1
|
Lhotska H, Janeckova K, Cechova H, Macoun J, Aghova T, Lizcova L, Svobodova K, Hodanova L, Konecna D, Soukup J, Kramar F, Netuka D, Zemanova Z. Validating a clinically based MS-MLPA threshold through comparison with Sanger sequencing in glioblastoma patients. Clin Epigenetics 2025; 17:16. [PMID: 39881389 PMCID: PMC11776323 DOI: 10.1186/s13148-025-01822-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/26/2024] [Accepted: 01/21/2025] [Indexed: 01/31/2025] Open
Abstract
BACKGROUND Glioblastoma is the commonest malignant brain tumor and has a very poor prognosis. Reduced expression of the MGMT gene (10q26.3), influenced primarily by the methylation of two differentially methylated regions (DMR1 and DMR2), is associated with a good response to temozolomide treatment. However, suitable methods for detecting the methylation of the MGMT gene promoter and setting appropriate cutoff values are debated. RESULTS A cohort of 108 patients with histologically and genetically defined glioblastoma was retrospectively examined with methylation-specific Sanger sequencing (sSeq) and methylation-specific multiplex ligation-dependent probe amplification (MS-MLPA) methods. The DMR2 region was methylated in 29% of samples, whereas DMR1 was methylated in 12% of samples. Methylation detected with the MS-MLPA method using probes MGMT_215, MGMT_190, and MGMT_124 from the ME012-A1 kit (located in DMR1 and DMR2) correlated with the methylation of the corresponding CpG dinucleotides detected with sSeq (p = 0.005 for probe MGMT_215; p < 0.001 for probe MGMT_190; p = 0.016 for probe MGMT_124). The threshold for methylation detection with the MS-MLPA method was calculated with a ROC curve analysis and principal components analysis of the data obtained with the MS-MLPA and sSeq methods, yielding a weighted value of 0.362. Thus, methylation of the MGMT gene promoter was confirmed in 36% of samples. These patients had statistically significantly better overall survival (p = 0.003). CONCLUSIONS Our results show that the threshold for methylation detection with the MS-MLPA method determined here is useful from a diagnostic perspective because it allows the stratification of patients who will benefit from specific treatment protocols, including temozolomide. Detailed analysis of the MGMT gene promoter enables the more-precise and personalized treatment of patients with glioblastoma.
Collapse
Affiliation(s)
- Halka Lhotska
- Center of Oncocytogenomics, Institute of Medical Biochemistry and Laboratory Diagnostics, General University Hospital and 1st Faculty of Medicine of Charles University in Prague, U Nemocnice 499/2, 128 00, Prague, Czech Republic
| | - Karolina Janeckova
- Center of Oncocytogenomics, Institute of Medical Biochemistry and Laboratory Diagnostics, General University Hospital and 1st Faculty of Medicine of Charles University in Prague, U Nemocnice 499/2, 128 00, Prague, Czech Republic
| | - Hana Cechova
- Department of HLA, Institute of Hematology and Blood Transfusion, U Nemocnice 2094/1, 128 00, Prague, Czech Republic
| | - Jaromir Macoun
- The Clinical Trials and Research Department, General University Hospital and 1st Faculty of Medicine of Charles University in Prague, U Nemocnice 499/2, 128 00, Prague, Czech Republic
| | - Tatiana Aghova
- Center of Oncocytogenomics, Institute of Medical Biochemistry and Laboratory Diagnostics, General University Hospital and 1st Faculty of Medicine of Charles University in Prague, U Nemocnice 499/2, 128 00, Prague, Czech Republic
| | - Libuse Lizcova
- Center of Oncocytogenomics, Institute of Medical Biochemistry and Laboratory Diagnostics, General University Hospital and 1st Faculty of Medicine of Charles University in Prague, U Nemocnice 499/2, 128 00, Prague, Czech Republic
| | - Karla Svobodova
- Center of Oncocytogenomics, Institute of Medical Biochemistry and Laboratory Diagnostics, General University Hospital and 1st Faculty of Medicine of Charles University in Prague, U Nemocnice 499/2, 128 00, Prague, Czech Republic
| | - Lucie Hodanova
- Center of Oncocytogenomics, Institute of Medical Biochemistry and Laboratory Diagnostics, General University Hospital and 1st Faculty of Medicine of Charles University in Prague, U Nemocnice 499/2, 128 00, Prague, Czech Republic
| | - Dora Konecna
- Department of Neurosurgery and Neurooncology, 1st Faculty of Medicine of Charles University and Military University Hospital Prague, U Vojenske Nemocnice 1200, 169 02, Prague, Czech Republic
| | - Jiri Soukup
- Department of Pathology, 1st Faculty of Medicine of Charles University and Military University Hospital Prague, U Vojenske Nemocnice 1200, 169 02, Prague, Czech Republic
- The Fingerland Department of Pathology, Charles University, Faculty of Medicine in Hradec Kralove and University Hospital Hradec Kralove, Sokolska 581, 500 05, Hradec Kralove, Czech Republic
| | - Filip Kramar
- Department of Neurosurgery and Neurooncology, 1st Faculty of Medicine of Charles University and Military University Hospital Prague, U Vojenske Nemocnice 1200, 169 02, Prague, Czech Republic
| | - David Netuka
- Department of Neurosurgery and Neurooncology, 1st Faculty of Medicine of Charles University and Military University Hospital Prague, U Vojenske Nemocnice 1200, 169 02, Prague, Czech Republic
| | - Zuzana Zemanova
- Center of Oncocytogenomics, Institute of Medical Biochemistry and Laboratory Diagnostics, General University Hospital and 1st Faculty of Medicine of Charles University in Prague, U Nemocnice 499/2, 128 00, Prague, Czech Republic.
| |
Collapse
|
2
|
Sadaqat Z, Joseph S, Verma C, Muni Reddy J, Prakash A, Thomas T, Bharadwaj V, Vyas N. Real time-PCR a diagnostic tool for reporting copy number variation and relative gene-expression changes in pediatric B-cell acute lymphoblastic leukemia-a pilot study. Biol Methods Protoc 2024; 10:bpae098. [PMID: 39802454 PMCID: PMC11717350 DOI: 10.1093/biomethods/bpae098] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/16/2024] [Revised: 12/12/2024] [Accepted: 12/27/2024] [Indexed: 01/16/2025] Open
Abstract
Real time-polymerase chain reaction (RT-PCR) is used routinely in clinical practice as a cost-effective method for molecular diagnostics. Research in pediatric B-cell Acute Lymphoblastic Leukemia (ped B-ALL) suggests that apart from cytogenetics and clinical features, there is a need to include Copy number variation (CNV) in select genes at diagnosis, for upfront stratification of patients. Using ped B-ALL as a model, we have developed a RT-PCR-based iterative probability scoring method for reporting CNVs, and relative gene-expression changes. Our work highlights that once genes of interest and hotspots of CNVs are identified in discovery phase, our proposed method can be used as a cost-effective and user-friendly diagnostic tool for the identification of changes at genomic or transcriptomic level. It has the potential to be incorporated in routine diagnostics in resource constrained settings and be tailored for different diseases as per need.
