the inconsistencies in the field.
Collapse
Affiliation(s)
- Marianna Prokopi
- King's British Heart Foundation Centre, King's College London, United Kingdom
| | | |
Collapse
|
19
|
Fang S, Salven P. Stem cells in tumor angiogenesis. J Mol Cell Cardiol 2011; 50:290-5. [DOI: 10.1016/j.yjmcc.2010.10.024] [Citation(s) in RCA: 46] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/23/2010] [Revised: 10/19/2010] [Accepted: 10/19/2010] [Indexed: 01/01/2023]
|
20
|
Coffelt SB, Lewis CE, Naldini L, Brown JM, Ferrara N, De Palma M. Elusive identities and overlapping phenotypes of proangiogenic myeloid cells in tumors. THE AMERICAN JOURNAL OF PATHOLOGY 2010; 176:1564-76. [PMID: 20167863 DOI: 10.2353/ajpath.2010.090786] [Citation(s) in RCA: 117] [Impact Index Per Article: 7.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
Abstract
It is now established that bone marrow-derived myeloid cells regulate tumor angiogenesis. This was originally inferred from studies of human tumor biopsies in which a positive correlation was seen between the number of tumor-infiltrating myeloid cells, such as macrophages and neutrophils, and tumor microvessel density. However, unequivocal evidence was only provided once mouse models were used to examine the effects on tumor angiogenesis by genetically or pharmacologically targeting myeloid cells. Since then, identifying the exact myeloid cell types involved in this process has proved challenging because of myeloid cell heterogeneity and the expression of overlapping phenotypic markers in tumors. As a result, investigators often simply refer to them now as "bone marrow-derived myeloid cells." Here we review the findings of various attempts to phenotype the myeloid cells involved and discuss the therapeutic implications of correctly identifying-and thus being able to target-this proangiogenic force in tumors.
Collapse
Affiliation(s)
- Seth B Coffelt
- Medical School, University of Sheffield, Sheffield, S10 2RX, UK
| | | | | | | | | | | |
Collapse
|
21
|
Rey S, Semenza GL. Hypoxia-inducible factor-1-dependent mechanisms of vascularization and vascular remodelling. Cardiovasc Res 2010; 86:236-42. [PMID: 20164116 DOI: 10.1093/cvr/cvq045] [Citation(s) in RCA: 407] [Impact Index Per Article: 27.1] [Reference Citation Analysis] [Abstract] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/09/2023] Open
Abstract
The vascular system delivers oxygen and nutrients to every cell in the vertebrate organism. Hypoxia-inducible factor 1 (HIF-1) is a master regulator of hypoxic/ischaemic vascular responses, driving transcriptional activation of hundreds of genes involved in vascular reactivity, angiogenesis, arteriogenesis, and the mobilization and homing of bone marrow-derived angiogenic cells. This review will focus on the pivotal role of HIF-1 in vascular homeostasis, the involvement of HIF-1 in vascular diseases, and recent advances in targeting HIF-1 for therapy in preclinical models.
Collapse
Affiliation(s)
- Sergio Rey
- Vascular Program, Institute for Cell Engineering, The Johns Hopkins University School of Medicine, Broadway Research Building, Suite 671, 733 N. Broadway, Baltimore, MD 21205, USA
| | | |
Collapse
|
22
|
Shaked Y, Voest EE. Bone marrow derived cells in tumor angiogenesis and growth: are they the good, the bad or the evil? Biochim Biophys Acta Rev Cancer 2009; 1796:1-4. [PMID: 19703646 DOI: 10.1016/j.bbcan.2009.07.002] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/29/2008] [Revised: 02/13/2009] [Accepted: 02/20/2009] [Indexed: 01/08/2023]
Abstract
Increasing evidence implicates an important role for a variety of bone marrow derived cells (BMDCs) in tumor angiogenesis and metastatic tumor growth. These cells are derived either from the hematopoietic or mesenchymal cell lineage, and they are distinguished, in part, by the expression of the panhematopoietic marker - CD45. Some of these cell populations can colonize tumors perivascularily, and appear to promote angiogenesis and tumor cell proliferation by paracraine mechanisms, whereas others can contribute "directly" to the growth of tumor vessel capillaries or metastases. In this review we focus in particular on the role of hemangiocytes or recruited bone marrow derived circulating cells (RBCCs) in neovascularization, the contribution of VEGFR1+ hematopoietic stem cells and endothelial precursor cells in metastasis, and the involvement of myeloid derived suppressor CD11b+/Gr-1+ cells in the resistance of tumors to certain antiangiogenic drugs, e.g., VEGF blocking antibodies.
