1
|
Kanno Y. The Roles of Fibrinolytic Factors in Bone Destruction Caused by Inflammation. Cells 2024; 13:516. [PMID: 38534360 PMCID: PMC10968824 DOI: 10.3390/cells13060516] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/26/2024] [Revised: 03/14/2024] [Accepted: 03/15/2024] [Indexed: 03/28/2024] Open
Abstract
Chronic inflammatory diseases, such as rheumatoid arthritis, spondyloarthritis, systemic lupus erythematosus, Crohn's disease, periodontitis, and carcinoma metastasis frequently result in bone destruction. Pro-inflammatory cytokines such as tumor necrosis factor-α (TNF-α), interleukin-1β (IL-1β), IL-6, and IL-17 are known to influence bone loss by promoting the differentiation and activation of osteoclasts. Fibrinolytic factors, such as plasminogen (Plg), plasmin, urokinase-type plasminogen activator (uPA), its receptor (uPAR), tissue-type plasminogen activator (tPA), α2-antiplasmin (α2AP), and plasminogen activator inhibitor-1 (PAI-1) are expressed in osteoclasts and osteoblasts and are considered essential in maintaining bone homeostasis by regulating the functions of both osteoclasts and osteoblasts. Additionally, fibrinolytic factors are associated with the regulation of inflammation and the immune system. This review explores the roles of fibrinolytic factors in bone destruction caused by inflammation.
Collapse
Affiliation(s)
- Yosuke Kanno
- Department of Molecular Pathology, Faculty of Pharmaceutical Science, Doshisha Women's College of Liberal Arts, 97-1 Kodo Kyotanabe, Kyoto 610-0395, Japan
| |
Collapse
|
2
|
The uPA/uPAR System Orchestrates the Inflammatory Response, Vascular Homeostasis, and Immune System in Fibrosis Progression. Int J Mol Sci 2023; 24:ijms24021796. [PMID: 36675310 PMCID: PMC9866279 DOI: 10.3390/ijms24021796] [Citation(s) in RCA: 19] [Impact Index Per Article: 9.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/06/2022] [Revised: 01/11/2023] [Accepted: 01/13/2023] [Indexed: 01/18/2023] Open
Abstract
Fibrotic diseases, such as systemic sclerosis (SSc), idiopathic pulmonary fibrosis, renal fibrosis and liver cirrhosis are characterized by tissue overgrowth due to excessive extracellular matrix (ECM) deposition. Fibrosis progression is caused by ECM overproduction and the inhibition of ECM degradation due to several events, including inflammation, vascular endothelial dysfunction, and immune abnormalities. Recently, it has been reported that urokinase plasminogen activator (uPA) and its receptor (uPAR), known to be fibrinolytic factors, orchestrate the inflammatory response, vascular homeostasis, and immune homeostasis system. The uPA/uPAR system may show promise as a potential therapeutic target for fibrotic diseases. This review considers the role of the uPA/uPAR system in the progression of fibrotic diseases.
Collapse
|
3
|
Kanno Y, Shu E. α2-Antiplasmin as a Potential Therapeutic Target for Systemic Sclerosis. Life (Basel) 2022; 12:life12030396. [PMID: 35330147 PMCID: PMC8953682 DOI: 10.3390/life12030396] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/07/2022] [Revised: 03/04/2022] [Accepted: 03/04/2022] [Indexed: 11/24/2022] Open
Abstract
Systemic sclerosis is a connective tissue disease of unknown origin that is characterized by immune system abnormalities, vascular damage, and extensive fibrosis of the skin and visceral organs. α2-antiplasmin is known to be the main plasmin inhibitor and has various functions such as cell differentiation and cytokine production, as well as the regulation of the maintenance of the immune system, endothelial homeostasis, and extracellular matrix metabolism. The expression of α2-antiplasmin is elevated in dermal fibroblasts from systemic sclerosis patients, and the blockade of α2-antiplasmin suppresses fibrosis progression and vascular dysfunction in systemic sclerosis model mice. α2-antiplasmin may have promise as a potential therapeutic target for systemic sclerosis. This review considers the role of α2-antiplasmin in the progression of systemic sclerosis.
Collapse
Affiliation(s)
- Yosuke Kanno
- Department of Clinical Pathological Biochemistry, Faculty of Pharmaceutical Science, Doshisha Women’s College of Liberal Arts, 97-1 Kodo Kyotanabe, Kyoto 610-0395, Japan
- Department of Dermatology, Graduate School of Medicine, Gifu University, 1-1 Yanagido, Gifu 501-1194, Japan;
- Correspondence: ; Tel.:+81-0774-65-8629
| | - En Shu
- Department of Dermatology, Graduate School of Medicine, Gifu University, 1-1 Yanagido, Gifu 501-1194, Japan;
| |
Collapse
|
4
|
Petra E, Siwy J, Vlahou A, Jankowski J. Urine peptidome in combination with transcriptomics analysis highlights MMP7, MMP14 and PCSK5 for further investigation in chronic kidney disease. PLoS One 2022; 17:e0262667. [PMID: 35045102 PMCID: PMC8769332 DOI: 10.1371/journal.pone.0262667] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/11/2021] [Accepted: 01/03/2022] [Indexed: 11/21/2022] Open
Abstract
Chronic kidney disease (CKD) is characterized by the loss of kidney function. The molecular mechanisms underlying the development and progression of CKD are still not fully understood. Among others, the urinary peptidome has been extensively studied, with several urinary peptides effectively detecting disease progression. However, their link to proteolytic events has not been made yet. This study aimed to predict the proteases involved in the generation of CKD-associated urinary excreted peptides in a well-matched (for age, sex, lack of heart disease) case-control study. The urinary peptide profiles from CKD (n = 241) and controls (n = 240) were compared and statistically analyzed. The in-silico analysis of the involved proteases was performed using Proteasix and proteases activity was predicted based on the abundance changes of the associated peptides. Predictions were cross-correlated to transcriptomics datasets by using the Nephroseq database. Information on the respective protease inhibitors was also retrieved from the MEROPS database. Totally, 303 urinary peptides were significantly associated with CKD. Among the most frequently observed were fragments of collagen types I, II and III, uromodulin, albumin and beta-2-microglobulin. Proteasix predicted 16 proteases involved in their generation. Through investigating CKD-associated transcriptomics datasets, several proteases are highlighted including members of matrix metalloproteinases (MMP7, MMP14) and serine proteases (PCSK5); laying the foundation for further studies towards elucidating their role in CKD pathophysiology.