Collapse
Affiliation(s)
- Zoha Sadaqat
- Manipal Academy of Higher Education (MAHE), Manipal 576104, Karnataka, India
- Division of Molecular Medicine, St John’s Research Institute, St John’s National Academy of Health Sciences (a Unit of CBCI Society for Medical Education), Bangalore 560034, Karnataka, India
| | - Smitha Joseph
- Manipal Academy of Higher Education (MAHE), Manipal 576104, Karnataka, India
- Division of Epidemiology and Biostatistics, St John’s Research Institute, St John’s National Academy of Health Sciences (a Unit of CBCI Society for Medical Education), Bangalore 560034, Karnataka, India
| | - Chandrika Verma
- Division of Molecular Medicine, St John’s Research Institute, St John’s National Academy of Health Sciences (a Unit of CBCI Society for Medical Education), Bangalore 560034, Karnataka, India
| | - Jyothi Muni Reddy
- Department of Pediatric Hematology Oncology and Bone Marrow Transplantation, St John’s Medical College and Hospital, St John’s National Academy of Health Sciences (a Unit of CBCI Society for Medical Education), Bangalore 560034, Karnataka, India
| | - Anand Prakash
- Department of Pediatric Hematology Oncology and Bone Marrow Transplantation, St John’s Medical College and Hospital, St John’s National Academy of Health Sciences (a Unit of CBCI Society for Medical Education), Bangalore 560034, Karnataka, India
| | - Tinku Thomas
- Department of Biostatistics, St John’s Medical College and Hospital, St John’s National Academy of Health Sciences (a Unit of CBCI Society for Medical Education), Bangalore 560034, Karnataka, India
| | - Vandana Bharadwaj
- Department of Pediatric Hematology Oncology and Bone Marrow Transplantation, St John’s Medical College and Hospital, St John’s National Academy of Health Sciences (a Unit of CBCI Society for Medical Education), Bangalore 560034, Karnataka, India
| | - Neha Vyas
- Division of Molecular Medicine, St John’s Research Institute, St John’s National Academy of Health Sciences (a Unit of CBCI Society for Medical Education), Bangalore 560034, Karnataka, India
| |
Collapse
|
3
|
Yamamura T, Tamura K, Kobayashi D, Inaji M, Toyama Y, Wakimoto H, Kiyokawa J, Hara S, Tanaka Y, Nariai T, Shimizu K, Ishii K, Maehara T. Loss of methylthioadenosine phosphorylase immunoreactivity correlates with poor prognosis and elevated uptake of 11C-methionine in IDH-mutant astrocytoma. J Neurooncol 2024; 168:355-365. [PMID: 38557927 DOI: 10.1007/s11060-024-04661-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/20/2024] [Accepted: 03/25/2024] [Indexed: 04/04/2024]
Abstract
PURPOSE The proximate localization of MTAP, which encodes methylthioadenosine phosphorylase, and CDKN2A/B on Chromosome 9q21 has allowed the loss of MTAP expression as a surrogate for homozygous deletion of CDKN2A/B. This study aimed to determine whether MTAP status correlates with clinical outcomes and 11C-methionine uptake in astrocytomas with IDH mutations. METHODS We conducted immunohistochemistry for MTAP in 30 patients with astrocytoma, IDH-mutant who underwent 11C-methionine positron emission tomography scans prior to surgical resection. The tumor-to-normal (T/N) ratio of 11C-methionine uptake was calculated using the mean standardized uptake value (SUV) for tumor and normal brain tissues. Cox regression analysis was used for multivariate survival analysis. RESULTS Among IDH-mutant astrocytomas, 26.7% (8/30) exhibited the loss of cytoplasmic MTAP expression, whereas 73.3% (22/30) tumors retained MTAP expression. The median progression-free survival (PFS) was significantly shorter in patients with MTAP loss than those with MTAP retention (1.88 years vs. 6.80 years, p = 0.003). The median overall survival (OS) was also shorter in patients with MTAP loss than in MTAP-retaining counterparts (5.23 years vs. 10.69 years, p = 0.019). Multivariate analysis identified MTAP status (hazard ratio (HR), 0.081) and extent of resection (HR, 0.104) as independent prognostic factors for PFS. Astrocytomas lacking cytoplasmic MTAP expression showed a significantly higher median T/N ratio for 11C-methionine uptake than tumors retaining MTAP (2.12 vs. 1.65, p = 0.012). CONCLUSION Our study revealed that the loss of MTAP expression correlates with poor prognosis and an elevated T/N ratio of 11C-methionine uptake in astrocytoma, IDH-mutant.
Collapse
Affiliation(s)
- Toshihiro Yamamura
- Department of Neurosurgery, Tokyo Medical and Dental University, 1-5-45 Yushima, Bunkyo-Ku, Tokyo, 113-8510, Japan
| | - Kaoru Tamura
- Department of Neurosurgery, Tokyo Medical and Dental University, 1-5-45 Yushima, Bunkyo-Ku, Tokyo, 113-8510, Japan.
| | - Daisuke Kobayashi
- Department of Human Pathology, Tokyo Medical and Dental University, 1-5-45 Yushima, Bunkyo-Ku, Tokyo, 113-8510, Japan
| | - Motoki Inaji
- Department of Neurosurgery, Tokyo Medical and Dental University, 1-5-45 Yushima, Bunkyo-Ku, Tokyo, 113-8510, Japan
- Research Team for Neuroimaging, Tokyo Metropolitan Institute for Geriatrics and Gerontology, 35-2 Sakaecho, Itabashi-Ku, Tokyo, 173-0015, Japan
| | - Yuka Toyama
- Department of Human Pathology, Tokyo Medical and Dental University, 1-5-45 Yushima, Bunkyo-Ku, Tokyo, 113-8510, Japan
| | - Hiroaki Wakimoto
- Department of Neurosurgery, Massachusetts General Hospital, Harvard Medical School, 185 Cambridge St, Boston, MA, 02114, USA
| | - Juri Kiyokawa
- Department of Neurosurgery, Tokyo Medical and Dental University, 1-5-45 Yushima, Bunkyo-Ku, Tokyo, 113-8510, Japan
| | - Shoko Hara
- Department of Neurosurgery, Tokyo Medical and Dental University, 1-5-45 Yushima, Bunkyo-Ku, Tokyo, 113-8510, Japan
- Research Team for Neuroimaging, Tokyo Metropolitan Institute for Geriatrics and Gerontology, 35-2 Sakaecho, Itabashi-Ku, Tokyo, 173-0015, Japan
| | - Yoji Tanaka
- Department of Neurosurgery, Tokyo Medical and Dental University, 1-5-45 Yushima, Bunkyo-Ku, Tokyo, 113-8510, Japan
| | - Tadashi Nariai
- Department of Neurosurgery, Tokyo Medical and Dental University, 1-5-45 Yushima, Bunkyo-Ku, Tokyo, 113-8510, Japan
- Research Team for Neuroimaging, Tokyo Metropolitan Institute for Geriatrics and Gerontology, 35-2 Sakaecho, Itabashi-Ku, Tokyo, 173-0015, Japan
| | - Kazuhide Shimizu
- Department of Neurosurgery, Tokyo Medical and Dental University, 1-5-45 Yushima, Bunkyo-Ku, Tokyo, 113-8510, Japan
| | - Kenji Ishii
- Research Team for Neuroimaging, Tokyo Metropolitan Institute for Geriatrics and Gerontology, 35-2 Sakaecho, Itabashi-Ku, Tokyo, 173-0015, Japan
| | - Taketoshi Maehara
- Department of Neurosurgery, Tokyo Medical and Dental University, 1-5-45 Yushima, Bunkyo-Ku, Tokyo, 113-8510, Japan
| |
Collapse
|
4
|
Otsuji R, Hata N, Yamamoto H, Kuga D, Hatae R, Sangatsuda Y, Fujioka Y, Noguchi N, Sako A, Togao O, Yoshitake T, Nakamizo A, Mizoguchi M, Yoshimoto K. Hemizygous deletion of cyclin-dependent kinase inhibitor 2A/B with p16 immuno-negative and methylthioadenosine phosphorylase retention predicts poor prognosis in IDH-mutant adult glioma. Neurooncol Adv 2024; 6:vdae069. [PMID: 39022644 PMCID: PMC11252564 DOI: 10.1093/noajnl/vdae069] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 07/20/2024] Open
Abstract
Background Homozygous deletion of the tumor suppression genes cyclin-dependent kinase inhibitor 2A/B (CDKN2A/B) is a strong adverse prognostic factor in IDH-mutant gliomas, particularly astrocytoma. However, the impact of hemizygous deletion of CDKN2A/B is unknown. Furthermore, the influence of CDKN2A/B status in IDH-mutant and 1p/19q-codeleted oligodendroglioma remains controversial. We examined the impact of CDKN2A/B status classification, including hemizygous deletions, on the prognosis of IDH-mutant gliomas. Methods We enrolled 101 adults with IDH-mutant glioma between December 2002 and November 2021. CDKN2A/B deletion was evaluated with multiplex ligation-dependent probe amplification (MLPA). Immunohistochemical analysis of p16/MTAP and promoter methylation analysis with methylation-specific MLPA was performed for cases with CDKN2A/B deletion. Kaplan - Meier plots and Cox proportion hazards model analyses were performed to evaluate the impact on overall (OS) and progression-free survival. Results Of 101 cases, 12 and 4 were classified as hemizygous and homozygous deletion, respectively. Immunohistochemistry revealed p16-negative and MTAP retention in cases with hemizygous deletion, whereas homozygous deletions had p16-negative and MTAP loss. In astrocytoma, OS was shorter in the order of homozygous deletion, hemizygous deletion, and copy-neutral groups (median OS: 38.5, 59.5, and 93.1 months, respectively). Multivariate analysis revealed hazard ratios of 9.30 (P = .0191) and 2.44 (P = .0943) for homozygous and hemizygous deletions, respectively. Conclusions CDKN2A/B hemizygous deletions exerted a negative impact on OS in astrocytoma. Immunohistochemistry of p16/MTAP can be utilized to validate hemizygous or homozygous deletions in combination with conventional molecular diagnosis.