Collapse
Affiliation(s)
- Yuval Shaked
- Molecular Pharmacology, Rappaport Faculty of Medicine, Technion - Israel Institute of Technology, Haifa, Israel.
| | | |
Collapse
|
23
|
Iivanainen E, Lauttia S, Zhang N, Tvorogov D, Kulmala J, Grenman R, Salven P, Elenius K. The EGFR inhibitor gefitinib suppresses recruitment of pericytes and bone marrow-derived perivascular cells into tumor vessels. Microvasc Res 2009; 78:278-85. [PMID: 19596357 DOI: 10.1016/j.mvr.2009.06.010] [Citation(s) in RCA: 25] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/11/2009] [Revised: 06/29/2009] [Accepted: 06/29/2009] [Indexed: 12/19/2022]
Abstract
Drugs that target EGFR have established anti-tumor effect and are used in the clinic. Here we addressed whether inhibition of EGFR tyrosine kinase activity by gefitinib in tumor microenvironment affected tumor angiogenesis or vasculogenesis. A syngeneic tumor model of mice with grafted GFP-labeled bone marrow cells was used to analyze the effects of gefitinib on different cellular components of tumor vasculature. To characterize tumor cell-independent stromal effects of EGFR targeting, the mice were injected with B16 melanoma cells not expressing significant quantities of EGFR, and treated with gefitinib for seven days, a period not sufficient for significant reduction in total tumor volume. Numbers of vessels as well as cell surface areas covered by markers of endothelial, pericyte and bone marrow-derived progenitor cells were quantified by image analysis of tumor sections. Quantitative analysis of immunohistochemical data demonstrated that gefitinib decreased the coverage of small CD31-positive vessels with NG2-positive pericytes, as well as reduced the recruitment of perivascular GFP-positive bone marrow-derived progenitor cells within the tumor tissue. These results suggest that inhibition of EGFR activity in tumors has vascular effects in the absence of direct effect on tumor cells. EGFR targeting may lead to suppressed mobilization of pericytes needed for vessel stabilization, as well as of bone marrow-derived perivascular progenitor cells. These findings introduce novel cellular mechanisms by which EGFR targeted drugs may suppress tumor growth.
Collapse
Affiliation(s)
- Erika Iivanainen
- Department of Medical Biochemistry and Genetics, University of Turku, FIN-20520 Turku, Finland
| | | | | | | | | | | | | | | |
Collapse
|
24
|
Collino F, Revelli A, Massobrio M, Katsaros D, Schmitt-Ney M, Camussi G, Bussolati B. Epithelial-mesenchymal transition of ovarian tumor cells induces an angiogenic monocyte cell population. Exp Cell Res 2009; 315:2982-94. [PMID: 19538958 DOI: 10.1016/j.yexcr.2009.06.010] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/13/2009] [Revised: 06/05/2009] [Accepted: 06/07/2009] [Indexed: 12/26/2022]
Abstract
Vasculogenesis, or recruitment of progenitors able to differentiate into endothelial-like cells, may provide an important contribution to neovessel formation in tumors. However, the factors involved in the vasculogenic process and in particular the role of the epithelial-mesenchymal transition of tumor cells have not yet been investigated. We found a CD14(+)/KDR(+) angiogenic monocyte population in undifferentiated ovarian tumors, significantly increased in the corresponding tumor metastasis. In vitro, monocyte differentiation into CD14(+)/KDR(+) cells was induced by conditioned media from the primary ovarian tumor cells expressing a mesenchymal phenotype. In contrast, the ovarian tumor cell line SKOV3 expressing an epithelial phenotype was unable to stimulate the differentiation of monocytes into CD14(+)/KDR(+) cells. When an epithelial-mesenchymal transition was induced in SKOV3, they acquired this differentiative ability. Moreover, after mesenchymal transition pleiotrophin expression by SKOV3 was increased and conversely its blockade significantly reduced monocyte differentiation. The obtained CD14(+)/KDR(+) cell population showed the expression of endothelial markers, increased the formation of capillary-like structures by endothelial cells and promoted the migration of ovarian tumor cells in vitro. In conclusion, we showed that the epithelial-mesenchymal transition of ovarian tumor cells induced differentiation of monocytes into the pro-angiogenic CD14(+)/KDR(+) population and thus it may provide a tumor microenvironment that favours vasculogenesis and metastatization of the ovarian cancer.
Collapse
Affiliation(s)
- Federica Collino
- Department of Internal Medicine, Molecular Biotechnology Center, University of Turin, Turin, Italy
| | | | | | | | | | | | | |
Collapse
|