1
|
Esser H, de Jong IEM, Roos FM, Bogensperger C, Brunner SM, Cardini B, Dutkowski P, Eker H, Ferreira-Gonzalez S, Forbes SJ, Friend PJ, Fundora Y, Junger H, Krendl FJ, Martins PN, de Meijer VE, Oberhuber R, Oniscu GC, Patrono D, Porte RJ, Resch T, Sadik H, Schlegel A, De Stefano N, Vidgren M, Watson CJE, Weißenbacher A, Schneeberger S. Consensus classification of biliary complications after liver transplantation: guidelines from the BileducTx meeting. Br J Surg 2025; 112:znae321. [PMID: 40313074 PMCID: PMC12046073 DOI: 10.1093/bjs/znae321] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/21/2024] [Revised: 12/11/2024] [Accepted: 12/16/2024] [Indexed: 05/03/2025]
Affiliation(s)
- Hannah Esser
- Department of Visceral, Transplant and Thoracic Surgery, organLife Laboratory, Centre of Operative Medicine, Medical University of Innsbruck, Innsbruck, Austria
| | - Iris E M de Jong
- Department of Medicine, University of Pennsylvania, Philadelphia, Pennsylvania, USA
- Center for Engineering MechanoBiology, University of Pennsylvania, Philadelphia, Pennsylvania, USA
| | - Floris M Roos
- Wellcome-MRC Cambridge Stem Cell Institute, University of Cambridge, Cambridge, UK
| | - Christina Bogensperger
- Department of Visceral, Transplant and Thoracic Surgery, organLife Laboratory, Centre of Operative Medicine, Medical University of Innsbruck, Innsbruck, Austria
| | - Stefan M Brunner
- Department of Surgery, University Medical Center Regensburg, Regensburg, Germany
| | - Benno Cardini
- Department of Visceral, Transplant and Thoracic Surgery, organLife Laboratory, Centre of Operative Medicine, Medical University of Innsbruck, Innsbruck, Austria
| | - Philipp Dutkowski
- Department of Surgery, Clarunis—University Centre for Gastrointestinal and Hepatopancreatobiliary Diseases, Basel, Switzerland and Department of Visceral Surgery, University Hospital Basel, Switzerland
| | - Hasan Eker
- Department for General and HPB Surgery and Liver Transplantation, Ghent University Hospital, Ghent, Belgium
| | - Sofia Ferreira-Gonzalez
- Centre for Inflammation Research (CIR), University of Edinburgh, The Queen’s Medical Research Institute, Edinburgh, UK
| | - Stuart J Forbes
- Centre for Regenerative Medicine, University of Edinburgh, Edinburgh, UK
| | - Peter J Friend
- Nuffield Department of Surgical Sciences, University of Oxford, The Churchill Hospital, Oxford, UK
| | - Yiliam Fundora
- Department of Surgery. HPB and Liver Transplant Unit, ICMDM, Hospital Clinic Barcelona, IDIBAPS, UB, Barcelona, Spain
| | - Henrik Junger
- Department of Surgery, University Medical Center Regensburg, Regensburg, Germany
| | - Felix J Krendl
- Department of Visceral, Transplant and Thoracic Surgery, organLife Laboratory, Centre of Operative Medicine, Medical University of Innsbruck, Innsbruck, Austria
| | - Paulo N Martins
- Department of Surgery, Oklahoma University, Oklahoma City, USA
| | - Vincent E de Meijer
- Department of Surgery, Section of Hepatobiliary Surgery and Liver Transplantation, University of Groningen, University Medical Center Groningen, Groningen, The Netherlands and UMCG Comprehensive Transplant Center, Groningen, The Netherlands
| | - Rupert Oberhuber
- Department of Visceral, Transplant and Thoracic Surgery, organLife Laboratory, Centre of Operative Medicine, Medical University of Innsbruck, Innsbruck, Austria
| | - Gabriel C Oniscu
- Division of Transplantation Surgery, CLINTEC, Karolinska Institutet, Stockholm, Sweden
| | - Damiano Patrono
- General Surgery 2U—Liver Transplant Centre, A.O.U. Città della Salute e della Scienza—Torino, Italy
| | - Robert J Porte
- Department of Surgery, Division of Hepato-Pancreato-Biliary and Transplant Surgery, Erasmus MC Transplant Institute, University Medical Center Rotterdam, Rotterdam, The Netherlands
| | - Thomas Resch
- Department of Visceral, Transplant and Thoracic Surgery, organLife Laboratory, Centre of Operative Medicine, Medical University of Innsbruck, Innsbruck, Austria
| | - Hatem Sadik
- Nuffield Department of Surgical Sciences, University of Oxford, The Churchill Hospital, Oxford, UK
| | - Andrea Schlegel
- Transplantation Center and Department of Immunology, Lerner Research Institute, Cleveland Clinic, Cleveland, Ohio, USA
| | - Nicola De Stefano
- General Surgery 2U—Liver Transplant Centre, A.O.U. Città della Salute e della Scienza—Torino, Italy
| | - Mathias Vidgren
- Division of Transplantation Surgery, CLINTEC, Karolinska Institutet, Stockholm, Sweden
| | - Christopher J E Watson
- The Roy Calne Transplant Unit and the University of Cambridge Department of Surgery, Addenbrooke's Hospital, Cambridge, UK
| | - Annemarie Weißenbacher
- Department of Visceral, Transplant and Thoracic Surgery, organLife Laboratory, Centre of Operative Medicine, Medical University of Innsbruck, Innsbruck, Austria
| | - Stefan Schneeberger
- Department of Visceral, Transplant and Thoracic Surgery, organLife Laboratory, Centre of Operative Medicine, Medical University of Innsbruck, Innsbruck, Austria
| |
Collapse
|
2
|
Mata-Martínez E, Ramírez-Ledesma MG, Vázquez-Victorio G, Hernández-Muñoz R, Díaz-Muñoz M, Vázquez-Cuevas FG. Purinergic Signaling in Non-Parenchymal Liver Cells. Int J Mol Sci 2024; 25:9447. [PMID: 39273394 PMCID: PMC11394727 DOI: 10.3390/ijms25179447] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/15/2024] [Revised: 08/27/2024] [Accepted: 08/29/2024] [Indexed: 09/15/2024] Open
Abstract
Purinergic signaling has emerged as an important paracrine-autocrine intercellular system that regulates physiological and pathological processes in practically all organs of the body. Although this system has been thoroughly defined since the nineties, recent research has made substantial advances regarding its role in aspects of liver physiology. However, most studies have mainly targeted the entire organ, 70% of which is made up of parenchymal cells or hepatocytes. Because of its physiological role, the liver is exposed to toxic metabolites, such as xenobiotics, drugs, and fatty acids, as well as to pathogens such as viruses and bacteria. Under injury conditions, all cell types within the liver undergo adaptive changes. In this context, the concentration of extracellular ATP has the potential to increase dramatically. Indeed, this purinergic response has not been studied in sufficient detail in non-parenchymal liver cells. In the present review, we systematize the physiopathological adaptations related to the purinergic system in chronic liver diseases of non-parenchymal liver cells, such as hepatic stellate cells, Kupffer cells, sinusoidal endothelial cells, and cholangiocytes. The role played by non-parenchymal liver cells in these circumstances will undoubtedly be strategic in understanding the regenerative activities that support the viability of this organ under stressful conditions.
Collapse
Affiliation(s)
- Esperanza Mata-Martínez
- Departamento de Biología Celular y Desarrollo, Instituto de Fisiología Celular, Universidad Nacional Autónoma de México (UNAM), Ciudad Universitaria, Mexico City 04510, Mexico
| | - María Guadalupe Ramírez-Ledesma
- Departamento de Neurobiología Celular y Molecular, Instituto de Neurobiología, Universidad Nacional Autónoma de México (UNAM), Boulevard Juriquilla #3001, Querétaro 76230, Mexico
| | - Genaro Vázquez-Victorio
- Departamento de Física, Facultad de Ciencias, Universidad Nacional Autónoma de México (UNAM), Circuito Exterior S/N, Ciudad Universitaria, Mexico City 04510, Mexico
| | - Rolando Hernández-Muñoz
- Departamento de Biología Celular y Desarrollo, Instituto de Fisiología Celular, Universidad Nacional Autónoma de México (UNAM), Ciudad Universitaria, Mexico City 04510, Mexico
| | - Mauricio Díaz-Muñoz
- Departamento de Neurobiología Celular y Molecular, Instituto de Neurobiología, Universidad Nacional Autónoma de México (UNAM), Boulevard Juriquilla #3001, Querétaro 76230, Mexico
| | - Francisco G Vázquez-Cuevas
- Departamento de Neurobiología Celular y Molecular, Instituto de Neurobiología, Universidad Nacional Autónoma de México (UNAM), Boulevard Juriquilla #3001, Querétaro 76230, Mexico
| |
Collapse
|
3
|
Zhao J, Yue P, Mi N, Li M, Fu W, Zhang X, Gao L, Bai M, Tian L, Jiang N, Lu Y, Ma H, Dong C, Zhang Y, Zhang H, Zhang J, Ren Y, Suzuki A, Wong PF, Tanaka K, Rerknimitr R, Junger HH, Cheung TT, Melloul E, Demartines N, Leung JW, Yao J, Yuan J, Lin Y, Schlitt HJ, Meng W. Biliary fibrosis is an important but neglected pathological feature in hepatobiliary disorders: from molecular mechanisms to clinical implications. MEDICAL REVIEW (2021) 2024; 4:326-365. [PMID: 39135601 PMCID: PMC11317084 DOI: 10.1515/mr-2024-0029] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 03/27/2024] [Accepted: 06/06/2024] [Indexed: 08/15/2024]
Abstract
Fibrosis resulting from pathological repair secondary to recurrent or persistent tissue damage often leads to organ failure and mortality. Biliary fibrosis is a crucial but easily neglected pathological feature in hepatobiliary disorders, which may promote the development and progression of benign and malignant biliary diseases through pathological healing mechanisms secondary to biliary tract injuries. Elucidating the etiology and pathogenesis of biliary fibrosis is beneficial to the prevention and treatment of biliary diseases. In this review, we emphasized the importance of biliary fibrosis in cholangiopathies and summarized the clinical manifestations, epidemiology, and aberrant cellular composition involving the biliary ductules, cholangiocytes, immune system, fibroblasts, and the microbiome. We also focused on pivotal signaling pathways and offered insights into ongoing clinical trials and proposing a strategic approach for managing biliary fibrosis-related cholangiopathies. This review will offer a comprehensive perspective on biliary fibrosis and provide an important reference for future mechanism research and innovative therapy to prevent or reverse fibrosis.
Collapse
Affiliation(s)
- Jinyu Zhao
- Department of General Surgery, The First Hospital of Lanzhou University, Lanzhou, Gansu, China
| | - Ping Yue
- Department of General Surgery, The First Hospital of Lanzhou University, Lanzhou, Gansu, China
| | - Ningning Mi
- Department of General Surgery, The First Hospital of Lanzhou University, Lanzhou, Gansu, China
| | - Matu Li
- Department of Gastroenterology, The First Hospital of Lanzhou University, Lanzhou, Gansu, China
| | - Wenkang Fu
- Department of General Surgery, The First Hospital of Lanzhou University, Lanzhou, Gansu, China
| | - Xianzhuo Zhang
- Department of General Surgery, The First Hospital of Lanzhou University, Lanzhou, Gansu, China
| | - Long Gao
- Department of General Surgery, The First Hospital of Lanzhou University, Lanzhou, Gansu, China
| | - Mingzhen Bai
- Department of General Surgery, The First Hospital of Lanzhou University, Lanzhou, Gansu, China
| | - Liang Tian
- Department of General Surgery, The First Hospital of Lanzhou University, Lanzhou, Gansu, China
| | - Ningzu Jiang
- Department of General Surgery, The First Hospital of Lanzhou University, Lanzhou, Gansu, China
| | - Yawen Lu
- Department of General Surgery, The First Hospital of Lanzhou University, Lanzhou, Gansu, China
| | - Haidong Ma
- Department of General Surgery, The First Hospital of Lanzhou University, Lanzhou, Gansu, China
| | - Chunlu Dong
- Department of General Surgery, The First Hospital of Lanzhou University, Lanzhou, Gansu, China
| | - Yong Zhang
- Department of General Surgery, The First Hospital of Lanzhou University, Lanzhou, Gansu, China
| | - Hengwei Zhang
- Department of General Surgery, The First Hospital of Lanzhou University, Lanzhou, Gansu, China
| | - Jinduo Zhang
- Department of General Surgery, The First Hospital of Lanzhou University, Lanzhou, Gansu, China
| | - Yanxian Ren
- Department of General Surgery, The First Hospital of Lanzhou University, Lanzhou, Gansu, China
| | - Azumi Suzuki
- Department of Gastroenterology, Hamamatsu Medical Center, Hamamatsu, Japan
| | - Peng F. Wong
- Department of Vascular Surgery, The James Cook University Hospital, Middlesbrough, UK
| | - Kiyohito Tanaka
- Department of Gastroenterology, Kyoto Second Red Cross Hospital, Kyoto, Japan
| | - Rungsun Rerknimitr
- Division of Gastroenterology, Department of Medicine, Faculty of Medicine, Chulalongkorn, Bangkok, Thailand
- Excellence Center for Gastrointestinal Endoscopy, King Chulalongkorn Memorial Hospital, Bangkok, Thailand
| | - Henrik H. Junger
- Department of Surgery, University Medical Center Regensburg, Regensburg, Germany
| | - Tan T. Cheung
- Department of Surgery, The University of Hong Kong, Hong Kong, China
| | - Emmanuel Melloul
- Department of Visceral Surgery, Lausanne University Hospital CHUV, University of Lausanne (UNIL), Lausanne, Switzerland
| | - Nicolas Demartines
- Department of Visceral Surgery, Lausanne University Hospital CHUV, University of Lausanne (UNIL), Lausanne, Switzerland
| | - Joseph W. Leung
- Division of Gastroenterology and Hepatology, UC Davis Medical Center and Sacramento VA Medical Center, Sacramento, CA, USA
| | - Jia Yao
- The First School of Clinical Medicine, Lanzhou University, Lanzhou, Gansu, China
- Key Laboratory of Biotherapy and Regenerative Medicine of Gansu Province, Lanzhou, China
| | - Jinqiu Yuan
- Clinical Research Center, Big Data Center, The Seventh Affiliated Hospital, Sun Yat-sen University, Shenzhen, Guangdong, China
| | - Yanyan Lin
- Department of General Surgery, The First Hospital of Lanzhou University, Lanzhou, Gansu, China
| | - Hans J. Schlitt
- Department of Surgery, University Medical Center Regensburg, Regensburg, Germany
| | - Wenbo Meng
- Department of General Surgery, The First Hospital of Lanzhou University, Lanzhou, Gansu, China
| |
Collapse
|
4
|
Pham HN, Pham L, Sato K. Deconvolution analysis identified altered hepatic cell landscape in primary sclerosing cholangitis and primary biliary cholangitis. Front Med (Lausanne) 2024; 11:1327973. [PMID: 38818402 PMCID: PMC11138208 DOI: 10.3389/fmed.2024.1327973] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/25/2023] [Accepted: 04/29/2024] [Indexed: 06/01/2024] Open
Abstract
Introduction Primary sclerosing cholangitis (PSC) and primary biliary cholangitis (PBC) are characterized by ductular reaction, hepatic inflammation, and liver fibrosis. Hepatic cells are heterogeneous, and functional roles of different hepatic cell phenotypes are still not defined in the pathophysiology of cholangiopathies. Cell deconvolution analysis estimates cell fractions of different cell phenotypes in bulk transcriptome data, and CIBERSORTx is a powerful deconvolution method to estimate cell composition in microarray data. CIBERSORTx performs estimation based on the reference file, which is referred to as signature matrix, and allows users to create custom signature matrix to identify specific phenotypes. In the current study, we created two custom signature matrices using two single cell RNA sequencing data of hepatic cells and performed deconvolution for bulk microarray data of liver tissues including PSC and PBC patients. Methods Custom signature matrix files were created using single-cell RNA sequencing data downloaded from GSE185477 and GSE115469. Custom signature matrices were validated for their deconvolution performance using validation data sets. Cell composition of each hepatic cell phenotype in the liver, which was identified in custom signature matrices, was calculated by CIBERSORTx and bulk RNA sequencing data of GSE159676. Deconvolution results were validated by analyzing marker expression for the cell phenotype in GSE159676 data. Results CIBERSORTx and custom signature matrices showed comprehensive performance in estimation of population of various hepatic cell phenotypes. We identified increased population of large cholangiocytes in PSC and PBC livers, which is in agreement with previous studies referred to as ductular reaction, supporting the effectiveness and reliability of deconvolution analysis in this study. Interestingly, we identified decreased population of small cholangiocytes, periportal hepatocytes, and interzonal hepatocytes in PSC and PBC liver tissues compared to healthy livers. Discussion Although further studies are required to elucidate the roles of these hepatic cell phenotypes in cholestatic liver injury, our approach provides important implications that cell functions may differ depending on phenotypes, even in the same cell type during liver injury. Deconvolution analysis using CIBERSORTx could provide a novel approach for studies of specific hepatic cell phenotypes in liver diseases.
Collapse
Affiliation(s)
- Hoang Nam Pham
- Department of Life Sciences, University of Science and Technology of Hanoi, Vietnam Academy of Science and Technology, Hanoi, Vietnam
| | - Linh Pham
- Department of Science and Mathematics, Texas A&M University—Central Texas, Killeen, TX, United States
| | - Keisaku Sato
- Division of Gastroenterology and Hepatology, Department of Medicine, Indiana University School of Medicine, Indianapolis, IN, United States
| |
Collapse
|
5
|
Mavila N, Siraganahalli Eshwaraiah M, Kennedy J. Ductular Reactions in Liver Injury, Regeneration, and Disease Progression-An Overview. Cells 2024; 13:579. [PMID: 38607018 PMCID: PMC11011399 DOI: 10.3390/cells13070579] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/01/2024] [Revised: 03/11/2024] [Accepted: 03/22/2024] [Indexed: 04/13/2024] Open
Abstract
Ductular reaction (DR) is a complex cellular response that occurs in the liver during chronic injuries. DR mainly consists of hyper-proliferative or reactive cholangiocytes and, to a lesser extent, de-differentiated hepatocytes and liver progenitors presenting a close spatial interaction with periportal mesenchyme and immune cells. The underlying pathology of DRs leads to extensive tissue remodeling in chronic liver diseases. DR initiates as a tissue-regeneration mechanism in the liver; however, its close association with progressive fibrosis and inflammation in many chronic liver diseases makes it a more complicated pathological response than a simple regenerative process. An in-depth understanding of the cellular physiology of DRs and their contribution to tissue repair, inflammation, and progressive fibrosis can help scientists develop cell-type specific targeted therapies to manage liver fibrosis and chronic liver diseases effectively.
Collapse
Affiliation(s)
- Nirmala Mavila
- Karsh Division of Gastroenterology and Hepatology, Department of Medicine, Cedars-Sinai Medical Center, Los Angeles, CA 90048, USA; (M.S.E.); (J.K.)