Collapse
Affiliation(s)
- Ryosuke Otsuji
- Department of Neurosurgery, Graduate School of Medical Sciences, Kyushu University, Fukuoka, Japan
| | - Nobuhiro Hata
- Department of Neurosurgery, Graduate School of Medical Sciences, Kyushu University, Fukuoka, Japan
- Department of Neurosurgery, Oita University Faculty of Medicine, Yufu, Oita, Japan
| | - Hidetaka Yamamoto
- Department of Anatomic Pathology, Graduate School of Medical Sciences, Kyushu University, Fukuoka, Japan
- Department of Pathology, Graduate School of Medicine, Dentistry and Pharmaceutical Sciences, Okayama University, Okayama, Japan
| | - Daisuke Kuga
- Department of Neurosurgery, Graduate School of Medical Sciences, Kyushu University, Fukuoka, Japan
| | - Ryusuke Hatae
- Department of Neurosurgery, Graduate School of Medical Sciences, Kyushu University, Fukuoka, Japan
| | - Yuhei Sangatsuda
- Department of Neurosurgery, Graduate School of Medical Sciences, Kyushu University, Fukuoka, Japan
| | - Yutaka Fujioka
- Department of Neurosurgery, Graduate School of Medical Sciences, Kyushu University, Fukuoka, Japan
| | - Naoki Noguchi
- Department of Neurosurgery, Graduate School of Medical Sciences, Kyushu University, Fukuoka, Japan
| | - Aki Sako
- Department of Neurosurgery, Graduate School of Medical Sciences, Kyushu University, Fukuoka, Japan
| | - Osamu Togao
- Department of Clinical Radiology, Graduate School of Medical Sciences, Kyushu University, Fukuoka, Japan
| | - Tadamasa Yoshitake
- Department of Clinical Radiology, Graduate School of Medical Sciences, Kyushu University, Fukuoka, Japan
| | - Akira Nakamizo
- Department of Neurosurgery, Graduate School of Medical Sciences, Kyushu University, Fukuoka, Japan
| | - Masahiro Mizoguchi
- Department of Neurosurgery, Graduate School of Medical Sciences, Kyushu University, Fukuoka, Japan
- Department of Neurosurgery, National Hospital Organization Kyushu Medical Center, Clinical Research Institute, Fukuoka, Japan
| | - Koji Yoshimoto
- Department of Neurosurgery, Graduate School of Medical Sciences, Kyushu University, Fukuoka, Japan
| |
Collapse
|
5
|
Ahmed MM, Lateef MA, Elwan A, Fouad EM, Elsayed DH, Abdelnour HM, Abdullatif A. Prognostic Value of Immunohistochemical Expression of MTAP and AKIP1 in IDH1 Mutant Astrocytoma. Asian Pac J Cancer Prev 2023; 24:3875-3882. [PMID: 38019246 PMCID: PMC10772751 DOI: 10.31557/apjcp.2023.24.11.3875] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/19/2023] [Accepted: 11/04/2023] [Indexed: 11/30/2023] Open
Abstract
BACKGROUND Definite treatment for glioma is not exist, and with increased drug resistance, more effort should be paid to identify new prognostic biomarkers and molecular targets for therapy for glioma patients. AIM The current study aimed to evaluate the immunohistochemical (IHC) expression of MTAP and A-Kinase Interacting Protein 1 (AKIP1) in astrocytoma and to investigate their association with the clinicopathological characters of these cases. METHODS Totally 66 cases of astrocytoma patients involved in this study. Cases underwent tumor resection and tissue sections were stained with MTAP, AKIP1 and IDH1 by IHC and evaluated in different grades of astrocytoma and their association with survival and response to therapy was investigated. RESULTS High AKIP1 expression was positively correlated with treatment resistance and progressive disease. Positive IDH and retained MTAP expressions had shown better treatment response rather than negative IDH and lost MTAP. High AKIP, negative IDH and loss of MTAP expressions were significantly associated with poor survival outcome. CONCLUSION Irrespective to grade and IDH status, the loss of MTAP immunoreactivity and high AKIP1 expression are predictive factors in astrocytoma, and they may be used as a biomarker for guiding astrocytoma management and prognosis surveillance.
Collapse
Affiliation(s)
- Mona Mostafa Ahmed
- Department of Pathology, Faculty of Medicine, Zagazig University, Egypt.
| | - Mohammed A Lateef
- Department of Neurosurgery, Faculty of Medicine, Zagazig University, Egypt.
| | - Amira Elwan
- Department of Clinical Oncology, Faculty of Medicine, Zagazig University, Egypt.
| | - Enas M Fouad
- Department of Pathology, Faculty of Medicine, Zagazig University, Egypt.
| | | | - Hanim M Abdelnour
- Departments of Biochemistry, Faculty of Medicine, Zagazig University, Egypt.
| | - Asmaa Abdullatif
- Department of Pathology, Faculty of Medicine, Zagazig University, Egypt.
| |
Collapse
|
6
|
Liu DD, Muliaditan D, Viswanathan R, Cui X, Cheow LF. Melt-Encoded-Tags for Expanded Optical Readout in Digital PCR (METEOR-dPCR) Enables Highly Multiplexed Quantitative Gene Panel Profiling. ADVANCED SCIENCE (WEINHEIM, BADEN-WURTTEMBERG, GERMANY) 2023; 10:e2301630. [PMID: 37485651 PMCID: PMC10520687 DOI: 10.1002/advs.202301630] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/13/2023] [Revised: 06/27/2023] [Indexed: 07/25/2023]
Abstract
Digital PCR (dPCR) is an important tool for precise nucleic acid quantification in clinical setting, but the limited multiplexing capability restricts its applications for quantitative gene panel profiling. Here, this work describes melt-encoded-tags for expanded optical readout in digital PCR (METEOR-dPCR), a simple two-step assay that enables simultaneous quantification of a large panel of arbitrary genes in a dPCR platform. Target genes are quantitatively converted into DNA tags with unique melting temperatures through a ligation approach. These tags are then counted and distinguished by their melt-curve profiles on a dPCR platform. A multiplexing capacity of M^N, where M is the number of resolvable melting temperature and N is the number of fluorescence channel, can be achieved. This work validates METEOR-dPCR with simultaneous DNA copy number profiling of 60 targets using dPCR in cancer cells, and demonstrates its sensitivity for estimating tumor fraction in mixed tumor and normal DNA samples. The rapid, quantitative, and highly multiplexed METEOR-dPCR assay will have wide appeal for many clinical applications.
Collapse
Affiliation(s)
- Dong Dong Liu
- Institute for Health Innovation and TechnologyNational University of SingaporeSingapore117599Singapore
| | - Daniel Muliaditan
- Department of Biomedical EngineeringFaculty of EngineeringNational University of SingaporeSingapore117583Singapore
- Genome institute of SingaporeAgency for ScienceTechnology and ResearchSingapore138672Singapore
| | - Ramya Viswanathan
- Institute for Health Innovation and TechnologyNational University of SingaporeSingapore117599Singapore
- Department of Biomedical EngineeringFaculty of EngineeringNational University of SingaporeSingapore117583Singapore
| | - Xu Cui
- Department of Biomedical EngineeringFaculty of EngineeringNational University of SingaporeSingapore117583Singapore
| | - Lih Feng Cheow
- Institute for Health Innovation and TechnologyNational University of SingaporeSingapore117599Singapore
- Department of Biomedical EngineeringFaculty of EngineeringNational University of SingaporeSingapore117583Singapore
| |
Collapse
|
7
|
Tsukamoto Y, Natsumeda M, Takahashi H, On J, Seto H, Saito T, Shibuya K, Ogura R, Ito J, Okada M, Oishi M, Shimizu H, Okamoto K, Kakita A, Fujii Y. Diffusely Infiltrating Gliomas With Poor Prognosis, TERT Promotor Mutations, and Histological Anaplastic Pleomorphic Xanthoastrocytoma-Like Appearance Classify as Mesenchymal Type of Glioblastoma, IDH-wildtype by Methylation Analysis. NEUROSURGERY PRACTICE 2023; 4:e00040. [PMID: 39958377 PMCID: PMC11810039 DOI: 10.1227/neuprac.0000000000000040] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 10/18/2022] [Accepted: 02/23/2023] [Indexed: 02/18/2025]
Abstract
BACKGROUND Pleomorphic xanthoastrocytoma (PXA) (World Health Organization grade II) is classified as a relatively benign and circumscribed glioma; however, anaplastic PXA (APXA, World Health Organization grade III) has a poorer prognosis, and differentiating from glioblastoma can be difficult both histologically and molecularly. OBJECTIVE To describe the clinical, pathological, and molecular characteristics of diffusely infiltrating gliomas with histological APXA-like features. METHODS Four diffusely infiltrating gliomas in adult patients histologically diagnosed as APXAs at a single institute were retrospectively reviewed. We analyzed their clinical, radiological, pathological, genetic, epigenetic, and prognostic characteristics. RESULTS All tumors histologically showed classical characteristic PXA-like appearance with BRAF wildtype, mitotic figure, necrosis, and an increased mindbomb E3 ubiquitin-protein ligase 1 labeling index and were initially diagnosed as APXAs; moreover, they underwent high-grade glioma treatment. Three patients with TERT promotor mutations died within 18 months. These patients' MRIs showed widespread infiltrating fluid-attenuated inversion recovery hyperintense lesions and Gd-enhancing lesions in the bilateral cerebral hemispheres in 2 of the patients. Contrastingly, a patient with the wildtype TERT promotor has survived for 2.5 years without recurrence. MRI revealed an unilateral fluid-attenuated inversion recovery hyperintense and Gd-enhancing lesion. By methylation classifier analysis, all 4 cases clustered toward GBM, IDH-wildtype, mesenchymal type, although one was deemed unclassifiable due to a low calibrated score. CONCLUSION In diffusely infiltrating gliomas showing histological characteristics of APXA, methylation classification should be performed as these tumors may be difficult to differentiate between glioblastoma, IDH-wildtype by histological or genetic analysis. The aggressive nature of these tumors should be expected, especially in cases that are BRAF-wildtype and TERT promotor mutant.
