1
|
Matheny-Rabun C, Mokashi SS, Radenkovic S, Wiggins K, Dukes-Rimsky L, Angel P, Ghesquiere B, Kozicz T, Steet R, Morava E, Flanagan-Steet H. O-GlcNAcylation modulates expression and abundance of N-glycosylation machinery in an inherited glycosylation disorder. Cell Rep 2024; 43:114976. [PMID: 39561044 PMCID: PMC11656453 DOI: 10.1016/j.celrep.2024.114976] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/10/2024] [Revised: 10/14/2024] [Accepted: 10/24/2024] [Indexed: 11/21/2024] Open
Abstract
Core components of the N-glycosylation pathway are known, but the metabolic and post-translational mechanisms regulating this pathway in normal and disease states remain elusive. Using a multi-omic approach in zebrafish, we discovered a mechanism whereby O-GlcNAcylation directly impacts the expression and abundance of two rate-limiting proteins in the N-linked glycosylation pathway. We show in a model of an inherited glycosylation disorder PMM2-CDG, congenital disorders of glycosylation that phosphomannomutase deficiency is associated with increased levels of UDP-GlcNAc and protein O-GlcNAcylation. O-GlcNAc modification increases the transcript and protein abundance of both NgBR and Dpagt1 in pmm2m/m mutants. Modulating O-GlcNAc levels, NgBR abundance, or Dpagt1 activity exacerbated the cartilage phenotypes in pmm2 mutants, suggesting that O-GlcNAc-mediated increases in the N-glycosylation machinery are protective. These findings highlight nucleotide-sugar donors as metabolic sensors that regulate two spatially separated glycosylation pathways, demonstrating how their coordination is relevant to disease severity in the most common congenital disorder of glycosylation.
Collapse
Affiliation(s)
| | - Sneha S Mokashi
- JC Self Research Institute, Greenwood Genetic Center, Greenwood, SC 29646, USA
| | - Silvia Radenkovic
- Department of Clinical Genomics, Mayo Clinic, Rochester, MN 55905, USA
| | - Kali Wiggins
- JC Self Research Institute, Greenwood Genetic Center, Greenwood, SC 29646, USA
| | - Lynn Dukes-Rimsky
- JC Self Research Institute, Greenwood Genetic Center, Greenwood, SC 29646, USA
| | - Peggi Angel
- Department of Pharmacology and Immunology, Medical University of South Carolina, Charleston, SC 29425, USA
| | - Bart Ghesquiere
- Laboratory of Applied Mass Spectrometry, Department of Cellular and Molecular Medicine, KU Leuven, Leuven, Belgium; Metabolomics Core Facility Leuven, Center for Cancer Biology, VIB, Leuven, Belgium
| | - Tamas Kozicz
- Department of Clinical Genomics, Mayo Clinic, Rochester, MN 55905, USA
| | - Richard Steet
- JC Self Research Institute, Greenwood Genetic Center, Greenwood, SC 29646, USA
| | - Eva Morava
- Department of Clinical Genomics, Mayo Clinic, Rochester, MN 55905, USA
| | | |
Collapse
|
2
|
Dong Z, Wang F, Liu Y, Li Y, Yu H, Peng S, Sun T, Qu M, Sun K, Wang L, Ma Y, Chen K, Zhao J, Lin Q. Genomic and single-cell analyses reveal genetic signatures of swimming pattern and diapause strategy in jellyfish. Nat Commun 2024; 15:5936. [PMID: 39009560 PMCID: PMC11250803 DOI: 10.1038/s41467-024-49848-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/18/2023] [Accepted: 06/21/2024] [Indexed: 07/17/2024] Open
Abstract
Jellyfish exhibit innovative swimming patterns that contribute to exploring the origins of animal locomotion. However, the genetic and cellular basis of these patterns remains unclear. Herein, we generated chromosome-level genome assemblies of two jellyfish species, Turritopsis rubra and Aurelia coerulea, which exhibit straight and free-swimming patterns, respectively. We observe positive selection of numerous genes involved in statolith formation, hair cell ciliogenesis, ciliary motility, and motor neuron function. The lineage-specific absence of otolith morphogenesis- and ciliary movement-related genes in T. rubra may be associated with homeostatic structural statocyst loss and straight swimming pattern. Notably, single-cell transcriptomic analyses covering key developmental stages reveal the enrichment of diapause-related genes in the cyst during reverse development, suggesting that the sustained diapause state favours the development of new polyps under favourable conditions. This study highlights the complex relationship between genetics, locomotion patterns and survival strategies in jellyfish, thereby providing valuable insights into the evolutionary lineages of movement and adaptation in the animal kingdom.
Collapse
Affiliation(s)
- Zhijun Dong
- CAS Key Laboratory of Coastal Environmental Processes and Ecological Remediation, Yantai Institute of Coastal Zone Research, Chinese Academy of Sciences, Yantai, Shandong, 264003, China.
- University of Chinese Academy of Sciences, Beijing, 100101, China.
| | - Fanghan Wang
- CAS Key Laboratory of Coastal Environmental Processes and Ecological Remediation, Yantai Institute of Coastal Zone Research, Chinese Academy of Sciences, Yantai, Shandong, 264003, China
- University of Chinese Academy of Sciences, Beijing, 100101, China
| | - Yali Liu
- University of Chinese Academy of Sciences, Beijing, 100101, China
- CAS Key Laboratory of Tropical Marine Bio-Resources and Ecology, South China Sea Institute of Oceanology, Chinese Academy of Sciences, Guangzhou, 510301, China
- Guangdong Provincial Key Laboratory of Applied Marine Biology, South China Sea Institute of Oceanology, Chinese Academy of Sciences, Guangzhou, 510301, China
| | - Yongxue Li
- CAS Key Laboratory of Coastal Environmental Processes and Ecological Remediation, Yantai Institute of Coastal Zone Research, Chinese Academy of Sciences, Yantai, Shandong, 264003, China
- University of Chinese Academy of Sciences, Beijing, 100101, China
| | - Haiyan Yu
- College of the Environment and Ecology, Xiamen University, Xiamen, 361102, China
| | - Saijun Peng
- CAS Key Laboratory of Coastal Environmental Processes and Ecological Remediation, Yantai Institute of Coastal Zone Research, Chinese Academy of Sciences, Yantai, Shandong, 264003, China
- University of Chinese Academy of Sciences, Beijing, 100101, China
| | - Tingting Sun
- CAS Key Laboratory of Coastal Environmental Processes and Ecological Remediation, Yantai Institute of Coastal Zone Research, Chinese Academy of Sciences, Yantai, Shandong, 264003, China
- University of Chinese Academy of Sciences, Beijing, 100101, China
| | - Meng Qu
- University of Chinese Academy of Sciences, Beijing, 100101, China
- CAS Key Laboratory of Tropical Marine Bio-Resources and Ecology, South China Sea Institute of Oceanology, Chinese Academy of Sciences, Guangzhou, 510301, China
- Guangdong Provincial Key Laboratory of Applied Marine Biology, South China Sea Institute of Oceanology, Chinese Academy of Sciences, Guangzhou, 510301, China
| | - Ke Sun
- State Key Laboratory of Primate Biomedical Research, Institute of Primate Translational Medicine, Kunming University of Science and Technology, Kunming, Yunnan, 650500, China
| | - Lei Wang
- CAS Key Laboratory of Coastal Environmental Processes and Ecological Remediation, Yantai Institute of Coastal Zone Research, Chinese Academy of Sciences, Yantai, Shandong, 264003, China
- University of Chinese Academy of Sciences, Beijing, 100101, China
| | - Yuanqing Ma
- Shandong Key Laboratory of Marine Ecological Restoration, Shandong Marine Resource and Environment Research Institute, Yantai, Shandong, 264006, China
| | - Kai Chen
- State Key Laboratory of Primate Biomedical Research, Institute of Primate Translational Medicine, Kunming University of Science and Technology, Kunming, Yunnan, 650500, China
| | - Jianmin Zhao
- CAS Key Laboratory of Coastal Environmental Processes and Ecological Remediation, Yantai Institute of Coastal Zone Research, Chinese Academy of Sciences, Yantai, Shandong, 264003, China.
- University of Chinese Academy of Sciences, Beijing, 100101, China.
| | - Qiang Lin
- University of Chinese Academy of Sciences, Beijing, 100101, China.
- CAS Key Laboratory of Tropical Marine Bio-Resources and Ecology, South China Sea Institute of Oceanology, Chinese Academy of Sciences, Guangzhou, 510301, China.
- Guangdong Provincial Key Laboratory of Applied Marine Biology, South China Sea Institute of Oceanology, Chinese Academy of Sciences, Guangzhou, 510301, China.
| |
Collapse
|
3
|
Lee JJ, Wang T, Wiggins K, Lu PN, Underwood C, Ochenkowska K, Samarut E, Pollard LM, Flanagan-Steet H, Steet R. Dysregulated lysosomal exocytosis drives protease-mediated cartilage pathogenesis in multiple lysosomal disorders. iScience 2024; 27:109293. [PMID: 38495824 PMCID: PMC10940929 DOI: 10.1016/j.isci.2024.109293] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/21/2023] [Revised: 12/20/2023] [Accepted: 02/16/2024] [Indexed: 03/19/2024] Open
Abstract
The classic view of the lysosome as a static recycling center has been replaced with one of a dynamic and mobile hub of metabolic regulation. This revised view raises new questions about how dysfunction of this organelle causes pathology in inherited lysosomal disorders. Here we provide evidence for increased lysosomal exocytosis in the developing cartilage of three lysosomal disease zebrafish models with distinct etiologies. Dysregulated exocytosis was linked to altered cartilage development, increased activity of multiple cathepsin proteases, and cathepsin- and TGFβ-mediated pathogenesis in these models. Moreover, inhibition of cathepsin activity or direct blockade of exocytosis with small molecule modulators improved the cartilage phenotypes, reinforcing a connection between excessive extracellular protease activity and cartilage pathogenesis. This study highlights the pathogenic consequences in early cartilage development arising from uncontrolled release of lysosomal enzymes via exocytosis, and suggests that pharmacological enhancement of this process could be detrimental during tissue development.