- Division of Applied Cell Biology and Physiology, Department of Biomedical Sciences, Cedars-Sinai Medical Center, Los Angeles, CA 90048, USA
| | - Mallikarjuna Siraganahalli Eshwaraiah
- Karsh Division of Gastroenterology and Hepatology, Department of Medicine, Cedars-Sinai Medical Center, Los Angeles, CA 90048, USA; (M.S.E.); (J.K.)
| | - Jaquelene Kennedy
- Karsh Division of Gastroenterology and Hepatology, Department of Medicine, Cedars-Sinai Medical Center, Los Angeles, CA 90048, USA; (M.S.E.); (J.K.)
| |
Collapse
|
6
|
Hrncir HR, Hantelys F, Gracz AD. Panic at the Bile Duct: How Intrahepatic Cholangiocytes Respond to Stress and Injury. THE AMERICAN JOURNAL OF PATHOLOGY 2023; 193:1440-1454. [PMID: 36870530 PMCID: PMC10548281 DOI: 10.1016/j.ajpath.2023.02.012] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/07/2022] [Revised: 01/16/2023] [Accepted: 02/15/2023] [Indexed: 03/06/2023]
Abstract
In the liver, biliary epithelial cells (BECs) line intrahepatic bile ducts (IHBDs) and are primarily responsible for modifying and transporting hepatocyte-produced bile to the digestive tract. BECs comprise only 3% to 5% of the liver by cell number but are critical for maintaining choleresis through homeostasis and disease. To this end, BECs drive an extensive morphologic remodeling of the IHBD network termed ductular reaction (DR) in response to direct injury or injury to the hepatic parenchyma. BECs are also the target of a broad and heterogenous class of diseases termed cholangiopathies, which can present with phenotypes ranging from defective IHBD development in pediatric patients to progressive periductal fibrosis and cancer. DR is observed in many cholangiopathies, highlighting overlapping similarities between cell- and tissue-level responses by BECs across a spectrum of injury and disease. The following core set of cell biological BEC responses to stress and injury may moderate, initiate, or exacerbate liver pathophysiology in a context-dependent manner: cell death, proliferation, transdifferentiation, senescence, and acquisition of neuroendocrine phenotype. By reviewing how IHBDs respond to stress, this review seeks to highlight fundamental processes with potentially adaptive or maladaptive consequences. A deeper understanding of how these common responses contribute to DR and cholangiopathies may identify novel therapeutic targets in liver disease.
Collapse
Affiliation(s)
- Hannah R Hrncir
- Division of Digestive Diseases, Department of Medicine, Emory University, Atlanta, Georgia; Graduate Program in Biochemistry, Cell and Developmental Biology, Emory University, Atlanta, Georgia
| | - Fransky Hantelys
- Division of Digestive Diseases, Department of Medicine, Emory University, Atlanta, Georgia
| | - Adam D Gracz
- Division of Digestive Diseases, Department of Medicine, Emory University, Atlanta, Georgia; Graduate Program in Biochemistry, Cell and Developmental Biology, Emory University, Atlanta, Georgia.
| |
Collapse
|
7
|
Park HJ, Choi J, Kim H, Yang DY, An TH, Lee EW, Han BS, Lee SC, Kim WK, Bae KH, Oh KJ. Cellular heterogeneity and plasticity during NAFLD progression. Front Mol Biosci 2023; 10:1221669. [PMID: 37635938 PMCID: PMC10450943 DOI: 10.3389/fmolb.2023.1221669] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/12/2023] [Accepted: 07/18/2023] [Indexed: 08/29/2023] Open
Abstract
Nonalcoholic fatty liver disease (NAFLD) is a progressive liver disease that can progress to nonalcoholic steatohepatitis (NASH), NASH-related cirrhosis, and hepatocellular carcinoma (HCC). NAFLD ranges from simple steatosis (or nonalcoholic fatty liver [NAFL]) to NASH as a progressive form of NAFL, which is characterized by steatosis, lobular inflammation, and hepatocellular ballooning with or without fibrosis. Because of the complex pathophysiological mechanism and the heterogeneity of NAFLD, including its wide spectrum of clinical and histological characteristics, no specific therapeutic drugs have been approved for NAFLD. The heterogeneity of NAFLD is closely associated with cellular plasticity, which describes the ability of cells to acquire new identities or change their phenotypes in response to environmental stimuli. The liver consists of parenchymal cells including hepatocytes and cholangiocytes and nonparenchymal cells including Kupffer cells, hepatic stellate cells, and endothelial cells, all of which have specialized functions. This heterogeneous cell population has cellular plasticity to adapt to environmental changes. During NAFLD progression, these cells can exert diverse and complex responses at multiple levels following exposure to a variety of stimuli, including fatty acids, inflammation, and oxidative stress. Therefore, this review provides insights into NAFLD heterogeneity by addressing the cellular plasticity and metabolic adaptation of hepatocytes, cholangiocytes, hepatic stellate cells, and Kupffer cells during NAFLD progression.
Collapse
Affiliation(s)
- Hyun-Ju Park
- Metabolic Regulation Research Center, Korea Research Institute of Bioscience and Biotechnology (KRIBB), Daejeon, Republic of Korea
- Department of Functional Genomics, KRIBB School of Bioscience, University of Science and Technology (UST), Daejeon, Republic of Korea
| | - Juyong Choi
- Metabolic Regulation Research Center, Korea Research Institute of Bioscience and Biotechnology (KRIBB), Daejeon, Republic of Korea
- Department of Functional Genomics, KRIBB School of Bioscience, University of Science and Technology (UST), Daejeon, Republic of Korea
| | - Hyunmi Kim
- Metabolic Regulation Research Center, Korea Research Institute of Bioscience and Biotechnology (KRIBB), Daejeon, Republic of Korea
- Department of Functional Genomics, KRIBB School of Bioscience, University of Science and Technology (UST), Daejeon, Republic of Korea
| | - Da-Yeon Yang
- Metabolic Regulation Research Center, Korea Research Institute of Bioscience and Biotechnology (KRIBB), Daejeon, Republic of Korea
- Department of Functional Genomics, KRIBB School of Bioscience, University of Science and Technology (UST), Daejeon, Republic of Korea
| | - Tae Hyeon An
- Metabolic Regulation Research Center, Korea Research Institute of Bioscience and Biotechnology (KRIBB), Daejeon, Republic of Korea
- Department of Functional Genomics, KRIBB School of Bioscience, University of Science and Technology (UST), Daejeon, Republic of Korea
| | - Eun-Woo Lee
- Metabolic Regulation Research Center, Korea Research Institute of Bioscience and Biotechnology (KRIBB), Daejeon, Republic of Korea
- Department of Functional Genomics, KRIBB School of Bioscience, University of Science and Technology (UST), Daejeon, Republic of Korea
| | - Baek-Soo Han
- Department of Functional Genomics, KRIBB School of Bioscience, University of Science and Technology (UST), Daejeon, Republic of Korea
- Biodefense Research Center, Korea Research Institute of Bioscience and Biotechnology (KRIBB), Daejeon, Republic of Korea
| | - Sang Chul Lee
- Metabolic Regulation Research Center, Korea Research Institute of Bioscience and Biotechnology (KRIBB), Daejeon, Republic of Korea
- Department of Functional Genomics, KRIBB School of Bioscience, University of Science and Technology (UST), Daejeon, Republic of Korea
| | - Won Kon Kim
- Metabolic Regulation Research Center, Korea Research Institute of Bioscience and Biotechnology (KRIBB), Daejeon, Republic of Korea
- Department of Functional Genomics, KRIBB School of Bioscience, University of Science and Technology (UST), Daejeon, Republic of Korea
| | - Kwang-Hee Bae
- Metabolic Regulation Research Center, Korea Research Institute of Bioscience and Biotechnology (KRIBB), Daejeon, Republic of Korea
- Department of Functional Genomics, KRIBB School of Bioscience, University of Science and Technology (UST), Daejeon, Republic of Korea
| | - Kyoung-Jin Oh
- Metabolic Regulation Research Center, Korea Research Institute of Bioscience and Biotechnology (KRIBB), Daejeon, Republic of Korea
- Department of Functional Genomics, KRIBB School of Bioscience, University of Science and Technology (UST), Daejeon, Republic of Korea
| |
Collapse
|
8
|
Zhou N, Wang Y, Zhang Z, Feng W, Liu T, Cao Y, Zhang J, Zhang B, Zheng X, Li K. Characterizing the specific mechanism of series processed Coptidis Rhizoma by multi-organ metabolomics combined with network pharmacology and molecular docking. PHYTOMEDICINE : INTERNATIONAL JOURNAL OF PHYTOTHERAPY AND PHYTOPHARMACOLOGY 2023; 114:154804. [PMID: 37031638 DOI: 10.1016/j.phymed.2023.154804] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/12/2022] [Revised: 03/20/2023] [Accepted: 04/02/2023] [Indexed: 06/19/2023]
Abstract
BACKGROUND After being processed with different excipients, the clinical application of Coptidis Rhizoma (CR) is differentially investigated. However, the underlying mechanism and material basis are not clear, and there is a lack of attention to the collaborative working mode of herbal medicine during exploration. PURPOSE To characterize the specific mechanism of wine/zingiberis rhizoma recens/euodiae fructus processed CR (wCR/zCR/eCR) and to investigate the role of excipients during processing. METHODS The multi-organ metabolomics approach was employed to explore the target organs of wCR/zCR/eCR and multiple pathways being triggered in each organ. The tissue distribution of CR and wCR/zCR/eCR components was compared to indicate the material basis of efficacy change after processing. Further, the network pharmacology study coupled with experimental validation was conducted to support metabolomic research and predicted active ingredients and core targets, and the molecular docking coupled with binding test was performed to identify the binding between active ingredient and core target. RESULTS The multi-organ metabolomics and network pharmacology study elucidated the intervening effect of wCR on heart/lung, zCR on stomach/colon, and eCR on liver/colon/stomach. Combined with molecular docking, binding test and tissue distribution studies, the specific mechanism was as follows: the wine made iso-quinoline alkaloids in CR more likely to accumulate in heart/lung, thus triggering the core targets of PTGS2, NOS2, ESR1 and SLC6A4 in heart/lung, and thereby highlighting the detoxifying and cardiopulmonary protective effect of wCR. The zingiberis rhizoma recens and euodiae fructus made organic acids in CR more likely to accumulate in stomach/colon and liver/colon/stomach respectively, thus triggering the core targets of ACTB, TNF and PRKCA in stomach/colon, the core targets of ACTB, TNF, PRKCA and GPT in stomach/colon/liver, and thereby highlighting the improving effect of zCR/eCR on digestive function. CONCLUSION Iso-quinoline alkaloids were the material basis of CR for anti-inflammation, and organic acids were mainly responsible for regulating gastrointestinal function. Due to the influence of excipients on the accumulation tendency of CR components, the differentially highlighted application of wCR/zCR/eCR was achieved. These findings propose a novel strategy for processing mechanism research.
Collapse
Affiliation(s)
- Ning Zhou
- College of Pharmacy, Henan University of Chinese Medicine, Zhengzhou 450046, People's Republic of China; Co-construction Collaborative Innovation Center for Chinese Medicine and Respiratory Diseases by Henan & Education Ministry of P.R. China, Zhengzhou 450046, People's Republic of China
| | - Yongxiang Wang
- College of Pharmacy, Henan University of Chinese Medicine, Zhengzhou 450046, People's Republic of China; The Engineering and Technology Center for Chinese Medicine Development of Henan Province, Zhengzhou 450046, People's Republic of China
| | - Zhenkai Zhang
- College of Pharmacy, Henan University of Chinese Medicine, Zhengzhou 450046, People's Republic of China; The Engineering and Technology Center for Chinese Medicine Development of Henan Province, Zhengzhou 450046, People's Republic of China
| | - Weisheng Feng
- College of Pharmacy, Henan University of Chinese Medicine, Zhengzhou 450046, People's Republic of China; Co-construction Collaborative Innovation Center for Chinese Medicine and Respiratory Diseases by Henan & Education Ministry of P.R. China, Zhengzhou 450046, People's Republic of China
| | - Tong Liu
- College of Pharmacy, Henan University of Chinese Medicine, Zhengzhou 450046, People's Republic of China
| | - Yumin Cao
- College of Pharmacy, Henan University of Chinese Medicine, Zhengzhou 450046, People's Republic of China
| | - Jinying Zhang
- College of Pharmacy, Henan University of Chinese Medicine, Zhengzhou 450046, People's Republic of China
| | - Bingxian Zhang
- College of Pharmacy, Henan University of Chinese Medicine, Zhengzhou 450046, People's Republic of China
| | - Xiaoke Zheng
- College of Pharmacy, Henan University of Chinese Medicine, Zhengzhou 450046, People's Republic of China; Co-construction Collaborative Innovation Center for Chinese Medicine and Respiratory Diseases by Henan & Education Ministry of P.R. China, Zhengzhou 450046, People's Republic of China
| | - Kai Li
- College of Pharmacy, Henan University of Chinese Medicine, Zhengzhou 450046, People's Republic of China; Henan Research Center for Special Processing Technology of Chinese Medicine, Zhengzhou 450046, People's Republic of China
| |
Collapse
|
9
|
Cai X, Tacke F, Guillot A, Liu H. Cholangiokines: undervalued modulators in the hepatic microenvironment. Front Immunol 2023; 14:1192840. [PMID: 37261338 PMCID: PMC10229055 DOI: 10.3389/fimmu.2023.1192840] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/24/2023] [Accepted: 05/02/2023] [Indexed: 06/02/2023] Open
Abstract
The biliary epithelial cells, also known as cholangiocytes, line the intra- and extrahepatic bile ducts, forming a barrier between intra- and extra-ductal environments. Cholangiocytes are mostly known to modulate bile composition and transportation. In hepatobiliary diseases, bile duct injury leads to drastic alterations in cholangiocyte phenotypes and their release of soluble mediators, which can vary depending on the original insult and cellular states (quiescence, senescence, or proliferation). The cholangiocyte-secreted cytokines (also termed cholangiokines) drive ductular cell proliferation, portal inflammation and fibrosis, and carcinogenesis. Hence, despite the previous consensus that cholangiocytes are bystanders in liver diseases, their diverse secretome plays critical roles in modulating the intrahepatic microenvironment. This review summarizes recent insights into the cholangiokines under both physiological and pathological conditions, especially as they occur during liver injury-regeneration, inflammation, fibrosis and malignant transformation processes.
Collapse
Affiliation(s)
- Xiurong Cai
- Department of Hematology, Oncology and Tumor Immunology, Charité Universitätsmedizin Berlin, Campus Virchow-Klinikum, Berlin, Germany
| | - Frank Tacke
- Department of Hepatology and Gastroenterology, Charité Universitätsmedizin Berlin, Campus Virchow-Klinikum and Campus Charité Mitte, Berlin, Germany
| | - Adrien Guillot
- Department of Hepatology and Gastroenterology, Charité Universitätsmedizin Berlin, Campus Virchow-Klinikum and Campus Charité Mitte, Berlin, Germany
| | - Hanyang Liu
- Department of Hepatology and Gastroenterology, Charité Universitätsmedizin Berlin, Campus Virchow-Klinikum and Campus Charité Mitte, Berlin, Germany
- Center of Gastrointestinal Diseases, Changzhou Second People's Hospital, Changzhou Medical Center, Nanjing Medical University, Changzhou, China
| |
Collapse
|
10
|
Trucas M, Kowalik MA, Boi M, Serra MP, Perra A, Quartu M. The density of hepatic autonomic innervation differs between compensatory and direct hyperplasia rat models. J Peripher Nerv Syst 2023; 28:98-107. [PMID: 36371610 DOI: 10.1111/jns.12521] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/07/2022] [Revised: 10/23/2022] [Accepted: 11/07/2022] [Indexed: 11/15/2022]
Abstract
To contribute to the knowledge of the autonomic innervation in liver regeneration, here we investigate the distribution of tyrosine hydroxylase (TH)- and choline acetyltransferase (ChAT)-like immunoreactive (LI) nerve fibers, to indicate noradrenergic and cholinergic nerves, respectively, in rats under different conditions of liver damage and repair. By immunohistochemistry and assessment of nerve fiber density, three models of induced hepatic regeneration were examined: the carbon tetrachloride (CCl4 ) intoxication, with two treatment periods of 14 weeks and 18 weeks; the partial hepatectomy (PH); the thyroid hormone (T3) treatment. TH- and ChAT-LI nerve fibers were detectable mostly in the portal spaces, the TH-LI ones occurring only around blood vessels while the ChAT-LI nerve fibers were also associated with secretory ducts. The density of TH-like immunoreactivity in the portal areas decreased after the CCl4 14 weeks treatment and PH and increased after T3. By contrast, ChAT-LI nerve fibers appeared particularly abundant around the neoductal elements in the CCl4 rats and were rare to absent in the PH and T3-treated groups. The ChAT-LI nerve fiber density within the portal areas revealed an increase in the CCl4 -treated rats while showing no change in the PH and T3-treated rats. The changes in the density of perivascular TH- and ChAT-containing nerve fibers suggest a finely tuned autonomic modulation of hepatic blood flow depending on the type of subacute/chronic induced hyperplasia, while the characteristic occurrence of the periductal cholinergic innervation after the CCl4 treatment implies a selective parasympathetic role in regulating the physiopathological regenerative potential of the rat liver.
Collapse
Affiliation(s)
- Marcello Trucas
- Department of Biomedical Sciences, Section of Cytomorphology, University of Cagliari, Cittadella Universitaria di Monserrato, Monserrato, Italy.,Department of Biomedical Sciences, Section of Pathology, University of Cagliari, Cittadella Universitaria di Monserrato, Monserrato, Italy
| | - Marta Anna Kowalik
- Department of Biomedical Sciences, Section of Pathology, University of Cagliari, Cittadella Universitaria di Monserrato, Monserrato, Italy
| | - Marianna Boi
- Department of Biomedical Sciences, Section of Cytomorphology, University of Cagliari, Cittadella Universitaria di Monserrato, Monserrato, Italy
| | - Maria Pina Serra
- Department of Biomedical Sciences, Section of Cytomorphology, University of Cagliari, Cittadella Universitaria di Monserrato, Monserrato, Italy
| | - Andrea Perra
- Department of Biomedical Sciences, Section of Pathology, University of Cagliari, Cittadella Universitaria di Monserrato, Monserrato, Italy
| | - Marina Quartu
- Department of Biomedical Sciences, Section of Cytomorphology, University of Cagliari, Cittadella Universitaria di Monserrato, Monserrato, Italy
| |
Collapse
|
11
|
Little A, Medford A, O'Brien A, Childs J, Pan S, Machado J, Chakraborty S, Glaser S. Recent Advances in Intrahepatic Biliary Epithelial Heterogeneity. Semin Liver Dis 2023; 43:1-12. [PMID: 36522162 DOI: 10.1055/s-0042-1758833] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/23/2022]
Abstract
Biliary epithelium (i.e., cholangiocytes) is a heterogeneous population of epithelial cells in the liver, which line small and large bile ducts and have individual responses and functions dependent on size and location in the biliary tract. We discuss the recent findings showing that the intrahepatic biliary tree is heterogeneous regarding (1) morphology and function, (2) hormone expression and signaling (3), response to injury, and (4) roles in liver regeneration. This review overviews the significant characteristics and differences of the small and large cholangiocytes. Briefly, it outlines the in vitro and in vivo models used in the heterogeneity evaluation. In conclusion, future studies addressing biliary heterogeneity's role in the pathogenesis of liver diseases characterized by ductular reaction may reveal novel therapeutic approaches.