Collapse
Affiliation(s)
- Eleni Petra
- Institute for Molecular Cardiovascular Research, RWTH Aachen University Hospital, Aachen, Germany
- Center of Systems Biology, Biomedical Research Foundation of the Academy of Athens, Athens, Greece
| | | | - Antonia Vlahou
- Center of Systems Biology, Biomedical Research Foundation of the Academy of Athens, Athens, Greece
| | - Joachim Jankowski
- Institute for Molecular Cardiovascular Research, RWTH Aachen University Hospital, Aachen, Germany
- Experimental Vascular Pathology, Cardiovascular Research Institute Maastricht (CARIM), University of Maastricht, Maastricht, The Netherlands
| |
Collapse
|
5
|
Kanno Y, Tsuchida K, Maruyama C, Hori K, Teramura H, Asahi S, Matsuo O, Ozaki KI. Alpha2-antiplasmin deficiency affects depression and anxiety-like behavior and apoptosis induced by stress in mice. J Basic Clin Physiol Pharmacol 2021; 33:633-638. [PMID: 34913624 DOI: 10.1515/jbcpp-2021-0282] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/15/2021] [Accepted: 11/26/2021] [Indexed: 02/06/2023]
Abstract
OBJECTIVES Depression is a psychiatric disorder that affects about 10% of the world's population and is accompanied by anxiety. Depression and anxiety are often caused by various stresses. However, the etiology of depression and anxiety remains unknown. It has been reported that alpha2-antiplasmin (α2AP) not only inhibits plasmin but also has various functions such as cytokine production and cell growth. This study aimed to determine the roles of α2AP on the stress-induced depression and anxiety. METHODS We investigated the mild repeated restraint stress-induced depressive and anxiety-like behavior in the α2AP+/+ and α2AP-/- mice using the social interaction test (SIT), sucrose preference test (SPT), and elevated plus maze (EPM). RESULTS The stresses such as the mild repeated restraint stress suppressed α2AP expression in the hippocampus of mice, and the treatment of fluoxetine (selective serotonin reuptake inhibitor [SSRI]) recovered the stress-caused α2AP suppression. We also showed that α2AP deficiency promoted the mild restraint stress-stimulated depression-like behavior such as social withdrawal and apathy and apoptosis in mice. In contrast, α2AP deficiency attenuated the mild restraint stress induced the anxiety-like behavior in mice. CONCLUSIONS α2AP affects the pathogenesis of depression and anxiety induced by stress.
Collapse
Affiliation(s)
- Yosuke Kanno
- Department of Molecular Pathology, Faculty of Pharmaceutical Science, Doshisha Women's College of Liberal Arts, Kyoto, Japan
| | - Kaho Tsuchida
- Department of Molecular Pathology, Faculty of Pharmaceutical Science, Doshisha Women's College of Liberal Arts, Kyoto, Japan
| | - Chihiro Maruyama
- Department of Molecular Pathology, Faculty of Pharmaceutical Science, Doshisha Women's College of Liberal Arts, Kyoto, Japan
| | - Kyoko Hori
- Department of Molecular Pathology, Faculty of Pharmaceutical Science, Doshisha Women's College of Liberal Arts, Kyoto, Japan
| | - Hanako Teramura
- Department of Molecular Pathology, Faculty of Pharmaceutical Science, Doshisha Women's College of Liberal Arts, Kyoto, Japan
| | - Shiho Asahi
- Department of Molecular Pathology, Faculty of Pharmaceutical Science, Doshisha Women's College of Liberal Arts, Kyoto, Japan
| | - Osamu Matsuo
- Faculty of Medicine, Kindai University, Osaka-sayama, Japan
| | - Kei-Ichi Ozaki
- Department of Molecular Pathology, Faculty of Pharmaceutical Science, Doshisha Women's College of Liberal Arts, Kyoto, Japan
| |
Collapse
|
6
|
Kanno Y, Hirota M, Matsuo O, Ozaki KI. α2-antiplasmin positively regulates endothelial-to-mesenchymal transition and fibrosis progression in diabetic nephropathy. Mol Biol Rep 2021; 49:205-215. [PMID: 34709571 DOI: 10.1007/s11033-021-06859-z] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/20/2021] [Accepted: 10/20/2021] [Indexed: 10/20/2022]
Abstract
BACKGROUND Diabetic nephropathy (DN), is microvascular complication of diabetes causes to kidney dysfunction and renal fibrosis. It is known that hyperglycemia and advanced glycation end products (AGEs) produced by hyperglycemic condition induce myofibroblast differentiation and endothelial-to-mesenchymal transition (EndoMT), and exacerbate fibrosis in DN. Recently, we demonstrated that α2-antiplasmin (α2AP) is associated with inflammatory response and fibrosis progression. METHODS We investigated the role of α2AP on fibrosis progression in DN using a streptozotocin-induced DN mouse model. RESULTS α2AP deficiency attenuated EndoMT and fibrosis progression in DN model mice. We also showed that the high glucose condition/AGEs induced α2AP production in fibroblasts (FBs), and the reduction of receptor for AGEs (RAGE) by siRNA attenuated the AGEs-induced α2AP production in FBs. Furthermore, the bloackade of α2AP by the neutralizing antibody attenuated the high glucose condition-induced pro-fibrotic changes in FBs. On the other hand, the hyperglycemic condition/AGEs induced EndoMT in vascular endothelial cells (ECs), the FBs/ECs co-culture promoted the high glucose condition-induced EndoMT compared to ECs mono-culture. Furthermore, α2AP promoted the AGEs-induced EndoMT, and the blockade of α2AP attenuated the FBs/ECs co-culture-promoted EndoMT under the high glucose condition. CONCLUSIONS The high glucose conditions induced α2AP production, and α2AP is associated with EndoMT and fibrosis progression in DN. These findings provide a basis for clinical strategies to improve DN.