Collapse
Affiliation(s)
- Jen-Jie Lee
- JC Self Research Institute, Greenwood Genetic Center, Greenwood, SC 29646, USA
| | - Tong Wang
- JC Self Research Institute, Greenwood Genetic Center, Greenwood, SC 29646, USA
| | - Kali Wiggins
- JC Self Research Institute, Greenwood Genetic Center, Greenwood, SC 29646, USA
| | - Po Nien Lu
- JC Self Research Institute, Greenwood Genetic Center, Greenwood, SC 29646, USA
| | - Christina Underwood
- Biochemical Genetics Laboratory, Greenwood Genetic Center, Greenwood, SC 29646, USA
| | - Katarzyna Ochenkowska
- Research Center, Centre hospitalier de l’Université de Montréal (CHUM), Montreal, Canada
- Department of Neuroscience, Université de Montréal, Montréal, Canada
| | - Eric Samarut
- Research Center, Centre hospitalier de l’Université de Montréal (CHUM), Montreal, Canada
- Department of Neuroscience, Université de Montréal, Montréal, Canada
| | - Laura M. Pollard
- Biochemical Genetics Laboratory, Greenwood Genetic Center, Greenwood, SC 29646, USA
| | | | - Richard Steet
- JC Self Research Institute, Greenwood Genetic Center, Greenwood, SC 29646, USA
| |
Collapse
|
4
|
Mignani L, Guerra J, Corli M, Capoferri D, Presta M. Zebra-Sphinx: Modeling Sphingolipidoses in Zebrafish. Int J Mol Sci 2023; 24:ijms24054747. [PMID: 36902174 PMCID: PMC10002607 DOI: 10.3390/ijms24054747] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/20/2023] [Revised: 02/24/2023] [Accepted: 02/27/2023] [Indexed: 03/06/2023] Open
Abstract
Sphingolipidoses are inborn errors of metabolism due to the pathogenic mutation of genes that encode for lysosomal enzymes, transporters, or enzyme cofactors that participate in the sphingolipid catabolism. They represent a subgroup of lysosomal storage diseases characterized by the gradual lysosomal accumulation of the substrate(s) of the defective proteins. The clinical presentation of patients affected by sphingolipid storage disorders ranges from a mild progression for some juvenile- or adult-onset forms to severe/fatal infantile forms. Despite significant therapeutic achievements, novel strategies are required at basic, clinical, and translational levels to improve patient outcomes. On these bases, the development of in vivo models is crucial for a better understanding of the pathogenesis of sphingolipidoses and for the development of efficacious therapeutic strategies. The teleost zebrafish (Danio rerio) has emerged as a useful platform to model several human genetic diseases owing to the high grade of genome conservation between human and zebrafish, combined with precise genome editing and the ease of manipulation. In addition, lipidomic studies have allowed the identification in zebrafish of all of the main classes of lipids present in mammals, supporting the possibility to model diseases of the lipidic metabolism in this animal species with the advantage of using mammalian lipid databases for data processing. This review highlights the use of zebrafish as an innovative model system to gain novel insights into the pathogenesis of sphingolipidoses, with possible implications for the identification of more efficacious therapeutic approaches.
Collapse
|
5
|
Klaver EJ, Dukes-Rimsky L, Kumar B, Xia ZJ, Dang T, Lehrman MA, Angel P, Drake RR, Freeze HH, Steet R, Flanagan-Steet H. Protease-dependent defects in N-cadherin processing drive PMM2-CDG pathogenesis. JCI Insight 2021; 6:153474. [PMID: 34784297 PMCID: PMC8783681 DOI: 10.1172/jci.insight.153474] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/26/2021] [Accepted: 11/10/2021] [Indexed: 11/17/2022] Open
Abstract
The genetic bases for the congenital disorders of glycosylation (CDG) continue to expand, but how glycosylation defects cause patient phenotypes remains largely unknown. Here, we combined developmental phenotyping and biochemical studies in a potentially new zebrafish model (pmm2sa10150) of PMM2-CDG to uncover a protease-mediated pathogenic mechanism relevant to craniofacial and motility phenotypes in mutant embryos. Mutant embryos had reduced phosphomannomutase activity and modest decreases in N-glycan occupancy as detected by matrix-assisted laser desorption ionization mass spectrometry imaging. Cellular analyses of cartilage defects in pmm2sa10150 embryos revealed a block in chondrogenesis that was associated with defective proteolytic processing, but seemingly normal N-glycosylation, of the cell adhesion molecule N-cadherin. The activities of the proconvertases and matrix metalloproteinases responsible for N-cadherin maturation were significantly altered in pmm2sa10150 mutant embryos. Importantly, pharmacologic and genetic manipulation of proconvertase activity restored matrix metalloproteinase activity, N-cadherin processing, and cartilage pathology in pmm2sa10150 embryos. Collectively, these studies demonstrate in CDG that targeted alterations in protease activity create a pathogenic cascade that affects the maturation of cell adhesion proteins critical for tissue development.
Collapse
Affiliation(s)
- Elsenoor J Klaver
- Complex Carbohydrate Research Center, University of Georgia, Athens, United States of America
| | - Lynn Dukes-Rimsky
- Research Department, Greenwood Genetic Center, Greenwood, United States of America
| | - Brijesh Kumar
- Research Department, Greenwood Genetic Center, Greenwood, United States of America
| | - Zhi-Jie Xia
- Human Genetics Program, Sanford Burnham Prebys Medical Discovery Institute, La Jolla, United States of America
| | - Tammie Dang
- Department of Pharmacology, UT Southwestern Medical Center, Dallas, United States of America
| | - Mark A Lehrman
- Department of Pharmacology, UT Southwestern Medical Center, Dallas, United States of America
| | - Peggi Angel
- Cell and Molecular Pharmacology and Experimental Therapeutics, Medical University of South Carolina, Charleston, United States of America
| | - Richard R Drake
- Cell and Molecular Pharmacology and Experimental Therapeutics, Medical University of South Carolina, Charleston, United States of America
| | - Hudson H Freeze
- Human Genetics Program, Sanford Burnham Prebys Medical Discovery Institute, La Jolla, United States of America
| | - Richard Steet
- Research Department, Greenwood Genetic Center, Greenwood, United States of America
| | | |
Collapse
|
6
|
Marí-Beffa M, Mesa-Román AB, Duran I. Zebrafish Models for Human Skeletal Disorders. Front Genet 2021; 12:675331. [PMID: 34490030 PMCID: PMC8418114 DOI: 10.3389/fgene.2021.675331] [Citation(s) in RCA: 19] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/02/2021] [Accepted: 06/08/2021] [Indexed: 12/17/2022] Open
Abstract
In 2019, the Nosology Committee of the International Skeletal Dysplasia Society provided an updated version of the Nosology and Classification of Genetic Skeletal Disorders. This is a reference list of recognized diseases in humans and their causal genes published to help clinician diagnosis and scientific research advances. Complementary to mammalian models, zebrafish has emerged as an interesting species to evaluate chemical treatments against these human skeletal disorders. Due to its versatility and the low cost of experiments, more than 80 models are currently available. In this article, we review the state-of-art of this “aquarium to bedside” approach describing the models according to the list provided by the Nosology Committee. With this, we intend to stimulate research in the appropriate direction to efficiently meet the actual needs of clinicians under the scope of the Nosology Committee.
Collapse
Affiliation(s)
- Manuel Marí-Beffa
- Department of Cell Biology, Genetics and Physiology, Faculty of Sciences, University of Málaga, IBIMA, Málaga, Spain.,Networking Biomedical Research Center in Bioengineering, Biomaterials and Nanomedicine (CIBER-BBN), Andalusian Centre for Nanomedicine and Biotechnology-BIONAND, Málaga, Spain
| | - Ana B Mesa-Román
- Department of Cell Biology, Genetics and Physiology, Faculty of Sciences, University of Málaga, IBIMA, Málaga, Spain
| | - Ivan Duran
- Department of Cell Biology, Genetics and Physiology, Faculty of Sciences, University of Málaga, IBIMA, Málaga, Spain.,Networking Biomedical Research Center in Bioengineering, Biomaterials and Nanomedicine (CIBER-BBN), Andalusian Centre for Nanomedicine and Biotechnology-BIONAND, Málaga, Spain
| |
Collapse
|
7
|
Lu PN, Moreland T, Christian CJ, Lund TC, Steet RA, Flanagan-Steet H. Inappropriate cathepsin K secretion promotes its enzymatic activation driving heart and valve malformation. JCI Insight 2020; 5:133019. [PMID: 33055423 PMCID: PMC7605527 DOI: 10.1172/jci.insight.133019] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/24/2020] [Accepted: 09/16/2020] [Indexed: 01/12/2023] Open
Abstract
Although congenital heart defects (CHDs) represent the most common birth defect, a comprehensive understanding of disease etiology remains unknown. This is further complicated since CHDs can occur in isolation or as a feature of another disorder. Analyzing disorders with associated CHDs provides a powerful platform to identify primary pathogenic mechanisms driving disease. Aberrant localization and expression of cathepsin proteases can perpetuate later-stage heart diseases, but their contribution toward CHDs is unclear. To investigate the contribution of cathepsins during cardiovascular development and congenital disease, we analyzed the pathogenesis of cardiac defects in zebrafish models of the lysosomal storage disorder mucolipidosis II (MLII). MLII is caused by mutations in the GlcNAc-1-phosphotransferase enzyme (Gnptab) that disrupt carbohydrate-dependent sorting of lysosomal enzymes. Without Gnptab, lysosomal hydrolases, including cathepsin proteases, are inappropriately secreted. Analyses of heart development in gnptab-deficient zebrafish show cathepsin K secretion increases its activity, disrupts TGF-β–related signaling, and alters myocardial and valvular formation. Importantly, cathepsin K inhibition restored normal heart and valve development in MLII embryos. Collectively, these data identify mislocalized cathepsin K as an initiator of cardiac disease in this lysosomal disorder and establish cathepsin inhibition as a viable therapeutic strategy. Mislocalized cathepsin K promotes cardiac disease in a zebrafish model of the lysosomal disorder mucolipidosis II and can be targeted by cathespin inhibition.
Collapse
Affiliation(s)
- Po-Nien Lu
- Greenwood Genetic Center, J.C. Self Research Institute, Greenwood, South Carolina, USA
| | - Trevor Moreland
- Greenwood Genetic Center, J.C. Self Research Institute, Greenwood, South Carolina, USA
| | - Courtney J Christian
- Biochemistry, Cell and Developmental Biology, Emory University Laney Graduate School, Atlanta, Georgia, USA
| | - Troy C Lund
- Department of Pediatrics, University of Minnesota Medical School, Minneapolis, Minnesota, USA
| | - Richard A Steet
- Greenwood Genetic Center, J.C. Self Research Institute, Greenwood, South Carolina, USA
| | | |
Collapse
|
8
|
Mucolipidoses Overview: Past, Present, and Future. Int J Mol Sci 2020; 21:ijms21186812. [PMID: 32957425 PMCID: PMC7555117 DOI: 10.3390/ijms21186812] [Citation(s) in RCA: 20] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/30/2020] [Revised: 09/13/2020] [Accepted: 09/14/2020] [Indexed: 12/12/2022] Open
Abstract
Mucolipidosis II and III (ML II/III) are caused by a deficiency of uridine-diphosphate N-acetylglucosamine: lysosomal-enzyme-N-acetylglucosamine-1-phosphotransferase (GlcNAc-1-phosphotransferase, EC2.7.8.17), which tags lysosomal enzymes with a mannose 6-phosphate (M6P) marker for transport to the lysosome. The process is performed by a sequential two-step process: first, GlcNAc-1-phosphotransferase catalyzes the transfer of GlcNAc-1-phosphate to the selected mannose residues on lysosomal enzymes in the cis-Golgi network. The second step removes GlcNAc from lysosomal enzymes by N-acetylglucosamine-1-phosphodiester α-N-acetylglucosaminidase (uncovering enzyme) and exposes the mannose 6-phosphate (M6P) residues in the trans-Golgi network, in which the enzymes are targeted to the lysosomes by M6Preceptors. A deficiency of GlcNAc-1-phosphotransferase causes the hypersecretion of lysosomal enzymes out of cells, resulting in a shortage of multiple lysosomal enzymes within lysosomes. Due to a lack of GlcNAc-1-phosphotransferase, the accumulation of cholesterol, phospholipids, glycosaminoglycans (GAGs), and other undegraded substrates occurs in the lysosomes. Clinically, ML II and ML III exhibit quite similar manifestations to mucopolysaccharidoses (MPSs), including specific skeletal deformities known as dysostosis multiplex and gingival hyperplasia. The life expectancy is less than 10 years in the severe type, and there is no definitive treatment for this disease. In this review, we have described the updated diagnosis and therapy on ML II/III.