Collapse
Affiliation(s)
- Yoshihiro Tsukamoto
- Department of Neurosurgery, Brain Research Institute, Niigata University, Niigata, Japan
| | - Manabu Natsumeda
- Department of Neurosurgery, Brain Research Institute, Niigata University, Niigata, Japan
| | - Haruhiko Takahashi
- Department of Neurosurgery, Brain Research Institute, Niigata University, Niigata, Japan
- Department of Pathology, Brain Research Institute, Niigata University, Niigata, Japan
| | - Jotaro On
- Department of Neurosurgery, Brain Research Institute, Niigata University, Niigata, Japan
- Department of Pathology, Brain Research Institute, Niigata University, Niigata, Japan
| | - Hiroki Seto
- Department of Neurosurgery, Brain Research Institute, Niigata University, Niigata, Japan
| | - Taiki Saito
- Department of Neurosurgery, Brain Research Institute, Niigata University, Niigata, Japan
| | - Kohei Shibuya
- Department of Neurosurgery, Brain Research Institute, Niigata University, Niigata, Japan
| | - Ryosuke Ogura
- Department of Neurosurgery, Brain Research Institute, Niigata University, Niigata, Japan
| | - Junko Ito
- Department of Pathology, Brain Research Institute, Niigata University, Niigata, Japan
| | - Masayasu Okada
- Department of Neurosurgery, Brain Research Institute, Niigata University, Niigata, Japan
| | - Makoto Oishi
- Department of Neurosurgery, Brain Research Institute, Niigata University, Niigata, Japan
| | - Hiroshi Shimizu
- Department of Pathology, Brain Research Institute, Niigata University, Niigata, Japan
| | - Kouichirou Okamoto
- Department of Translational Research, Brain Research Institute, Niigata University, Niigata, Japan
| | - Akiyoshi Kakita
- Department of Pathology, Brain Research Institute, Niigata University, Niigata, Japan
| | - Yukihiko Fujii
- Department of Neurosurgery, Brain Research Institute, Niigata University, Niigata, Japan
| |
Collapse
|
8
|
Nishikawa T, Ohka F, Aoki K, Suzuki H, Motomura K, Yamaguchi J, Maeda S, Kibe Y, Shimizu H, Natsume A, Innan H, Saito R. Easy-to-use machine learning system for the prediction of IDH mutation and 1p/19q codeletion using MRI images of adult-type diffuse gliomas. Brain Tumor Pathol 2023; 40:85-92. [PMID: 36991274 DOI: 10.1007/s10014-023-00459-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/03/2023] [Accepted: 03/20/2023] [Indexed: 03/31/2023]
Abstract
Adult-type diffuse gliomas are divided into Astrocytoma, IDH-mutant, Oligodendroglioma, IDH-mutant and 1p/19q-codeleted and Glioblastoma, IDH-wildtype based on the IDH mutation, and 1p/19q codeletion status. To determine the treatment strategy for these tumors, pre-operative prediction of IDH mutation and 1p/19q codeletion status might be effective. Computer-aided diagnosis (CADx) systems using machine learning have been noted as innovative diagnostic methods. However, it is difficult to promote the clinical application of machine learning systems at each institute because the support of various specialists is essential. In this study, we established an easy-to-use computer-aided diagnosis system using Microsoft Azure Machine Learning Studio (MAMLS) to predict these statuses. We constructed an analysis model using 258 adult-type diffuse glioma cases from The Cancer Genome Atlas (TCGA) cohort. Using MRI T2-weighted images, the overall accuracy, sensitivity, and specificity for the prediction of IDH mutation and 1p/19q codeletion were 86.9%, 80.9%, and 92.0%, and 94.7%, 94.1%, and 95.1%, respectively. We also constructed an reliable analysis model for the prediction of IDH mutation and 1p/19q codeletion using an independent Nagoya cohort including 202 cases. These analysis models were established within 30 min. This easy-to-use CADx system might be useful for the clinical application of CADx in various institutes.
Collapse
Affiliation(s)
- Tomohide Nishikawa
- Department of Neurosurgery, Nagoya University Graduate School of Medicine, 65 Tsurumai-Cho, Showa-Ku, Nagoya, 466-8550, Japan
| | - Fumiharu Ohka
- Department of Neurosurgery, Nagoya University Graduate School of Medicine, 65 Tsurumai-Cho, Showa-Ku, Nagoya, 466-8550, Japan.
| | - Kosuke Aoki
- Department of Neurosurgery, Nagoya University Graduate School of Medicine, 65 Tsurumai-Cho, Showa-Ku, Nagoya, 466-8550, Japan
| | - Hiromichi Suzuki
- Division of Brain Tumor Translational Research, National Cancer Center Research Institute, Tokyo, Japan
| | - Kazuya Motomura
- Department of Neurosurgery, Nagoya University Graduate School of Medicine, 65 Tsurumai-Cho, Showa-Ku, Nagoya, 466-8550, Japan
| | - Junya Yamaguchi
- Department of Neurosurgery, Nagoya University Graduate School of Medicine, 65 Tsurumai-Cho, Showa-Ku, Nagoya, 466-8550, Japan
| | - Sachi Maeda
- Department of Neurosurgery, Nagoya University Graduate School of Medicine, 65 Tsurumai-Cho, Showa-Ku, Nagoya, 466-8550, Japan
| | - Yuji Kibe
- Department of Neurosurgery, Nagoya University Graduate School of Medicine, 65 Tsurumai-Cho, Showa-Ku, Nagoya, 466-8550, Japan
| | - Hiroki Shimizu
- Department of Neurosurgery, Nagoya University Graduate School of Medicine, 65 Tsurumai-Cho, Showa-Ku, Nagoya, 466-8550, Japan
| | - Atsushi Natsume
- Institutes of Innovation for Future Society, Nagoya University, Nagoya, Japan
| | - Hideki Innan
- Department of Evolutionary Studies of Biosystems, The Graduate University for Advanced Studies, Hayama, Japan
| | - Ryuta Saito
- Department of Neurosurgery, Nagoya University Graduate School of Medicine, 65 Tsurumai-Cho, Showa-Ku, Nagoya, 466-8550, Japan
| |
Collapse
|
9
|
Otsuji R, Fujioka Y, Hata N, Kuga D, Sangatsuda Y, Takigawa K, Funakoshi Y, Sako A, Yamamoto H, Nakamizo A, Mizoguchi M, Yoshimoto K. Liquid biopsy with multiplex ligation-dependent probe amplification targeting cell-free tumor DNA in cerebrospinal fluid from patients with adult diffuse glioma. Neurooncol Adv 2023; 5:vdac178. [PMID: 36875626 PMCID: PMC9977236 DOI: 10.1093/noajnl/vdac178] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/27/2022] Open
Abstract
Background Copy number alterations (CNAs) are common in diffuse gliomas and have been shown to have diagnostic significance. While liquid biopsy for diffuse glioma has been widely investigated, techniques for detecting CNAs are currently limited to methods such as next-generation sequencing. Multiplex ligation-dependent probe amplification (MLPA) is an established method for copy number analysis in pre-specified loci. In this study, we investigated whether CNAs could be detected by MLPA using patients' cerebrospinal fluid (CSF). Methods Twenty-five cases of adult diffuse glioma with CNAs were selected. Cell-free DNA (cfDNA) was extracted from the CSF, and DNA sizes and concentrations were recorded. Twelve samples, which had appropriate DNA sizes and concentrations, were subsequently used for analysis. Results MLPA could be successfully performed in all 12 cases, and the detected CNAs were concordant with those detected using tumor tissues. Cases with epidermal growth factor receptor (EGFR) amplification, combination of gain of chromosome 7 and loss of chromosome 10, platelet-derived growth factor receptor alpha amplification, cyclin-dependent kinase 4 amplification, and cyclin-dependent kinase inhibitor 2A (CDKN2A) homozygous deletion were clearly distinguished from those with normal copy numbers. Moreover, EGFR variant III was accurately detected based on CNA. Conclusions Thus, our results demonstrate that copy number analysis can be successfully performed by MLPA of cfDNA extracted from the CSF of patients with diffuse glioma.