Collapse
Affiliation(s)
- Ashleigh Little
- Department of Medical Physiology, Texas A&M University School of Medicine, Bryan, Texas
| | - Abigail Medford
- Department of Medical Physiology, Texas A&M University School of Medicine, Bryan, Texas
| | - April O'Brien
- Department of Medical Physiology, Texas A&M University School of Medicine, Bryan, Texas
| | - Jonathan Childs
- Department of Medical Physiology, Texas A&M University School of Medicine, Bryan, Texas
| | - Sharon Pan
- Department of Medical Physiology, Texas A&M University School of Medicine, Bryan, Texas
| | - Jolaine Machado
- Department of Medical Physiology, Texas A&M University School of Medicine, Bryan, Texas
| | - Sanjukta Chakraborty
- Department of Medical Physiology, Texas A&M University School of Medicine, Bryan, Texas
| | - Shannon Glaser
- Department of Medical Physiology, Texas A&M University School of Medicine, Bryan, Texas
| |
Collapse
|
12
|
Wang W, Chen D, Wang J, Wen L. Cellular Homeostasis and Repair in the Biliary Tree. Semin Liver Dis 2022; 42:271-282. [PMID: 35672015 DOI: 10.1055/a-1869-7714] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 02/01/2023]
Abstract
During biliary tree homeostasis, BECs are largely in a quiescent state and their turnover is slow for maintaining normal tissue homeostasis. BTSCs continually replenish new BECs in the luminal surface of EHBDs. In response to various types of biliary injuries, distinct cellular sources, including HPCs, BTSCs, hepatocytes, and BECs, repair or regenerate the injured bile duct. BEC, biliary epithelial cell; BTSC, biliary tree stem/progenitor cell; EHBD, extrahepatic bile ducts; HPC, hepatic progenitor cell.The biliary tree comprises intrahepatic bile ducts and extrahepatic bile ducts lined with epithelial cells known as biliary epithelial cells (BECs). BECs are a common target of various cholangiopathies for which there is an unmet therapeutic need in clinical hepatology. The repair and regeneration of biliary tissue may potentially restore the normal architecture and function of the biliary tree. Hence, the repair and regeneration process in detail, including the replication of existing BECs, expansion and differentiation of the hepatic progenitor cells and biliary tree stem/progenitor cells, and transdifferentiation of the hepatocytes, should be understood. In this paper, we review biliary tree homeostasis, repair, and regeneration and discuss the feasibility of regenerative therapy strategies for cholangiopathy treatment.
Collapse
Affiliation(s)
- Wei Wang
- Department of Gastroenterology, Daping Hospital, Army Medical University, Chongqing, China
| | - Dongfeng Chen
- Department of Gastroenterology, Daping Hospital, Army Medical University, Chongqing, China
| | - Jun Wang
- Department of Gastroenterology, Daping Hospital, Army Medical University, Chongqing, China
| | - Liangzhi Wen
- Department of Gastroenterology, Daping Hospital, Army Medical University, Chongqing, China
| |
Collapse
|
13
|
Lan T, Qian S, Tang C, Gao J. Role of Immune Cells in Biliary Repair. Front Immunol 2022; 13:866040. [PMID: 35432349 PMCID: PMC9005827 DOI: 10.3389/fimmu.2022.866040] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/30/2022] [Accepted: 03/08/2022] [Indexed: 02/06/2023] Open
Abstract
The biliary system is comprised of cholangiocytes and plays an important role in maintaining liver function. Under normal conditions, cholangiocytes remain in the stationary phase and maintain a very low turnover rate. However, the robust biliary repair is initiated in disease conditions, and different repair mechanisms can be activated depending on the pathological changes. During biliary disease, immune cells including monocytes, lymphocytes, neutrophils, and mast cells are recruited to the liver. The cellular interactions between cholangiocytes and these recruited immune cells as well as hepatic resident immune cells, including Kupffer cells, determine disease outcomes. However, the role of immune cells in the initiation, regulation, and suspension of biliary repair remains elusive. The cellular processes of cholangiocyte proliferation, progenitor cell differentiation, and hepatocyte-cholangiocyte transdifferentiation during biliary diseases are reviewed to manifest the underlying mechanism of biliary repair. Furthermore, the potential role of immune cells in crucial biliary repair mechanisms is highlighted. The mechanisms of biliary repair in immune-mediated cholangiopathies, inherited cholangiopathies, obstructive cholangiopathies, and cholangiocarcinoma are also summarized. Additionally, novel techniques that could clarify the underlying mechanisms of biliary repair are displayed. Collectively, this review aims to deepen the understanding of the mechanisms of biliary repair and contributes potential novel therapeutic methods for treating biliary diseases.
Collapse
Affiliation(s)
- Tian Lan
- Lab of Gastroenterology and Hepatology, State Key Laboratory of Biotherapy, West China Hospital, Sichuan University, Chengdu, China.,Department of Gastroenterology, West China Hospital, Sichuan University, Chengdu, China
| | - Shuaijie Qian
- Lab of Gastroenterology and Hepatology, State Key Laboratory of Biotherapy, West China Hospital, Sichuan University, Chengdu, China.,Department of Gastroenterology, West China Hospital, Sichuan University, Chengdu, China
| | - Chengwei Tang
- Lab of Gastroenterology and Hepatology, State Key Laboratory of Biotherapy, West China Hospital, Sichuan University, Chengdu, China.,Department of Gastroenterology, West China Hospital, Sichuan University, Chengdu, China
| | - Jinhang Gao
- Lab of Gastroenterology and Hepatology, State Key Laboratory of Biotherapy, West China Hospital, Sichuan University, Chengdu, China.,Department of Gastroenterology, West China Hospital, Sichuan University, Chengdu, China
| |
Collapse
|
14
|
Mechanism of cholangiocellular damage and repair during cholestasis. Ann Hepatol 2021; 26:100530. [PMID: 34509686 DOI: 10.1016/j.aohep.2021.100530] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/23/2021] [Revised: 04/30/2021] [Accepted: 04/30/2021] [Indexed: 02/04/2023]
Abstract
The mechanism of damage of the biliary epithelium remains partially unexplored. However, recently many works have offered new evidence regarding the cholangiocytes' damage process, which is the main target in a broad spectrum of pathologies ranging from acute cholestasis, cholangiopathies to cholangiocarcinoma. This is encouraging since some works addressed this epithelium's relevance in health and disease until a few years ago. The biliary tree in the liver, comprised of cholangiocytes, is a pipeline for bile flow and regulates key hepatic processes such as proliferation, regeneration, immune response, and signaling. This review aimed to compile the most recent advances on the mechanisms of cholangiocellular damage during cholestasis, which, although it is present in many cholangiopathies, is not necessarily a common or conserved process in all of them, having a relevant role cAMP and PKA during obstructive cholestasis, as well as Ca2+-dependent PKC in functional cholestasis. Cholangiocellular damage could vary according to the type of cholestasis, the aggressor, or the bile ducts' location where it develops and what kind of damage can favor cholangiocellular carcinoma development.
Collapse
|
15
|
Baiocchi L, Lenci I, Milana M, Kennedy L, Sato K, Zhang W, Ekser B, Ceci L, Meadows V, Glaser S, Alpini G, Francis H. Cyclic AMP Signaling in Biliary Proliferation: A Possible Target for Cholangiocarcinoma Treatment? Cells 2021; 10:1692. [PMID: 34359861 PMCID: PMC8303798 DOI: 10.3390/cells10071692] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/25/2021] [Revised: 06/30/2021] [Accepted: 06/30/2021] [Indexed: 12/12/2022] Open
Abstract
Cholangiocarcinoma is a lethal disease with scarce response to current systemic therapy. The rare occurrence and large heterogeneity of this cancer, together with poor knowledge of its molecular mechanisms, are elements contributing to the difficulties in finding an appropriate cure. Cholangiocytes (and their cellular precursors) are considered the liver component giving rise to cholangiocarcinoma. These cells respond to several hormones, neuropeptides and molecular stimuli employing the cAMP/PKA system for the translation of messages in the intracellular space. For instance, in physiological conditions, stimulation of the secretin receptor determines an increase of intracellular levels of cAMP, thus activating a series of molecular events, finally determining in bicarbonate-enriched choleresis. However, activation of the same receptor during cholangiocytes' injury promotes cellular growth again, using cAMP as the second messenger. Since several scientific pieces of evidence link cAMP signaling system to cholangiocytes' proliferation, the possible changes of this pathway during cancer growth also seem relevant. In this review, we summarize the current findings regarding the cAMP pathway and its role in biliary normal and neoplastic cell proliferation. Perspectives for targeting the cAMP machinery in cholangiocarcinoma therapy are also discussed.
Collapse
Affiliation(s)
- Leonardo Baiocchi
- Hepatology Unit, University of Tor Vergata, 00133 Rome, Italy; (L.B.); (I.L.); (M.M.)
| | - Ilaria Lenci
- Hepatology Unit, University of Tor Vergata, 00133 Rome, Italy; (L.B.); (I.L.); (M.M.)
| | - Martina Milana
- Hepatology Unit, University of Tor Vergata, 00133 Rome, Italy; (L.B.); (I.L.); (M.M.)
| | - Lindsey Kennedy
- Hepatology and Gastroenterology, Medicine, Indiana University, Indianapolis, IN 46202, USA; (L.K.); (K.S.); (L.C.); (V.M.)
- Richard L. Roudebush VA Medical Center, Indianapolis, IN 46202, USA
| | - Keisaku Sato
- Hepatology and Gastroenterology, Medicine, Indiana University, Indianapolis, IN 46202, USA; (L.K.); (K.S.); (L.C.); (V.M.)
| | - Wenjun Zhang
- Division of Transplant Surgery, Department of Surgery, Indiana University, Indianapolis, IN 46202, USA; (W.Z.); (B.E.)
| | - Burcin Ekser
- Division of Transplant Surgery, Department of Surgery, Indiana University, Indianapolis, IN 46202, USA; (W.Z.); (B.E.)
| | - Ludovica Ceci
- Hepatology and Gastroenterology, Medicine, Indiana University, Indianapolis, IN 46202, USA; (L.K.); (K.S.); (L.C.); (V.M.)
| | - Vik Meadows
- Hepatology and Gastroenterology, Medicine, Indiana University, Indianapolis, IN 46202, USA; (L.K.); (K.S.); (L.C.); (V.M.)
| | - Shannon Glaser
- Department of Medical Physiology, Texas A&M University College of Medicine, Bryan, TX 77807, USA;
| | - Gianfranco Alpini
- Hepatology and Gastroenterology, Medicine, Indiana University, Indianapolis, IN 46202, USA; (L.K.); (K.S.); (L.C.); (V.M.)
- Richard L. Roudebush VA Medical Center, Indianapolis, IN 46202, USA
| | - Heather Francis
- Hepatology and Gastroenterology, Medicine, Indiana University, Indianapolis, IN 46202, USA; (L.K.); (K.S.); (L.C.); (V.M.)
- Richard L. Roudebush VA Medical Center, Indianapolis, IN 46202, USA
| |
Collapse
|
16
|
Baiocchi L, Sato K, Ekser B, Kennedy L, Francis H, Ceci L, Lenci I, Alvaro D, Franchitto A, Onori P, Gaudio E, Wu C, Chakraborty S, Glaser S, Alpini G. Cholangiocarcinoma: bridging the translational gap from preclinical to clinical development and implications for future therapy. Expert Opin Investig Drugs 2021; 30:365-375. [PMID: 33226854 PMCID: PMC8441992 DOI: 10.1080/13543784.2021.1854725] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/18/2020] [Accepted: 11/19/2020] [Indexed: 12/17/2022]
Abstract
Introduction: Cholangiocarcinoma (CCA) is a devastating liver tumor with a poor prognosis. While less than 50% of the patients with CCA may benefit from surgical resection, the rest undergoes chemotherapy with disappointing results (mean survival <2 years). Alternative pharmacological treatments are needed to improve the outcomes in patients with CCA.Areas covered: In this review, we discuss CCA-related (1) experimental systems used in preclinical studies; (2) pharmacological targets identified by genetic analysis; (3) results obtained in preliminary trials in human with their pros and cons; and (4) possible targeting of endocrinal modulation. A PubMed bibliographic search matching the term 'cholangiocarcinoma' with 'experimental model', 'preclinical model', 'genetic target', 'targeted therapy', 'clinical trial', or 'translational research' was conducted and manuscripts published between 2010 and 2020 were retrieved for reading and reviewing.Expert opinion: Several factors contribute to the translational gap between bench research and clinical practice in CCA. The tumor heterogeneity, lack of a preclinical model recapitulating the different features of CCA, and difficult patient enrollment in clinical trials are elements to consider for basic and clinical research in CCA. Establishment of international networks formed by experts in the field of CCA may improve future research and its translational findings on patients.
Collapse
Affiliation(s)
- Leonardo Baiocchi
- Liver Unit, Department of Medicine, University of Rome Tor Vergata, Rome, Italy
| | - Keisaku Sato
- Hepatology and Gastroenterology, Medicine, Indiana University, Indianapolis, IN
| | - Burcin Ekser
- Division of Transplant Surgery, Department of Surgery, Indiana University School of Medicine, Indianapolis, IN
| | - Lindsey Kennedy
- Hepatology and Gastroenterology, Medicine, Indiana University, Indianapolis, IN
- Richard L. Roudebush VA Medical Center, Indianapolis, IN
| | - Heather Francis
- Hepatology and Gastroenterology, Medicine, Indiana University, Indianapolis, IN
- Richard L. Roudebush VA Medical Center, Indianapolis, IN
| | - Ludovica Ceci
- Hepatology and Gastroenterology, Medicine, Indiana University, Indianapolis, IN
| | - Ilaria Lenci
- Liver Unit, Department of Medicine, University of Rome Tor Vergata, Rome, Italy
| | - Domenico Alvaro
- Department of Internal Medicine and Medical Specialties, Sapienza University of Rome, Rome, Italy
| | - Antonio Franchitto
- Eleonora Lorillard Spencer Cenci Foundation, Rome, Italy
- Department of Anatomical, Histological, Forensic Medicine and Orthopedics Sciences, Sapienza University of Rome, Rome, Italy
| | - Paolo Onori
- Department of Anatomical, Histological, Forensic Medicine and Orthopedics Sciences, Sapienza University of Rome, Rome, Italy
| | - Eugenio Gaudio
- Department of Anatomical, Histological, Forensic Medicine and Orthopedics Sciences, Sapienza University of Rome, Rome, Italy
| | - Chaodong Wu
- Department of Nutrition, Texas A&M University, College Station, TX
| | | | - Shannon Glaser
- Department of Medical Physiology, Texas A&M University, Bryan, TX
| | - Gianfranco Alpini
- Hepatology and Gastroenterology, Medicine, Indiana University, Indianapolis, IN
- Richard L. Roudebush VA Medical Center, Indianapolis, IN
| |
Collapse
|
17
|
Kyritsi K, Francis H, Zhou T, Ceci L, Wu N, Yang Z, Meng F, Chen L, Baiocchi L, Kundu D, Kennedy L, Liangpunsakul S, Wu C, Glaser S, Alpini G. Downregulation of p16 Decreases Biliary Damage and Liver Fibrosis in the Mdr2 / Mouse Model of Primary Sclerosing Cholangitis. Gene Expr 2020; 20:89-103. [PMID: 32393417 PMCID: PMC7650011 DOI: 10.3727/105221620x15889714507961] [Citation(s) in RCA: 23] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
Abstract
Biliary senescence and hepatic fibrosis are hallmarks of cholangiopathies including primary sclerosing cholangitis (PSC). Senescent cholangiocytes display senescence-associated secretory phenotypes [SASPs, e.g., transforming growth factor-1 (TGF-1)] that further increase biliary senescence (by an autocrine loop) and trigger liver fibrosis by paracrine mechanisms. The aim of this study was to determine the effect of p16 inhibition and role of the TGF-1/microRNA (miR)-34a/sirtuin 1 (SIRT1) axis in biliary damage and liver fibrosis in the Mdr2/ mouse model of PSC. We treated (i) in vivo male wild-type (WT) and Mdr2/ mice with p16 Vivo-Morpholino or controls before measuring biliary mass [intrahepatic bile duct mass (IBDM)] and senescence, biliary SASP levels, and liver fibrosis, and (ii) in vitro intrahepatic murine cholangiocyte lines (IMCLs) with small interfering RNA against p16 before measuring the mRNA expression of proliferation, senescence, and fibrosis markers. p16 and miR-34a increased but SIRT1 decreased in Mdr2/ mice and PSC human liver samples compared to controls. p16 immunoreactivity and biliary senescence and SASP levels increased in Mdr2/ mice but decreased in Mdr2/ mice treated with p16 Vivo-Morpholino. The increase in IBDM and hepatic fibrosis (observed in Mdr2/ mice) returned to normal values in Mdr2/ mice treated with p16 Vivo-Morpholino. TGF-1 immunoreactivity and biliary SASPs levels were higher in Mdr2/ compared to those of WT mice but returned to normal values in Mdr2/ mice treated with p16 Vivo-Morpholino. The expression of fibrosis/senescence markers decreased in cholangiocytes from Mdr2/ mice treated with p16 Vivo-Morpholino (compared to Mdr2/ mice) and in IMCLs (after p16 silencing) compared to controls. Modulation of the TGF-1/miR-34a/SIRT1 axis may be important in the management of PSC phenotypes.