Collapse
|
9
|
Establishment and characterization of Neu1-knockout zebrafish and its abnormal clinical phenotypes. Biochem J 2020; 477:2841-2857. [PMID: 32686823 DOI: 10.1042/bcj20200348] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/30/2020] [Revised: 07/09/2020] [Accepted: 07/17/2020] [Indexed: 11/17/2022]
Abstract
Mammalian sialidase Neu1 is involved in various physiological functions, including cell adhesion, differentiation, cancer metastasis, and diabetes through lysosomal catabolism and desialylation of glycoproteins at the plasma membrane. Various animal models have been established to further explore the functions of vertebrate Neu1. The present study focused on zebrafish (Danio rerio) belonging to Cypriniformes as an experimental animal model with neu1 gene deficiency. The results revealed that the zebrafish Neu1 desialyzed both α2-3 and α2-6 sialic acid linkages from oligosaccharides and glycoproteins at pH 4.5, and it is highly conserved with other fish species and mammalian Neu1. Furthermore, Neu1-knockout zebrafish (Neu1-KO) was established through CRISPR/Cas9 genome editing. Neu1-KO fish exhibited slight abnormal embryogenesis with the accumulation of pleural effusion; however, no embryonic lethality was observed. Although Neu1-KO fish were able to be maintained as homozygous, they showed smaller body length and weight than the wild-type (WT) fish, and muscle atrophy and curvature of the vertebra were observed in adult Neu1-KO fish (8 months). The expression patterns of myod and myog transcription factors regulating muscle differentiation varied between Neu1-KO and WT fish embryo. Expression of lysosomal-related genes, including ctsa, lamp1a, and tfeb were up-regulated in adult Neu1-KO muscle as compared with WT. Furthermore, the expression pattern of genes involved in bone remodeling (runx2a, runx2b, and mmp9) was decreased in Neu1-KO fish. These phenotypes were quite similar to those of Neu1-KO mice and human sialidosis patients, indicating the effectiveness of the established Neu1-KO zebrafish for the study of vertebrate Neu1 sialidase.
Collapse
|
10
|
Poore TS, Prager J, Weinman JP, Larson A, Houin P. Tracheal and lower airway changes in a patient with mucolipidosis type II. Pediatr Pulmonol 2020; 55:1843-1845. [PMID: 32270604 DOI: 10.1002/ppul.24765] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/23/2019] [Revised: 03/18/2020] [Accepted: 03/22/2020] [Indexed: 12/13/2022]
Abstract
INTRODUCTION Mucolipidosis type II (MLII) is a lysosomal storage disease causing systemic deposition of mucopolysaccharides. We describe imaging and bronchoscopy findings not previously reported in the literature in a child with MLII. CASE A 9-year-old with MLII s/p hematopoietic stem-cell transplant (HSCT), bronchiectasis, and aspiration presented with recurrent respiratory illnesses. Bronchoscopy and chest computed tomography were performed, showing a saber-sheath trachea with fixed narrowing and curvature. DISCUSSION This case describes potentially life-threatening airway distortion in MLII despite HSCT that cannot be ameliorated with tracheostomy. Etiology is unknown but likely due to abnormal deposition causing an immobile, stenotic airway and restricted thorax.
Collapse
Affiliation(s)
- Thomas S Poore
- Department of Pediatrics, Section of Pulmonology and Sleep Medicine, The Breathing Institute, Children's Hospital Colorado, University of Colorado School of Medicine, Aurora, Colorado
| | - Jeremy Prager
- Department of Otolaryngology, Division of Pediatric Otolaryngology, Children's Hospital Colorado, University of Colorado School of Medicine, Aurora, Colorado
| | - Jason P Weinman
- Department of Radiology, Pediatric Radiology, Children's Hospital Colorado, University of Colorado School of Medicine, Aurora, Colorado
| | - Austin Larson
- Department of Pediatrics, Section of Genetics and Metabolics, Children's Hospital Colorado, University of Colorado School of Medicine, Aurora, Colorado
| | - Paul Houin
- Department of Pediatrics, Section of Pulmonology and Sleep Medicine, The Breathing Institute, Children's Hospital Colorado, University of Colorado School of Medicine, Aurora, Colorado
| |
Collapse
|
11
|
Ates KM, Wang T, Moreland T, Veeranan-Karmegam R, Ma M, Jeter C, Anand P, Wenzel W, Kim HG, Wolfe LA, Stephen J, Adams DR, Markello T, Tifft CJ, Settlage R, Gahl WA, Gonsalvez GB, Malicdan MC, Flanagan-Steet H, Pan YA. Deficiency in the endocytic adaptor proteins PHETA1/2 impairs renal and craniofacial development. Dis Model Mech 2020; 13:dmm041913. [PMID: 32152089 PMCID: PMC7272357 DOI: 10.1242/dmm.041913] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/08/2019] [Accepted: 02/27/2020] [Indexed: 12/20/2022] Open
Abstract
A critical barrier in the treatment of endosomal and lysosomal diseases is the lack of understanding of the in vivo functions of the putative causative genes. We addressed this by investigating a key pair of endocytic adaptor proteins, PH domain-containing endocytic trafficking adaptor 1 and 2 (PHETA1/2; also known as FAM109A/B, Ses1/2, IPIP27A/B), which interact with the protein product of OCRL, the causative gene for Lowe syndrome. Here, we conducted the first study of PHETA1/2 in vivo, utilizing the zebrafish system. We found that impairment of both zebrafish orthologs, pheta1 and pheta2, disrupted endocytosis and ciliogenesis in renal tissues. In addition, pheta1/2 mutant animals exhibited reduced jaw size and delayed chondrocyte differentiation, indicating a role in craniofacial development. Deficiency of pheta1/2 resulted in dysregulation of cathepsin K, which led to an increased abundance of type II collagen in craniofacial cartilages, a marker of immature cartilage extracellular matrix. Cathepsin K inhibition rescued the craniofacial phenotypes in the pheta1/2 double mutants. The abnormal renal and craniofacial phenotypes in the pheta1/2 mutant animals were consistent with the clinical presentation of a patient with a de novo arginine (R) to cysteine (C) variant (R6C) of PHETA1. Expressing the patient-specific variant in zebrafish exacerbated craniofacial deficits, suggesting that the R6C allele acts in a dominant-negative manner. Together, these results provide insights into the in vivo roles of PHETA1/2 and suggest that the R6C variant is contributory to the pathogenesis of disease in the patient.This article has an associated First Person interview with the first author of the paper.
Collapse
Affiliation(s)
- Kristin M Ates
- Department of Neuroscience and Regenerative Medicine, Medical College of Georgia, Augusta University, Augusta, GA 30912, USA
- Center for Neurobiology Research, Fralin Biomedical Research Institute at Virginia Tech Carilion, Virginia Tech, Roanoke, VA 24016, USA
| | - Tong Wang
- Department of Neuroscience and Regenerative Medicine, Medical College of Georgia, Augusta University, Augusta, GA 30912, USA
- JC Self Research Institute, Greenwood Genetic Center, Greenwood, SC 29646, USA
| | - Trevor Moreland
- JC Self Research Institute, Greenwood Genetic Center, Greenwood, SC 29646, USA
| | | | - Manxiu Ma
- Department of Neuroscience and Regenerative Medicine, Medical College of Georgia, Augusta University, Augusta, GA 30912, USA
- Center for Neurobiology Research, Fralin Biomedical Research Institute at Virginia Tech Carilion, Virginia Tech, Roanoke, VA 24016, USA
| | - Chelsi Jeter
- JC Self Research Institute, Greenwood Genetic Center, Greenwood, SC 29646, USA
| | - Priya Anand
- Institute of Nanotechnology, Karlsruhe Institute of Technology, 76021 Karlsruhe, Germany
| | - Wolfgang Wenzel
- Institute of Nanotechnology, Karlsruhe Institute of Technology, 76021 Karlsruhe, Germany
| | - Hyung-Goo Kim
- Neurological Disorder Research Center, Qatar Biomedical Research Institute, Hamad Bin Khalifa University, Doha, Qatar
| | - Lynne A Wolfe
- Medical Genetics Branch, National Human Genome Research Institute, National Institutes of Health, Bethesda, MD 20892, USA
| | - Joshi Stephen
- Medical Genetics Branch, National Human Genome Research Institute, National Institutes of Health, Bethesda, MD 20892, USA
| | - David R Adams
- Medical Genetics Branch, National Human Genome Research Institute, National Institutes of Health, Bethesda, MD 20892, USA
| | - Thomas Markello
- Medical Genetics Branch, National Human Genome Research Institute, National Institutes of Health, Bethesda, MD 20892, USA
| | - Cynthia J Tifft
- Medical Genetics Branch, National Human Genome Research Institute, National Institutes of Health, Bethesda, MD 20892, USA
| | - Robert Settlage
- Advanced Research Computing Unit, Division of Information Technology, Virginia Tech, Blacksburg, VA 24060, USA
| | - William A Gahl
- Medical Genetics Branch, National Human Genome Research Institute, National Institutes of Health, Bethesda, MD 20892, USA
- National Institutes of Health Undiagnosed Diseases Program, National Institutes of Health, Bethesda, MD 20892, USA
| | - Graydon B Gonsalvez
- Department of Cellular Biology and Anatomy, Medical College of Georgia, Augusta University, Augusta, GA 30912, USA
| | - May Christine Malicdan
- Medical Genetics Branch, National Human Genome Research Institute, National Institutes of Health, Bethesda, MD 20892, USA
- National Institutes of Health Undiagnosed Diseases Program, National Institutes of Health, Bethesda, MD 20892, USA
| | | | - Y Albert Pan
- Department of Neuroscience and Regenerative Medicine, Medical College of Georgia, Augusta University, Augusta, GA 30912, USA
- Center for Neurobiology Research, Fralin Biomedical Research Institute at Virginia Tech Carilion, Virginia Tech, Roanoke, VA 24016, USA
- Department of Biomedical Sciences and Pathobiology, Virginia-Maryland College of Veterinary Medicine, Virginia Tech, Blacksburg, VA 24060, USA
- Department of Psychiatry and Behavioral Medicine, Virginia Tech Carilion School of Medicine, Roanoke, VA 24016, USA
| |
Collapse
|
12
|
Zhang T, Peterson RT. Modeling Lysosomal Storage Diseases in the Zebrafish. Front Mol Biosci 2020; 7:82. [PMID: 32435656 PMCID: PMC7218095 DOI: 10.3389/fmolb.2020.00082] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/01/2020] [Accepted: 04/08/2020] [Indexed: 12/13/2022] Open
Abstract
Lysosomal storage diseases (LSDs) are a family of 70 metabolic disorders characterized by mutations in lysosomal proteins that lead to storage material accumulation, multiple-organ pathologies that often involve neurodegeneration, and early mortality in a significant number of patients. Along with the necessity for more effective therapies, there exists an unmet need for further understanding of disease etiology, which could uncover novel pathways and drug targets. Over the past few decades, the growth in knowledge of disease-associated pathways has been facilitated by studies in model organisms, as advancements in mutagenesis techniques markedly improved the efficiency of model generation in mammalian and non-mammalian systems. In this review we highlight non-mammalian models of LSDs, focusing specifically on the zebrafish, a vertebrate model organism that shares remarkable genetic and metabolic similarities with mammals while also conferring unique advantages such as optical transparency and amenability toward high-throughput applications. We examine published zebrafish LSD models and their reported phenotypes, address organism-specific advantages and limitations, and discuss recent technological innovations that could provide potential solutions.