Collapse
Affiliation(s)
- Ryosuke Otsuji
- Department of Neurosurgery, Graduate School of Medical Sciences, Kyushu University, 3-1-1 Maidashi, Higashi-ku, Fukuoka 812-8582, Japan
| | - Yutaka Fujioka
- Department of Neurosurgery, Graduate School of Medical Sciences, Kyushu University, 3-1-1 Maidashi, Higashi-ku, Fukuoka 812-8582, Japan
| | - Nobuhiro Hata
- Department of Neurosurgery, Graduate School of Medical Sciences, Kyushu University, 3-1-1 Maidashi, Higashi-ku, Fukuoka 812-8582, Japan
| | - Daisuke Kuga
- Department of Neurosurgery, Graduate School of Medical Sciences, Kyushu University, 3-1-1 Maidashi, Higashi-ku, Fukuoka 812-8582, Japan
| | - Yuhei Sangatsuda
- Department of Neurosurgery, Graduate School of Medical Sciences, Kyushu University, 3-1-1 Maidashi, Higashi-ku, Fukuoka 812-8582, Japan
| | - Kosuke Takigawa
- Department of Neurosurgery, Graduate School of Medical Sciences, Kyushu University, 3-1-1 Maidashi, Higashi-ku, Fukuoka 812-8582, Japan
| | - Yusuke Funakoshi
- Department of Neurosurgery, Graduate School of Medical Sciences, Kyushu University, 3-1-1 Maidashi, Higashi-ku, Fukuoka 812-8582, Japan
| | - Aki Sako
- Department of Neurosurgery, Graduate School of Medical Sciences, Kyushu University, 3-1-1 Maidashi, Higashi-ku, Fukuoka 812-8582, Japan
| | - Hidetaka Yamamoto
- Department of Pathology, Graduate School of Medical Sciences, Kyushu University, 3-1-1 Maidashi, Higashi-ku, Fukuoka 812-8582, Japan
| | - Akira Nakamizo
- Department of Neurosurgery, Graduate School of Medical Sciences, Kyushu University, 3-1-1 Maidashi, Higashi-ku, Fukuoka 812-8582, Japan
| | - Masahiro Mizoguchi
- Department of Neurosurgery, Graduate School of Medical Sciences, Kyushu University, 3-1-1 Maidashi, Higashi-ku, Fukuoka 812-8582, Japan
| | - Koji Yoshimoto
- Department of Neurosurgery, Graduate School of Medical Sciences, Kyushu University, 3-1-1 Maidashi, Higashi-ku, Fukuoka 812-8582, Japan
| |
Collapse
|
10
|
Revisiting the definition of glioma recurrence based on a phylogenetic investigation of primary and re-emerging tumor samples: a case report. Brain Tumor Pathol 2022; 39:218-224. [DOI: 10.1007/s10014-022-00438-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/29/2021] [Accepted: 05/16/2022] [Indexed: 11/27/2022]
|
11
|
Brandner S, McAleenan A, Jones HE, Kernohan A, Robinson T, Schmidt L, Dawson S, Kelly C, Leal ES, Faulkner CL, Palmer A, Wragg C, Jefferies S, Vale L, Higgins JPT, Kurian KM. Diagnostic accuracy of 1p/19q codeletion tests in oligodendroglioma: A comprehensive meta-analysis based on a Cochrane systematic review. Neuropathol Appl Neurobiol 2022; 48:e12790. [PMID: 34958131 PMCID: PMC9208578 DOI: 10.1111/nan.12790] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/11/2021] [Revised: 11/23/2021] [Accepted: 11/27/2021] [Indexed: 11/29/2022]
Abstract
Codeletion of chromosomal arms 1p and 19q, in conjunction with a mutation in the isocitrate dehydrogenase 1 or 2 gene, is the molecular diagnostic criterion for oligodendroglioma, IDH mutant and 1p/19q codeleted. 1p/19q codeletion is a diagnostic marker and allows prognostication and prediction of the best drug response within IDH-mutant tumours. We performed a Cochrane review and simple economic analysis to establish the most sensitive, specific and cost-effective techniques for determining 1p/19q codeletion status. Fluorescent in situ hybridisation (FISH) and polymerase chain reaction (PCR)-based loss of heterozygosity (LOH) test methods were considered as reference standard. Most techniques (FISH, chromogenic in situ hybridisation [CISH], PCR, real-time PCR, multiplex ligation-dependent probe amplification [MLPA], single nucleotide polymorphism [SNP] array, comparative genomic hybridisation [CGH], array CGH, next-generation sequencing [NGS], mass spectrometry and NanoString) showed good sensitivity (few false negatives) for detection of 1p/19q codeletions in glioma, irrespective of whether FISH or PCR-based LOH was used as the reference standard. Both NGS and SNP array had a high specificity (fewer false positives) for 1p/19q codeletion when considered against FISH as the reference standard. Our findings suggest that G banding is not a suitable test for 1p/19q analysis. Within these limits, considering cost per diagnosis and using FISH as a reference, MLPA was marginally more cost-effective than other tests, although these economic analyses were limited by the range of available parameters, time horizon and data from multiple healthcare organisations.
Collapse
Affiliation(s)
- Sebastian Brandner
- Division of Neuropathology, The National Hospital for Neurology and NeurosurgeryUniversity College London Hospitals NHS Foundation TrustLondonUK
- Department of Neurodegenerative Disease, Queen Square Instituite of NeurologyUniversity College LondonLondonUK
| | - Alexandra McAleenan
- Population Health Sciences, Bristol Medical SchoolUniversity of BristolBristolUK
| | - Hayley E. Jones
- Population Health Sciences, Bristol Medical SchoolUniversity of BristolBristolUK
| | - Ashleigh Kernohan
- Population Health Sciences InstituteNewcastle UniversityNewcastle upon TyneUK
| | - Tomos Robinson
- Population Health Sciences InstituteNewcastle UniversityNewcastle upon TyneUK
| | - Lena Schmidt
- Population Health Sciences, Bristol Medical SchoolUniversity of BristolBristolUK
| | - Sarah Dawson
- Population Health Sciences, Bristol Medical SchoolUniversity of BristolBristolUK
| | - Claire Kelly
- Population Health Sciences, Bristol Medical SchoolUniversity of BristolBristolUK
| | | | - Claire L. Faulkner
- Bristol Genetics Laboratory, Pathology SciencesSouthmead HospitalBristolUK
| | - Abigail Palmer
- Bristol Genetics Laboratory, Pathology SciencesSouthmead HospitalBristolUK
| | - Christopher Wragg
- Bristol Genetics Laboratory, Pathology SciencesSouthmead HospitalBristolUK
| | | | - Luke Vale
- Population Health Sciences InstituteNewcastle UniversityNewcastle upon TyneUK
| | - Julian P. T. Higgins
- Population Health Sciences, Bristol Medical SchoolUniversity of BristolBristolUK
| | - Kathreena M. Kurian
- Population Health Sciences, Bristol Medical SchoolUniversity of BristolBristolUK
- Bristol Medical School: Brain Tumour Research Centre, Public Health SciencesUniversity of BristolBristolUK
| |
Collapse
|
12
|
McAleenan A, Jones HE, Kernohan A, Robinson T, Schmidt L, Dawson S, Kelly C, Spencer Leal E, Faulkner CL, Palmer A, Wragg C, Jefferies S, Brandner S, Vale L, Higgins JP, Kurian KM. Diagnostic test accuracy and cost-effectiveness of tests for codeletion of chromosomal arms 1p and 19q in people with glioma. Cochrane Database Syst Rev 2022; 3:CD013387. [PMID: 35233774 PMCID: PMC8889390 DOI: 10.1002/14651858.cd013387.pub2] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
Abstract
BACKGROUND Complete deletion of both the short arm of chromosome 1 (1p) and the long arm of chromosome 19 (19q), known as 1p/19q codeletion, is a mutation that can occur in gliomas. It occurs in a type of glioma known as oligodendroglioma and its higher grade counterpart known as anaplastic oligodendroglioma. Detection of 1p/19q codeletion in gliomas is important because, together with another mutation in an enzyme known as isocitrate dehydrogenase, it is needed to make the diagnosis of an oligodendroglioma. Presence of 1p/19q codeletion also informs patient prognosis and prediction of the best drug treatment. The main two tests in use are fluorescent in situ hybridisation (FISH) and polymerase chain reaction (PCR)-based loss of heterozygosity (LOH) assays (also known as PCR-based short tandem repeat or microsatellite analysis). Many other tests are available. None of the tests is perfect, although PCR-based LOH is expected to have very high sensitivity. OBJECTIVES To estimate the sensitivity and specificity and cost-effectiveness of different deoxyribonucleic acid (DNA)-based techniques for determining 1p/19q codeletion status in glioma. SEARCH METHODS We searched MEDLINE, Embase and BIOSIS up to July 2019. There were no restrictions based on language or date of publication. We sought economic evaluation studies from the results of this search and using the National Health Service Economic Evaluation Database. SELECTION CRITERIA We included cross-sectional studies in adults with glioma or any subtype of glioma, presenting raw data or cross-tabulations of two or more DNA-based tests for 1p/19q codeletion. We also sought economic evaluations of these tests. DATA COLLECTION AND ANALYSIS We followed procedures outlined in the Cochrane Handbook for Diagnostic Test Accuracy Reviews. Two review authors independently screened titles/abstracts/full texts, performed data extraction, and undertook applicability and risk of bias assessments using QUADAS-2. Meta-analyses used the hierarchical summary ROC model to estimate and compare test accuracy. We used FISH and PCR-based LOH as alternate reference standards to examine how tests compared with those in common use, and conducted a latent class analysis comparing FISH and PCR-based LOH. We constructed an economic model to evaluate cost-effectiveness. MAIN RESULTS We included 53 studies examining: PCR-based LOH, FISH, single nucleotide polymorphism (SNP) array, next-generation sequencing (NGS), comparative genomic hybridisation (CGH), array comparative genomic hybridisation (aCGH), multiplex-ligation-dependent probe amplification (MLPA), real-time PCR, chromogenic in situ hybridisation (CISH), mass spectrometry (MS), restriction fragment length polymorphism (RFLP) analysis, G-banding, methylation array and NanoString. Risk of bias was low for only one study; most gave us concerns about how patients were selected or about missing data. We had applicability concerns about many of the studies because only patients with specific subtypes of glioma were included. 