Collapse
Affiliation(s)
| | - Heather Francis
- *Richard L. Roudebush VA Medical Center, Indianapolis, IN, USA
- †Hepatology and Gastroenterology, Medicine, Indiana University, Indianapolis, IN, USA
| | - Tianhao Zhou
- ‡Department of Medical Physiology, Texas A&M University College of Medicine, Bryan, TX, USA
| | - Ludovica Ceci
- *Richard L. Roudebush VA Medical Center, Indianapolis, IN, USA
| | - Nan Wu
- *Richard L. Roudebush VA Medical Center, Indianapolis, IN, USA
| | - Zhihong Yang
- †Hepatology and Gastroenterology, Medicine, Indiana University, Indianapolis, IN, USA
| | - Fanyin Meng
- *Richard L. Roudebush VA Medical Center, Indianapolis, IN, USA
- †Hepatology and Gastroenterology, Medicine, Indiana University, Indianapolis, IN, USA
| | - Lixian Chen
- *Richard L. Roudebush VA Medical Center, Indianapolis, IN, USA
| | - Leonardo Baiocchi
- §Liver Unit, Department of Medicine, University of Rome “Tor Vergata,”Rome, Italy
| | - Debjyoti Kundu
- †Hepatology and Gastroenterology, Medicine, Indiana University, Indianapolis, IN, USA
| | - Lindsey Kennedy
- †Hepatology and Gastroenterology, Medicine, Indiana University, Indianapolis, IN, USA
| | - Suthat Liangpunsakul
- *Richard L. Roudebush VA Medical Center, Indianapolis, IN, USA
- †Hepatology and Gastroenterology, Medicine, Indiana University, Indianapolis, IN, USA
| | - Chaodong Wu
- ¶Department of Nutrition, Texas A&M University, College Station, TX, USA
| | - Shannon Glaser
- ‡Department of Medical Physiology, Texas A&M University College of Medicine, Bryan, TX, USA
| | - Gianfranco Alpini
- *Richard L. Roudebush VA Medical Center, Indianapolis, IN, USA
- †Hepatology and Gastroenterology, Medicine, Indiana University, Indianapolis, IN, USA
| |
Collapse
|
18
|
Brevini T, Tysoe OC, Sampaziotis F. Tissue engineering of the biliary tract and modelling of cholestatic disorders. J Hepatol 2020; 73:918-932. [PMID: 32535061 DOI: 10.1016/j.jhep.2020.05.049] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/27/2020] [Revised: 04/20/2020] [Accepted: 05/25/2020] [Indexed: 12/14/2022]
Abstract
Our insight into the pathogenesis of cholestatic liver disease remains limited, partly owing to challenges in capturing the multitude of factors that contribute to disease pathogenesis in vitro. Tissue engineering could address this challenge by combining cells, materials and fabrication strategies into dynamic modelling platforms, recapitulating the multifaceted aetiology of cholangiopathies. Herein, we review the advantages and limitations of platforms for bioengineering the biliary tree, looking at how these can be applied to model biliary disorders, as well as exploring future directions for the field.
Collapse
Affiliation(s)
- Teresa Brevini
- Wellcome Trust-Medical Research Council Stem Cell Institute, Cambridge Stem Cell Institute, University of Cambridge, Cambridge, UK
| | - Olivia C Tysoe
- Wellcome Trust-Medical Research Council Stem Cell Institute, Cambridge Stem Cell Institute, University of Cambridge, Cambridge, UK; Department of Surgery, University of Cambridge and NIHR Cambridge Biomedical Research Centre, Cambridge, UK
| | - Fotios Sampaziotis
- Wellcome Trust-Medical Research Council Stem Cell Institute, Cambridge Stem Cell Institute, University of Cambridge, Cambridge, UK; Department of Hepatology, Cambridge University Hospitals NHS Foundation Trust, Cambridge, UK; Department of Medicine, University of Cambridge, Cambridge, UK.
| |
Collapse
|
19
|
Abstract
Following injury, the liver's epithelial cells regenerate efficiently with rapid proliferation of hepatocytes and biliary cells. However, when proliferation of resident epithelial cells is impaired, alternative regeneration mechanisms can occur. Intricate lineage-tracing strategies and experimental models of regenerative stress have revealed a degree of plasticity between hepatocytes and biliary cells. New technologies such as single-cell omics, in combination with functional studies, will be instrumental to uncover the remaining unknowns in the field. In this review, we evaluate the experimental and clinical evidence for epithelial plasticity in the liver and how this influences the development of therapeutic strategies for chronic liver disease.
Collapse
Affiliation(s)
- Victoria L Gadd
- Centre for Regenerative Medicine, Edinburgh BioQuarter, University of Edinburgh, Edinburgh, EH16 4UU, UK
| | - Niya Aleksieva
- Centre for Regenerative Medicine, Edinburgh BioQuarter, University of Edinburgh, Edinburgh, EH16 4UU, UK
| | - Stuart J Forbes
- Centre for Regenerative Medicine, Edinburgh BioQuarter, University of Edinburgh, Edinburgh, EH16 4UU, UK.
| |
Collapse
|
20
|
Theise ND, Crawford JM, Nakanuma Y, Quaglia A. Canal of Hering loss is an initiating step for primary biliary cholangitis (PBC): A hypothesis. Med Hypotheses 2020; 140:109680. [PMID: 32240960 DOI: 10.1016/j.mehy.2020.109680] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/29/2020] [Revised: 03/09/2020] [Accepted: 03/15/2020] [Indexed: 12/20/2022]
Abstract
The origin and initiating features of PBC remain obscure despite decades of study. However, recent papers have demonstrated loss of canals of Hering (CoH) to be the earliest histologic change in liver biopsy specimens from patients with primary biliary cholangitis (PBC). We posit that CoH loss prior to significant inflammation or evidence of bile duct injury might be a very early, perhaps even an initiating lesion of PBC. As a potential target of inflammatory or toxic injury, CoH loss may initiate rather than follow the cascade of events leading to duct injury and loss and their sequelae. Toxins may be exogenous in origin, such as environmental toxins or drug exposures, or endogenous, resulting from genetic or epigenetic alterations in canalicular bile transporters upstream from the CoH. In turn, this hypothesis suggests that loss of CoH would lead to altered bile flow and composition injurious to downstream bile ducts, because bile composition has not been modulated by normal CoH physiologic functions or because, in the absence of CoH, canalicular fluid flow into the biliary tree is disrupted interfering with soluble trophic factors important for bile duct integrity. Regardless of the pathogenic mechanism causing CoH loss, only following such loss would the characteristic diagnostic findings of PBC become evident: damage to downstream interlobular and sub-lobular bile ducts. To the extent that the causal mechanisms for CoH loss can be identified, clinical identification (as through early identification of CoH loss) and intervention (depending on the inciting cause) may offer promise for treatment of this enigmatic disease.
Collapse
Affiliation(s)
- Neil D Theise
- Department of Pathology, New York University Grossman School of Medicine, New York, NY, USA.
| | - James M Crawford
- Department of Pathology and Laboratory Medicine, Donald and Barbara School of Medicine at Hofstra/Northwell, New York, NY, USA
| | - Yasuni Nakanuma
- Department of Pathology, Fukui Saiseikai Hospital, Fukui 918-8503, Japan
| | - Alberto Quaglia
- Department of Cellular Pathology, Royal Free Hospital, London, UK
| |
Collapse
|
21
|
Kennedy L, Francis H, Invernizzi P, Venter J, Wu N, Carbone M, Gershwin ME, Bernuzzi F, Franchitto A, Alvaro D, Marzioni M, Onori P, Gaudio E, Sybenga A, Fabris L, Meng F, Glaser S, Alpini G. Secretin/secretin receptor signaling mediates biliary damage and liver fibrosis in early-stage primary biliary cholangitis. FASEB J 2019; 33:10269-10279. [PMID: 31251081 DOI: 10.1096/fj.201802606r] [Citation(s) in RCA: 29] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
Abstract
Primary biliary cholangitis (PBC) primarily targets cholangiocytes and is characterized by liver fibrosis and biliary proliferation. Activation of the secretin (Sct)/secretin receptor (SR) axis, expressed only by cholangiocytes, increases biliary proliferation, liver fibrosis, and bicarbonate secretion. We evaluated the effectiveness of SR antagonist treatment for early-stage PBC. Male and female dominant-negative TGF-β receptor II (dnTGF-βRII) (model of PBC) and wild-type mice at 12 wk of age were treated with saline or the SR antagonist, Sec 5-27, for 1 wk. dnTGF-βRII mice expressed features of early-stage PBC along with enhanced Sct/SR axis activation and Sct secretion. dnTGF-βRII mice had increased biliary proliferation or senescence, inflammation, and liver fibrosis. In dnTGF-βRII mice, there was increased microRNA-125b/TGF-β1/TGF-β receptor 1/VEGF-A signaling. Human early-stage PBC patients had an increase in hepatobiliary Sct and SR expression and serum Sct levels. Increased biliary Sct/SR signaling promotes biliary and hepatic damage during early-stage PBC.-Kennedy, L., Francis, H., Invernizzi, P., Venter, J., Wu, N., Carbone, M., Gershwin, M. E., Bernuzzi, F., Franchitto, A., Alvaro, D., Marzioni, M., Onori, P., Gaudio, E., Sybenga, A., Fabris, L., Meng, F., Glaser, S., Alpini, G. Secretin/secretin receptor signaling mediates biliary damage and liver fibrosis in early-stage primary biliary cholangitis.
Collapse
Affiliation(s)
- Lindsey Kennedy
- Research, Central Texas Veterans Health Care System, Temple, Texas, USA.,Department of Medical Physiology, Texas A&M University, College of Medicine, Temple, Texas, USA
| | - Heather Francis
- Research, Central Texas Veterans Health Care System, Temple, Texas, USA.,Department of Medical Physiology, Texas A&M University, College of Medicine, Temple, Texas, USA.,Baylor Scott & White Health Digestive Disease Research Center, Baylor Scott and White Health, Temple, Texas, USA
| | | | - Julie Venter
- Department of Medical Physiology, Texas A&M University, College of Medicine, Temple, Texas, USA
| | - Nan Wu
- Department of Medical Physiology, Texas A&M University, College of Medicine, Temple, Texas, USA
| | - Marco Carbone
- Humanitas Clinical and Research Center, Rozzano (MI), Italy
| | - M Eric Gershwin
- Division of Rheumatology, Allergy, and Clinical Immunology, University of California-Davis, Davis, California, USA
| | | | | | - Domenico Alvaro
- Department of Internal Medicine and Medical Specialties, Sapienza University of Rome, Rome, Italy
| | - Marco Marzioni
- Clinic of Gastroenterology and Hepatology, Universita Politecnica delle Marche, Ancona, Italy
| | - Paolo Onori
- Department of Anatomical, Histological, Forensic Medicine and Orthopedics Sciences, Sapienza University of Rome, Rome, Italy
| | - Eugenio Gaudio
- Department of Anatomical, Histological, Forensic Medicine and Orthopedics Sciences, Sapienza University of Rome, Rome, Italy
| | - Amelia Sybenga
- Department of Pathology, Microbiology, and Immunology, Vanderbilt University School of Medicine, Nashville, Tennessee, USA
| | - Luca Fabris
- Department of Molecular Medicine, University of Padua School of Medicine, Padua, Italy.,Digestive Disease Section, Yale University School of Medicine, New Haven, Connecticut, USA
| | - Fanyin Meng
- Research, Central Texas Veterans Health Care System, Temple, Texas, USA.,Baylor Scott & White Health Digestive Disease Research Center, Baylor Scott and White Health, Temple, Texas, USA
| | - Shannon Glaser
- Department of Medical Physiology, Texas A&M University, College of Medicine, Temple, Texas, USA.,Baylor Scott & White Health Digestive Disease Research Center, Baylor Scott and White Health, Temple, Texas, USA
| | - Gianfranco Alpini
- Research, Central Texas Veterans Health Care System, Temple, Texas, USA.,Department of Medical Physiology, Texas A&M University, College of Medicine, Temple, Texas, USA.,Baylor Scott & White Health Digestive Disease Research Center, Baylor Scott and White Health, Temple, Texas, USA
| |
Collapse
|
22
|
Sato K, Glaser S, Kennedy L, Liangpunsakul S, Meng F, Francis H, Alpini G. Preclinical insights into cholangiopathies: disease modeling and emerging therapeutic targets. Expert Opin Ther Targets 2019; 23:461-472. [PMID: 30990740 DOI: 10.1080/14728222.2019.1608950] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Abstract
INTRODUCTION The common predominant clinical features of cholangiopathies such as primary sclerosing cholangitis (PSC), primary biliary cholangitis (PBC), and biliary atresia (BA) are biliary damage/senescence and liver fibrosis. Curative therapies are lacking, and liver transplantation is the only option. An understanding of the mechanisms and pathogenesis is needed to develop novel therapies. Previous studies have developed various disease-based research models and have identified candidate therapeutic targets. Areas covered: This review summarizes recent studies performed in preclinical models of cholangiopathies and the current understanding of the pathophysiology representing potential targets for novel therapies. A literature search was conducted in PubMed using the combination of the searched term 'cholangiopathies' with one or two keywords including 'model', 'cholangiocyte', 'animal', or 'fibrosis'. Papers published within five years were obtained. Expert opinion: Access to appropriate research models is a key challenge in cholangiopathy research; establishing more appropriate models for PBC is an important goal. Several preclinical studies have demonstrated promising results and have led to novel therapeutic approaches, especially for PSC. Further studies on the pathophysiology of PBC and BA are necessary to identify candidate targets. Innovative therapeutic approaches such as stem cell transplantation have been introduced, and those therapies could be applied to PSC, PBC, and BA.
Collapse
Affiliation(s)
- Keisaku Sato
- a Indiana Center for Liver Research, Division of Gastroenterology & Hepatology, Department of Medicine , Indiana University School of Medicine , Indianapolis , IN , USA.,b Richard L. Roudebush VA Medical Center , Indianapolis , IN , USA
| | - Shannon Glaser
- c Department of Medical Physiology , Texas A&M University Collage of Medicine , Temple , TX , USA
| | - Lindsey Kennedy
- a Indiana Center for Liver Research, Division of Gastroenterology & Hepatology, Department of Medicine , Indiana University School of Medicine , Indianapolis , IN , USA.,b Richard L. Roudebush VA Medical Center , Indianapolis , IN , USA
| | - Suthat Liangpunsakul
- a Indiana Center for Liver Research, Division of Gastroenterology & Hepatology, Department of Medicine , Indiana University School of Medicine , Indianapolis , IN , USA.,b Richard L. Roudebush VA Medical Center , Indianapolis , IN , USA
| | - Fanyin Meng
- a Indiana Center for Liver Research, Division of Gastroenterology & Hepatology, Department of Medicine , Indiana University School of Medicine , Indianapolis , IN , USA.,b Richard L. Roudebush VA Medical Center , Indianapolis , IN , USA
| | - Heather Francis
- a Indiana Center for Liver Research, Division of Gastroenterology & Hepatology, Department of Medicine , Indiana University School of Medicine , Indianapolis , IN , USA.,b Richard L. Roudebush VA Medical Center , Indianapolis , IN , USA
| | - Gianfranco Alpini
- a Indiana Center for Liver Research, Division of Gastroenterology & Hepatology, Department of Medicine , Indiana University School of Medicine , Indianapolis , IN , USA.,b Richard L. Roudebush VA Medical Center , Indianapolis , IN , USA
| |
Collapse
|
23
|
Cholangiocyte death in ductopenic cholestatic cholangiopathies: Mechanistic basis and emerging therapeutic strategies. Life Sci 2019; 218:324-339. [DOI: 10.1016/j.lfs.2018.12.044] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/22/2018] [Accepted: 12/26/2018] [Indexed: 02/07/2023]
|
24
|
Wu N, Meng F, Zhou T, Venter J, Giang TK, Kyritsi K, Wu C, Alvaro D, Onori P, Mancinelli R, Gaudio E, Francis H, Alpini G, Glaser S, Franchitto A. The Secretin/Secretin Receptor Axis Modulates Ductular Reaction and Liver Fibrosis through Changes in Transforming Growth Factor-β1-Mediated Biliary Senescence. THE AMERICAN JOURNAL OF PATHOLOGY 2018; 188:2264-2280. [PMID: 30036520 PMCID: PMC6168967 DOI: 10.1016/j.ajpath.2018.06.015] [Citation(s) in RCA: 29] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/16/2018] [Revised: 05/26/2018] [Accepted: 06/19/2018] [Indexed: 12/12/2022]
Abstract
Activation of the secretin (Sct)/secretin receptor (SR) axis stimulates ductular reaction and liver fibrosis, which are hallmarks of cholangiopathies. Our aim was to define the role of Sct-regulated cellular senescence, and we demonstrated that both ductular reaction and liver fibrosis are significantly reduced in Sct-/-, SR-/-, and Sct-/-/SR-/- bile duct ligated (BDL) mice compared with BDL wild-type mice. The reduction in hepatic fibrosis in Sct-/-, SR-/-, and Sct-/-/SR-/- BDL mice was accompanied by reduced transforming growth factor-β1 levels in serum and cholangiocyte supernatant, as well as decreased expression of markers of cellular senescence in cholangiocytes in contrast to enhanced cellular senescence in hepatic stellate cells compared with BDL wild-type mice. Secretin directly stimulated the senescence of cholangiocytes and regulated, by a paracrine mechanism, the senescence of hepatic stellate cells and liver fibrosis via modulation of transforming growth factor-β1 biliary secretion. Targeting senescent cholangiocytes may represent a novel therapeutic approach for ameliorating hepatic fibrosis during cholestatic liver injury.
Collapse
Affiliation(s)
- Nan Wu
- Department of Medical Physiology, Department of Research, Texas A&M University College of Medicine, Temple, Texas
| | - Fanyin Meng
- Central Texas Veterans Health Care System, Temple, Texas; Baylor Scott & White Digestive Disease Research Center, Baylor Scott & White Health Care, Temple, Texas
| | - Tianhao Zhou
- Department of Medical Physiology, Department of Research, Texas A&M University College of Medicine, Temple, Texas
| | - Julie Venter
- Department of Medical Physiology, Department of Research, Texas A&M University College of Medicine, Temple, Texas
| | - Thao K Giang
- Department of Medical Physiology, Department of Research, Texas A&M University College of Medicine, Temple, Texas
| | - Konstantina Kyritsi
- Department of Medical Physiology, Department of Research, Texas A&M University College of Medicine, Temple, Texas
| | - Chaodong Wu
- Department of Nutrition and Food Science, Texas A&M University, College Station, Texas
| | | | - Paolo Onori
- Department of Anatomical, Histological, Forensic Medicine and Orthopaedics Sciences, Sapienza, Rome, Italy
| | - Romina Mancinelli
- Department of Anatomical, Histological, Forensic Medicine and Orthopaedics Sciences, Sapienza, Rome, Italy
| | - Eugenio Gaudio
- Department of Anatomical, Histological, Forensic Medicine and Orthopaedics Sciences, Sapienza, Rome, Italy
| | - Heather Francis
- Department of Medical Physiology, Department of Research, Texas A&M University College of Medicine, Temple, Texas; Central Texas Veterans Health Care System, Temple, Texas; Baylor Scott & White Digestive Disease Research Center, Baylor Scott & White Health Care, Temple, Texas
| | - Gianfranco Alpini
- Department of Medical Physiology, Department of Research, Texas A&M University College of Medicine, Temple, Texas; Central Texas Veterans Health Care System, Temple, Texas; Baylor Scott & White Digestive Disease Research Center, Baylor Scott & White Health Care, Temple, Texas.
| | - Shannon Glaser
- Department of Medical Physiology, Department of Research, Texas A&M University College of Medicine, Temple, Texas; Central Texas Veterans Health Care System, Temple, Texas; Baylor Scott & White Digestive Disease Research Center, Baylor Scott & White Health Care, Temple, Texas
| | - Antonio Franchitto
- Department of Anatomical, Histological, Forensic Medicine and Orthopaedics Sciences, Sapienza, Rome, Italy; Department of Medicine, Sapienza, Rome, Italy; Eleonora Lorillard Spencer Cenci Foundation, Rome, Italy
| |
Collapse
|
25
|
Ehrlich L, Scrushy M, Meng F, Lairmore TC, Alpini G, Glaser S. Biliary epithelium: A neuroendocrine compartment in cholestatic liver disease. Clin Res Hepatol Gastroenterol 2018; 42:296-305. [PMID: 29678444 PMCID: PMC6129425 DOI: 10.1016/j.clinre.2018.03.009] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/16/2017] [Revised: 03/04/2018] [Accepted: 03/13/2018] [Indexed: 02/07/2023]
Abstract
Hepatic fibrosis is characterized by abnormal accumulation of extracellular matrix (ECM) that can lead to ductopenia, cirrhosis, and even malignant transformation. In this review, we examine cholestatic liver diseases characterized by extensive biliary fibrosis such as primary sclerosing cholangitis (PSC), primary biliary cholangitis (PBC), polycystic liver disease (PLD), and MDR2-/- and BDL mouse models. Following biliary injury, cholangiocytes, the epithelial cells that line the bile ducts, become reactive and adopt a neuroendocrine phenotype in which they secrete and respond to neurohormones and neuropeptides in an autocrine and paracrine fashion. Emerging evidence indicates that cholangiocytes influence and respond to changes in the ECM and stromal cells in the microenvironment. For example, activated myofibroblasts and hepatic stellate cells are major drivers of collagen deposition and biliary fibrosis. Additionally, the liver is richly innervated with adrenergic, cholinergic, and peptidergic fibers that release neurohormones and peptides to maintain homeostasis and can be deranged in disease states. This review summarizes how cholangiocytes interact with their surrounding environment, with particular focus on how autonomic and sensory regulation affects fibrotic pathophysiology.