Collapse
Affiliation(s)
- Yosuke Kanno
- Department of Molecular Pathology, Faculty of Pharmaceutical Science, Doshisha Women's College of Liberal Arts, 97-1 Kodo Kyo-tanabe, Kyoto, 610-0395, Japan.
| | - Momoko Hirota
- Department of Molecular Pathology, Faculty of Pharmaceutical Science, Doshisha Women's College of Liberal Arts, 97-1 Kodo Kyo-tanabe, Kyoto, 610-0395, Japan
| | - Osamu Matsuo
- Kindai University Faculty of Medicine, 377-2 Ohnohigashi, Osakasayama, 589-8511, Japan
| | - Kei-Ichi Ozaki
- Department of Molecular Pathology, Faculty of Pharmaceutical Science, Doshisha Women's College of Liberal Arts, 97-1 Kodo Kyo-tanabe, Kyoto, 610-0395, Japan
| |
Collapse
|
7
|
Lu M, Blaine KP, Cullinane A, Hall C, Dulau-Florea A, Sun J, Chenwi HF, Graninger GM, Harper B, Thompson K, Krack J, Barnett CF, Brusca SB, Elinoff JM, Solomon MA. Pulmonary arterial hypertension patients display normal kinetics of clot formation using thrombelastography. Pulm Circ 2021; 11:20458940211022204. [PMID: 34249330 PMCID: PMC8237222 DOI: 10.1177/20458940211022204] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/23/2020] [Accepted: 05/16/2021] [Indexed: 11/15/2022] Open
Abstract
Pulmonary arterial hypertension is characterized by endothelial dysfunction and
microthrombi formation. The role of anticoagulation remains controversial, with
studies demonstrating inconsistent effects on pulmonary arterial hypertension
mortality. Clinical anticoagulation practices are currently heterogeneous,
reflecting physician preference. This study uses thrombelastography and
hematology markers to evaluate whether clot formation and fibrinolysis are
abnormal in pulmonary arterial hypertension patients. Venous blood was collected
from healthy volunteers (n = 20) and patients with pulmonary
arterial hypertension (n = 20) on stable medical therapy for
thrombelastography analysis. Individual thrombelastography parameters and a
calculated coagulation index were used for comparison. In addition, hematologic
markers, including fibrinogen, factor VIII activity, von Willebrand factor
activity, von Willebrand factor antigen, and alpha2-antiplasmin, were measured
in pulmonary arterial hypertension patients and compared to healthy volunteers.
Between group differences were analyzed using t tests and linear mixed models,
accounting for repeated measures when applicable. Although the degree of
fibrinolysis (LY30) was significantly lower in pulmonary arterial hypertension
patients compared to healthy volunteers (0.3% ± 0.6 versus
1.3% ± 1.1, p = 0.04), all values were within the normal
reference range (0–8%). All other thrombelastography parameters were not
significantly different between pulmonary arterial hypertension patients and
healthy volunteers (p ≥ 0.15 for all). Similarly,
alpha2-antiplasmin activity levels were higher in pulmonary arterial
hypertension patients compared to healthy volunteers (103.7% ± 13.6
versus 82.6% ± 9.5, p < 0.0001), but
all individual values were within the normal range (75–132%). There were no
other significant differences in hematologic markers between pulmonary arterial
hypertension patients and healthy volunteers (p ≥ 0.07 for
all). Sub-group analysis comparing thrombelastography results in patients
treated with or without prostacyclin pathway targeted therapies were also
non-significant. In conclusion, treated pulmonary arterial hypertension patients
do not demonstrate abnormal clotting kinetics or fibrinolysis by
thrombelastography.
Collapse
Affiliation(s)
- Mengyun Lu
- Critical Care Medicine Department, Clinical Center, National Institutes of Health, Bethesda, MD, USA
| | - Kevin P Blaine
- Critical Care Medicine Department, Clinical Center, National Institutes of Health, Bethesda, MD, USA.,Department of Anesthesiology, Keck School of Medicine of the University of Southern California, Los Angeles, CA, USA
| | - Ann Cullinane
- Department of Laboratory Medicine, Clinical Center, National Institutes of Health, Bethesda, MD, USA
| | - Courtney Hall
- Department of Laboratory Medicine, Clinical Center, National Institutes of Health, Bethesda, MD, USA
| | - Alina Dulau-Florea
- Department of Laboratory Medicine, Clinical Center, National Institutes of Health, Bethesda, MD, USA
| | - Junfeng Sun
- Critical Care Medicine Department, Clinical Center, National Institutes of Health, Bethesda, MD, USA
| | - Herman F Chenwi
- Critical Care Medicine Department, Clinical Center, National Institutes of Health, Bethesda, MD, USA
| | - Grace M Graninger
- Critical Care Medicine Department, Clinical Center, National Institutes of Health, Bethesda, MD, USA
| | - Bonnie Harper
- Critical Care Medicine Department, Clinical Center, National Institutes of Health, Bethesda, MD, USA
| | - Keshia Thompson
- Critical Care Medicine Department, Clinical Center, National Institutes of Health, Bethesda, MD, USA
| | - Janell Krack
- Pharmacy Department, Clinical Center, National Institutes of Health, Bethesda, MD, USA
| | - Christopher F Barnett
- MedStar Heart and Vascular Institute, MedStar Washington Hospital Center, Washington, DC, USA
| | - Samuel B Brusca
- Critical Care Medicine Department, Clinical Center, National Institutes of Health, Bethesda, MD, USA
| | - Jason M Elinoff
- Critical Care Medicine Department, Clinical Center, National Institutes of Health, Bethesda, MD, USA
| | - Michael A Solomon
- Critical Care Medicine Department, Clinical Center, National Institutes of Health, Bethesda, MD, USA.,Cardiology Branch, National Heart, Lung, and Blood Institute, National Institutes of Health, Bethesda, MD, USA
| |
Collapse
|
8
|
Kanno Y, Shu E, Niwa H, Seishima M, Ozaki KI. MicroRNA-30c attenuates fibrosis progression and vascular dysfunction in systemic sclerosis model mice. Mol Biol Rep 2021; 48:3431-3437. [PMID: 33913094 DOI: 10.1007/s11033-021-06368-z] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/08/2021] [Accepted: 04/21/2021] [Indexed: 10/21/2022]
Abstract
Systemic sclerosis (SSc) is characterized by peripheral circulatory disturbance and fibrosis in skin and visceral organs. We recently demonstrated that α2-antiplasmin (α2AP) is elevated in SSc dermal fibroblasts and SSc model mice, and is associated with fibrosis progression and vascular dysfunction. In the present study, we predicted that α2AP could be a target of microRNA-30c (miR-30c) using TargetScan online database, and investigated the effect of miR-30c on the pathogenesis of SSc using a bleomycin-induced SSc model mice. miR-30c attenuated α2AP expression, and prevented the pro-fibrotic changes (increased dermal thickness, collagen deposition, myofibroblast accmulation) and the vascular dysfunction (the reduction of vascular endothelial cells (ECs) and blood flow) in the skin of SSc model mice. Furthermore, miR-30c suppressed pulmonary fibrosis progression in the SSc model mice. miR-30c exerts the anti-fibrotic and anti-angiopathy effects on SSc model mice, and might provide a basis for clinical strategies for SSc.