1520 participants contributed to analyses using FISH as the reference, 1304 participants to analyses involving PCR-based LOH as the reference and 262 participants to analyses of comparisons between methods from studies not including FISH or PCR-based LOH. Most evidence was available for comparison of FISH with PCR-based LOH (15 studies, 915 participants): PCR-based LOH detected 94% of FISH-determined codeletions (95% credible interval (CrI) 83% to 98%) and FISH detected 91% of codeletions determined by PCR-based LOH (CrI 78% to 97%). Of tumours determined not to have a deletion by FISH, 94% (CrI 87% to 98%) had a deletion detected by PCR-based LOH, and of those determined not to have a deletion by PCR-based LOH, 96% (CrI 90% to 99%) had a deletion detected by FISH. The latent class analysis suggested that PCR-based LOH may be slightly more accurate than FISH. Most other techniques appeared to have high sensitivity (i.e. produced few false-negative results) for detection of 1p/19q codeletion when either FISH or PCR-based LOH was considered as the reference standard, although there was limited evidence. There was some indication of differences in specificity (false-positive rate) with some techniques. Both NGS and SNP array had high specificity when considered against FISH as the reference standard (NGS: 6 studies, 243 participants; SNP: 6 studies, 111 participants), although we rated certainty in the evidence as low or very low. NGS and SNP array also had high specificity when PCR-based LOH was considered the reference standard, although with much more uncertainty as these results were based on fewer studies (just one study with 49 participants for NGS and two studies with 33 participants for SNP array). G-banding had low sensitivity and specificity when PCR-based LOH was the reference standard. Although MS had very high sensitivity and specificity when both FISH and PCR-based LOH were considered the reference standard, these results were based on only one study with a small number of participants. Real-time PCR also showed high specificity with FISH as a reference standard, although there were only two studies including 40 participants. We found no relevant economic evaluations. Our economic model using FISH as the reference standard suggested that the resource-optimising test depends on which measure of diagnostic accuracy is most important. With FISH as the reference standard, MLPA is likely to be cost-effective if society was willing to pay GBP 1000 or less for a true positive detected. However, as the value placed on a true positive increased, CISH was most cost-effective. Findings differed when the outcome measure changed to either true negative detected or correct diagnosis. When PCR-based LOH was used as the reference standard, MLPA was likely to be cost-effective for all measures of diagnostic accuracy at lower threshold values for willingness to pay. However, as the threshold values increased, none of the tests were clearly more likely to be considered cost-effective. AUTHORS' CONCLUSIONS In our review, most techniques (except G-banding) appeared to have good sensitivity (few false negatives) for detection of 1p/19q codeletions in glioma against both FISH and PCR-based LOH as a reference standard. However, we judged the certainty of the evidence low or very low for all the tests. There are possible differences in specificity, with both NGS and SNP array having high specificity (fewer false positives) for 1p/19q codeletion when considered against FISH as the reference standard. The economic analysis should be interpreted with caution due to the small number of studies.
Collapse
Affiliation(s)
- Alexandra McAleenan
- Population Health Sciences, Bristol Medical School, University of Bristol, Bristol, UK
| | - Hayley E Jones
- Population Health Sciences, Bristol Medical School, University of Bristol, Bristol, UK
| | - Ashleigh Kernohan
- Population Health Sciences Institute, Newcastle University, Newcastle upon Tyne, UK
| | - Tomos Robinson
- Institute of Health & Society, Newcastle University, Newcastle upon Tyne , UK
| | - Lena Schmidt
- Population Health Sciences, Bristol Medical School, University of Bristol, Bristol, UK
| | - Sarah Dawson
- Population Health Sciences, Bristol Medical School, University of Bristol, Bristol, UK
| | - Claire Kelly
- Population Health Sciences, Bristol Medical School, University of Bristol, Bristol, UK
| | - Emmelyn Spencer Leal
- Population Health Sciences, Bristol Medical School, University of Bristol, Bristol, UK
| | - Claire L Faulkner
- Bristol Genetics Laboratory, Pathology Sciences, Southmead Hospital, Bristol, UK
| | - Abigail Palmer
- Bristol Genetics Laboratory, Pathology Sciences, Southmead Hospital, Bristol, UK
| | - Christopher Wragg
- Bristol Genetics Laboratory, Pathology Sciences, Southmead Hospital, Bristol, UK
| | - Sarah Jefferies
- Department of Oncology, Addenbrooke's Hospital, Cambridge, UK
| | - Sebastian Brandner
- Department of Neurodegenerative Disease, UCL Queen Square Institute of Neurology, London, UK
- Division of Neuropathology, The National Hospital for Neurology and Neurosurgery, University College London Hospitals NHS Foundation Trust, London, UK
| | - Luke Vale
- Institute of Health & Society, Newcastle University, Newcastle upon Tyne, UK
| | - Julian Pt Higgins
- Population Health Sciences, Bristol Medical School, University of Bristol, Bristol, UK
| | - Kathreena M Kurian
- Bristol Medical School: Brain Tumour Research Centre, Public Health Sciences, University of Bristol, Bristol, UK
| |
Collapse
|
13
|
Higa N, Akahane T, Yokoyama S, Yonezawa H, Uchida H, Takajo T, Otsuji R, Hamada T, Matsuo K, Kirishima M, Hata N, Hanaya R, Tanimoto A, Yoshimoto K. Prognostic impact of PDGFRA gain/amplification and MGMT promoter methylation status in patients with IDH wild-type glioblastoma. Neurooncol Adv 2022; 4:vdac097. [PMID: 35911637 PMCID: PMC9332894 DOI: 10.1093/noajnl/vdac097] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Background Platelet-derived growth factor receptor alpha (PDGFRA) is the second most frequently mutated tyrosine kinase receptor in glioblastoma (GBM). However, the prognostic impact of PDGFRA amplification on GBM patients remains unclear. Herein, we evaluated this impact by retrospectively analyzing outcomes of patients with IDH wild-type GBM. Methods Using a custom-made oncopanel, we evaluated PDGFRA gain/amplification in 107 GBM samples harboring wild-type IDH, along with MGMT promoter (MGMTp) methylation status. Results We detected PDGFRA gain/amplification in 31 samples (29.0%). PDGFRA gain/amplification predicted poor prognosis (P = .003). Compared to unamplified PDGFRA, PDGFRA gain/amplification in GBM was associated with higher patient age (P = .031), higher Ki-67 score (P = .019), and lower extent of surgical resection (P = .033). Unmethylated MGMTp also predicted poor prognosis (P = .005). As PDGFRA gain/amplification and unmethylated MGMTp were independent factors for poor prognosis in multivariate analyses, we grouped GBM cases based on PDGFRA and MGMTp status: poor (PDGFRA gain/amplification and unmethylated MGMTp), intermediate (PDGFRA gain/amplification or unmethylated MGMTp), and good (PDGFRA intact and methylated MGMTp) prognosis. The Kaplan-Meier survival analysis indicated that these groups significantly correlated with the OS of GBM patients (P < .001). Conclusions Here we report that PDGFRA gain/amplification is a predictor of poor prognosis in IDH wild-type GBM. Combining PDGFRA gain/amplification with MGMTp methylation status improves individual prognosis prediction in patients with IDH wild-type GBM.