Collapse
Affiliation(s)
- T Zhang
- Department of Pharmacology and Toxicology, College of Pharmacy, University of Utah, Salt Lake City, UT, United States
| | - R T Peterson
- Department of Pharmacology and Toxicology, College of Pharmacy, University of Utah, Salt Lake City, UT, United States
| |
Collapse
|
13
|
Barnes JW, Aarnio-Peterson M, Norris J, Haskins M, Flanagan-Steet H, Steet R. Upregulation of Sortilin, a Lysosomal Sorting Receptor, Corresponds with Reduced Bioavailability of Latent TGFβ in Mucolipidosis II Cells. Biomolecules 2020; 10:biom10050670. [PMID: 32357547 PMCID: PMC7277838 DOI: 10.3390/biom10050670] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/17/2020] [Revised: 04/14/2020] [Accepted: 04/20/2020] [Indexed: 12/14/2022] Open
Abstract
Mucolipidosis II (ML-II) is a lysosomal disease caused by defects in the carbohydrate-dependent sorting of soluble hydrolases to lysosomes. Altered growth factor signaling has been identified as a contributor to the phenotypes associated with ML-II and other lysosomal disorders but an understanding of how these signaling pathways are affected is still emerging. Here, we investigated transforming growth factor beta 1 (TGFβ1) signaling in the context of ML-II patient fibroblasts, observing decreased TGFβ1 signaling that was accompanied by impaired TGFβ1-dependent wound closure. We found increased intracellular latent TGFβ1 complexes, caused by reduced secretion and stable localization in detergent-resistant lysosomes. Sortilin, a sorting receptor for hydrolases and TGFβ-related cytokines, was upregulated in ML-II fibroblasts as well as GNPTAB-null HeLa cells, suggesting a mechanism for inappropriate lysosomal targeting of TGFβ. Co-expression of sortilin and TGFβ in HeLa cells resulted in reduced TGFβ1 secretion. Elevated sortilin levels correlated with normal levels of cathepsin D in ML-II cells, consistent with a compensatory role for this receptor in lysosomal hydrolase targeting. Collectively, these data support a model whereby sortilin upregulation in cells with lysosomal storage maintains hydrolase sorting but suppresses TGFβ1 secretion through increased lysosomal delivery. These findings highlight an unexpected link between impaired lysosomal sorting and altered growth factor bioavailability.
Collapse
Affiliation(s)
- Jarrod W Barnes
- Division of Pulmonary, Allergy and Critical Care Medicine, University of Alabama at Birmingham, Birmingham, AL 35294, USA
| | | | - Joy Norris
- Greenwood Genetic Center, Greenwood, SC 29646, USA
| | - Mark Haskins
- Emeritus Professor, Pathology and Medical Genetics, School of Veterinary Medicine, University of Pennsylvania, Philadelphia, PA 19104-6051, USA
| | | | | |
Collapse
|
14
|
Flanagan-Steet H, Christian C, Lu PN, Aarnio-Peterson M, Sanman L, Archer-Hartmann S, Azadi P, Bogyo M, Steet RA. TGF-ß Regulates Cathepsin Activation during Normal and Pathogenic Development. Cell Rep 2019. [PMID: 29539424 PMCID: PMC6247414 DOI: 10.1016/j.celrep.2018.02.066] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/25/2023] Open
Abstract
Cysteine cathepsins play roles during development and disease beyond their function in lysosomal protein turnover. Here, we leverage a fluorescent activity-based probe (ABP), BMV109, to track cysteine cathepsins in normal and diseased zebrafish embryos. Using this probe in a model of mucolipidosis II, we show that loss of carbohydrate-dependent lysosomal sorting alters the activity of several cathepsin proteases. The data support a pathogenic mechanism where TGF-β signals enhance the proteolytic processing of pro-Ctsk by modulating the expression of chondroitin 4-sulfate (C4-S). In MLII, elevated C4-S corresponds with TGF-β-mediated increases in chst11 expression. Inhibiting chst11 impairs the proteolytic activation of Ctsk and alleviates the MLII phenotypes. These findings uncover a regulatory loop between TGF-β signaling and Ctsk activation that is altered in the context of lysosomal disease. This work highlights the power of ABPs to identify mechanisms underlying pathogenic development in living animals. Chondroitin sulfate is a known regulator of cathepsin protease activity. Flanagan-Steet et al. identify a positive feedback mechanism whereby cathepsins secreted from chondrocytes upon loss of lysosomal targeting activate TGF-β signaling in developing cartilage. This increased signaling, in turn, stimulates chondroitin-4 sulfation and enhances cathepsin activity.
Collapse
Affiliation(s)
| | - Courtney Christian
- Complex Carbohydrate Research Center, University of Georgia, Athens, GA 30606, USA
| | - Po-Nien Lu
- Complex Carbohydrate Research Center, University of Georgia, Athens, GA 30606, USA
| | | | - Laura Sanman
- Department of Pathology, Stanford University School of Medicine, Stanford, CA 94305-5324, USA
| | | | - Parastoo Azadi
- Complex Carbohydrate Research Center, University of Georgia, Athens, GA 30606, USA
| | - Matthew Bogyo
- Department of Pathology, Stanford University School of Medicine, Stanford, CA 94305-5324, USA
| | - Richard A Steet
- Complex Carbohydrate Research Center, University of Georgia, Athens, GA 30606, USA
| |
Collapse
|
15
|
Köse S, Aerts Kaya F, Kuşkonmaz B, Uçkan Çetinkaya D. Characterization of mesenchymal stem cells in mucolipidosis type II (I-cell disease). ACTA ACUST UNITED AC 2019; 43:171-178. [PMID: 31320815 PMCID: PMC6620033 DOI: 10.3906/biy-1902-20] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/24/2022]
Abstract
Mucolipidosis type II (ML-II, I-cell disease) is a fatal inherited lysosomal storage disease caused by a deficiency of the enzyme N-acetylglucosamine-1-phosphotransferase. A characteristic skeletal phenotype is one of the many clinical manifestations of ML-II. Since the mechanisms underlying these skeletal defects in ML-II are not completely understood, we hypothesized that a defect in osteogenic differentiation of ML-II bone marrow mesenchymal stem cells (BM-MSCs) might be responsible for this skeletal phenotype. Here, we assessed and characterized the cellular phenotype of BM-MSCs from a ML-II patient before (BBMT) and after BM transplantation (ABMT), and we compared the results with BM-MSCs from a carrier and a healthy donor. Morphologically, we did not observe differences in ML-II BBMT and ABMT or carrier MSCs in terms of size or granularity. Osteogenic differentiation was not markedly affected by disease or carrier status. Adipogenic differentiation was increased in BBMT ML-II MSCs, but chondrogenic differentiation was decreased in both BBMT and ABMT ML-II MSCs. Immunophenotypically no significant differences were observed between the samples. Interestingly, the proliferative capacity of BBMT and ABMT ML-II MSCs was increased in comparison to MSCs from age-matched healthy donors. These data suggest that MSCs are not likely to cause the skeletal phenotype observed in ML-II, but they may contribute to the pathogenesis of ML-II as a result of lysosomal storage-induced pathology.
Collapse
Affiliation(s)
- Sevil Köse
- Department of Medical Biology and Genetics, Faculty of Medicine, Atılım University, Ankara, Turkey.,Center for Stem Cell Research and Development (PEDI-STEM), Hacettepe University, Ankara, Turkey
| | - Fatima Aerts Kaya
- Center for Stem Cell Research and Development (PEDI-STEM), Hacettepe University, Ankara, Turkey.,Department of Stem Cell Sciences, Graduate School of Health Sciences, Hacettepe University, Ankara, Turkey
| | - Barış Kuşkonmaz
- Center for Stem Cell Research and Development (PEDI-STEM), Hacettepe University, Ankara, Turkey.,BMT Unit, Department of Pediatric Hematology, Hacettepe University Children's Hospital, Ankara, Turkey
| | - Duygu Uçkan Çetinkaya
- Center for Stem Cell Research and Development (PEDI-STEM), Hacettepe University, Ankara, Turkey.,Department of Stem Cell Sciences, Graduate School of Health Sciences, Hacettepe University, Ankara, Turkey.,BMT Unit, Department of Pediatric Hematology, Hacettepe University Children's Hospital, Ankara, Turkey
| |
Collapse
|
16
|
Wang P, Mazrier H, Caverly Rae J, Raj K, Giger U. A GNPTAB nonsense variant is associated with feline mucolipidosis II (I-cell disease). BMC Vet Res 2018; 14:416. [PMID: 30591066 PMCID: PMC6307278 DOI: 10.1186/s12917-018-1728-1] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/21/2018] [Accepted: 11/30/2018] [Indexed: 11/15/2022] Open
Abstract
Background Mucolipidosis II (ML II; I-cell disease) is caused by a deficiency of N-acetylglucosamine-1-phosphotransferase (GNPTAB; EC 2.7.8.17), which leads to a failure to internalize acid hydrolases into lysosomes for proper catabolism of various substances. This is an autosomal recessive lysosomal storage disease and causes severe progressive neuropathy and oculoskeletal dysfunction in humans (OMIM 252500). A naturally occurring disease model has been reported in juvenile domestic cats (OMIA 001248–9685) with clinical signs similar to human patients. We investigated the molecular genetic basis of ML II in a colony of affected cats by sequencing the coding and regulatory regions of GNPTAB from affected and clinically healthy related and unrelated domestic cats and compared the sequences to the published feline genome sequence (NCBI-RefSeq accession no. XM_003989173.4, Gene ID: 101100231). Results All affected cats were homozygous for a single base substitution (c.2644C > T) in exon 13 of GNPTAB. This variant results in a premature stop codon (p.Gln882*) which predicts severe truncation and complete dysfunction of the GNPTAB enzyme. About 140 GNPTAB variants have been described in human ML II patients, with 41.3% nonsense/missense mutations, nine occurring in the same gene region as in this feline model. Restriction fragment length polymorphism and allelic discrimination real-time polymerase chain reaction assays accurately differentiated between clear, asymptomatic carriers and homozygous affected cats. Conclusion Molecular genetic characterization advances this large animal model of ML II for use to further define the pathophysiology of the disease and evaluate novel therapeutic approaches for this fatal lysosomal storage disease in humans. Electronic supplementary material The online version of this article (10.1186/s12917-018-1728-1) contains supplementary material, which is available to authorized users.