Collapse
Affiliation(s)
- Yosuke Kanno
- Department of Molecular Pathology, Faculty of Pharmaceutical Science, Doshisha Women's College of Liberal Arts, 97-1 Kodo Kyo-tanabe, Kyoto, 610-0395, Japan. .,Department of Dermatology, Gifu University Graduate School of Medicine, 1-1 Yanagido, Gifu, 501-1194, Japan.
| | - En Shu
- Department of Dermatology, Gifu University Graduate School of Medicine, 1-1 Yanagido, Gifu, 501-1194, Japan
| | - Hirofumi Niwa
- Department of Dermatology, Gifu University Graduate School of Medicine, 1-1 Yanagido, Gifu, 501-1194, Japan
| | - Mariko Seishima
- Department of Dermatology, Gifu University Graduate School of Medicine, 1-1 Yanagido, Gifu, 501-1194, Japan
| | - Kei-Ichi Ozaki
- Department of Molecular Pathology, Faculty of Pharmaceutical Science, Doshisha Women's College of Liberal Arts, 97-1 Kodo Kyo-tanabe, Kyoto, 610-0395, Japan
| |
Collapse
|
9
|
Kanno Y, Shu E, Niwa H, Kanoh H, Seishima M. Alternatively activated macrophages are associated with the α2AP production that occurs with the development of dermal fibrosis : The role of alternatively activated macrophages on the development of fibrosis. Arthritis Res Ther 2020; 22:76. [PMID: 32272967 PMCID: PMC7146905 DOI: 10.1186/s13075-020-02159-2] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2019] [Accepted: 03/23/2020] [Indexed: 12/25/2022] Open
Abstract
Background Fibrotic diseases are characterized by tissue overgrowth, hardening, and/or scarring because of the excessive production, deposition, and contraction of the extracellular matrix (ECM). However, the detailed mechanisms underlying these disorders remain unclear. It was recently reported that α2-antiplasmin (α2AP) is elevated in fibrotic tissue and that it is associated with the development of fibrosis. In the present study, we examined the mechanism underlying the production of α2AP on the development of fibrosis. Methods To clarify the mechanism underlying the production of α2AP on the development of fibrosis, we focused on high-mobility group box 1 (HMGB1), which is associated with the development of fibrosis. The mouse model of bleomycin-induced fibrosis was used to evaluate the production of α2AP on the development of fibrosis. Results We found that HMGB1 induced the production of α2AP through receptor for advanced glycation end products (RAGE) in fibroblasts. Next, we showed that macrophage reduction by a macrophage-depleting agent, clodronate, attenuated the progression of fibrosis and the production of α2AP and HMGB1 in the bleomycin-induced mice. We also showed that IL-4-stimulated alternatively activated macrophages induced the production of HMGB1, that IL-4-stimulated alternatively activated macrophage conditioned media (CM) induced pro-fibrotic changes and α2AP production, and that the inhibition of HMGB1 and RAGE attenuated these effects in fibroblasts. Furthermore, the blockade of IL-4 signaling by IL-4Rα neutralizing antibodies attenuated the progression of fibrosis and the production of α2AP and HMGB1 in the bleomycin-induced mice. Conclusion These findings suggest that alternatively activated macrophage-derived HMGB1 induced the production of α2AP through RAGE and that these effects are associated with the development of fibrosis. Our findings may provide a clinical strategy for managing fibrotic disorders.
Collapse
Affiliation(s)
- Yosuke Kanno
- Department of Clinical Pathological Biochemistry, Faculty of Pharmaceutical Science, Doshisha Women's College of Liberal Arts, 97-1 Kodo Kyo-tanabe, Kyoto, 610-0395, Japan. .,Department of Dermatology, Graduate School of Medicine, Gifu University, 1-1 Yanagido, Gifu, 501-1194, Japan.
| | - En Shu
- Department of Dermatology, Graduate School of Medicine, Gifu University, 1-1 Yanagido, Gifu, 501-1194, Japan
| | - Hirofumi Niwa
- Department of Dermatology, Graduate School of Medicine, Gifu University, 1-1 Yanagido, Gifu, 501-1194, Japan
| | - Hiroyuki Kanoh
- Department of Dermatology, Graduate School of Medicine, Gifu University, 1-1 Yanagido, Gifu, 501-1194, Japan
| | - Mariko Seishima
- Department of Dermatology, Graduate School of Medicine, Gifu University, 1-1 Yanagido, Gifu, 501-1194, Japan
| |
Collapse
|
10
|
Kanno Y, Miyashita M, Seishima M, Matsuo O. α2AP is associated with the development of lupus nephritis through the regulation of plasmin inhibition and inflammatory responses. IMMUNITY INFLAMMATION AND DISEASE 2020; 8:267-278. [PMID: 32237065 PMCID: PMC7416015 DOI: 10.1002/iid3.302] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 11/18/2019] [Revised: 02/07/2020] [Accepted: 03/18/2020] [Indexed: 01/19/2023]
Abstract
Introduction Lupus nephritis (LN) is a common complication of systemic lupus erythematosus (SLE), which is a chronic autoimmune disease. However, the detailed mechanisms underlying this disorder have remained unclear. Alpha2‐antiplasmin (α2AP) is known to perform various functions, such as plasmin inhibition and cytokine production, and to be associated with immune and inflammatory responses. Methods We investigated the roles of α2AP in the pathogenesis of LN using a pristane‐induced lupus mouse model. Results The levels of plasmin‐α2AP complex and α2AP were elevated in the lupus model mice. In addition, α2AP deficiency attenuated the pristane‐induced glomerular cell proliferation, mesangial matrix expansion, collagen production, fibrin deposition, immunoglobulin G deposition, and proinflammatory cytokine production in the model mice. We also showed that interferon‐γ (IFN‐γ), which is an essential inducer of LN, induced α2AP production through the c‐Jun N‐terminal kinase (JNK) pathway in fibroblasts. In addition, plasmin attenuated the IFN‐γ‐induced proinflammatory cytokine production through the AMPK pathway in macrophages, and α2AP eliminated these effects. Furthermore, we showed that α2AP induced proinflammatory cytokine production through the ERK1/2 and JNK pathways in macrophages. Conclusion α2AP regulates the inflammatory responses through plasmin inhibition and proinflammatory cytokine production and is associated with the development of LN. Our findings may be used to develop a novel therapeutic approach for SLE.