Collapse
Affiliation(s)
- Laurent Ehrlich
- Department of Medical Physiology, Texas A&M University, College of Medicine, Temple, TX 76504, United States
| | - Marinda Scrushy
- Department of Medical Physiology, Texas A&M University, College of Medicine, Temple, TX 76504, United States
| | - Fanyin Meng
- Research, Central Texas Veterans Health Care System, College of Medicine, Temple, TX 76504, United States; Baylor Scott & White Digestive Disease Research Center, Baylor Scott & White, Baylor Scott & White Health, Temple, TX 76504, United States
| | - Terry C Lairmore
- Department of Surgery, Baylor Scott & White Health and Texas A&M University, College of Medicine, Temple, TX 76504, United States
| | - Gianfranco Alpini
- Research, Central Texas Veterans Health Care System, College of Medicine, Temple, TX 76504, United States; Baylor Scott & White Digestive Disease Research Center, Baylor Scott & White, Baylor Scott & White Health, Temple, TX 76504, United States; Department of Medical Physiology, Texas A&M University, College of Medicine, Temple, TX 76504, United States
| | - Shannon Glaser
- Research, Central Texas Veterans Health Care System, College of Medicine, Temple, TX 76504, United States; Baylor Scott & White Digestive Disease Research Center, Baylor Scott & White, Baylor Scott & White Health, Temple, TX 76504, United States; Department of Medical Physiology, Texas A&M University, College of Medicine, Temple, TX 76504, United States.
| |
Collapse
|
26
|
Lewis PL, Su J, Yan M, Meng F, Glaser SS, Alpini GD, Green RM, Sosa-Pineda B, Shah RN. Complex bile duct network formation within liver decellularized extracellular matrix hydrogels. Sci Rep 2018; 8:12220. [PMID: 30111800 PMCID: PMC6093899 DOI: 10.1038/s41598-018-30433-6] [Citation(s) in RCA: 49] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/02/2018] [Accepted: 07/30/2018] [Indexed: 02/07/2023] Open
Abstract
The biliary tree is an essential component of transplantable human liver tissue. Despite recent advances in liver tissue engineering, attempts at re-creating the intrahepatic biliary tree have not progressed significantly. The finer branches of the biliary tree are structurally and functionally complex and heterogeneous and require harnessing innate developmental processes for their regrowth. Here we demonstrate the ability of decellularized liver extracellular matrix (dECM) hydrogels to induce the in vitro formation of complex biliary networks using encapsulated immortalized mouse small biliary epithelial cells (cholangiocytes). This phenomenon is not observed using immortalized mouse large cholangiocytes, or with purified collagen 1 gels or Matrigel. We also show phenotypic stability via immunostaining for specific cholangiocyte markers. Moreover, tight junction formation and maturation was observed to occur between cholangiocytes, exhibiting polarization and transporter activity. To better define the mechanism of duct formation, we utilized three fluorescently labeled, but otherwise identical populations of cholangiocytes. The cells, in a proximity dependent manner, either branch out clonally, radiating from a single nucleation point, or assemble into multi-colored structures arising from separate populations. These findings present liver dECM as a promising biomaterial for intrahepatic bile duct tissue engineering and as a tool to study duct remodeling in vitro.
Collapse
Affiliation(s)
- Phillip L. Lewis
- 0000 0001 2299 3507grid.16753.36Biomedical Engineering, Northwestern University, Evanston, IL, USA ,0000 0001 2299 3507grid.16753.36Simpson Querrey Institute, Northwestern University, Chicago, IL, USA
| | - Jimmy Su
- 0000 0001 2299 3507grid.16753.36Biomedical Engineering, Northwestern University, Evanston, IL, USA ,0000 0001 2299 3507grid.16753.36Simpson Querrey Institute, Northwestern University, Chicago, IL, USA
| | - Ming Yan
- 0000 0001 2299 3507grid.16753.36Biomedical Engineering, Northwestern University, Evanston, IL, USA ,0000 0001 2299 3507grid.16753.36Simpson Querrey Institute, Northwestern University, Chicago, IL, USA
| | - Fanyin Meng
- 0000 0004 0420 5847grid.413775.3Research Central Texas Veterans Health Care System, Temple, TX, USA ,grid.486749.0Baylor Scott & White Health Digestive Disease Research Center, Temple, TX, USA
| | - Shannon S. Glaser
- 0000 0004 0420 5847grid.413775.3Research Central Texas Veterans Health Care System, Temple, TX, USA ,grid.486749.0Baylor Scott & White Health Digestive Disease Research Center, Temple, TX, USA ,0000 0004 4687 2082grid.264756.4Medical Physiology, Texas A&M University College of Medicine, Temple, TX, USA
| | - Gianfranco D. Alpini
- 0000 0004 0420 5847grid.413775.3Research Central Texas Veterans Health Care System, Temple, TX, USA ,grid.486749.0Baylor Scott & White Health Digestive Disease Research Center, Temple, TX, USA ,0000 0004 4687 2082grid.264756.4Medical Physiology, Texas A&M University College of Medicine, Temple, TX, USA
| | - Richard M. Green
- 0000 0001 2299 3507grid.16753.36Division of Gastroenterology and Hepatology, Northwestern University, Chicago, IL, USA
| | - Beatriz Sosa-Pineda
- 0000 0001 2299 3507grid.16753.36Nephrology, Northwestern University, Chicago, IL, USA
| | - Ramille N. Shah
- 0000 0001 2299 3507grid.16753.36Simpson Querrey Institute, Northwestern University, Chicago, IL, USA ,0000 0001 2299 3507grid.16753.36Materials Science and Engineering, Northwestern University, Evanston, IL, USA ,0000 0001 2299 3507grid.16753.36Surgery (Transplant Division), Northwestern University, Chicago, IL, USA
| |
Collapse
|
27
|
Trampert DC, Nathanson MH. Regulation of bile secretion by calcium signaling in health and disease. BIOCHIMICA ET BIOPHYSICA ACTA-MOLECULAR CELL RESEARCH 2018; 1865:1761-1770. [PMID: 29787781 DOI: 10.1016/j.bbamcr.2018.05.010] [Citation(s) in RCA: 21] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/27/2018] [Revised: 05/12/2018] [Accepted: 05/16/2018] [Indexed: 12/15/2022]
Abstract
Calcium (Ca2+) signaling controls secretion in many types of cells and tissues. In the liver, Ca2+ regulates secretion in both hepatocytes, which are responsible for primary formation of bile, and cholangiocytes, which line the biliary tree and further condition the bile before it is secreted. Cholestatic liver diseases, which are characterized by impaired bile secretion, may result from impaired Ca2+ signaling mechanisms in either hepatocytes or cholangiocytes. This review will discuss the Ca2+ signaling machinery and mechanisms responsible for regulation of secretion in both hepatocytes and cholangiocytes, and the pathophysiological changes in Ca2+ signaling that can occur in each of these cell types to result in cholestasis.
Collapse
Affiliation(s)
- David C Trampert
- Section of Digestive Diseases, Department of Internal Medicine, Yale University School of Medicine, 333 Cedar Street, New Haven, CT 06520-8019, USA
| | - Michael H Nathanson
- Section of Digestive Diseases, Department of Internal Medicine, Yale University School of Medicine, 333 Cedar Street, New Haven, CT 06520-8019, USA.
| |
Collapse
|
28
|
Sato K, Meng F, Giang T, Glaser S, Alpini G. Mechanisms of cholangiocyte responses to injury. Biochim Biophys Acta Mol Basis Dis 2018; 1864:1262-1269. [PMID: 28648950 PMCID: PMC5742086 DOI: 10.1016/j.bbadis.2017.06.017] [Citation(s) in RCA: 56] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/11/2017] [Revised: 06/06/2017] [Accepted: 06/19/2017] [Indexed: 12/12/2022]
Abstract
Cholangiocytes, epithelial cells that line the biliary epithelium, are the primary target cells for cholangiopathies including primary sclerosing cholangitis and primary biliary cholangitis. Quiescent cholangiocytes respond to biliary damage and acquire an activated neuroendocrine phenotype to maintain the homeostasis of the liver. The typical response of cholangiocytes is proliferation leading to bile duct hyperplasia, which is a characteristic of cholestatic liver diseases. Current studies have identified various signaling pathways that are associated with cholangiocyte proliferation/loss and liver fibrosis in cholangiopathies using human samples and rodent models. Although recent studies have demonstrated that extracellular vesicles and microRNAs could be mediators that regulate these messenger/receptor axes, further studies are required to confirm their roles. This review summarizes current studies of biliary response and cholangiocyte proliferation during cholestatic liver injury with particular emphasis on the secretin/secretin receptor axis. This article is part of a Special Issue entitled: Cholangiocytes in Health and Diseaseedited by Jesus Banales, Marco Marzioni, Nicholas LaRusso and Peter Jansen.
Collapse
Affiliation(s)
- Keisaku Sato
- Department of Medicine, Texas A&M Health Science Center, College of Medicine, Temple, TX, United States
| | - Fanyin Meng
- Research, Central Texas Veterans Health Care System, Temple, TX, United States; Scott & White Digestive Disease Research Center, Baylor Scott & White Health, Temple, TX, United States; Academic Research Integration, Baylor Scott & White Health, Temple, TX, United States; Department of Medicine, Texas A&M Health Science Center, College of Medicine, Temple, TX, United States
| | - Thao Giang
- Department of Medicine, Texas A&M Health Science Center, College of Medicine, Temple, TX, United States
| | - Shannon Glaser
- Research, Central Texas Veterans Health Care System, Temple, TX, United States; Scott & White Digestive Disease Research Center, Baylor Scott & White Health, Temple, TX, United States; Department of Medicine, Texas A&M Health Science Center, College of Medicine, Temple, TX, United States
| | - Gianfranco Alpini
- Research, Central Texas Veterans Health Care System, Temple, TX, United States; Scott & White Digestive Disease Research Center, Baylor Scott & White Health, Temple, TX, United States; Department of Medicine, Texas A&M Health Science Center, College of Medicine, Temple, TX, United States.
| |
Collapse
|
29
|
Cheung AC, Lorenzo Pisarello MJ, LaRusso NF. Pathobiology of biliary epithelia. Biochim Biophys Acta Mol Basis Dis 2018; 1864:1220-1231. [PMID: 28716705 PMCID: PMC5777905 DOI: 10.1016/j.bbadis.2017.06.024] [Citation(s) in RCA: 24] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/11/2017] [Revised: 06/22/2017] [Accepted: 06/26/2017] [Indexed: 12/12/2022]
Abstract
Cholangiocytes are epithelial cells that line the intra- and extrahepatic biliary tree. They serve predominantly to mediate the content of luminal biliary fluid, which is controlled via numerous signaling pathways influenced by endogenous (e.g., bile acids, nucleotides, hormones, neurotransmitters) and exogenous (e.g., microbes/microbial products, drugs etc.) molecules. When injured, cholangiocytes undergo apoptosis/lysis, repair and proliferation. They also become senescent, a form of cell cycle arrest, which may prevent propagation of injury and/or malignant transformation. Senescent cholangiocytes can undergo further transformation to a senescence-associated secretory phenotype (SASP), where they begin secreting pro-inflammatory and pro-fibrotic signals that may contribute to disease initiation and progression. These and other concepts related to cholangiocyte pathobiology will be reviewed herein. This article is part of a Special Issue entitled: Cholangiocytes in Health and Disease edited by Jesus Banales, Marco Marzioni, Nicholas LaRusso and Peter Jansen.
Collapse
Affiliation(s)
- Angela C Cheung
- Division of Gastroenterology and Hepatology, Mayo Clinic Center for Cell Signaling in Gastroenterology, Mayo Clinic, Rochester, MN, United States
| | - Maria J Lorenzo Pisarello
- Division of Gastroenterology and Hepatology, Mayo Clinic Center for Cell Signaling in Gastroenterology, Mayo Clinic, Rochester, MN, United States
| | - Nicholas F LaRusso
- Division of Gastroenterology and Hepatology, Mayo Clinic Center for Cell Signaling in Gastroenterology, Mayo Clinic, Rochester, MN, United States.
| |
Collapse
|
30
|
Role of inflammation and proinflammatory cytokines in cholangiocyte pathophysiology. Biochim Biophys Acta Mol Basis Dis 2018; 1864:1270-1278. [DOI: 10.1016/j.bbadis.2017.07.024] [Citation(s) in RCA: 48] [Impact Index Per Article: 6.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/25/2017] [Revised: 07/20/2017] [Accepted: 07/21/2017] [Indexed: 02/06/2023]
|
31
|
Giusto M, Barberi L, Di Sario F, Rizzuto E, Nicoletti C, Ascenzi F, Renzi A, Caporaso N, D'Argenio G, Gaudio E, Musarò A, Merli M. Skeletal muscle myopenia in mice model of bile duct ligation and carbon tetrachloride-induced liver cirrhosis. Physiol Rep 2017; 5:5/7/e13153. [PMID: 28364027 PMCID: PMC5392502 DOI: 10.14814/phy2.13153] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/18/2016] [Revised: 01/07/2017] [Accepted: 01/17/2017] [Indexed: 12/27/2022] Open
Abstract
Skeletal muscle myopathy is universal in cirrhotic patients, however, little is known about the main mechanisms involved. The study aims to investigate skeletal muscle morphological, histological, and functional modifications in experimental models of cirrhosis and the principal molecular pathways responsible for skeletal muscle myopathy. Cirrhosis was induced by bile duct ligation (BDL) and carbon tetrachloride (CCl4) administration in mice. Control animals (CTR) underwent bile duct exposure or vehicle administration only. At sacrifice, peripheral muscles were dissected and weighed. Contractile properties of extensor digitorum longus (EDL) were studied in vitro. Muscle samples were used for histological and molecular analysis. Quadriceps muscle histology revealed a significant reduction in cross-sectional area of muscle and muscle fibers in cirrhotic mice with respect to CTR. Kinetic properties of EDL in both BDL and CCl4 were reduced with respect to CTR; BDL mice also showed a reduction in muscle force and a decrease in the resistance to fatigue. Increase in myostatin expression associated with a decrease in AKT-mTOR expressions was observed in BDL mice, together with an increase in LC3 protein levels. Upregulation of the proinflammatory citochines TNF-a and IL6 and an increased expression of NF-kB and MuRF-1 were observed in CCl4 mice. In conclusion, skeletal muscle myopenia was present in experimental models of BDL and CCl4-induced cirrhosis. Moreover, reduction in protein synthesis and activation of protein degradation were the main mechanisms responsible for myopenia in BDL mice, while activation of ubiquitin-pathway through inflammatory cytokines seems to be the main potential mechanism involved in CCl4 mice.
Collapse
Affiliation(s)
- Michela Giusto
- Gastroenterology Department of Clinical Medicine, Sapienza University of Rome, Rome, Italy
| | - Laura Barberi
- Department of Anatomy, Histology, Forensic Medicine and Orthopedics -Unit of Histology and Medical Embryology, Sapienza University of Rome Laboratory affiliated to Istituto Pasteur Italia - Fondazione Cenci Bolognetti Rome, Italy
| | - Francesca Di Sario
- Gastroenterology Department of Clinical Medicine, Sapienza University of Rome, Rome, Italy
| | - Emanuele Rizzuto
- Department of Mechanical and Aerospace Engineering, Sapienza University of Rome, Rome, Italy
| | - Carmine Nicoletti
- Department of Anatomy, Histology, Forensic Medicine and Orthopedics -Unit of Histology and Medical Embryology, Sapienza University of Rome Laboratory affiliated to Istituto Pasteur Italia - Fondazione Cenci Bolognetti Rome, Italy
| | - Francesca Ascenzi
- Department of Anatomy, Histology, Forensic Medicine and Orthopedics -Unit of Histology and Medical Embryology, Sapienza University of Rome Laboratory affiliated to Istituto Pasteur Italia - Fondazione Cenci Bolognetti Rome, Italy
| | - Anastasia Renzi
- Department of Anatomy, Histology, Forensic Medicine and Orthopedics, Sapienza University of Rome, Rome, Italy
| | - Nicola Caporaso
- Department of Clinical and Experimental Medicine, Federico II University of Naples, Naples, Italy
| | - Giuseppe D'Argenio
- Department of Clinical and Experimental Medicine, Federico II University of Naples, Naples, Italy
| | - Eugenio Gaudio
- Department of Anatomy, Histology, Forensic Medicine and Orthopedics, Sapienza University of Rome, Rome, Italy
| | - Antonio Musarò
- Department of Anatomy, Histology, Forensic Medicine and Orthopedics -Unit of Histology and Medical Embryology, Sapienza University of Rome Laboratory affiliated to Istituto Pasteur Italia - Fondazione Cenci Bolognetti Rome, Italy
| | - Manuela Merli
- Gastroenterology Department of Clinical Medicine, Sapienza University of Rome, Rome, Italy
| |
Collapse
|
32
|
Wang S, Zhang L, Liu C, Lu WY. Protective roles of hepatic GABA signaling in liver injury. INTERNATIONAL JOURNAL OF PHYSIOLOGY, PATHOPHYSIOLOGY AND PHARMACOLOGY 2017; 9:153-156. [PMID: 29209452 PMCID: PMC5698692] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Subscribe] [Scholar Register] [Received: 10/19/2017] [Accepted: 10/26/2017] [Indexed: 06/07/2023]
Abstract
In addition to functioning as a neurotransmitter, γ-aminobutyric acid (GABA) generates signals, via its type A or type B receptors (GABAARs or GABABRs), in various types of cells. Studies, including ours, show that GABAAR-mediated auto- and paracrine GABAergic signaling occurs in rodent hepatocytes and cholangiocytes, protecting the liver against toxic injuries. This short article briefly introduces the GABA signaling system in rodent livers and discusses potential mechanisms by which the hepatic GABA signaling protects the liver function.