Collapse
Affiliation(s)
- Nayuta Higa
- Department of Neurosurgery, Graduate School of Medical and Dental Sciences, Kagoshima University , Kagoshima-City, Kagoshima , Japan
| | - Toshiaki Akahane
- Department of Pathology, Graduate School of Medical and Dental Sciences, Kagoshima University , Kagoshima-City, Kagoshima , Japan
- Center for Human Genome and Gene Analysis, Kagoshima University Hospital , Kagoshima-City, Kagoshima , Japan
| | - Seiya Yokoyama
- Department of Pathology, Graduate School of Medical and Dental Sciences, Kagoshima University , Kagoshima-City, Kagoshima , Japan
| | - Hajime Yonezawa
- Department of Neurosurgery, Graduate School of Medical and Dental Sciences, Kagoshima University , Kagoshima-City, Kagoshima , Japan
| | - Hiroyuki Uchida
- Department of Neurosurgery, Graduate School of Medical and Dental Sciences, Kagoshima University , Kagoshima-City, Kagoshima , Japan
| | - Tomoko Takajo
- Department of Neurosurgery, Graduate School of Medical and Dental Sciences, Kagoshima University , Kagoshima-City, Kagoshima , Japan
| | - Ryosuke Otsuji
- Department of Neurosurgery, Graduate School of Medical Sciences, Kyushu University , Fukuoka , Japan
| | - Taiji Hamada
- Department of Pathology, Graduate School of Medical and Dental Sciences, Kagoshima University , Kagoshima-City, Kagoshima , Japan
| | - Kei Matsuo
- Department of Pathology, Graduate School of Medical and Dental Sciences, Kagoshima University , Kagoshima-City, Kagoshima , Japan
| | - Mari Kirishima
- Department of Pathology, Graduate School of Medical and Dental Sciences, Kagoshima University , Kagoshima-City, Kagoshima , Japan
| | - Nobuhiro Hata
- Department of Neurosurgery, Graduate School of Medical Sciences, Kyushu University , Fukuoka , Japan
| | - Ryosuke Hanaya
- Department of Neurosurgery, Graduate School of Medical and Dental Sciences, Kagoshima University , Kagoshima-City, Kagoshima , Japan
| | - Akihide Tanimoto
- Department of Pathology, Graduate School of Medical and Dental Sciences, Kagoshima University , Kagoshima-City, Kagoshima , Japan
- Center for Human Genome and Gene Analysis, Kagoshima University Hospital , Kagoshima-City, Kagoshima , Japan
| | - Koji Yoshimoto
- Department of Neurosurgery, Graduate School of Medical and Dental Sciences, Kagoshima University , Kagoshima-City, Kagoshima , Japan
- Department of Neurosurgery, Graduate School of Medical Sciences, Kyushu University , Fukuoka , Japan
| |
Collapse
|
14
|
Makino Y, Arakawa Y, Yoshioka E, Shofuda T, Minamiguchi S, Kawauchi T, Tanji M, Kanematsu D, Nonaka M, Okita Y, Kodama Y, Mano M, Hirose T, Mineharu Y, Miyamoto S, Kanemura Y. Infrequent RAS mutation is not associated with specific histological phenotype in gliomas. BMC Cancer 2021; 21:1025. [PMID: 34525976 PMCID: PMC8442437 DOI: 10.1186/s12885-021-08733-4] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/05/2021] [Accepted: 08/28/2021] [Indexed: 02/08/2023] Open
Abstract
BACKGROUND Mutations in driver genes such as IDH and BRAF have been identified in gliomas. Meanwhile, dysregulations in the p53, RB1, and MAPK and/or PI3K pathways are involved in the molecular pathogenesis of glioblastoma. RAS family genes activate MAPK through activation of RAF and PI3K to promote cell proliferation. RAS mutations are a well-known driver of mutation in many types of cancers, but knowledge of their significance for glioma is insufficient. The purpose of this study was to reveal the frequency and the clinical phenotype of RAS mutant in gliomas. METHODS This study analysed RAS mutations and their clinical significance in 242 gliomas that were stored as unfixed or cryopreserved specimens removed at Kyoto University and Osaka National Hospital between May 2006 and October 2017. The hot spots mutation of IDH1/2, H3F3A, HIST1H3B, and TERT promoter and exon 2 and exon 3 of KRAS, HRAS, and NRAS were analysed with Sanger sequencing method, and 1p/19q codeletion was analysed with multiplex ligation-dependent probe amplification. DNA methylation array was performed in some RAS mutant tumours to improve accuracy of diagnosis. RESULTS RAS mutations were identified in four gliomas with three KRAS mutations and one NRAS mutation in one anaplastic oligodendroglioma, two anaplastic astrocytomas (IDH wild-type in each), and one ganglioglioma. RAS-mutant gliomas were identified with various types of glioma histology. CONCLUSION RAS mutation appears infrequent, and it is not associated with any specific histological phenotype of glioma.
Collapse
Affiliation(s)
- Yasuhide Makino
- Department of Neurosurgery, Kyoto University Graduate School of Medicine, Kyoto, Japan.,Department of Biomedical Research and Innovation, Institute for Clinical Research, National Hospital Organization Osaka National Hospital, Osaka, Japan
| | - Yoshiki Arakawa
- Department of Neurosurgery, Kyoto University Graduate School of Medicine, Kyoto, Japan.
| | - Ema Yoshioka
- Department of Biomedical Research and Innovation, Institute for Clinical Research, National Hospital Organization Osaka National Hospital, Osaka, Japan
| | - Tomoko Shofuda
- Department of Biomedical Research and Innovation, Institute for Clinical Research, National Hospital Organization Osaka National Hospital, Osaka, Japan
| | - Sachiko Minamiguchi
- Department of Diagnostic Pathology, Kyoto University Graduate School of Medicine, Kyoto, Japan
| | - Takeshi Kawauchi
- Department of Neurosurgery, Kyoto University Graduate School of Medicine, Kyoto, Japan.,Department of Biomedical Research and Innovation, Institute for Clinical Research, National Hospital Organization Osaka National Hospital, Osaka, Japan
| | - Masahiro Tanji
- Department of Neurosurgery, Kyoto University Graduate School of Medicine, Kyoto, Japan
| | - Daisuke Kanematsu
- Department of Biomedical Research and Innovation, Institute for Clinical Research, National Hospital Organization Osaka National Hospital, Osaka, Japan
| | - Masahiro Nonaka
- Department of Neurosurgery, National Hospital Organization Osaka National Hospital, Osaka, Japan.,Department of Neurosurgery, Kansai Medical University, Osaka, Japan
| | - Yoshiko Okita
- Department of Neurosurgery, National Hospital Organization Osaka National Hospital, Osaka, Japan.,Department of Neurosurgery, Osaka International Cancer Institute, Osaka, Japan
| | - Yoshinori Kodama
- Department of Central Laboratory and Surgical Pathology, National Hospital Organization Osaka National Hospital, Osaka, Japan.,Division of Pathology Network, Kobe University Graduate School of Medicine, Kobe, Japan
| | - Masayuki Mano
- Department of Central Laboratory and Surgical Pathology, National Hospital Organization Osaka National Hospital, Osaka, Japan
| | - Takanori Hirose
- Department of Diagnostic Pathology, Hyogo Cancer Center, Hyogo, Japan
| | - Yohei Mineharu
- Department of Neurosurgery, Kyoto University Graduate School of Medicine, Kyoto, Japan
| | - Susumu Miyamoto
- Department of Neurosurgery, Kyoto University Graduate School of Medicine, Kyoto, Japan
| | - Yonehiro Kanemura
- Department of Biomedical Research and Innovation, Institute for Clinical Research, National Hospital Organization Osaka National Hospital, Osaka, Japan. .,Department of Neurosurgery, National Hospital Organization Osaka National Hospital, Osaka, Japan.
| |
Collapse
|
15
|
Fujimoto K, Arita H, Satomi K, Yamasaki K, Matsushita Y, Nakamura T, Miyakita Y, Umehara T, Kobayashi K, Tamura K, Tanaka S, Higuchi F, Okita Y, Kanemura Y, Fukai J, Sakamoto D, Uda T, Machida R, Kuchiba A, Maehara T, Nagane M, Nishikawa R, Suzuki H, Shibuya M, Komori T, Narita Y, Ichimura K. TERT promoter mutation status is necessary and sufficient to diagnose IDH-wildtype diffuse astrocytic glioma with molecular features of glioblastoma. Acta Neuropathol 2021; 142:323-338. [PMID: 34148105 DOI: 10.1007/s00401-021-02337-9] [Citation(s) in RCA: 64] [Impact Index Per Article: 16.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/02/2021] [Revised: 06/10/2021] [Accepted: 06/10/2021] [Indexed: 12/15/2022]
Abstract
The Consortium to Inform Molecular and Practical Approaches to CNS Tumor Taxonomy (cIMPACT-NOW) update 3 recommends that histologic grade II and III IDH-wildtype diffuse astrocytic gliomas that harbor EGFR amplification, the combination of whole chromosome 7 gain and whole chromosome 10 loss (7 + /10 -), or TERT promoter (pTERT) mutations should be considered as glioblastomas (GBM), World Health Organization grade IV. In this retrospective study, we examined the utility of molecular classification based on pTERT status and copy-number alterations (CNAs) in IDH-wildtype lower grade gliomas (LGGs, grade II, and III). The impact on survival was evaluated for the pTERT mutation and CNAs, including EGFR gain/amplification, PTEN loss, CDKN2A homozygous deletion, and PDGFRA gain/amplification. We analyzed 46 patients with IDH-wildtype/pTERT-mutant (mut) LGGs and 85 with IDH-wildtype/pTERT-wildtype LGGs. EGFR amplification and a combination of EGFR gain and PTEN loss (EGFR + /PTEN -) were significantly more frequent in pTERT-mut patients (p < 0.0001). Cox regression analysis showed that the pTERT mutation was a significant predictor of poor prognosis (hazard ratio [HR] 2.79, 95% confidence interval [CI] 1.55-4.89, p = 0.0008), but neither EGFR amplification nor EGFR + /PTEN - was an independent prognostic factor in IDH-wildtype LGGs. PDGFRA gain/amplification was a significant poor prognostic factor in IDH-wildtype/pTERT-wildtype LGGs (HR 2.44, 95% CI 1.09-5.27, p = 0.03, Cox regression analysis). The IDH-wildtype LGGs with either pTERT-mut or PDGFRA amplification were mostly clustered with GBM by DNA methylation analysis. Thus, our study suggests that analysis of pTERT mutation status is necessary and sufficient to diagnose IDH-wildtype diffuse astrocytic gliomas with molecular features of glioblastoma. The PDGFRA status may help further delineate IDH-wildtype/pTERT-wildtype LGGs. Methylation profiling showed that IDH-wildtype LGGs without molecular features of GBM were a heterogeneous group of tumors. Some of them did not fall into existing categories and had significantly better prognoses than those clustered with GBM.