Collapse
Affiliation(s)
- Yosuke Kanno
- Department of Clinical Pathological Biochemistry, Faculty of Pharmaceutical Science, Doshisha Women's College of Liberal Arts, Kyoto, Japan.,Department of Dermatology, Gifu University Graduate School of Medicine, Gifu, Japan
| | - Mei Miyashita
- Department of Clinical Pathological Biochemistry, Faculty of Pharmaceutical Science, Doshisha Women's College of Liberal Arts, Kyoto, Japan
| | - Mariko Seishima
- Department of Dermatology, Gifu University Graduate School of Medicine, Gifu, Japan
| | - Osamu Matsuo
- Kindai University Faculty of Medicine, Osakasayama, Japan
| |
Collapse
|
11
|
Kanno Y. The Role of Fibrinolytic Regulators in Vascular Dysfunction of Systemic Sclerosis. Int J Mol Sci 2019; 20:ijms20030619. [PMID: 30709025 PMCID: PMC6387418 DOI: 10.3390/ijms20030619] [Citation(s) in RCA: 42] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/19/2018] [Revised: 01/28/2019] [Accepted: 01/29/2019] [Indexed: 02/08/2023] Open
Abstract
Systemic sclerosis (SSc) is a connective tissue disease of autoimmune origin characterized by vascular dysfunction and extensive fibrosis of the skin and visceral organs. Vascular dysfunction is caused by endothelial cell (EC) apoptosis, defective angiogenesis, defective vasculogenesis, endothelial-to-mesenchymal transition (EndoMT), and coagulation abnormalities, and exacerbates the disease. Fibrinolytic regulators, such as plasminogen (Plg), plasmin, α2-antiplasmin (α2AP), tissue-type plasminogen activator (tPA), urokinase-type plasminogen activator (uPA) and its receptor (uPAR), plasminogen activator inhibitor 1 (PAI-1), and angiostatin, are considered to play an important role in the maintenance of endothelial homeostasis, and are associated with the endothelial dysfunction of SSc. This review considers the roles of fibrinolytic factors in vascular dysfunction of SSc.
Collapse
Affiliation(s)
- Yosuke Kanno
- Department of Clinical Pathological Biochemistry, Faculty of Pharmaceutical Science, Doshisha Women's College of Liberal Arts, 97-1 Kodo Kyo-tanabe, Kyoto 610-0395, Japan.
| |
Collapse
|
12
|
Kanno Y, Ishisaki A, Kuretake H, Maruyama C, Matsuda A, Matsuo O. α2-antiplasmin modulates bone formation by negatively regulating osteoblast differentiation and function. Int J Mol Med 2017; 40:854-858. [PMID: 28677806 DOI: 10.3892/ijmm.2017.3055] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/26/2017] [Accepted: 07/03/2017] [Indexed: 11/06/2022] Open
Abstract
α2-antiplasmin (α2AP) is known to be a physiological inhibitor of plasmin. Previously, we showed that α2AP displays various functions, such as promotion of extracellular matrix production, cell growth, and cell differentiation that are not promoted by its function as a plasmin inhibitor. We herein investigated the role of α2AP in bone formation by examining calcein incorporation after its injection in α2AP-deficient mice. We found that α2AP deficiency enhanced the bone formation rate in mice. We also found that the osteocalcin expression and alkaline phosphatase activity were elevated in the femur and serum of the α2AP-deficient mice. Intriguingly, α2AP deficiency promoted osteoblast (OB) differentiation of primary calvarial OBs. In contrast, α2AP attenuated OB differentiation of mouse osteoblastic the MC3T3-E1 cells. Furthermore, α2AP attenuated Wnt-3a-induced β-catenin expression and low‑density lipoprotein receptor-related protein 6 activation in the MC3T3-E1 cells. These results suggest that α2AP negatively affects OB differentiation and function by inhibiting the Wnt/β-catenin pathway. These findings provide a basis for clinical strategies to improve various bone disorders.
Collapse
Affiliation(s)
- Yosuke Kanno
- Department of Clinical Pathological Biochemistry, Faculty of Pharmaceutical Sciences, Doshisha Women's College of Liberal Arts, Kyoto 610-0395, Japan
| | - Akira Ishisaki
- Division of Cellular Biosignal Sciences, Department of Biochemistry, Iwate Medical University, Iwate 028-3694, Japan
| | - Hiromi Kuretake
- Department of Clinical Pathological Biochemistry, Faculty of Pharmaceutical Sciences, Doshisha Women's College of Liberal Arts, Kyoto 610-0395, Japan
| | - Chihiro Maruyama
- Department of Clinical Pathological Biochemistry, Faculty of Pharmaceutical Sciences, Doshisha Women's College of Liberal Arts, Kyoto 610-0395, Japan
| | - Ayaka Matsuda
- Department of Clinical Pathological Biochemistry, Faculty of Pharmaceutical Sciences, Doshisha Women's College of Liberal Arts, Kyoto 610-0395, Japan
| | - Osamu Matsuo
- Kindai University Faculty of Medicine, Osaka 589-8511, Japan
| |
Collapse
|
13
|
Kanno Y, Shu E, Kanoh H, Matsuda A, Seishima M. α2AP regulates vascular alteration by inhibiting VEGF signaling in systemic sclerosis: the roles of α2AP in vascular dysfunction in systemic sclerosis. Arthritis Res Ther 2017; 19:22. [PMID: 28159016 PMCID: PMC5291960 DOI: 10.1186/s13075-017-1227-y] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/04/2016] [Accepted: 01/12/2017] [Indexed: 12/30/2022] Open
Abstract
BACKGROUND Systemic sclerosis (SSc) is a connective tissues disease of unknown origin characterized by vascular damage and extensive fibrosis. Recently, we demonstrated that α2-antiplasmin (α2AP) is associated with the development of fibrosis in SSc. We herein investigate the roles of α2AP in vascular dysfunction in SSc. METHODS Vascular damage in mice was determined by the levels of blood vessels and blood flow. Vascular functions in vascular endothelial cells (ECs) were determined by the levels of tube formation, cell proliferation, and endothelial junction-associated protein (VE-cadherin and PECAM1) production. RESULTS The administration of α2AP induced vascular damage in mice. Conversely, the α2AP neutralization improved vascular damage in a bleomycin-induced mouse model of SSc. Additionally, we showed that the SSc fibroblast-conditioned media induced the reduction of tube formation, cell proliferation, and endothelial junction-associated protein production in ECs, and that α2AP neutralization improved them. We also examined the mechanisms underlying the effects of α2AP on vascular alteration in SSc and found that α2AP attenuated vascular endothelial growth factor-induced tube formation, cell proliferation, and endothelial junction-associated protein production through the adipose triglyceride lipase/tyrosine phosphatase SHP2 axis in ECs. CONCLUSION Our findings demonstrate that α2AP is associated with vascular alteration, and that the blocking of α2AP improves vascular dysfunction in SSc.