Collapse
Affiliation(s)
- Shuanglian Wang
- Department of Physiology and Pathophysiology, Shandong University School of Basic MedicineJinan, Shandong, China
| | - Lu Zhang
- Department of Peripheral Vascular Diseases, The Hospital Affiliated with Shandong University of Traditional Chinese Medicine (Shandong Hospital of Traditional Chinese Medicine)Jinan, Shandong, China
| | - Chuanyong Liu
- Department of Physiology and Pathophysiology, Shandong University School of Basic MedicineJinan, Shandong, China
| | - Wei-Yang Lu
- Department of Physiology and Pharmacology, University of Western OntarioLondon, ON, Canada
- Robarts Research Institute, University of Western OntarioLondon, ON, Canada
| |
Collapse
|
33
|
Sato K, Meng F, Venter J, Giang T, Glaser S, Alpini G. The role of the secretin/secretin receptor axis in inflammatory cholangiocyte communication via extracellular vesicles. Sci Rep 2017; 7:11183. [PMID: 28894209 PMCID: PMC5593902 DOI: 10.1038/s41598-017-10694-3] [Citation(s) in RCA: 26] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/05/2017] [Accepted: 08/14/2017] [Indexed: 12/13/2022] Open
Abstract
Small and large intrahepatic bile ducts consist of small and large cholangiocytes, respectively, and these cholangiocytes have different morphology and functions. The gastrointestinal peptide hormone, secretin (SCT) that binds to secretin receptor (SR), is a key mediator in cholangiocyte pathophysiology. Extracellular vesicles (EVs) are membrane-bound vesicles and cell-cell EV communication is recognized as an important factor in liver pathology, although EV communication between cholangiocytes is not identified to date. Cholangiocytes secrete proinflammatory cytokines during bacterial infection leading to biliary inflammation and hyperplasia. We demonstrate that cholangiocytes stimulated with lipopolysaccharide (LPS), which is a membrane component of gram-negative bacteria, secrete more EVs than cholangiocytes incubated with vehicle. These LPS-derived EVs induce inflammatory responses in other cholangiocytes including elevated cytokine production and cell proliferation. Large but not small cholangiocytes show inflammatory responses against large but not small cholangiocyte-derived EVs. Large cholangiocytes with knocked down either SCT or SR by short hairpin RNAs show reduced EV secretion during LPS stimulation, and EVs isolated from SCT or SR knocked down cholangiocytes fail to induce inflammatory reactions in control large cholangiocytes. This study identifies cholangiocyte EV communication during LPS stimulation, and demonstrates that the SCT/SR axis may be important for this event.
Collapse
Affiliation(s)
- Keisaku Sato
- Research, Central Texas Veterans Health Care System, Temple, TX, 76504, USA.,Department of Medicine, Texas A&M College of Medicine, Temple, TX, 76504, USA.,Baylor Scott & White Digestive Disease Research Center, Baylor Scott & White Healthcare, Temple, TX, 76504, USA
| | - Fanyin Meng
- Research, Central Texas Veterans Health Care System, Temple, TX, 76504, USA. .,Department of Medicine, Texas A&M College of Medicine, Temple, TX, 76504, USA. .,Baylor Scott & White Digestive Disease Research Center, Baylor Scott & White Healthcare, Temple, TX, 76504, USA. .,Academic Research Integration, Baylor Scott & White Healthcare, Temple, TX, 76504, USA.
| | - Julie Venter
- Research, Central Texas Veterans Health Care System, Temple, TX, 76504, USA.,Department of Medicine, Texas A&M College of Medicine, Temple, TX, 76504, USA.,Baylor Scott & White Digestive Disease Research Center, Baylor Scott & White Healthcare, Temple, TX, 76504, USA
| | - Thao Giang
- Research, Central Texas Veterans Health Care System, Temple, TX, 76504, USA.,Department of Medicine, Texas A&M College of Medicine, Temple, TX, 76504, USA.,Baylor Scott & White Digestive Disease Research Center, Baylor Scott & White Healthcare, Temple, TX, 76504, USA
| | - Shannon Glaser
- Research, Central Texas Veterans Health Care System, Temple, TX, 76504, USA. .,Department of Medicine, Texas A&M College of Medicine, Temple, TX, 76504, USA. .,Baylor Scott & White Digestive Disease Research Center, Baylor Scott & White Healthcare, Temple, TX, 76504, USA.
| | - Gianfranco Alpini
- Research, Central Texas Veterans Health Care System, Temple, TX, 76504, USA. .,Department of Medicine, Texas A&M College of Medicine, Temple, TX, 76504, USA. .,Baylor Scott & White Digestive Disease Research Center, Baylor Scott & White Healthcare, Temple, TX, 76504, USA.
| |
Collapse
|
34
|
Thomson J, Hargrove L, Kennedy L, Demieville J, Francis H. Cellular crosstalk during cholestatic liver injury. LIVER RESEARCH 2017; 1:26-33. [PMID: 29552372 PMCID: PMC5854144 DOI: 10.1016/j.livres.2017.05.002] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
The functions of the liver are very diverse. From detoxifying blood to storing glucose in the form of glycogen and producing bile to facilitate fat digestion, the liver is a very active and important organ. The liver is comprised of many varied cell types whose functions are equally diverse. Cholangiocytes line the biliary tree and aid in transporting and adjusting the composition of bile as it travels to the gallbladder. Hepatic stellate cells and portal fibroblasts are located in different areas within the liver architecture, but both contribute to the development of fibrosis upon activation after liver injury. Vascular cells, including those that constitute the peribiliary vascular plexus, are involved in functions other than blood delivery to and from the liver, such as supporting the growth of the biliary tree during development. Mast cells are normally found in healthy livers but in very low numbers. However, after injury, mast cell numbers greatly increase as they infiltrate and release factors that exacerbate the fibrotic response. While not an all-inclusive list, these cells have individual roles within the liver, but they are also able to communicate with each other by cellular crosstalk. In this review, we examine some of these pathways that can lead to an increase in the homeostatic dysfunction seen in liver injury.
Collapse
Affiliation(s)
- Joanne Thomson
- Research, Central Texas Veterans Healthcare System, TX, USA
| | - Laura Hargrove
- Medicine, Texas A&M Health Science Center, Temple, TX, USA
| | - Lindsey Kennedy
- Research, Central Texas Veterans Healthcare System, TX, USA
- Medicine, Texas A&M Health Science Center, Temple, TX, USA
| | | | - Heather Francis
- Research, Central Texas Veterans Healthcare System, TX, USA
- Digestive Disease Research Center, Baylor Scott & White Health, TX, USA
- Medicine, Texas A&M Health Science Center, Temple, TX, USA
| |
Collapse
|
35
|
Wang S, Xiang YY, Zhu J, Yi F, Li J, Liu C, Lu WY. Protective roles of hepatic GABA signaling in acute liver injury of rats. Am J Physiol Gastrointest Liver Physiol 2017; 312:G208-G218. [PMID: 27979827 DOI: 10.1152/ajpgi.00344.2016] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/14/2016] [Revised: 12/05/2016] [Accepted: 12/12/2016] [Indexed: 01/31/2023]
Abstract
γ-Aminobutyric acid (GABA) is produced by various cells through the catalytic activity of glutamic acid decarboxylase (GAD). Activation of type-A GABA receptor (GABAAR) inhibits stem cell proliferation but protects differentiated cells from injures. The present study investigated hepatic GABA signaling system and the role of this system in liver physiology and pathophysiology. RT-PCR and immunoblot assays identified GAD and GABAAR subunits in rat livers and in HepG2 and Clone 9 hepatocytes. Patch-clamp recording detected GABA-induced currents in Clone 9 hepatocytes and depolarization in WITT cholangiocytes. The function of hepatic GABA signaling system in rats was examined using models of d-galactosamine (GalN)-induced acute hepatocytic injury in vivo and in vitro. The expression of GAD increased whereas GABAAR subunits decreased in the liver of GalN-treated rats. Remarkably, treating rats with GABA or the GABAAR agonist muscimol, but not the GABABR agonist baclofen, protected hepatocytes against GalN toxicity and improved liver function. In addition, muscimol treatment decreased the formation of pseudobile ductules and the enlargement of hepatocytic canaliculi in GalN-treated rats. Our results revealed that a complex GABA signaling system exists in the rat liver. Activation of this intrahepatic GABAergic system protected the liver against toxic injury.NEW & NOTEWORTHY Auto- and paracrine GABAergic signaling systems exist in the rat hepatocytes and cholangiocytes. Activation of GABA signaling protects liver function from d-galactosamine injury by reducing toxic impairment of hepatocytes and by decreasing cholangiocyte proliferation.
Collapse
Affiliation(s)
- Shuanglian Wang
- Department of Physiology, Shandong University School of Medicine, Jinan, Shandong, People's Republic of China.,Department of Physiology and Pharmacology, University of Western Ontario, London, Ontario, Canada.,Robarts Research Institute, University of Western Ontario, London, Ontario, Canada.,Sunnybrook Health Sciences Centre, Toronto, Ontario, Canada.,Department of Physiology, University of Toronto, Toronto, Ontario, Canada; and
| | - Yun-Yan Xiang
- Department of Physiology and Pharmacology, University of Western Ontario, London, Ontario, Canada.,Robarts Research Institute, University of Western Ontario, London, Ontario, Canada.,Sunnybrook Health Sciences Centre, Toronto, Ontario, Canada.,Department of Physiology, University of Toronto, Toronto, Ontario, Canada; and
| | - Jianchun Zhu
- Department of Physiology, Shandong University School of Medicine, Jinan, Shandong, People's Republic of China
| | - Fan Yi
- Department of Pharmacology, Shandong University School of Medicine, Jinan, Shandong, People's Republic of China
| | - Jingxin Li
- Department of Physiology, Shandong University School of Medicine, Jinan, Shandong, People's Republic of China.,Sunnybrook Health Sciences Centre, Toronto, Ontario, Canada.,Department of Physiology, University of Toronto, Toronto, Ontario, Canada; and
| | - Chuanyong Liu
- Department of Physiology, Shandong University School of Medicine, Jinan, Shandong, People's Republic of China;
| | - Wei-Yang Lu
- Department of Physiology and Pharmacology, University of Western Ontario, London, Ontario, Canada; .,Robarts Research Institute, University of Western Ontario, London, Ontario, Canada.,Sunnybrook Health Sciences Centre, Toronto, Ontario, Canada.,Department of Physiology, University of Toronto, Toronto, Ontario, Canada; and
| |
Collapse
|
36
|
Hall C, Sato K, Wu N, Zhou T, Kyritsi K, Meng F, Glaser S, Alpini G. Regulators of Cholangiocyte Proliferation. Gene Expr 2017; 17:155-171. [PMID: 27412505 PMCID: PMC5494439 DOI: 10.3727/105221616x692568] [Citation(s) in RCA: 39] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
Cholangiocytes, a small population of cells within the normal liver, have been the focus of a significant amount of research over the past two decades because of their involvement in cholangiopathies such as primary sclerosing cholangitis and primary biliary cholangitis. This article summarizes landmark studies in the field of cholangiocyte physiology and aims to provide an updated review of biliary pathogenesis. The historical approach of rodent extrahepatic bile duct ligation and the relatively recent utilization of transgenic mice have led to significant discoveries in cholangiocyte pathophysiology. Cholangiocyte physiology is a complex system based on heterogeneity within the biliary tree and a number of signaling pathways that serve to regulate bile composition. Studies have expanded the list of neuropeptides, neurotransmitters, and hormones that have been shown to be key regulators of proliferation and biliary damage. The peptide histamine and hormones, such as melatonin and angiotensin, angiotensin, as well as numerous sex hormones, have been implicated in cholangiocyte proliferation during cholestasis. Numerous pathways promote cholangiocyte proliferation during cholestasis, and there is growing evidence to suggest that cholangiocyte proliferation may promote hepatic fibrosis. These pathways may represent significant therapeutic potential for a subset of cholestatic liver diseases that currently lack effective therapies.
Collapse
Affiliation(s)
- Chad Hall
- *Research, Central Texas Veterans Health Care System, Temple, TX, USA
- †Baylor Scott & White Digestive Disease Research Center, Temple, TX, USA
- ‡Department of Surgery, Baylor Scott & White and Texas A&M Health Science Center, Temple, TX, USA
| | - Keisaku Sato
- §Operational Funds, Baylor Scott & White, Temple, TX, USA
| | - Nan Wu
- §Operational Funds, Baylor Scott & White, Temple, TX, USA
| | - Tianhao Zhou
- §Operational Funds, Baylor Scott & White, Temple, TX, USA
| | | | - Fanyin Meng
- *Research, Central Texas Veterans Health Care System, Temple, TX, USA
- §Operational Funds, Baylor Scott & White, Temple, TX, USA
- ¶Department of Medicine, Baylor Scott & White and Texas A&M Health Science Center, Temple, TX, USA
| | - Shannon Glaser
- *Research, Central Texas Veterans Health Care System, Temple, TX, USA
- §Operational Funds, Baylor Scott & White, Temple, TX, USA
- ¶Department of Medicine, Baylor Scott & White and Texas A&M Health Science Center, Temple, TX, USA
| | - Gianfranco Alpini
- ‡Department of Surgery, Baylor Scott & White and Texas A&M Health Science Center, Temple, TX, USA
- §Operational Funds, Baylor Scott & White, Temple, TX, USA
- ¶Department of Medicine, Baylor Scott & White and Texas A&M Health Science Center, Temple, TX, USA
| |
Collapse
|
37
|
Mancinelli R, Glaser S, Francis H, Carpino G, Franchitto A, Vetuschi A, Sferra R, Pannarale L, Venter J, Meng F, Alpini G, Onori P, Gaudio E. Ischemia reperfusion of the hepatic artery induces the functional damage of large bile ducts by changes in the expression of angiogenic factors. Am J Physiol Gastrointest Liver Physiol 2015; 309:G865-73. [PMID: 26451003 PMCID: PMC4669349 DOI: 10.1152/ajpgi.00015.2015] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/20/2015] [Accepted: 09/08/2015] [Indexed: 02/06/2023]
Abstract
Liver transplantation and cholangiocarcinoma induce biliary dysfunction following ischemia reperfusion (IR). The function of the intrahepatic biliary tree is regulated by both autocrine and paracrine factors. The aim of the study was to demonstrate that IR-induced damage of cholangiocytes is associated with altered expression of biliary angiogenic factors. Normal and bile duct ligation rats underwent 24-h sham or hepatic reperfusion after 30 min of transient occlusion of the hepatic artery (HAIR) or portal vein (PVIR) before collecting liver blocks and cholangiocyte RNA or protein. We evaluated liver histology, biliary apoptosis, proliferation and expression of VEGF-A/C, VEGFR-2/3, Ang-1/2, and Tie-1/2 in liver sections and isolated small and large cholangiocytes. Normal rat intrahepatic cholangiocyte cultures (NRICC) were maintained under standard conditions in normoxic or under a hypoxic atmosphere for 4 h and then transferred to normal conditions for selected times. Subsequently, we measured changes in biliary proliferation and apoptosis and the expression of VEGF-A/C and VEGFR-2/3. In vivo, HAIR (but not PVIR) induced damage of large bile ducts and decreased proliferation and secretin-stimulated cAMP levels. HAIR-induced damage of large bile ducts was associated with increased expression of VEGF-A/C, VEGFR-2/3, Ang-1/2, and Tie-1/2. In vitro, under hypoxic conditions, there was increased apoptosis and reduced proliferation of NRICC concomitant with enhanced expression of VEGF-A/C and VEGFR-2/3. The functional damage of large bile ducts by HAIR and hypoxia is associated with increased expression of angiogenic factors in small cholangiocytes, presumably due to a compensatory mechanism in response to biliary damage.
Collapse
Affiliation(s)
- Romina Mancinelli
- 1Department of Anatomical, Histological, Forensic Medicine and Orthopedics Sciences, Sapienza, Rome, Italy;
| | - Shannon Glaser
- 2Research, Central Texas Veterans Health Care System, Temple, Texas; ,3Scott & White Digestive Disease Research Center, Baylor Scott & White, Temple, Texas; ,4Department of Medicine, Division Gastroenterology, Texas A&M University Health Science Center, College of Medicine, Temple, Texas;
| | - Heather Francis
- 2Research, Central Texas Veterans Health Care System, Temple, Texas; ,3Scott & White Digestive Disease Research Center, Baylor Scott & White, Temple, Texas; ,4Department of Medicine, Division Gastroenterology, Texas A&M University Health Science Center, College of Medicine, Temple, Texas;
| | - Guido Carpino
- 1Department of Anatomical, Histological, Forensic Medicine and Orthopedics Sciences, Sapienza, Rome, Italy;
| | - Antonio Franchitto
- 1Department of Anatomical, Histological, Forensic Medicine and Orthopedics Sciences, Sapienza, Rome, Italy; ,6Eleonora Lorillard Spencer Cenci Foundation, Rome, Italy
| | - Antonella Vetuschi
- 5Department of Biotechnological and Applied Clinical Sciences, University of L′Aquila, L′Aquila, Italy;
| | - Roberta Sferra
- 5Department of Biotechnological and Applied Clinical Sciences, University of L′Aquila, L′Aquila, Italy;
| | - Luigi Pannarale
- 1Department of Anatomical, Histological, Forensic Medicine and Orthopedics Sciences, Sapienza, Rome, Italy;
| | - Julie Venter
- 4Department of Medicine, Division Gastroenterology, Texas A&M University Health Science Center, College of Medicine, Temple, Texas;
| | - Fanyin Meng
- 2Research, Central Texas Veterans Health Care System, Temple, Texas; ,3Scott & White Digestive Disease Research Center, Baylor Scott & White, Temple, Texas; ,4Department of Medicine, Division Gastroenterology, Texas A&M University Health Science Center, College of Medicine, Temple, Texas;
| | - Gianfranco Alpini
- 2Research, Central Texas Veterans Health Care System, Temple, Texas; ,3Scott & White Digestive Disease Research Center, Baylor Scott & White, Temple, Texas; ,4Department of Medicine, Division Gastroenterology, Texas A&M University Health Science Center, College of Medicine, Temple, Texas;
| | - Paolo Onori
- Department of Anatomical, Histological, Forensic Medicine and Orthopedics Sciences, Sapienza, Rome, Italy;
| | - Eugenio Gaudio
- 1Department of Anatomical, Histological, Forensic Medicine and Orthopedics Sciences, Sapienza, Rome, Italy;
| |
Collapse
|
38
|
Development and functional characterization of extrahepatic cholangiocyte lines from normal rats. Dig Liver Dis 2015; 47:964-72. [PMID: 26277684 PMCID: PMC4624466 DOI: 10.1016/j.dld.2015.07.012] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/29/2015] [Revised: 07/14/2015] [Accepted: 07/18/2015] [Indexed: 12/11/2022]
Abstract
BACKGROUND Since limited in vitro tools exist for evaluating the pathophysiology of extrahepatic bile ducts, we aim to develop an extrahepatic cholangiocyte culture system from normal rats. METHODS Extrahepatic ducts were dissected from rats, cut in half length-wise and cultured on collagen-I coated plates. Transepithelial electrical resistance was measured. At ∼85% confluence, in extrahepatic cholangiocytes we measured: (i) cell size and distribution, and expression for cytokeratin-19, secretin, secretin receptor and somatostatin receptor type II (SSTR2), cystic fibrosis transmembrane conductance regulator (CFTR), chloride bicarbonate anion exchanger 2 (AE2), vascular endothelial growth factor-A (VEGF-A) and nerve growth factor (NGF); and (ii) the effect of secretin and/or somatostatin on 3'-5'-cyclic adenosine monophosphate (cAMP) levels and proliferation. RESULTS Cytokeratin-positive extrahepatic cholangiocytes were cultured for 6 passages to form a cell monolayer. Cholangiocytes proliferated to confluence over a 2-week period. The size of extrahepatic cholangiocytes averaged ∼16 μm. Extrahepatic ducts and cholangiocytes were positive for secretin, secretin receptor and SSTR2, CFTR, AE2, VEGF-A and NGF. In extrahepatic cholangiocyte cultures, secretin increased cAMP (prevented by somatostatin), chloride efflux and proliferation. CONCLUSIONS Extrahepatic cholangiocyte cultures may be important for studying diseases targeting extrahepatic cholangiocytes such as biliary atresia.