Collapse
Affiliation(s)
- Ping Wang
- Section of Medical Genetics, School of Veterinary Medicine, University of Pennsylvania, Philadelphia, PA, USA.
| | - Hamutal Mazrier
- Section of Medical Genetics, School of Veterinary Medicine, University of Pennsylvania, Philadelphia, PA, USA
| | - Jessica Caverly Rae
- Section of Medical Genetics, School of Veterinary Medicine, University of Pennsylvania, Philadelphia, PA, USA
| | - Karthik Raj
- Section of Medical Genetics, School of Veterinary Medicine, University of Pennsylvania, Philadelphia, PA, USA
| | - Urs Giger
- Section of Medical Genetics, School of Veterinary Medicine, University of Pennsylvania, Philadelphia, PA, USA
| |
Collapse
|
17
|
Santos-Ledo A, Garcia-Macia M, Campbell PD, Gronska M, Marlow FL. Kinesin-1 promotes chondrocyte maintenance during skeletal morphogenesis. PLoS Genet 2017; 13:e1006918. [PMID: 28715414 PMCID: PMC5536392 DOI: 10.1371/journal.pgen.1006918] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/10/2017] [Revised: 07/31/2017] [Accepted: 07/11/2017] [Indexed: 01/03/2023] Open
Abstract
During skeletal morphogenesis diverse mechanisms are used to support bone formation. This can be seen in the bones that require a cartilage template for their development. In mammals the cartilage template is removed, but in zebrafish the cartilage template persists and the bone mineralizes around the cartilage scaffold. Remodeling of unmineralized cartilage occurs via planar cell polarity (PCP) mediated cell rearrangements that contribute to lengthening of elements; however, the mechanisms that maintain the chondrocyte template that supports perichondral ossification remain unclear. We report double mutants disrupting two zebrafish kinesin-I genes (hereafter kif5Blof) that we generated using CRISPR/Cas9 mutagenesis. We show that zygotic Kif5Bs have a conserved function in maintaining muscle integrity, and are required for cartilage remodeling and maintenance during craniofacial morphogenesis by a PCP-distinct mechanism. Further, kif5Blof does not activate ER stress response genes, but instead disrupts lysosomal function, matrix secretion, and causes deregulated autophagic markers and eventual chondrocyte apoptosis. Ultrastructural and transplantation analysis reveal neighboring cells engulfing extruded kif5Blof chondrocytes. Initial cartilage specification is intact; however, during remodeling, kif5Blof chondrocytes die and the cartilage matrix devoid of hypertrophic chondrocytes remains and impedes normal ossification. Chimeric and mosaic analyses indicate that Kif5B functions cell-autonomously in secretion, nuclear position, cell elongation and maintenance of hypertrophic chondrocytes. Interestingly, large groups of wild-type cells can support elongation of neighboring mutant cells. Finally, mosaic expression of kif5Ba, but not kif5Aa in cartilage rescues the chondrocyte phenotype, further supporting a specific requirement for Kif5B. Cumulatively, we show essential Kif5B functions in promoting cartilage remodeling and chondrocyte maintenance during zebrafish craniofacial morphogenesis.
Collapse
Affiliation(s)
- Adrian Santos-Ledo
- Department of Developmental and Molecular Biology. Albert Einstein College of Medicine, Bronx, New York, United States of America
- Institute of Genetic Medicine. Newcastle University, Newcastle Upon Tyne, United Kingdom
| | - Marina Garcia-Macia
- Institute for Cellular and Molecular Biosciences. Newcastle University, Newcastle Upon Tyne, United Kingdom
- Institute of Cellular Medicine. Newcastle University, Newcastle Upon Tyne, United Kingdom
| | - Philip D Campbell
- Department of Developmental and Molecular Biology. Albert Einstein College of Medicine, Bronx, New York, United States of America
| | - Marta Gronska
- Department of Neuroscience. Albert Einstein College of Medicine, Bronx, New York, United States of America
| | - Florence L Marlow
- Department of Developmental and Molecular Biology. Albert Einstein College of Medicine, Bronx, New York, United States of America
- Department of Neuroscience. Albert Einstein College of Medicine, Bronx, New York, United States of America
- Cell Developmental and Regenerative Biology Department. Icahn School of Medicine at Mount Sinai. New York, New York, United States of America
| |
Collapse
|
18
|
Flanagan-Steet H, Matheny C, Petrey A, Parker J, Steet R. Enzyme-specific differences in mannose phosphorylation between GlcNAc-1-phosphotransferase αβ and γ subunit deficient zebrafish support cathepsin proteases as early mediators of mucolipidosis pathology. Biochim Biophys Acta Gen Subj 2016; 1860:1845-53. [PMID: 27241848 DOI: 10.1016/j.bbagen.2016.05.029] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/10/2016] [Revised: 04/28/2016] [Accepted: 05/20/2016] [Indexed: 11/25/2022]
Abstract
Targeting soluble acid hydrolases to lysosomes requires the addition of mannose 6-phosphate residues on their N-glycans. This process is initiated by GlcNAc-1-phosphotransferase, a multi-subunit enzyme encoded by the GNPTAB and GNPTG genes. The GNPTAB gene products (the α and ß subunits) are responsible for recognition and catalysis of hydrolases whereas the GNPTG gene product (the γ subunit) enhances mannose phosphorylation of a subset of hydrolases. Here we identify and characterize a zebrafish gnptg insertional mutant and show that loss of the gamma subunit reduces mannose phosphorylation on a subset glycosidases but does not affect modification of several cathepsin proteases. We further show that glycosidases, but not cathepsins, are hypersecreted from gnptg(-/-) embryonic cells, as evidenced by reduced intracellular activity and increased circulating serum activity. The gnptg(-/-) embryos lack the gross morphological or craniofacial phenotypes shown in gnptab-deficient morphant embryos to result from altered cathepsin activity. Despite the lack of overt phenotypes, decreased fertilization and embryo survival were noted in mutants, suggesting that gnptg associated deposition of mannose 6-phosphate modified hydrolases into oocytes is important for early embryonic development. Collectively, these findings demonstrate that loss of the zebrafish GlcNAc-1-phosphotransferase γ subunit causes enzyme-specific effects on mannose phosphorylation. The finding that cathepsins are normally modified in gnptg(-/-) embryos is consistent with data from gnptab-deficient zebrafish suggesting these proteases are the key mediators of acute pathogenesis. This work also establishes a valuable new model that can be used to probe the functional relevance of GNPTG mutations in the context of a whole animal.
Collapse
Affiliation(s)
- Heather Flanagan-Steet
- Complex Carbohydrate Research Center, 315 Riverbend Road, University of Georgia, Athens, GA 30602, United States
| | - Courtney Matheny
- Complex Carbohydrate Research Center, 315 Riverbend Road, University of Georgia, Athens, GA 30602, United States
| | - Aaron Petrey
- Complex Carbohydrate Research Center, 315 Riverbend Road, University of Georgia, Athens, GA 30602, United States
| | - Joshua Parker
- Complex Carbohydrate Research Center, 315 Riverbend Road, University of Georgia, Athens, GA 30602, United States
| | - Richard Steet
- Complex Carbohydrate Research Center, 315 Riverbend Road, University of Georgia, Athens, GA 30602, United States.
| |
Collapse
|
19
|
Belleri M, Presta M. Endothelial cell dysfunction in globoid cell leukodystrophy. J Neurosci Res 2016; 94:1359-67. [PMID: 27037626 DOI: 10.1002/jnr.23744] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/11/2016] [Revised: 03/04/2016] [Accepted: 03/10/2016] [Indexed: 11/08/2022]
Abstract
Angiogenesis plays a pivotal role in the physiology and pathology of the brain. Microvascular alterations have been observed in various neurodegenerative disorders, including genetic leukodystrophies. Globoid cell leukodystrophy (GLD) is a lysosomal storage disease caused by β-galactosylceramidase (GALC) deficiency and characterized by the accumulation of the neurotoxic metabolite psychosine in the central nervous system and peripheral tissues. Structural and functional alterations occur in the microvascular endothelium of the brain of GLD patients and twitcher mice, a murine model of the disease. In addition, increased vessel permeability and a reduced capacity to respond to proangiogenic stimuli characterize the endothelium of twitcher animals. On the one hand, these alterations may depend, at least in part, on the local and systemic angiostatic activity exerted by psychosine on endothelial cells. On the other hand, studies performed in vivo on zebrafish embryos and in vitro on human endothelial cells suggest that GALC downregulation may also lead to psychosine-independent neuronal and vascular defects. Together, experimental observations indicate that endothelial cell dysfunctions may represent a novel pathogenic mechanism in human leukodystrophies, including GLD. A better understanding of the molecular mechanisms responsible for these microvascular alterations may provide new insights for the therapy of GLD. © 2016 Wiley Periodicals, Inc.
Collapse
Affiliation(s)
- Mirella Belleri
- Department of Molecular and Translational Medicine, University of Brescia, Brescia, Italy
| | - Marco Presta
- Department of Molecular and Translational Medicine, University of Brescia, Brescia, Italy.
| |
Collapse
|
20
|
Flanagan-Steet H, Aarnio M, Kwan B, Guihard P, Petrey A, Haskins M, Blanchard F, Steet R. Cathepsin-Mediated Alterations in TGFß-Related Signaling Underlie Disrupted Cartilage and Bone Maturation Associated With Impaired Lysosomal Targeting. J Bone Miner Res 2016; 31:535-48. [PMID: 26404503 PMCID: PMC4808492 DOI: 10.1002/jbmr.2722] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/03/2015] [Revised: 09/21/2015] [Accepted: 09/23/2015] [Indexed: 11/11/2022]
Abstract
Hypersecretion of acid hydrolases is a hallmark feature of mucolipidosis II (MLII), a lysosomal storage disease caused by loss of carbohydrate-dependent lysosomal targeting. Inappropriate extracellular action of these hydrolases is proposed to contribute to skeletal pathogenesis, but the mechanisms that connect hydrolase activity to the onset of disease phenotypes remain poorly understood. Here we link extracellular cathepsin K activity to abnormal bone and cartilage development in MLII animals by demonstrating that it disrupts the balance of TGFß-related signaling during chondrogenesis. TGFß-like Smad2,3 signals are elevated and BMP-like Smad1,5,8 signals reduced in both feline and zebrafish MLII chondrocytes and osteoblasts, maintaining these cells in an immature state. Reducing either cathepsin K activity or expression of the transcriptional regulator Sox9a in MLII zebrafish significantly improved phenotypes. We further identify components of the large latent TGFß complex as novel targets of cathepsin K at neutral pH, providing a possible mechanism for enhanced Smad2,3 activation in vivo. These findings highlight the complexity of the skeletal disease associated with MLII and bring new insight to the role of secreted cathepsin proteases in cartilage development and growth factor regulation.
Collapse
Affiliation(s)
| | - Megan Aarnio
- Complex Carbohydrate Research Center, University of Georgia, Athens, GA, USA
| | - Brian Kwan
- Complex Carbohydrate Research Center, University of Georgia, Athens, GA, USA
| | | | - Aaron Petrey
- Complex Carbohydrate Research Center, University of Georgia, Athens, GA, USA
| | - Mark Haskins
- Departments of Pathology and Clinical Studies, University of Pennsylvania School of Veterinary Medicine, Philadelphia, PA, USA
| | | | - Richard Steet
- Complex Carbohydrate Research Center, University of Georgia, Athens, GA, USA
| |
Collapse
|
21
|
Bammens R, Mehta N, Race V, Foulquier F, Jaeken J, Tiemeyer M, Steet R, Matthijs G, Flanagan-Steet H. Abnormal cartilage development and altered N-glycosylation in Tmem165-deficient zebrafish mirrors the phenotypes associated with TMEM165-CDG. Glycobiology 2015; 25:669-82. [PMID: 25609749 DOI: 10.1093/glycob/cwv009] [Citation(s) in RCA: 29] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/31/2014] [Accepted: 01/13/2015] [Indexed: 11/13/2022] Open
Abstract
The congenital disorders of glycosylation (CDG), a group of inherited diseases characterized by aberrant glycosylation, encompass a wide range of defects, including glycosyltransferases, glycosidases, nucleotide-sugar transporters as well as proteins involved in maintaining Golgi architecture, pH and vesicular trafficking. Mutations in a previously undescribed protein, TMEM165, were recently shown to cause a new form of CDG, termed TMEM165-CDG. TMEM165-CDG patients exhibit cartilage and bone dysplasia and altered glycosylation of serum glycoproteins. We utilized a morpholino knockdown strategy in zebrafish to investigate the physiologic and pathogenic functions of TMEM165. Inhibition of tmem165 expression in developing zebrafish embryos caused craniofacial abnormalities, largely attributable to fewer chondrocytes. Decreased expression of several markers of cartilage and bone development suggests that Tmem165 deficiency alters both chondrocyte and osteoblast differentiation. Glycomic analysis of tmem165 morphants also revealed altered initiation, processing and extension of N-glycans, paralleling some of the glycosylation changes noted in human patients. Collectively, these findings highlight the utility of zebrafish to elucidate pathogenic mechanisms associated with glycosylation disorders and suggest that the cartilage and bone dysplasia manifested in TMEM165-CDG patients may stem from abnormal development of chondrocytes and osteoblasts.