Collapse
Affiliation(s)
- Yosuke Kanno
- Department of Clinical Pathological Biochemistry, Faculty of Pharmaceutical Science, Doshisha Women's Collage of Liberal Arts, 97-1 Kodo, Kyo-tanabe, Kyoto, 610-0395, Japan.
| | - En Shu
- Department of Dermatology, Gifu University Graduate School of Medicine, 1-1 Yanagido, Gifu, 501-1194, Japan
| | - Hiroyuki Kanoh
- Department of Dermatology, Gifu University Graduate School of Medicine, 1-1 Yanagido, Gifu, 501-1194, Japan
| | - Ayaka Matsuda
- Department of Clinical Pathological Biochemistry, Faculty of Pharmaceutical Science, Doshisha Women's Collage of Liberal Arts, 97-1 Kodo, Kyo-tanabe, Kyoto, 610-0395, Japan
| | - Mariko Seishima
- Department of Dermatology, Gifu University Graduate School of Medicine, 1-1 Yanagido, Gifu, 501-1194, Japan
| |
Collapse
|
14
|
Kanno Y, Shu E, Kanoh H, Seishima M. The Antifibrotic Effect of α2AP Neutralization in Systemic Sclerosis Dermal Fibroblasts and Mouse Models of Systemic Sclerosis. J Invest Dermatol 2015; 136:762-769. [PMID: 26743600 DOI: 10.1016/j.jid.2015.12.028] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/26/2015] [Revised: 11/16/2015] [Accepted: 12/14/2015] [Indexed: 10/22/2022]
Abstract
Systemic sclerosis (SSc) is a connective tissue disease of autoimmune origin characterized by the fibrosis of skin and visceral organs, and peripheral circulatory disturbance. We recently demonstrated that α2-antiplasmin (α2AP), which is the physiological inhibitor of plasmin, is associated with the development of fibrosis. The aim of this study was to clarify the role of α2AP in the pathogenesis of SSc. The administration of α2AP in mice induced profibrotic changes, such as increased dermal thickness, collagen production, and myofibroblast differentiation. Conversely, the α2AP neutralization prevented not only profibrotic changes, but also the production of autoantibodies in bleomycin-induced mouse models of SSc. The expression of α2AP was elevated in dermal fibroblasts obtained from patients with SSc. Furthermore, α2AP treatment promoted profibrotic changes in human normal dermal fibroblasts, and α2AP neutralization reversed a profibrotic phenotype of SSc dermal fibroblasts, in the absence of plasmin. Our findings demonstrated that α2AP has a profibrotic effect probably not by the action as a plasmin inhibitor, and that the blocking of α2AP exerts an antifibrotic effect in humans and mice with SSc.
Collapse
Affiliation(s)
- Yosuke Kanno
- Department of Clinical Pathological Biochemistry, Faculty of Pharmaceutical Science, Doshisha Women's Collage of Liberal Arts, Kodo Kyo-tanabe, Kyoto, Japan.
| | - En Shu
- Department of Dermatology, Gifu University Graduate School of Medicine, Yanagido Gifu, Japan
| | - Hiroyuki Kanoh
- Department of Dermatology, Gifu University Graduate School of Medicine, Yanagido Gifu, Japan
| | - Mariko Seishima
- Department of Dermatology, Gifu University Graduate School of Medicine, Yanagido Gifu, Japan
| |
Collapse
|
15
|
Pattanaik D, Brown M, Postlethwaite BC, Postlethwaite AE. Pathogenesis of Systemic Sclerosis. Front Immunol 2015; 6:272. [PMID: 26106387 PMCID: PMC4459100 DOI: 10.3389/fimmu.2015.00272] [Citation(s) in RCA: 267] [Impact Index Per Article: 26.7] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/19/2014] [Accepted: 05/16/2015] [Indexed: 01/04/2023] Open
Abstract
Systemic scleroderma (SSc) is one of the most complex systemic autoimmune diseases. It targets the vasculature, connective tissue-producing cells (namely fibroblasts/myofibroblasts), and components of the innate and adaptive immune systems. Clinical and pathologic manifestations of SSc are the result of: (1) innate/adaptive immune system abnormalities leading to production of autoantibodies and cell-mediated autoimmunity, (2) microvascular endothelial cell/small vessel fibroproliferative vasculopathy, and (3) fibroblast dysfunction generating excessive accumulation of collagen and other matrix components in skin and internal organs. All three of these processes interact and affect each other. The disease is heterogeneous in its clinical presentation that likely reflects different genetic or triggering factor (i.e., infection or environmental toxin) influences on the immune system, vasculature, and connective tissue cells. The roles played by other ubiquitous molecular entities (such as lysophospholipids, endocannabinoids, and their diverse receptors and vitamin D) in influencing the immune system, vasculature, and connective tissue cells are just beginning to be realized and studied and may provide insights into new therapeutic approaches to treat SSc.
Collapse
Affiliation(s)
- Debendra Pattanaik
- Department of Medicine, Division of Connective Tissue Diseases, The University of Tennessee Health Science Center , Memphis, TN , USA ; Department of Veterans Affairs Medical Center , Memphis, TN , USA
| | - Monica Brown
- Section of Pediatric Rheumatology, Department of Pediatrics, The University of Tennessee Health Science Center , Memphis, TN , USA
| | - Bradley C Postlethwaite
- Department of Medicine, Division of Connective Tissue Diseases, The University of Tennessee Health Science Center , Memphis, TN , USA
| | - Arnold E Postlethwaite
- Department of Medicine, Division of Connective Tissue Diseases, The University of Tennessee Health Science Center , Memphis, TN , USA ; Department of Veterans Affairs Medical Center , Memphis, TN , USA
| |
Collapse
|
16
|
Kanno Y, Kawashita E, Kokado A, Kuretake H, Ikeda K, Okada K, Seishima M, Ueshima S, Matsuo O, Matsuno H. α2AP mediated myofibroblast formation and the development of renal fibrosis in unilateral ureteral obstruction. Sci Rep 2014; 4:5967. [PMID: 25095732 PMCID: PMC5380014 DOI: 10.1038/srep05967] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/16/2014] [Accepted: 07/15/2014] [Indexed: 12/16/2022] Open
Abstract
Renal fibrosis is the final common pathway of a wide variety of chronic kidney diseases. Myofibroblast formation via the differentiation of from tissue-resident fibroblasts and bone marrow-derived mesenchymal stem cells (MSCs), and epithelial-to-mesenchymal transition (EMT) is known to play a pivotal role in the development of renal fibrosis. However, the detailed mechanisms underlying this disorder remain unclear. We herein investigated the role of alpha 2-antiplasmin (α2AP) in myofibroblast formation and the development of renal fibrosis. We observed the development of renal fibrosis using unilateral ureteral obstruction (UUO). α2AP had accumulated in the UUO-induced obstructed kidneys and α2AP deficiency attenuated UUO-induced renal fibrosis in mice. The degree of myofibroblast formation in the obstructed kidneys of α2AP(-/-) mice was less than that in α2AP(+/+) mice. In vitro, α2AP induced myofibroblast formation in renal tubular epithelial cells (RTECs), renal fibrosblasts, and bone marrow-derived mesenchymal stem cells (MSCs). α2AP also induced the production of TGF-β, which is known to be a key regulator of myofibroblast formation and fibrosis. α2AP-induced the TGF-β production was significantly reduced by SP600125, c-Jun N-terminal kinase (JNK) specific inhibitor. Our findings suggest that α2AP induces myofibroblast formation in the obstructed kidneys, and mediates the development of renal fibrosis.