Collapse
|
39
|
Abstract
Cholangiocytes are the epithelial cells that line the bile ducts. Along the biliary tree, two different kinds of cholangiocytes exist; small and large cholangiocytes. Each type has important differences in their biological role in physiological and pathological conditions. In response to injury, cholangiocytes become reactive and acquire a neuroendocrine-like phenotype with the secretion of a number of peptides. These molecules act in an autocrine/paracrine fashion to modulate cholangiocyte biology and determine the evolution of biliary damage. The failure of such mechanisms is believed to influence the progression of cholangiopathies, a group of diseases that selectively target biliary cells. Therefore, the understanding of mechanisms regulating cholangiocyte response to injury is expected to foster the development of new therapeutic options to treat biliary diseases. In the present review, we will discuss the most recent findings in the mechanisms driving cholangiocyte adaptation to damage, with particular emphasis on molecular pathways that are susceptible of therapeutic intervention. Morphogenic pathways (Hippo, Notch, Hedgehog), which have been recently shown to regulate biliary ontogenesis and response to injury, will also be reviewed. In addition, the results of ongoing clinical trials evaluating new drugs for the treatment of cholangiopathies will be discussed.
Collapse
|
40
|
Afroze S, Meng F, Jensen K, McDaniel K, Rahal K, Onori P, Gaudio E, Alpini G, Glaser SS. The physiological roles of secretin and its receptor. ANNALS OF TRANSLATIONAL MEDICINE 2014; 1:29. [PMID: 25332973 DOI: 10.3978/j.issn.2305-5839.2012.12.01] [Citation(s) in RCA: 38] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Subscribe] [Scholar Register] [Received: 11/08/2012] [Accepted: 12/13/2012] [Indexed: 12/19/2022]
Abstract
Secretin is secreted by S cells in the small intestine and affects the function of a number of organ systems. Secretin receptors (SR) are expressed in the basolateral domain of several cell types. In addition to regulating the secretion of a number of epithelia (e.g., in the pancreas and biliary epithelium in the liver), secretin exerts trophic effects in several cell types. In this article, we will provide a comprehensive review on the multiple roles of secretin and SR signaling in the regulation of epithelial functions in various organ systems with particular emphasis in the liver. We will discuss the role of secretin and its receptor in health and biliary disease pathogenesis. Finally, we propose future areas of research for the further evaluation of the secretin/secretin receptor axis in liver pathophysiology.
Collapse
Affiliation(s)
- Syeda Afroze
- 1 Department of Medicine, Division Gastroenterology, 2 Research, Central Texas Veterans Health Care System, 3 Scott & White Digestive Disease Research Center, Scott & White, and Texas A&M Health Science Center, College of Medicine, Temple, TX 76504, USA ; 4 Experimental Medicine, University of L'Aquila, L'Aquila, Italy ; 5 Department of Anatomical, Histological, Forensic Medicine and Orthopedics Sciences, University Sapienza, Rome, Italy
| | - Fanyin Meng
- 1 Department of Medicine, Division Gastroenterology, 2 Research, Central Texas Veterans Health Care System, 3 Scott & White Digestive Disease Research Center, Scott & White, and Texas A&M Health Science Center, College of Medicine, Temple, TX 76504, USA ; 4 Experimental Medicine, University of L'Aquila, L'Aquila, Italy ; 5 Department of Anatomical, Histological, Forensic Medicine and Orthopedics Sciences, University Sapienza, Rome, Italy
| | - Kendal Jensen
- 1 Department of Medicine, Division Gastroenterology, 2 Research, Central Texas Veterans Health Care System, 3 Scott & White Digestive Disease Research Center, Scott & White, and Texas A&M Health Science Center, College of Medicine, Temple, TX 76504, USA ; 4 Experimental Medicine, University of L'Aquila, L'Aquila, Italy ; 5 Department of Anatomical, Histological, Forensic Medicine and Orthopedics Sciences, University Sapienza, Rome, Italy
| | - Kelly McDaniel
- 1 Department of Medicine, Division Gastroenterology, 2 Research, Central Texas Veterans Health Care System, 3 Scott & White Digestive Disease Research Center, Scott & White, and Texas A&M Health Science Center, College of Medicine, Temple, TX 76504, USA ; 4 Experimental Medicine, University of L'Aquila, L'Aquila, Italy ; 5 Department of Anatomical, Histological, Forensic Medicine and Orthopedics Sciences, University Sapienza, Rome, Italy
| | - Kinan Rahal
- 1 Department of Medicine, Division Gastroenterology, 2 Research, Central Texas Veterans Health Care System, 3 Scott & White Digestive Disease Research Center, Scott & White, and Texas A&M Health Science Center, College of Medicine, Temple, TX 76504, USA ; 4 Experimental Medicine, University of L'Aquila, L'Aquila, Italy ; 5 Department of Anatomical, Histological, Forensic Medicine and Orthopedics Sciences, University Sapienza, Rome, Italy
| | - Paolo Onori
- 1 Department of Medicine, Division Gastroenterology, 2 Research, Central Texas Veterans Health Care System, 3 Scott & White Digestive Disease Research Center, Scott & White, and Texas A&M Health Science Center, College of Medicine, Temple, TX 76504, USA ; 4 Experimental Medicine, University of L'Aquila, L'Aquila, Italy ; 5 Department of Anatomical, Histological, Forensic Medicine and Orthopedics Sciences, University Sapienza, Rome, Italy
| | - Eugenio Gaudio
- 1 Department of Medicine, Division Gastroenterology, 2 Research, Central Texas Veterans Health Care System, 3 Scott & White Digestive Disease Research Center, Scott & White, and Texas A&M Health Science Center, College of Medicine, Temple, TX 76504, USA ; 4 Experimental Medicine, University of L'Aquila, L'Aquila, Italy ; 5 Department of Anatomical, Histological, Forensic Medicine and Orthopedics Sciences, University Sapienza, Rome, Italy
| | - Gianfranco Alpini
- 1 Department of Medicine, Division Gastroenterology, 2 Research, Central Texas Veterans Health Care System, 3 Scott & White Digestive Disease Research Center, Scott & White, and Texas A&M Health Science Center, College of Medicine, Temple, TX 76504, USA ; 4 Experimental Medicine, University of L'Aquila, L'Aquila, Italy ; 5 Department of Anatomical, Histological, Forensic Medicine and Orthopedics Sciences, University Sapienza, Rome, Italy
| | - Shannon S Glaser
- 1 Department of Medicine, Division Gastroenterology, 2 Research, Central Texas Veterans Health Care System, 3 Scott & White Digestive Disease Research Center, Scott & White, and Texas A&M Health Science Center, College of Medicine, Temple, TX 76504, USA ; 4 Experimental Medicine, University of L'Aquila, L'Aquila, Italy ; 5 Department of Anatomical, Histological, Forensic Medicine and Orthopedics Sciences, University Sapienza, Rome, Italy
| |
Collapse
|
41
|
Franchitto A, Onori P, Renzi A, Carpino G, Mancinelli R, Alvaro D, Gaudio E. Recent advances on the mechanisms regulating cholangiocyte proliferation and the significance of the neuroendocrine regulation of cholangiocyte pathophysiology. ANNALS OF TRANSLATIONAL MEDICINE 2014; 1:27. [PMID: 25332971 DOI: 10.3978/j.issn.2305-5839.2012.10.03] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [Subscribe] [Scholar Register] [Received: 09/10/2012] [Accepted: 10/15/2012] [Indexed: 12/14/2022]
Abstract
Cholangiocytes are epithelial cells lining the biliary epithelium. Cholangiocytes play several key roles in the modification of ductal bile and are also the target cells in chronic cholestatic liver diseases (i.e., cholangiopathies) such as PSC, PBC, polycystic liver disease (PCLD) and cholangiocarcinoma (CCA). During these pathologies, cholangiocytes (which in normal condition are in a quiescent state) begin to proliferate acquiring phenotypes of neuroendocrine cells, and start secreting different cytokines, growth factors, neuropeptides, and hormones to modulate cholangiocytes proliferation and interaction with the surrounding environment, trying to reestablish the balance between proliferation/loss of cholangiocytes for the maintenance of biliary homeostasis. The purpose of this review is to summarize the recent findings on the mechanisms regulating cholangiocyte proliferation and the significance of the neuroendocrine regulation of cholangiocyte pathophysiology. To clarify the mechanisms of action of these factors we will provide new potential strategies for the management of chronic liver diseases.
Collapse
Affiliation(s)
- Antonio Franchitto
- 1 Department of Anatomical, Histological, Forensic Medicine and Orthopedic Sciences, University of Rome "Sapienza", Rome, Italy ; 2 Eleonora Lorillard Spencer-Cenci Foundation, Rome, Italy ; 3 Department of Experimental Medicine, University of L'Aquila, L'Aquila, Italy ; 4 Department of Health Science, University of Rome "Foro Italico", Italy ; 5 Department of Medico-Surgical Sciences and Biotechnologies, Polo Pontino, Sapienza, University of Rome "Sapienza", Rome, Italy
| | - Paolo Onori
- 1 Department of Anatomical, Histological, Forensic Medicine and Orthopedic Sciences, University of Rome "Sapienza", Rome, Italy ; 2 Eleonora Lorillard Spencer-Cenci Foundation, Rome, Italy ; 3 Department of Experimental Medicine, University of L'Aquila, L'Aquila, Italy ; 4 Department of Health Science, University of Rome "Foro Italico", Italy ; 5 Department of Medico-Surgical Sciences and Biotechnologies, Polo Pontino, Sapienza, University of Rome "Sapienza", Rome, Italy
| | - Anastasia Renzi
- 1 Department of Anatomical, Histological, Forensic Medicine and Orthopedic Sciences, University of Rome "Sapienza", Rome, Italy ; 2 Eleonora Lorillard Spencer-Cenci Foundation, Rome, Italy ; 3 Department of Experimental Medicine, University of L'Aquila, L'Aquila, Italy ; 4 Department of Health Science, University of Rome "Foro Italico", Italy ; 5 Department of Medico-Surgical Sciences and Biotechnologies, Polo Pontino, Sapienza, University of Rome "Sapienza", Rome, Italy
| | - Guido Carpino
- 1 Department of Anatomical, Histological, Forensic Medicine and Orthopedic Sciences, University of Rome "Sapienza", Rome, Italy ; 2 Eleonora Lorillard Spencer-Cenci Foundation, Rome, Italy ; 3 Department of Experimental Medicine, University of L'Aquila, L'Aquila, Italy ; 4 Department of Health Science, University of Rome "Foro Italico", Italy ; 5 Department of Medico-Surgical Sciences and Biotechnologies, Polo Pontino, Sapienza, University of Rome "Sapienza", Rome, Italy
| | - Romina Mancinelli
- 1 Department of Anatomical, Histological, Forensic Medicine and Orthopedic Sciences, University of Rome "Sapienza", Rome, Italy ; 2 Eleonora Lorillard Spencer-Cenci Foundation, Rome, Italy ; 3 Department of Experimental Medicine, University of L'Aquila, L'Aquila, Italy ; 4 Department of Health Science, University of Rome "Foro Italico", Italy ; 5 Department of Medico-Surgical Sciences and Biotechnologies, Polo Pontino, Sapienza, University of Rome "Sapienza", Rome, Italy
| | - Domenico Alvaro
- 1 Department of Anatomical, Histological, Forensic Medicine and Orthopedic Sciences, University of Rome "Sapienza", Rome, Italy ; 2 Eleonora Lorillard Spencer-Cenci Foundation, Rome, Italy ; 3 Department of Experimental Medicine, University of L'Aquila, L'Aquila, Italy ; 4 Department of Health Science, University of Rome "Foro Italico", Italy ; 5 Department of Medico-Surgical Sciences and Biotechnologies, Polo Pontino, Sapienza, University of Rome "Sapienza", Rome, Italy
| | - Eugenio Gaudio
- 1 Department of Anatomical, Histological, Forensic Medicine and Orthopedic Sciences, University of Rome "Sapienza", Rome, Italy ; 2 Eleonora Lorillard Spencer-Cenci Foundation, Rome, Italy ; 3 Department of Experimental Medicine, University of L'Aquila, L'Aquila, Italy ; 4 Department of Health Science, University of Rome "Foro Italico", Italy ; 5 Department of Medico-Surgical Sciences and Biotechnologies, Polo Pontino, Sapienza, University of Rome "Sapienza", Rome, Italy
| |
Collapse
|
42
|
Graf A, Meng F, Hargrove L, Kennedy L, Han Y, Francis T, Hodges K, Ueno Y, Nguyen Q, Greene JF, Francis H. Knockout of histidine decarboxylase decreases bile duct ligation-induced biliary hyperplasia via downregulation of the histidine decarboxylase/VEGF axis through PKA-ERK1/2 signaling. Am J Physiol Gastrointest Liver Physiol 2014; 307:G813-23. [PMID: 25169977 DOI: 10.1152/ajpgi.00188.2014] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/31/2023]
Abstract
Histidine is converted to histamine by histidine decarboxylase (HDC). We have shown that cholangiocytes 1) express HDC, 2) secrete histamine, and 3) proliferate after histamine treatment via ERK1/2 signaling. In bile duct-ligated (BDL) rodents, there is enhanced biliary hyperplasia, HDC expression, and histamine secretion. This studied aimed to demonstrate that knockdown of HDC inhibits biliary proliferation via downregulation of PKA/ERK1/2 signaling. HDC(-/-) mice and matching wild-type (WT) were subjected to sham or BDL. After 1 wk, serum, liver blocks, and cholangiocytes were collected. Immunohistochemistry was performed for 1) hematoxylin and eosin, 2) intrahepatic bile duct mass (IBDM) by cytokeratin-19, and 3) HDC biliary expression. We measured serum and cholangiocyte histamine levels by enzyme immunoassay. In total liver or cholangiocytes, we studied: 1) HDC and VEGF/HIF-1α expression and 2) PCNA and PKA/ERK1/2 protein expression. In vitro, cholangiocytes were stably transfected with shRNA-HDC plasmids (or control). After transfection we evaluated pPKA, pERK1/2, and cholangiocyte proliferation by immunoblots and MTT assay. In BDL HDC(-/-) mice, there was decreased IBDM, PCNA, VEGF, and HDC expression compared with BDL WT mice. Histamine levels were decreased in BDL HDC(-/-). BDL HDC(-/-) livers were void of necrosis and inflammation compared with BDL WT. PKA/ERK1/2 protein expression (increased in WT BDL) was lower in BDL HDC(-/-) cholangiocytes. In vitro, knockdown of HDC decreased proliferation and protein expression of PKA/ERK1/2 compared with control. In conclusion, loss of HDC decreases BDL-induced biliary mass and VEGF/HIF-1α expression via PKA/ERK1/2 signaling. Our data suggest that HDC is a key regulator of biliary proliferation.
Collapse
Affiliation(s)
| | - Fanyin Meng
- Central Texas Veterans Health Care System, Temple, Texas; Scott & White Healthcare, Temple, Texas; Texas A&M Health Science Center, Temple, Texas
| | | | | | - Yuyan Han
- Texas A&M Health Science Center, Temple, Texas
| | | | | | - Yoshiyuki Ueno
- Yamagata University, Department of Gastroenterology, Yamagata, Japan; and CREST, Japan Science and Technology Corporation, Tokyo, Japan
| | | | | | - Heather Francis
- Central Texas Veterans Health Care System, Temple, Texas; Scott & White Healthcare, Temple, Texas; Texas A&M Health Science Center, Temple, Texas
| |
Collapse
|
43
|
Guerrier M, Attili F, Alpini G, Glaser S. Prolonged administration of secretin to normal rats increases biliary proliferation and secretin-induced ductal secretory activity. Hepatobiliary Surg Nutr 2014; 3:118-25. [PMID: 25019073 DOI: 10.3978/j.issn.2304-3881.2014.04.04] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/01/2014] [Accepted: 04/14/2014] [Indexed: 11/14/2022]
Abstract
BACKGROUND AND AIM Cholangiocyte proliferation is coordinately regulated by a number of gastrointestinal hormones/peptides, some of which display stimulatory effects and some have inhibitory actions on cholangiocyte proliferation. Enhanced biliary proliferation [for example after bile duct ligation (BDL) and partial hepatectomy] is associated with increased expression of secretin receptor (SR), cystic fibrosis transmembrane conductance regulator (CFTR) and Cl(-)/HCO3 (-) anion exchanger 2 and secretin-stimulated ductal secretion, whereas loss/damage of bile ducts [for example after acute carbon tetrachloride (CCl4) administration] is associated with reduced secretin-stimulated ductal secretory activity. There is growing information regarding the role of gastrointestinal hormones the regulation of biliary growth. For example, while gastrin, somatostatin and serotonin inhibit bile duct hyperplasia of cholestatic rats by downregulation of cAMP signaling, secretin has been shown to stimulate the proliferation of normal mice by activation of cyclic adenosine 3',5'-monophosphate (cAMP)-dependent signaling. However, no information exists regarding the stimulatory effects of secretin on biliary proliferation of normal rats. Thus, we evaluated the in vivo and in vitro effect of secretin on biliary proliferation, the expression of markers key of ductal secretion and secretin-stimulated ductal secretion. METHODS Normal male rats were treated with saline or secretin (2.5 nmoles/kg BW/day by osmotic minipumps for one week). We evaluated: (I) intrahepatic bile duct mass (IBDM) in liver sections and PCNA expression in purified cholangiocytes; (II) SR and CFTR mRNA expression and secretin-stimulated cAMP levels in purified cholangiocytes; and (III) secretin-stimulated bile and bicarbonate secretion in bile fistula rats. In vitro, normal rat intrahepatic cholangiocyte lines (NRIC) were treated with BSA (basal) or secretin (100 nM) for 24 to 72 hours in the absence/presence of a PKA or a MEK inhibitor before evaluating proliferation by MTS assays. RESULTS Prolonged administration of secretin to normal rats increased IBDM and PCNA expression in purified cholangiocytes compared to saline-treated normal rats. Also, secretin increased the expression of proteins (SR and CFTR) that are key in the regulating ductal secretion and enhanced secretin-stimulated cAMP levels and bile and bicarbonate secretion. In vitro, secretin increased the proliferation of NRIC, increase that was prevented by PKA and MAPK inhibitors. CONCLUSIONS We have demonstrated that secretin stimulates both in vivo and in vitro biliary proliferation and secretin-stimulated ductal secretory activity in normal rats. We suggest that the stimulatory effect of secretin on biliary proliferation and secretion may be important for preventing biliary dysfunction during ductopenic disorders.