Collapse
Affiliation(s)
- Riet Bammens
- Center for Human Genetics, University of Leuven, 3000 Leuven, Belgium
| | - Nickita Mehta
- Complex Carbohydrate Research Center, Department of Biochemistry and Molecular Biology, University of Georgia, Athens, GA 30602, USA
| | - Valérie Race
- Center for Human Genetics, University of Leuven, 3000 Leuven, Belgium
| | - François Foulquier
- CNRS-UMR 8576, Structural and Functional Glycobiology Unit, IFR 147, University of Lille 1, 59655 Villeneuve d'Ascq, France
| | - Jaak Jaeken
- Center for Metabolic Disease, University Hospital Gasthuisberg, 3000 Leuven, Belgium
| | - Michael Tiemeyer
- Complex Carbohydrate Research Center, Department of Biochemistry and Molecular Biology, University of Georgia, Athens, GA 30602, USA
| | - Richard Steet
- Complex Carbohydrate Research Center, Department of Biochemistry and Molecular Biology, University of Georgia, Athens, GA 30602, USA
| | - Gert Matthijs
- Center for Human Genetics, University of Leuven, 3000 Leuven, Belgium
| | - Heather Flanagan-Steet
- Complex Carbohydrate Research Center, Department of Biochemistry and Molecular Biology, University of Georgia, Athens, GA 30602, USA
| |
Collapse
|
22
|
Qian Y, van Meel E, Flanagan-Steet H, Yox A, Steet R, Kornfeld S. Analysis of mucolipidosis II/III GNPTAB missense mutations identifies domains of UDP-GlcNAc:lysosomal enzyme GlcNAc-1-phosphotransferase involved in catalytic function and lysosomal enzyme recognition. J Biol Chem 2014; 290:3045-56. [PMID: 25505245 DOI: 10.1074/jbc.m114.612507] [Citation(s) in RCA: 37] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
UDP-GlcNAc:lysosomal enzyme GlcNAc-1-phosphotransferase tags newly synthesized lysosomal enzymes with mannose 6-phosphate recognition markers, which are required for their targeting to the endolysosomal system. GNPTAB encodes the α and β subunits of GlcNAc-1-phosphotransferase, and mutations in this gene cause the lysosomal storage disorders mucolipidosis II and III αβ. Prior investigation of missense mutations in GNPTAB uncovered amino acids in the N-terminal region and within the DMAP domain involved in Golgi retention of GlcNAc-1-phosphotransferase and its ability to specifically recognize lysosomal hydrolases, respectively. Here, we undertook a comprehensive analysis of the remaining missense mutations in GNPTAB reported in mucolipidosis II and III αβ patients using cell- and zebrafish-based approaches. We show that the Stealth domain harbors the catalytic site, as some mutations in these regions greatly impaired the activity of the enzyme without affecting its Golgi localization and proteolytic processing. We also demonstrate a role for the Notch repeat 1 in lysosomal hydrolase recognition, as missense mutations in conserved cysteine residues in this domain do not affect the catalytic activity but impair mannose phosphorylation of certain lysosomal hydrolases. Rescue experiments using mRNA bearing Notch repeat 1 mutations in GNPTAB-deficient zebrafish revealed selective effects on hydrolase recognition that differ from the DMAP mutation. Finally, the mutant R587P, located in the spacer between Notch 2 and DMAP, was partially rescued by overexpression of the γ subunit, suggesting a role for this region in γ subunit binding. These studies provide new insight into the functions of the different domains of the α and β subunits.
Collapse
Affiliation(s)
- Yi Qian
- From the Department of Internal Medicine, Washington University School of Medicine, St. Louis, Missouri 63110 and
| | - Eline van Meel
- From the Department of Internal Medicine, Washington University School of Medicine, St. Louis, Missouri 63110 and
| | | | - Alex Yox
- Complex Carbohydrate Research Center, University of Georgia, Athens, Georgia 30602
| | - Richard Steet
- Complex Carbohydrate Research Center, University of Georgia, Athens, Georgia 30602
| | - Stuart Kornfeld
- From the Department of Internal Medicine, Washington University School of Medicine, St. Louis, Missouri 63110 and
| |
Collapse
|
23
|
Lundberg YW, Xu Y, Thiessen KD, Kramer KL. Mechanisms of otoconia and otolith development. Dev Dyn 2014; 244:239-53. [PMID: 25255879 DOI: 10.1002/dvdy.24195] [Citation(s) in RCA: 101] [Impact Index Per Article: 9.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/04/2014] [Revised: 08/25/2014] [Accepted: 08/26/2014] [Indexed: 01/17/2023] Open
Abstract
BACKGROUND Otoconia are bio-crystals that couple mechanic forces to the sensory hair cells in the utricle and saccule, a process essential for us to sense linear acceleration and gravity for the purpose of maintaining bodily balance. In fish, structurally similar bio-crystals called otoliths mediate both balance and hearing. Otoconia abnormalities are common and can cause vertigo and imbalance in humans. However, the molecular etiology of these illnesses is unknown, as investigators have only begun to identify genes important for otoconia formation in recent years. RESULTS To date, in-depth studies of selected mouse otoconial proteins have been performed, and about 75 zebrafish genes have been identified to be important for otolith development. CONCLUSIONS This review will summarize recent findings as well as compare otoconia and otolith development. It will provide an updated brief review of otoconial proteins along with an overview of the cells and cellular processes involved. While continued efforts are needed to thoroughly understand the molecular mechanisms underlying otoconia and otolith development, it is clear that the process involves a series of temporally and spatially specific events that are tightly coordinated by numerous proteins. Such knowledge will serve as the foundation to uncover the molecular causes of human otoconia-related disorders.
Collapse
Affiliation(s)
- Yunxia Wang Lundberg
- Vestibular Genetics Laboratory, Boys Town National Research Hospital, Omaha, Nebraska
| | | | | | | |
Collapse
|
24
|
Lundberg YW, Xu Y, Thiessen KD, Kramer KL. Mechanisms of otoconia and otolith development. Dev Dyn 2014. [PMID: 25255879 DOI: 10.1002/dvdy.24195(2014)] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
BACKGROUND Otoconia are bio-crystals that couple mechanic forces to the sensory hair cells in the utricle and saccule, a process essential for us to sense linear acceleration and gravity for the purpose of maintaining bodily balance. In fish, structurally similar bio-crystals called otoliths mediate both balance and hearing. Otoconia abnormalities are common and can cause vertigo and imbalance in humans. However, the molecular etiology of these illnesses is unknown, as investigators have only begun to identify genes important for otoconia formation in recent years. RESULTS To date, in-depth studies of selected mouse otoconial proteins have been performed, and about 75 zebrafish genes have been identified to be important for otolith development. CONCLUSIONS This review will summarize recent findings as well as compare otoconia and otolith development. It will provide an updated brief review of otoconial proteins along with an overview of the cells and cellular processes involved. While continued efforts are needed to thoroughly understand the molecular mechanisms underlying otoconia and otolith development, it is clear that the process involves a series of temporally and spatially specific events that are tightly coordinated by numerous proteins. Such knowledge will serve as the foundation to uncover the molecular causes of human otoconia-related disorders.
Collapse
Affiliation(s)
- Yunxia Wang Lundberg
- Vestibular Genetics Laboratory, Boys Town National Research Hospital, Omaha, Nebraska
| | | | | | | |
Collapse
|
25
|
Paton L, Bitoun E, Kenyon J, Priestman DA, Oliver PL, Edwards B, Platt FM, Davies KE. A novel mouse model of a patient mucolipidosis II mutation recapitulates disease pathology. J Biol Chem 2014; 289:26709-26721. [PMID: 25107912 PMCID: PMC4175314 DOI: 10.1074/jbc.m114.586156] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
Mucolipidosis II (MLII) is a lysosomal storage disorder caused by loss of N-acetylglucosamine-1-phosphotransferase, which tags lysosomal enzymes with a mannose 6-phosphate marker for transport to the lysosome. In MLII, the loss of this marker leads to deficiency of multiple enzymes and non-enzymatic proteins in the lysosome, leading to the storage of multiple substrates. Here we present a novel mouse model of MLII homozygous for a patient mutation in the GNPTAB gene. Whereas the current gene knock-out mouse model of MLII lacks some of the characteristic features of the human disease, our novel mouse model more fully recapitulates the human pathology, showing growth retardation, skeletal and facial abnormalities, increased circulating lysosomal enzymatic activities, intracellular lysosomal storage, and reduced life span. Importantly, MLII behavioral deficits are characterized for the first time, including impaired motor function and psychomotor retardation. Histological analysis of the brain revealed progressive neurodegeneration in the cerebellum with severe Purkinje cell loss as the underlying cause of the ataxic gait. In addition, based on the loss of Npc2 (Niemann-Pick type C 2) protein expression in the brain, the mice were treated with 2-hydroxypropyl-β-cyclodextrin, a drug previously reported to rescue Purkinje cell death in a mouse model of Niemann-Pick type C disease. No improvement in brain pathology was observed. This indicates that cerebellar degeneration is not primarily triggered by loss of Npc2 function. This study emphasizes the value of modeling MLII patient mutations to generate clinically relevant mouse mutants to elucidate the pathogenic molecular pathways of MLII and address their amenability to therapy.