Collapse
Affiliation(s)
- Yosuke Kanno
- Department of Clinical Pathological Biochemistry, Faculty of Pharmaceutical Science, Doshisha Women's Collage of Liberal Arts, 97-1 Kodo Kyo-tanabe, Kyoto, 610-0395, Japan
| | - Eri Kawashita
- Department of Clinical Pathological Biochemistry, Faculty of Pharmaceutical Science, Doshisha Women's Collage of Liberal Arts, 97-1 Kodo Kyo-tanabe, Kyoto, 610-0395, Japan
| | - Akiko Kokado
- Department of Clinical Pathological Biochemistry, Faculty of Pharmaceutical Science, Doshisha Women's Collage of Liberal Arts, 97-1 Kodo Kyo-tanabe, Kyoto, 610-0395, Japan
| | - Hiromi Kuretake
- Department of Clinical Pathological Biochemistry, Faculty of Pharmaceutical Science, Doshisha Women's Collage of Liberal Arts, 97-1 Kodo Kyo-tanabe, Kyoto, 610-0395, Japan
| | - Kanako Ikeda
- Department of Clinical Pathological Biochemistry, Faculty of Pharmaceutical Science, Doshisha Women's Collage of Liberal Arts, 97-1 Kodo Kyo-tanabe, Kyoto, 610-0395, Japan
| | - Kiyotaka Okada
- Department of Physiology II. Kinki University School of Medicine, Osaka-sayama, Japan
| | - Mariko Seishima
- Department of Dermatology, Gifu University Graduate School of Medicine, Yanagido Gifu, Japan
| | - Shigeru Ueshima
- 1] Department of Physiology II. Kinki University School of Medicine, Osaka-sayama, Japan [2] Department of Food Science and Nutrition, Kinki University School of Agriculture, Nara, Japan
| | - Osamu Matsuo
- Department of Physiology II. Kinki University School of Medicine, Osaka-sayama, Japan
| | - Hiroyuki Matsuno
- Department of Clinical Pathological Biochemistry, Faculty of Pharmaceutical Science, Doshisha Women's Collage of Liberal Arts, 97-1 Kodo Kyo-tanabe, Kyoto, 610-0395, Japan
| |
Collapse
|
17
|
Kawashita E, Kanno Y, Ikeda K, Kuretake H, Matsuo O, Matsuno H. Altered behavior in mice with deletion of the alpha2-antiplasmin gene. PLoS One 2014; 9:e97947. [PMID: 24874880 PMCID: PMC4038522 DOI: 10.1371/journal.pone.0097947] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/22/2014] [Accepted: 04/27/2014] [Indexed: 01/16/2023] Open
Abstract
Background The α2-antiplasmin (α2AP) protein is known to be a principal physiological inhibitor of plasmin, and is expressed in various part of the brain, including the hippocampus, cortex, hypothalamus and cerebellum, thus suggesting a potential role for α2AP in brain functions. However, the involvement of α2AP in brain functions is currently unclear. Objectives The goal of this study was to investigate the effects of the deletion of the α2AP gene on the behavior of mice. Methods The motor function was examined by the wire hang test and rotarod test. To evaluate the cognitive function, a repeated rotarod test, Y-maze test, Morris water maze test, passive or shuttle avoidance test and fear conditioning test were performed. An open field test, dark/light transition test or tail suspension test was performed to determine the involvement of α2AP in anxiety or depression-like behavior. Results and Conclusions The α2AP knockout (α2AP−/−) mice exhibited impaired motor function compared with α2AP+/+ mice. The α2AP−/− mice also exhibited impairments in motor learning, working memory, spatial memory and fear conditioning memory. Furthermore, the deletion of α2AP induced anxiety-like behavior, and caused an anti-depression-like effect in tail suspension. Therefore, our findings suggest that α2AP is a crucial mediator of motor function, cognitive function, anxiety-like behavior and depression-like behavior, providing new insights into the role of α2AP in the brain functions.
Collapse
Affiliation(s)
- Eri Kawashita
- Department of Clinical Pathological Biochemistry, Faculty of Pharmaceutical Science, Doshisha Women’s College of Liberal Arts, Kyo-tanabe, Kyoto, Japan
- * E-mail:
| | - Yosuke Kanno
- Department of Clinical Pathological Biochemistry, Faculty of Pharmaceutical Science, Doshisha Women’s College of Liberal Arts, Kyo-tanabe, Kyoto, Japan
| | - Kanako Ikeda
- Department of Clinical Pathological Biochemistry, Faculty of Pharmaceutical Science, Doshisha Women’s College of Liberal Arts, Kyo-tanabe, Kyoto, Japan
| | - Hiromi Kuretake
- Department of Clinical Pathological Biochemistry, Faculty of Pharmaceutical Science, Doshisha Women’s College of Liberal Arts, Kyo-tanabe, Kyoto, Japan
| | - Osamu Matsuo
- Department of Physiology II. Kinki University School of Medicine, Osakasayama, Osaka, Japan
| | - Hiroyuki Matsuno
- Department of Clinical Pathological Biochemistry, Faculty of Pharmaceutical Science, Doshisha Women’s College of Liberal Arts, Kyo-tanabe, Kyoto, Japan
| |
Collapse
|
18
|
Kager LM, Weehuizen TA, Wiersinga WJ, Roelofs JJTH, Meijers JCM, Dondorp AM, van 't Veer C, van der Poll T. Endogenous α2-antiplasmin is protective during severe gram-negative sepsis (melioidosis). Am J Respir Crit Care Med 2013; 188:967-75. [PMID: 23992406 DOI: 10.1164/rccm.201307-1344oc] [Citation(s) in RCA: 31] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022] Open
Abstract
RATIONALE α2-Antiplasmin (A2AP) is a major inhibitor of fibrinolysis by virtue of its capacity to inhibit plasmin. Although the fibrinolytic system is strongly affected by infection, the functional role of A2AP in the host response to sepsis is unknown. OBJECTIVES To study the role of A2AP in melioidosis, a common form of community-acquired sepsis in Southeast Asia and Northern Australia caused by the gram-negative bacterium Burkholderia pseudomallei. METHODS In a single-center observational study A2AP was measured in patients with culture-proven septic melioidosis. Wild-type and A2AP-deficient (A2AP(-/-)) mice were intranasally infected with B. pseudomallei to induce severe pneumosepsis (melioidosis). Parameters of inflammation and coagulation were measured, and survival studies were performed. MEASUREMENTS AND MAIN RESULTS Patients with melioidosis showed elevated A2AP plasma levels. Likewise, A2AP levels in plasma and lung homogenates were elevated in mice infected with B. pseudomallei. A2AP-deficient (A2AP(-/-)) mice had a strongly disturbed host response during experimental melioidosis as reflected by enhanced bacterial growth at the primary site of infection accompanied by increased dissemination to distant organs. In addition, A2AP(-/-) mice showed more severe lung pathology and injury together with an increased accumulation of neutrophils and higher cytokine levels in lung tissue. A2AP deficiency further was associated with exaggerated systemic inflammation and coagulation, increased distant organ injury, and enhanced lethality. CONCLUSIONS This study is the first to identify A2AP as a protective mediator during gram-negative (pneumo)sepsis by limiting bacterial growth, inflammation, tissue injury, and coagulation.