Collapse
Affiliation(s)
- Micheleine Guerrier
- 1 Department of Medicine, Division Gastroenterology, Texas A&M Health Science Center, College of Medicine, Temple, TX, USA ; 2 University of Rome Sapienza, Rome, Italy ; 3 Research, Central Texas Veterans Health Care System, TX, USA ; 4 Scott & White Digestive Disease Research Center, Scott & White, TX, USA
| | - Fabia Attili
- 1 Department of Medicine, Division Gastroenterology, Texas A&M Health Science Center, College of Medicine, Temple, TX, USA ; 2 University of Rome Sapienza, Rome, Italy ; 3 Research, Central Texas Veterans Health Care System, TX, USA ; 4 Scott & White Digestive Disease Research Center, Scott & White, TX, USA
| | - Gianfranco Alpini
- 1 Department of Medicine, Division Gastroenterology, Texas A&M Health Science Center, College of Medicine, Temple, TX, USA ; 2 University of Rome Sapienza, Rome, Italy ; 3 Research, Central Texas Veterans Health Care System, TX, USA ; 4 Scott & White Digestive Disease Research Center, Scott & White, TX, USA
| | - Shannon Glaser
- 1 Department of Medicine, Division Gastroenterology, Texas A&M Health Science Center, College of Medicine, Temple, TX, USA ; 2 University of Rome Sapienza, Rome, Italy ; 3 Research, Central Texas Veterans Health Care System, TX, USA ; 4 Scott & White Digestive Disease Research Center, Scott & White, TX, USA
| |
Collapse
|
44
|
Glaser S, Meng F, Han Y, Onori P, Chow BK, Francis H, Venter J, McDaniel K, Marzioni M, Invernizzi P, Ueno Y, Lai JM, Huang L, Standeford H, Alvaro D, Gaudio E, Franchitto A, Alpini G. Secretin stimulates biliary cell proliferation by regulating expression of microRNA 125b and microRNA let7a in mice. Gastroenterology 2014; 146:1795-808.e12. [PMID: 24583060 PMCID: PMC4035389 DOI: 10.1053/j.gastro.2014.02.030] [Citation(s) in RCA: 75] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/14/2013] [Revised: 02/10/2014] [Accepted: 02/11/2014] [Indexed: 12/13/2022]
Abstract
BACKGROUND & AIMS Proliferating cholangiocytes secrete and respond to neuroendocrine hormones, including secretin. We investigated whether secretin secreted by S cells and cholangiocytes stimulates biliary proliferation in mice. METHODS Cholestasis was induced in secretin knockout (Sct(-/-)) and wild-type (control) mice by bile duct ligation (BDL). At days 3 and 7 after BDL, control and Sct(-/-) mice received tail-vein injections of morpholinos against microRNA 125b or let7a. One week later, liver tissues and cholangiocytes were collected. Immunohistochemical, immunoblot, luciferase reporter, and real-time polymerase chain reaction assays were performed. Intrahepatic bile duct mass (IBDM) and proliferation were measured. Secretin secretion was measured in conditioned media from cholangiocytes and S cells and in serum and bile. RESULTS Secretin secretion was increased in supernatants from cholangiocytes and S cells and in serum and bile after BDL in control mice. BDL Sct(-/-) mice had lower IBDM, reduced proliferation, and reduced production of vascular endothelial growth factor (VEGF) A and nerve growth factor (NGF) compared with BDL control. BDL and control mice given morpholinos against microRNA 125b or let7a had increased IBDM. Livers of mice given morpholinos against microRNA 125b had increased expression of VEGFA, and those treated with morpholinos against microRNA let7a had increased expression of NGF. Secretin regulated VEGF and NGF expression that negatively correlated with microRNA 125b and let7a levels in liver tissue. CONCLUSIONS After liver injury, secretin produced by cholangiocytes and S cells reduces microRNA 125b and let7a levels, resulting in up-regulation of VEGF and NGF. Modulation of cholangiocyte expression of secretin could be a therapeutic approach for biliary diseases.
Collapse
Affiliation(s)
- Shannon Glaser
- Research, Central Texas Veterans Health Care System, Temple, Texas; Scott & White Digestive Disease Research Center, Scott & White, Temple, Texas; Department of Medicine, Division of Gastroenterology, Texas A&M Health Science Center College of Medicine, Temple, Texas
| | - Fanyin Meng
- Research, Central Texas Veterans Health Care System, Temple, Texas; Scott & White Digestive Disease Research Center, Scott & White, Temple, Texas; Department of Medicine, Division of Gastroenterology, Texas A&M Health Science Center College of Medicine, Temple, Texas; Academic Operations, Scott & White, Temple, Texas
| | - Yuyan Han
- Department of Medicine, Division of Gastroenterology, Texas A&M Health Science Center College of Medicine, Temple, Texas
| | - Paolo Onori
- Department of Anatomical, Histological, Forensic Medicine, and Orthopedics Sciences, Sapienza, Rome, Italy
| | - Billy K Chow
- School of Biological Sciences, The University of Hong Kong, Hong Kong, China
| | - Heather Francis
- Research, Central Texas Veterans Health Care System, Temple, Texas; Scott & White Digestive Disease Research Center, Scott & White, Temple, Texas; Department of Medicine, Division of Gastroenterology, Texas A&M Health Science Center College of Medicine, Temple, Texas; Academic Operations, Scott & White, Temple, Texas
| | - Julie Venter
- Department of Medicine, Division of Gastroenterology, Texas A&M Health Science Center College of Medicine, Temple, Texas
| | - Kelly McDaniel
- Research, Central Texas Veterans Health Care System, Temple, Texas
| | - Marco Marzioni
- Department of Medicine, Universita' Politecnica delle Marche, Ancona, Italy
| | - Pietro Invernizzi
- Liver Unit and Center for Autoimmune Liver Diseases, Humanitas Clinical and Research Center, Rozzano, Milan, Italy
| | - Yoshiyuki Ueno
- Division of Gastroenterology, Yamagata University Faculty of Medicine, Yamagata, Japan
| | - Jia-ming Lai
- Department of Hepatobiliary Surgery, First Affiliated Hospital, Sun Yat-sen University, Guangzhou, China
| | - Li Huang
- Department of Hepatobiliary Surgery, First Affiliated Hospital, Sun Yat-sen University, Guangzhou, China
| | - Holly Standeford
- Research, Central Texas Veterans Health Care System, Temple, Texas
| | - Domenico Alvaro
- Department of Medico-Surgical Sciences and Biotechnologies, Polo Pontino, Italy
| | - Eugenio Gaudio
- Department of Anatomical, Histological, Forensic Medicine, and Orthopedics Sciences, Sapienza, Rome, Italy
| | - Antonio Franchitto
- Department of Anatomical, Histological, Forensic Medicine, and Orthopedics Sciences, Sapienza, Rome, Italy; Eleonora Lorillard Spencer Cenci Foundation, Rome, Italy
| | - Gianfranco Alpini
- Research, Central Texas Veterans Health Care System, Temple, Texas; Scott & White Digestive Disease Research Center, Scott & White, Temple, Texas; Department of Medicine, Division of Gastroenterology, Texas A&M Health Science Center College of Medicine, Temple, Texas.
| |
Collapse
|
45
|
Noguchi H, Yamada S, Nabeshima A, Guo X, Tanimoto A, Wang KY, Kitada S, Tasaki T, Takama T, Shimajiri S, Horlad H, Komohara Y, Izumi H, Kohno K, Ichijo H, Sasaguri Y. Depletion of apoptosis signal-regulating kinase 1 prevents bile duct ligation-induced necroinflammation and subsequent peribiliary fibrosis. THE AMERICAN JOURNAL OF PATHOLOGY 2014; 184:644-661. [PMID: 24412091 DOI: 10.1016/j.ajpath.2013.11.030] [Citation(s) in RCA: 32] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/10/2013] [Revised: 11/01/2013] [Accepted: 11/26/2013] [Indexed: 12/17/2022]
Abstract
Apoptosis signal-regulating kinase 1 (ASK1), also known as mitogen-activated protein kinase kinase kinase (MAP3K), is ubiquitously expressed and situated in an important upstream position of many signal transduction pathways. ASK1 plays a pivotal role in stressor-induced cell survival and inflammatory reactions. To ascertain the regulatory functions of ASK1 in bile duct ligation (BDL)-induced liver injury, we examined the net effects of ASK1 depletion on hepatic necroinflammation and/or fibrosis. We subjected C57BL/6 wild-type (WT) or ASK1-deficient (ASK1(-/-)) mice to sham or BDL surgery for 14 days. In day 3 BDL animals, ASK1(-/-) mice had significantly fewer bile infarcts along with more reduced interlobular or portal inflammatory infiltrate of various immune cells, including neutrophils, compared with WT mice in which ASK1 expression was markedly activated. Morphologically apoptotic hepatocytes or cholangiocytes were negligible in both the sham and BDL animals. In contrast, ASK1(-/-) mice had significantly less proliferating activity of not only hepatocytes but also large cholangiocytes than WT mice. Day 14 BDL ASK1(-/-) mice manifested potential antifibrogenic aspects of ASK1 deficiency, characterized by significantly fewer activated peribiliary fibrogenic cells and peribiliary fibrosis. These observations indicate that ASK1-mediated hepatic necroinflammation and proliferation, but not apoptosis, are closely linked to liver fibrosis and fibrogenesis. A specific ASK1 pathway blocker or inhibitor might offer a therapeutic strategy against human cholestatic diseases.
Collapse
Affiliation(s)
- Hirotsugu Noguchi
- Departments of Pathology and Cell Biology, School of Medicine, University of Occupational and Environmental Health, Kitakyushu, Japan
| | - Sohsuke Yamada
- Departments of Pathology and Cell Biology, School of Medicine, University of Occupational and Environmental Health, Kitakyushu, Japan.
| | - Atsunori Nabeshima
- Departments of Pathology and Cell Biology, School of Medicine, University of Occupational and Environmental Health, Kitakyushu, Japan
| | - Xin Guo
- Departments of Pathology and Cell Biology, School of Medicine, University of Occupational and Environmental Health, Kitakyushu, Japan
| | - Akihide Tanimoto
- Department of Molecular and Cellular Pathology, Kagoshima University Graduate School of Medical and Dental Sciences, Kitakyushu, Japan
| | - Ke-Yong Wang
- Departments of Pathology and Cell Biology, School of Medicine, University of Occupational and Environmental Health, Kitakyushu, Japan; Bio-information Research Center, School of Medicine, University of Occupational and Environmental Health, Kitakyushu, Japan
| | - Shohei Kitada
- Departments of Pathology and Cell Biology, School of Medicine, University of Occupational and Environmental Health, Kitakyushu, Japan; Department of Urology, School of Medicine, University of Occupational and Environmental Health, Kitakyushu, Japan
| | - Takashi Tasaki
- Departments of Pathology and Cell Biology, School of Medicine, University of Occupational and Environmental Health, Kitakyushu, Japan
| | - Tatsuo Takama
- Departments of Pathology and Cell Biology, School of Medicine, University of Occupational and Environmental Health, Kitakyushu, Japan; Department of Emergency Medicine, School of Medicine, University of Occupational and Environmental Health, Kitakyushu, Japan
| | - Shohei Shimajiri
- Departments of Pathology and Cell Biology, School of Medicine, University of Occupational and Environmental Health, Kitakyushu, Japan
| | - Hasita Horlad
- Department of Cell Pathology, Faculty of Medical and Pharmaceutical Sciences, Graduate School of Medical Sciences, Kumamoto University, Kitakyushu, Japan
| | - Yoshihiro Komohara
- Department of Cell Pathology, Faculty of Medical and Pharmaceutical Sciences, Graduate School of Medical Sciences, Kumamoto University, Kitakyushu, Japan
| | - Hiroto Izumi
- Department of Occupational Pneumology, School of Medicine, University of Occupational and Environmental Health, Kitakyushu, Japan
| | - Kimitoshi Kohno
- Department of Molecular Biology, School of Medicine, University of Occupational and Environmental Health, Kitakyushu, Japan
| | - Hidenori Ichijo
- Laboratory of Cell Signaling, Graduate School of Pharmaceutical Sciences, The University of Tokyo, and Core Research for Evolutional Science and Technology, Tokyo, Japan
| | - Yasuyuki Sasaguri
- Departments of Pathology and Cell Biology, School of Medicine, University of Occupational and Environmental Health, Kitakyushu, Japan
| |
Collapse
|
46
|
Maroni L, Pierantonelli I, Benedetti A, Marzioni M. Angiogenic factors in chronic liver diseases: the effects on hepatic progenitor cells. Hepatobiliary Surg Nutr 2014; 2:61-4. [PMID: 24570917 DOI: 10.3978/j.issn.2304-3881.2012.12.03] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/10/2012] [Accepted: 12/12/2012] [Indexed: 12/21/2022]
Affiliation(s)
- Luca Maroni
- Department of Gastroenterology, Università Politecnica delle Marche, Ancona, Italy; ; Department of Gastroenterology and Hepatology, Tytgat Institute for Liver and Intestinal Research, Academic Medical Center, University of Amsterdam, Amsterdam, The Netherlands
| | - Irene Pierantonelli
- Department of Gastroenterology, Università Politecnica delle Marche, Ancona, Italy; ; Division of Gastroenterology and Hepatology, Department of Internal Medicine III, Medical University of Vienna, Vienna, Austria
| | - Antonio Benedetti
- Department of Gastroenterology, Università Politecnica delle Marche, Ancona, Italy
| | - Marco Marzioni
- Department of Gastroenterology, Università Politecnica delle Marche, Ancona, Italy
| |
Collapse
|
47
|
Sabbatini ME, Gorelick F, Glaser S. Adenylyl cyclases in the digestive system. Cell Signal 2014; 26:1173-81. [PMID: 24521753 DOI: 10.1016/j.cellsig.2014.01.033] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/12/2014] [Accepted: 01/31/2014] [Indexed: 02/08/2023]
Abstract
Adenylyl cyclases (ACs) are a group of widely distributed enzymes whose functions are very diverse. There are nine known transmembrane AC isoforms activated by Gαs. Each has its own pattern of expression in the digestive system and differential regulation of function by Ca(2+) and other intracellular signals. In addition to the transmembrane isoforms, one AC is soluble and exhibits distinct regulation. In this review, the basic structure, regulation and physiological roles of ACs in the digestive system are discussed.
Collapse
Affiliation(s)
| | - Fred Gorelick
- Department of Cell Biology and Medicine, Yale University, United States; VA CT, United States
| | - Shannon Glaser
- Department of Internal Medicine, Scott & White-Digestive Disease Research Center, Texas A&M Health Science Center, Central Texas Veterans Health Care System, United States
| |
Collapse
|
48
|
Glaser S, Han Y, Francis H, Alpini G. Melatonin regulation of biliary functions. Hepatobiliary Surg Nutr 2014; 3:35-43. [PMID: 24696836 PMCID: PMC3954997 DOI: 10.3978/j.issn.2304-3881.2013.10.04] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/01/2013] [Accepted: 10/20/2013] [Indexed: 12/19/2022]
Abstract
The intrahepatic biliary epithelium is a three-dimensional tubular system lined by cholangiocytes, epithelial cells that in addition to modify ductal bile are also the targets of vanishing bile duct syndromes (i.e., cholangiopathies) such as primary biliary cirrhosis (PBC) and primary sclerosing cholangitis (PSC) that are characterized by the damage/proliferation of cholangiocytes. Cholangiocyte proliferation is critical for the maintenance of the biliary mass and secretory function during the pathogenesis of cholangiopathies. Proliferating cholangiocytes serve as a neuroendocrine compartment during the progression of cholangiopathies, and as such secrete and respond to hormones, neurotransmitters and neuropeptides contributing to the autocrine and paracrine pathways that regulate biliary homeostasis. The focus of this review is to summarize the recent findings related to the role of melatonin in the modulation of biliary functions and liver damage in response to a number of insults. We first provide a general background on the general function of cholangiocytes including their anatomic characteristics, their innervation and vascularization as well the role of these cells on secretory and proliferation events. After a background on the synthesis and regulation of melatonin and its role on the maintenance of circadian rhythm, we will describe the specific effects of melatonin on biliary functions and liver damage. After a summary of the topics discussed, we provide a paragraph on the future perspectives related to melatonin and liver functions.
Collapse
|
49
|
Abstract
Intracellular free Ca(2+) ([Ca(2+)]i) is a highly versatile second messenger that regulates a wide range of functions in every type of cell and tissue. To achieve this versatility, the Ca(2+) signaling system operates in a variety of ways to regulate cellular processes that function over a wide dynamic range. This is particularly well exemplified for Ca(2+) signals in the liver, which modulate diverse and specialized functions such as bile secretion, glucose metabolism, cell proliferation, and apoptosis. These Ca(2+) signals are organized to control distinct cellular processes through tight spatial and temporal coordination of [Ca(2+)]i signals, both within and between cells. This article will review the machinery responsible for the formation of Ca(2+) signals in the liver, the types of subcellular, cellular, and intercellular signals that occur, the physiological role of Ca(2+) signaling in the liver, and the role of Ca(2+) signaling in liver disease.
Collapse
Affiliation(s)
- Maria Jimena Amaya
- Section of Digestive Diseases, Department of Internal Medicine, Yale University School of Medicine, New Haven, Connecticut, USA
| | | |
Collapse
|
50
|
Han Y, Glaser S, Meng F, Francis H, Marzioni M, McDaniel K, Alvaro D, Venter J, Carpino G, Onori P, Gaudio E, Alpini G, Franchitto A. Recent advances in the morphological and functional heterogeneity of the biliary epithelium. Exp Biol Med (Maywood) 2013; 238:549-65. [PMID: 23856906 DOI: 10.1177/1535370213489926] [Citation(s) in RCA: 59] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022] Open
Abstract
This review focuses on the recent advances related to the heterogeneity of different-sized bile ducts with regard to the morphological and phenotypical characteristics, and the differential secretory, apoptotic and proliferative responses of small and large cholangiocytes to gastrointestinal hormones/peptides, neuropeptides and toxins. We describe several in vivo and in vitro models used for evaluating biliary heterogeneity. Subsequently, we discuss the heterogeneous proliferative and apoptotic responses of small and large cholangiocytes to liver injury and the mechanisms regulating the differentiation of small into large (more differentiated) cholangiocytes. Following a discussion on the heterogeneity of stem/progenitor cells in the biliary epithelium, we outline the heterogeneity of bile ducts in human cholangiopathies. After a summary section, we discuss the future perspectives that will further advance the field of the functional heterogeneity of the biliary epithelium.
Collapse
Affiliation(s)
- Yuyan Han
- Department of Medicine, Division Gastroenterology, Texas A&M Health Science Center, College of Medicine, TX, USA
| | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|