Collapse
Affiliation(s)
- Leigh Paton
- Medical Research Council Functional Genomics Unit, Department of Physiology, Anatomy, and Genetics, University of Oxford, South Parks Road, Oxford OX1 3PT, United Kingdom and
| | - Emmanuelle Bitoun
- Medical Research Council Functional Genomics Unit, Department of Physiology, Anatomy, and Genetics, University of Oxford, South Parks Road, Oxford OX1 3PT, United Kingdom and
| | - Janet Kenyon
- Medical Research Council Functional Genomics Unit, Department of Physiology, Anatomy, and Genetics, University of Oxford, South Parks Road, Oxford OX1 3PT, United Kingdom and
| | - David A Priestman
- Department of Pharmacology, University of Oxford, Mansfield Road, Oxford OX1 3QT, United Kingdom
| | - Peter L Oliver
- Medical Research Council Functional Genomics Unit, Department of Physiology, Anatomy, and Genetics, University of Oxford, South Parks Road, Oxford OX1 3PT, United Kingdom and
| | - Benjamin Edwards
- Medical Research Council Functional Genomics Unit, Department of Physiology, Anatomy, and Genetics, University of Oxford, South Parks Road, Oxford OX1 3PT, United Kingdom and
| | - Frances M Platt
- Department of Pharmacology, University of Oxford, Mansfield Road, Oxford OX1 3QT, United Kingdom
| | - Kay E Davies
- Medical Research Council Functional Genomics Unit, Department of Physiology, Anatomy, and Genetics, University of Oxford, South Parks Road, Oxford OX1 3PT, United Kingdom and.
| |
Collapse
|
26
|
Wager K, Mahmood F, Russell C. Modelling inborn errors of metabolism in zebrafish. J Inherit Metab Dis 2014; 37:483-95. [PMID: 24797558 DOI: 10.1007/s10545-014-9696-5] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/30/2013] [Revised: 02/13/2014] [Accepted: 02/17/2014] [Indexed: 12/22/2022]
Abstract
The majority of human inborn errors of metabolism are fatal multisystem disorders that lack proper treatment and have a poorly understood mechanistic basis. Novel technologies are required to address this issue, and the use of zebrafish to model these diseases is an emerging field. Here we present the published zebrafish models of inborn metabolic diseases, discuss their validity, and review the novel mechanistic insights that they have provided. We also review the available methods for creating and studying zebrafish disease models, advantages and disadvantages of using this model organism, and successful examples of the use of zebrafish for drug discovery and development. Using a zebrafish to model inborn errors of metabolism in vivo, although still in its infancy, shows promise for a deeper understanding of disease pathomechanisms, onset, and progression, and also for the development of specific therapies.
Collapse
Affiliation(s)
- Kim Wager
- Department of Comparative Biomedical Sciences, Royal Veterinary College, Royal College Street, London, NW1 0TU, UK
| | | | | |
Collapse
|
27
|
Zizioli D, Guarienti M, Tobia C, Gariano G, Borsani G, Bresciani R, Ronca R, Giacopuzzi E, Preti A, Gaudenzi G, Belleri M, Di Salle E, Fabrias G, Casas J, Ribatti D, Monti E, Presta M. Molecular cloning and knockdown of galactocerebrosidase in zebrafish: New insights into the pathogenesis of Krabbe's disease. Biochim Biophys Acta Mol Basis Dis 2014; 1842:665-75. [DOI: 10.1016/j.bbadis.2014.01.008] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/02/2013] [Revised: 12/17/2013] [Accepted: 01/15/2014] [Indexed: 11/30/2022]
|
28
|
Fish: a suitable system to model human bone disorders and discover drugs with osteogenic or osteotoxic activities. ACTA ACUST UNITED AC 2014. [DOI: 10.1016/j.ddmod.2014.08.001] [Citation(s) in RCA: 32] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/02/2023]
|
29
|
The DMAP interaction domain of UDP-GlcNAc:lysosomal enzyme N-acetylglucosamine-1-phosphotransferase is a substrate recognition module. Proc Natl Acad Sci U S A 2013; 110:10246-51. [PMID: 23733939 DOI: 10.1073/pnas.1308453110] [Citation(s) in RCA: 30] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
UDP-GlcNAc:lysosomal enzyme N-acetylglucosamine-1-phosphotransferase (GlcNAc-1-phosphotransferase) is an α2β2γ2 heterohexamer that mediates the initial step in the formation of the mannose 6-phosphate recognition signal on lysosomal acid hydrolases. We previously reported that the specificity of the reaction is determined by the ability of the α/β subunits to recognize a conformation-dependent protein determinant present on the acid hydrolases. We now present evidence that the DNA methyltransferase-associated protein (DMAP) interaction domain of the α subunit functions in this recognition process. First, GST-DMAP pulled down several acid hydrolases, but not nonlysosomal glycoproteins. Second, recombinant GlcNAc-1-phosphotransferase containing a missense mutation in the DMAP interaction domain (Lys732Asn) identified in a patient with mucolipidosis II exhibited full activity toward the simple sugar α-methyl d-mannoside but impaired phosphorylation of acid hydrolases. Finally, unlike the WT enzyme, expression of the K732N mutant in a zebrafish model of mucolipidosis II failed to correct the phenotypic abnormalities. These results indicate that the DMAP interaction domain of the α subunit functions in the selective recognition of acid hydrolase substrates and provides an explanation for the impaired phosphorylation of acid hydrolases in a patient with mucolipidosis II.
Collapse
|
30
|
Extracellular Matrix Remodeling in Zebrafish Development. EXTRACELLULAR MATRIX IN DEVELOPMENT 2013. [DOI: 10.1007/978-3-642-35935-4_8] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/25/2022]
|
31
|
Kollmann K, Damme M, Markmann S, Morelle W, Schweizer M, Hermans-Borgmeyer I, Röchert AK, Pohl S, Lübke T, Michalski JC, Käkelä R, Walkley SU, Braulke T. Lysosomal dysfunction causes neurodegeneration in mucolipidosis II 'knock-in' mice. ACTA ACUST UNITED AC 2012; 135:2661-75. [PMID: 22961545 DOI: 10.1093/brain/aws209] [Citation(s) in RCA: 67] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/14/2022]
Abstract
Mucolipidosis II is a neurometabolic lysosomal trafficking disorder of infancy caused by loss of mannose 6-phosphate targeting signals on lysosomal proteins, leading to lysosomal dysfunction and accumulation of non-degraded material. However, the identity of storage material and mechanisms of neurodegeneration in mucolipidosis II are unknown. We have generated 'knock-in' mice with a common mucolipidosis II patient mutation that show growth retardation, progressive brain atrophy, skeletal abnormalities, elevated lysosomal enzyme activities in serum, lysosomal storage in fibroblasts and brain and premature death, closely mimicking the mucolipidosis II disease in humans. The examination of affected mouse brains at different ages by immunohistochemistry, ultrastructural analysis, immunoblotting and mass spectrometric analyses of glycans and anionic lipids revealed that the expression and proteolytic processing of distinct lysosomal proteins such as α-l-fucosidase, β-hexosaminidase, α-mannosidase or Niemann-Pick C2 protein are more significantly impacted by the loss of mannose 6-phosphate residues than enzymes reaching lysosomes independently of this targeting mechanism. As a consequence, fucosylated N-glycans, GM2 and GM3 gangliosides, cholesterol and bis(monoacylglycero)phosphate accumulate progressively in the brain of mucolipidosis II mice. Prominent astrogliosis and the accumulation of organelles and storage material in focally swollen axons were observed in the cerebellum and were accompanied by a loss of Purkinje cells. Moreover, an increased neuronal level of the microtubule-associated protein 1 light chain 3 and the formation of p62-positive neuronal aggregates indicate an impairment of constitutive autophagy in the mucolipidosis II brain. Our findings demonstrate the essential role of mannose 6-phosphate for selected lysosomal proteins to maintain the capability for degradation of sequestered components in lysosomes and autophagolysosomes and prevent neurodegeneration. These lysosomal proteins might be a potential target for a valid therapeutic approach for mucolipidosis II disease.
Collapse
Affiliation(s)
- K Kollmann
- Department of Biochemistry, Children’s Hospital, University Medical Center Hamburg-Eppendorf, 20246 Hamburg, Germany
| | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
32
|
Cline A, Gao N, Flanagan-Steet H, Sharma V, Rosa S, Sonon R, Azadi P, Sadler KC, Freeze HH, Lehrman MA, Steet R. A zebrafish model of PMM2-CDG reveals altered neurogenesis and a substrate-accumulation mechanism for N-linked glycosylation deficiency. Mol Biol Cell 2012; 23:4175-87. [PMID: 22956764 PMCID: PMC3484097 DOI: 10.1091/mbc.e12-05-0411] [Citation(s) in RCA: 38] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/16/2023] Open
Abstract
PMM2-CDG patients have phosphomannomutase (Pmm2) deficiency, with developmental and N-linked glycosylation defects attributed to depletion of mannose-1-phosphate and downstream lipid-linked oligosaccharides (LLOs). This, the first PMM2-CDG zebrafish model, shows, unexpectedly, that accumulation of the Pmm2 substrate mannose-6-phosphate explains LLO deficiency. Congenital disorder of glycosylation (PMM2-CDG) results from mutations in pmm2, which encodes the phosphomannomutase (Pmm) that converts mannose-6-phosphate (M6P) to mannose-1-phosphate (M1P). Patients have wide-spectrum clinical abnormalities associated with impaired protein N-glycosylation. Although it has been widely proposed that Pmm2 deficiency depletes M1P, a precursor of GDP-mannose, and consequently suppresses lipid-linked oligosaccharide (LLO) levels needed for N-glycosylation, these deficiencies have not been demonstrated in patients or any animal model. Here we report a morpholino-based PMM2-CDG model in zebrafish. Morphant embryos had developmental abnormalities consistent with PMM2-CDG patients, including craniofacial defects and impaired motility associated with altered motor neurogenesis within the spinal cord. Significantly, global N-linked glycosylation and LLO levels were reduced in pmm2 morphants. Although M1P and GDP-mannose were below reliable detection/quantification limits, Pmm2 depletion unexpectedly caused accumulation of M6P, shown earlier to promote LLO cleavage in vitro. In pmm2 morphants, the free glycan by-products of LLO cleavage increased nearly twofold. Suppression of the M6P-synthesizing enzyme mannose phosphate isomerase within the pmm2 background normalized M6P levels and certain aspects of the craniofacial phenotype and abrogated pmm2-dependent LLO cleavage. In summary, we report the first zebrafish model of PMM2-CDG and uncover novel cellular insights not possible with other systems, including an M6P accumulation mechanism for underglycosylation.
Collapse
Affiliation(s)
- Abigail Cline
- Complex Carbohydrate Research Center, University of Georgia, Athens, GA 30602, USA
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
33
|
Castonguay AC, Lasanajak Y, Song X, Olson LJ, Cummings RD, Smith DF, Dahms NM. The glycan-binding properties of the cation-independent mannose 6-phosphate receptor are evolutionary conserved in vertebrates. Glycobiology 2012; 22:983-96. [PMID: 22369936 PMCID: PMC3355666 DOI: 10.1093/glycob/cws058] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/21/2011] [Revised: 02/01/2012] [Accepted: 02/22/2012] [Indexed: 01/30/2023] Open
Abstract
The 300-kDa cation-independent mannose 6-phosphate receptor (CI-MPR) plays an essential role in the biogenesis of lysosomes by delivering newly synthesized lysosomal enzymes from the trans Golgi network to the endosomal system. The CI-MPR is expressed in most eukaryotes, with Saccharomyces cerevisiae and Caenorhabditis elegans being notable exceptions. Although the repertoire of glycans recognized by the bovine receptor has been studied extensively, little is known concerning the ligand-binding properties of the CI-MPR from non-mammalian species. To assess the evolutionary conservation of the CI-MPR, surface plasmon resonance analyses using lysosomal enzymes with defined N-glycans were carried out to probe the glycan-binding specificity of the Danio rerio CI-MPR. The results demonstrate that the D. rerio CI-MPR harbors three glycan-binding sites that, like the bovine CI-MPR, map to domains 3, 5 and 9 of its 15-domain-containing extracytoplasmic region. Analyses on a phosphorylated glycan microarray further demonstrated the unique binding properties of each of the three sites and showed that, similar to the bovine CI-MPR, only domain 5 of the D. rerio CI-MPR is capable of recognizing Man-P-GlcNAc-containing glycans.