Collapse
|
19
|
Okada K, Ueshima S, Kawao N, Yano M, Tamura Y, Tanaka M, Sakamoto A, Hatano M, Arima M, Miyata S, Nagai N, Tokuhisa T, Matsuo O. Lack of both α2-antiplasmin and plasminogen activator inhibitor type-1 induces high IgE production. Life Sci 2013; 93:89-95. [DOI: 10.1016/j.lfs.2013.05.023] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/08/2012] [Revised: 05/18/2013] [Accepted: 05/28/2013] [Indexed: 11/28/2022]
|
20
|
Kawashita E, Kanno Y, Asayama H, Okada K, Ueshima S, Matsuo O, Matsuno H. Involvement of α2-antiplasmin in dendritic growth of hippocampal neurons. J Neurochem 2013; 126:58-69. [PMID: 23646899 DOI: 10.1111/jnc.12281] [Citation(s) in RCA: 25] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/04/2013] [Revised: 04/26/2013] [Accepted: 04/29/2013] [Indexed: 01/25/2023]
Abstract
The α2-Antiplasmin (α2AP) protein is known as a principal physiological inhibitor of plasmin, but we previously demonstrated that it acts as a regulatory factor for cellular functions independent of plasmin. α2AP is highly expressed in the hippocampus, suggesting a potential role for α2AP in hippocampal neuronal functions. However, the role for α2AP was unclear. This study is the first to investigate the involvement of α2AP in the dendritic growth of hippocampal neurons. The expression of microtubule-associated protein 2, which contributes to neurite initiation and neuronal growth, was lower in the neurons from α2AP⁻/⁻ mice than in the neurons from α2AP⁺/⁺ mice. Exogenous treatment with α2AP enhanced the microtubule-associated protein 2 expression, dendritic growth and filopodia formation in the neurons. This study also elucidated the mechanism underlying the α2AP-induced dendritic growth. Aprotinin, another plasmin inhibitor, had little effect on the dendritic growth of neurons, and α2AP induced its expression in the neurons from plaminogen⁻/⁻ mice. The activation of p38 MAPK was involved in the α2AP-induced dendritic growth. Therefore, our findings suggest that α2AP induces dendritic growth in hippocampal neurons through p38 MAPK activation, independent of plasmin, providing new insights into the role of α2AP in the CNS.
Collapse
Affiliation(s)
- Eri Kawashita
- Department of Clinical Pathological Biochemistry, Faculty of Pharmaceutical Science, Doshisha Women's College of Liberal Arts, Kyoto, Japan.
| | | | | | | | | | | | | |
Collapse
|
21
|
Kanno Y, Kawashita E, Kokado A, Okada K, Ueshima S, Matsuo O, Matsuno H. Alpha2-antiplasmin regulates the development of dermal fibrosis in mice by prostaglandin F2αsynthesis through adipose triglyceride lipase/calcium-independent phospholipase A2. ACTA ACUST UNITED AC 2013; 65:492-502. [DOI: 10.1002/art.37767] [Citation(s) in RCA: 27] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/22/2012] [Accepted: 10/18/2012] [Indexed: 11/09/2022]
|
22
|
Kanno Y, Ishisaki A, Kawashita E, Chosa N, Nakajima K, Nishihara T, Toyoshima K, Okada K, Ueshima S, Matsushita K, Matsuo O, Matsuno H. Plasminogen/plasmin modulates bone metabolism by regulating the osteoblast and osteoclast function. J Biol Chem 2011; 286:8952-60. [PMID: 21239499 DOI: 10.1074/jbc.m110.152181] [Citation(s) in RCA: 43] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
The contribution of plasminogen (Plg)/plasmin, which have claimed to be the main fibrinolytic regulators in the bone metabolism, remains unclear. This study evaluated how the absence of Plg affects the function of osteoblast (OB) and osteoclast (OC). There was a larger population of pre-OCs in bone marrow-derived cells from the Plg(-/-) mice than the population of that from the WT mice. In addition, the absence of Plg suppressed the expression of osteoprotegerin in OBs. Moreover, an exogenous plasmin clearly induced the osteoprotegerin expression in Plg(-/-) OBs. The osteoclastogenesis of RAW264.7 mouse monocyte/macrophage lineage cells in co-culture with OBs from the Plg(-/-) mice was significantly accelerated in comparison with that in co-culture with OBs from the WT mice. Intriguingly, the accelerated OC differentiation of RAW264.7 cells co-cultured with Plg(-/-) OBs was clearly suppressed by the treatment of an exogenous plasmin. Consequently, Plg(-/-) mice display decreased bone mineral density. These findings could eventually lead to the development of new clinical therapies for bone disease caused by a disorder of the fibrinolytic system.
Collapse
Affiliation(s)
- Yosuke Kanno
- Department of Clinical Pathological Biochemistry, Faculty of Pharmaceutical Science, Doshisha Women's Collage of Liberal Arts, 97-1 Kodo Kyo-tanabe, Kyoto 610-0395, Japan.
| | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|