Collapse
Affiliation(s)
- Alicia C Castonguay
- Department of Biochemistry, Medical College of Wisconsin, Milwaukee, WI, USA
| | - Yi Lasanajak
- Department of Biochemistry, O. Wayne Rollins Research Center, Emory University School of Medicine, Atlanta, GA, USA
| | - Xuezheng Song
- Department of Biochemistry, O. Wayne Rollins Research Center, Emory University School of Medicine, Atlanta, GA, USA
| | - Linda J Olson
- Department of Biochemistry, Medical College of Wisconsin, Milwaukee, WI, USA
| | - Richard D Cummings
- Department of Biochemistry, O. Wayne Rollins Research Center, Emory University School of Medicine, Atlanta, GA, USA
| | - David F Smith
- Department of Biochemistry, O. Wayne Rollins Research Center, Emory University School of Medicine, Atlanta, GA, USA
| | - Nancy M Dahms
- Department of Biochemistry, Medical College of Wisconsin, Milwaukee, WI, USA
| |
Collapse
|
34
|
Flanagan-Steet HR, Steet R. "Casting" light on the role of glycosylation during embryonic development: insights from zebrafish. Glycoconj J 2012; 30:33-40. [PMID: 22638861 DOI: 10.1007/s10719-012-9390-5] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/14/2012] [Revised: 04/23/2012] [Accepted: 04/25/2012] [Indexed: 12/23/2022]
Abstract
Zebrafish (Danio rerio) remains a versatile model organism for the investigation of early development and organogenesis, and has emerged as a valuable platform for drug discovery and toxicity evaluation [1-6]. Harnessing the genetic power and experimental accessibility of this system, three decades of research have identified key genes and pathways that control the development of multiple organ systems and tissues, including the heart, kidney, and craniofacial cartilage, as well as the hematopoietic, vascular, and central and peripheral nervous systems [7-31]. In addition to their application in large mutagenic screens, zebrafish has been used to model a variety of diseases such as diabetes, polycystic kidney disease, muscular dystrophy and cancer [32-36]. As this work continues to intersect with cellular pathways and processes such as lipid metabolism, glycosylation and vesicle trafficking, investigators are often faced with the challenge of determining the degree to which these pathways are functionally conserved in zebrafish. While they share a high degree of genetic homology with mouse and human, the manner in which cellular pathways are regulated in zebrafish during early development, and the differences in the organ physiology, warrant consideration before functional studies can be effectively interpreted and compared with other vertebrate systems. This point is particularly relevant for glycosylation since an understanding of the glycan diversity and the mechanisms that control glycan biosynthesis during zebrafish embryogenesis (as in many organisms) is still developing.Nonetheless, a growing number of studies in zebrafish have begun to cast light on the functional roles of specific classes of glycans during organ and tissue development. While many of the initial efforts involved characterizing identified mutants in a number of glycosylation pathways, the use of reverse genetic approaches to directly model glycosylation-related disorders is now increasingly popular. In this review, the glycomics of zebrafish and the developmental expression of their glycans will be briefly summarized along with recent chemical biology approaches to visualize certain classes of glycans within developing embryos. Work regarding the role of protein-bound glycans and glycosaminoglycans (GAG) in zebrafish development and organogenesis will also be highlighted. Lastly, future opportunities and challenges in the expanding field of zebrafish glycobiology are discussed.
Collapse
|
35
|
Schofield PN, Vogel P, Gkoutos GV, Sundberg JP. Exploring the elephant: histopathology in high-throughput phenotyping of mutant mice. Dis Model Mech 2012; 5:19-25. [PMID: 22028326 PMCID: PMC3255539 DOI: 10.1242/dmm.008334] [Citation(s) in RCA: 31] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/24/2023] Open
Abstract
Recent advances in gene knockout techniques and the in vivo analysis of mutant mice, together with the advent of large-scale projects for systematic mouse mutagenesis and genome-wide phenotyping, have allowed the creation of platforms for the most complete and systematic analysis of gene function ever undertaken in a vertebrate. The development of high-throughput phenotyping pipelines for these and other large-scale projects allows investigators to search and integrate large amounts of directly comparable phenotype data from many mutants, on a genomic scale, to help develop and test new hypotheses about the origins of disease and the normal functions of genes in the organism. Histopathology has a venerable history in the understanding of the pathobiology of human and animal disease, and presents complementary advantages and challenges to in vivo phenotyping. In this review, we present evidence for the unique contribution that histopathology can make to a large-scale phenotyping effort, using examples from past and current programmes at Lexicon Pharmaceuticals and The Jackson Laboratory, and critically assess the role of histopathology analysis in high-throughput phenotyping pipelines.
Collapse
Affiliation(s)
- Paul N Schofield
- Department of Physiology, Development and Neuroscience, University of Cambridge, Downing Street, Cambridge, CB2 3EG, UK.
| | | | | | | |
Collapse
|
36
|
Petrey AC, Flanagan-Steet H, Johnson S, Fan X, De la Rosa M, Haskins ME, Nairn AV, Moremen KW, Steet R. Excessive activity of cathepsin K is associated with cartilage defects in a zebrafish model of mucolipidosis II. Dis Model Mech 2011; 5:177-90. [PMID: 22046029 PMCID: PMC3291639 DOI: 10.1242/dmm.008219] [Citation(s) in RCA: 35] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/14/2023] Open
Abstract
The severe pediatric disorder mucolipidosis II (ML-II; also known as I-cell disease) is caused by defects in mannose 6-phosphate (Man-6-P) biosynthesis. Patients with ML-II exhibit multiple developmental defects, including skeletal, craniofacial and joint abnormalities. To date, the molecular mechanisms that underlie these clinical manifestations are poorly understood. Taking advantage of a zebrafish model of ML-II, we previously showed that the cartilage morphogenesis defects in this model are associated with altered chondrocyte differentiation and excessive deposition of type II collagen, indicating that aspects of development that rely on proper extracellular matrix homeostasis are sensitive to decreases in Man-6-P biosynthesis. To further investigate the molecular bases for the cartilage phenotypes, we analyzed the transcript abundance of several genes in chondrocyte-enriched cell populations isolated from wild-type and ML-II zebrafish embryos. Increased levels of cathepsin and matrix metalloproteinase (MMP) transcripts were noted in ML-II cell populations. This increase in transcript abundance corresponded with elevated and sustained activity of several cathepsins (K, L and S) and MMP-13 during early development. Unlike MMP-13, for which higher levels of protein were detected, the sustained activity of cathepsin K at later stages seemed to result from its abnormal processing and activation. Inhibition of cathepsin K activity by pharmacological or genetic means not only reduced the activity of this enzyme but led to a broad reduction in additional protease activity, significant correction of the cartilage morphogenesis phenotype and reduced type II collagen staining in ML-II embryos. Our findings suggest a central role for excessive cathepsin K activity in the developmental aspects of ML-II cartilage pathogenesis and highlight the utility of the zebrafish system to address the biochemical underpinnings of metabolic disease.
Collapse
Affiliation(s)
- Aaron C Petrey
- Complex Carbohydrate Research Center, University of Georgia, Athens, GA 30602, USA
| | | | | | | | | | | | | | | | | |
Collapse
|
37
|
Fan X, Klein M, Flanagan-Steet HR, Steet R. Selective yolk deposition and mannose phosphorylation of lysosomal glycosidases in zebrafish. J Biol Chem 2010; 285:32946-32953. [PMID: 20729204 DOI: 10.1074/jbc.m110.158295] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
The regulation and function of lysosomal hydrolases during yolk consumption and embryogenesis in zebrafish are poorly understood. In an effort to better define the lysosomal biochemistry of this organism, we analyzed the developmental expression, biochemical properties, and function of several glycosidases in zebrafish eggs, embryos, and adult tissues. Our results demonstrated that the specific activity of most enzymes increases during embryogenesis, likely reflecting a greater need for turnover within the embryo as yolk-derived nutrients are depleted. Analysis of glycosidase activity in zebrafish and medaka eggs revealed selective deposition of enzymes required for the degradation of N-linked glycans, including an abundance of acidic mannosidases. Treatment of zebrafish embryos with the α-mannosidase inhibitor swainsonine resulted in the accumulation of glycosylated vitellogenin fragments and demonstrated a function for maternally deposited acid α-mannosidase in yolk consumption. Surprisingly, we also found that, unlike mammals, acid α-glucosidase from zebrafish and medaka does not appear to be modified with mannose 6-phosphate residues. We further showed these residues were not acquired on human acid α-glucosidase when expressed in zebrafish embryos, suggesting unique differences in the ability of the human and zebrafish N-acetylglucosamine-1-phosphotransferase to recognize and modify certain lysosomal glycosidases. Together, these results provide novel insight into the role of acidic glycosidases during yolk utilization and the evolution of the mannose 6-phosphate targeting system in vertebrates.
Collapse
Affiliation(s)
- Xiang Fan
- From the Complex Carbohydrate Research Center, University of Georgia, Athens, Georgia 30602
| | - Maximilian Klein
- From the Complex Carbohydrate Research Center, University of Georgia, Athens, Georgia 30602
| | | | - Richard Steet
- From the Complex Carbohydrate Research Center, University of Georgia, Athens, Georgia 30602.
| |
Collapse
|
38
|
Kollmann K, Pohl S, Marschner K, Encarnação M, Sakwa I, Tiede S, Poorthuis BJ, Lübke T, Müller-Loennies S, Storch S, Braulke T. Mannose phosphorylation in health and disease. Eur J Cell Biol 2009; 89:117-23. [PMID: 19945768 DOI: 10.1016/j.ejcb.2009.10.008] [Citation(s) in RCA: 84] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022] Open
Abstract
Lysosomal hydrolases catalyze the degradation of a variety of macromolecules including proteins, carbohydrates, nucleic acids and lipids. The biogenesis of lysosomes or lysosome-related organelles requires a continuous substitution of soluble acid hydrolases and lysosomal membrane proteins. The targeting of lysosomal hydrolases depends on mannose 6-phosphate residues (M6P) that are recognized by specific receptors mediating their transport to an endosomal/prelysosomal compartment. The key role in the formation of M6P residues plays the GlcNAc-1-phosphotransferase localized in the Golgi apparatus. Two genes have been identified recently encoding the type III alpha/beta-subunit precursor membrane protein and the soluble gamma-subunit of GlcNAc-1-phosphotransferase. Mutations in these genes result in two severe diseases, mucolipidosis type II (MLII) and III (MLIII), biochemically characterized by the missorting of multiple lysosomal hydrolases due to impaired formation of the M6P recognition marker, and general lysosomal dysfunction. This review gives an update on structural properties, localization and functions of the GlcNAc-1-phosphotransferase subunits and improvements of pre- and postnatal diagnosis of ML patients. Further, the generation of recombinant single-chain antibody fragments against M6P residues and of new mouse models of MLII and MLIII will have considerable impact to provide deeper insight into the cell biology of lysosomal dysfunctions and the pathomechanisms underlying these lysosomal disorders.
Collapse
Affiliation(s)
- Katrin Kollmann
- Department of Biochemistry, Children's Hospital, University Medical Center Hamburg-Eppendorf, Research Campus, Martinistrasse 52, 20246 Hamburg, Germany
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|