Collapse
Affiliation(s)
- Kenji Fujimoto
- Division of Brain Tumor Translational Research, National Cancer Center Research Institute, 5-1-1 Tsukiji, Chuo-ku, Tokyo, 104-0045, Japan
- Department of Neurosurgery, Graduate School of Life Sciences, Kumamoto University, Kumamoto, Japan
| | - Hideyuki Arita
- Division of Brain Tumor Translational Research, National Cancer Center Research Institute, 5-1-1 Tsukiji, Chuo-ku, Tokyo, 104-0045, Japan
- Department of Neurosurgery, Osaka University Graduate School of Medicine, Osaka, Japan
| | - Kaishi Satomi
- Division of Brain Tumor Translational Research, National Cancer Center Research Institute, 5-1-1 Tsukiji, Chuo-ku, Tokyo, 104-0045, Japan
- Department of Diagnostic Pathology, National Cancer Center Hospital, Tokyo, Japan
| | - Kai Yamasaki
- Division of Brain Tumor Translational Research, National Cancer Center Research Institute, 5-1-1 Tsukiji, Chuo-ku, Tokyo, 104-0045, Japan
- Department of Pediatric Hematology and Oncology, Osaka City General Hospital, Osaka, Japan
| | - Yuko Matsushita
- Division of Brain Tumor Translational Research, National Cancer Center Research Institute, 5-1-1 Tsukiji, Chuo-ku, Tokyo, 104-0045, Japan
- Department of Neurosurgery and Neuro-Oncology, National Cancer Center Hospital, Tokyo, Japan
| | - Taishi Nakamura
- Division of Brain Tumor Translational Research, National Cancer Center Research Institute, 5-1-1 Tsukiji, Chuo-ku, Tokyo, 104-0045, Japan
- Department of Neurosurgery, Graduate School of Medicine, Yokohama City University, Yokohama, Japan
| | - Yasuji Miyakita
- Department of Neurosurgery and Neuro-Oncology, National Cancer Center Hospital, Tokyo, Japan
| | - Toru Umehara
- Department of Neurosurgery, Osaka University Graduate School of Medicine, Osaka, Japan
| | - Keiichi Kobayashi
- Department of Neurosurgery, Faculty of Medicine, Kyorin University, Tokyo, Japan
| | - Kaoru Tamura
- Department of Neurosurgery, Tokyo Medical and Dental University, Tokyo, Japan
| | - Shota Tanaka
- Department of Neurosurgery, The University of Tokyo, Tokyo, Japan
| | - Fumi Higuchi
- Department of Neurosurgery, Dokkyo Medical University, Tochigi, Japan
| | - Yoshiko Okita
- Department of Neurosurgery, Osaka International Cancer Institute, Osaka, Japan
| | - Yonehiro Kanemura
- Department of Biomedical Research and Innovation, Institute for Clinical Research, National Hospital Organization Osaka National Hospital, Osaka, Japan
| | - Junya Fukai
- Department of Neurological Surgery, Wakayama Medical University, Wakayama, Japan
| | - Daisuke Sakamoto
- Department of Neurosurgery, Hyogo College of Medicine, Hyogo, Japan
| | - Takehiro Uda
- Department of Neurosurgery, Osaka City University Graduate School of Medicine, Osaka, Japan
| | - Ryunosuke Machida
- Biostatistics Division, Center for Research Administration and Support, National Cancer Center, Tokyo, Japan
| | - Aya Kuchiba
- Department of Neuro-Oncology/Neurosurgery, Saitama Medical University International Medical Center, Saitama, Japan
| | - Taketoshi Maehara
- Department of Neurosurgery, Tokyo Medical and Dental University, Tokyo, Japan
| | - Motoo Nagane
- Department of Neurosurgery, Faculty of Medicine, Kyorin University, Tokyo, Japan
| | - Ryo Nishikawa
- Department of Neuro-Oncology/Neurosurgery, Saitama Medical University International Medical Center, Saitama, Japan
| | - Hiroyoshi Suzuki
- Department of Pathology and Laboratory Medicine, National Hospital Organization, Sendai Medical Center, Sendai, Japan
| | - Makoto Shibuya
- Central Clinical Laboratory, Hachioji Medical Center, Tokyo Medical University, Tokyo, Japan
| | - Takashi Komori
- Department of Laboratory Medicine and Pathology (Neuropathology), Tokyo Metropolitan Neurological Hospital, Tokyo, Japan
| | - Yoshitaka Narita
- Department of Neurosurgery and Neuro-Oncology, National Cancer Center Hospital, Tokyo, Japan
| | - Koichi Ichimura
- Division of Brain Tumor Translational Research, National Cancer Center Research Institute, 5-1-1 Tsukiji, Chuo-ku, Tokyo, 104-0045, Japan.
- Department of Brain Disease Translational Research, Juntendo University Faculty of Medicine, 2-1-1 Hongo, Bunkyo-ku, Tokyo, 113-8421, Japan.
| |
Collapse
|
16
|
Makino Y, Arakawa Y, Yoshioka E, Shofuda T, Kawauchi T, Terada Y, Tanji M, Kanematsu D, Mineharu Y, Miyamoto S, Kanemura Y. Prognostic stratification for IDH-wild-type lower-grade astrocytoma by Sanger sequencing and copy-number alteration analysis with MLPA. Sci Rep 2021; 11:14408. [PMID: 34257410 PMCID: PMC8277860 DOI: 10.1038/s41598-021-93937-8] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/01/2021] [Accepted: 06/30/2021] [Indexed: 12/21/2022] Open
Abstract
The characteristics of IDH-wild-type lower-grade astrocytoma remain unclear. According to cIMPACT-NOW update 3, IDH-wild-type astrocytomas with any of the following factors show poor prognosis: combination of chromosome 7 gain and 10 loss (+ 7/- 10), and/or EGFR amplification, and/or TERT promoter (TERTp) mutation. Multiplex ligation-dependent probe amplification (MLPA) can detect copy number alterations at reasonable cost. The purpose of this study was to identify a precise, cost-effective method for stratifying the prognosis of IDH-wild-type astrocytoma. Sanger sequencing, MLPA, and quantitative methylation-specific PCR were performed for 42 IDH-wild-type lower-grade astrocytomas surgically treated at Kyoto University Hospital, and overall survival was analysed for 40 patients who underwent first surgery. Of the 42 IDH-wild-type astrocytomas, 21 were classified as grade 4 using cIMPACT-NOW update 3 criteria and all had either TERTp mutation or EGFR amplification. Kaplan-Meier analysis confirmed the prognostic significance of cIMPACT-NOW criteria, and World Health Organization grade was also prognostic. Cox regression hazard model identified independent significant prognostic indicators of PTEN loss (risk ratio, 9.75; p < 0.001) and PDGFRA amplification (risk ratio, 13.9; p = 0.002). The classification recommended by cIMPACT-NOW update 3 could be completed using Sanger sequencing and MLPA. Survival analysis revealed PTEN and PDGFRA were significant prognostic factors for IDH-wild-type lower-grade astrocytoma.
Collapse
Affiliation(s)
- Yasuhide Makino
- Department of Neurosurgery, Kyoto University Graduate School of Medicine, Kyoto, 606-8507, Japan
- Department of Biomedical Research and Innovation, Institute for Clinical Research, National Hospital Organization Osaka National Hospital, Osaka, 540-0006, Japan
| | - Yoshiki Arakawa
- Department of Neurosurgery, Kyoto University Graduate School of Medicine, Kyoto, 606-8507, Japan.
| | - Ema Yoshioka
- Department of Biomedical Research and Innovation, Institute for Clinical Research, National Hospital Organization Osaka National Hospital, Osaka, 540-0006, Japan
| | - Tomoko Shofuda
- Department of Biomedical Research and Innovation, Institute for Clinical Research, National Hospital Organization Osaka National Hospital, Osaka, 540-0006, Japan
| | - Takeshi Kawauchi
- Department of Neurosurgery, Kyoto University Graduate School of Medicine, Kyoto, 606-8507, Japan
- Department of Biomedical Research and Innovation, Institute for Clinical Research, National Hospital Organization Osaka National Hospital, Osaka, 540-0006, Japan
| | - Yukinori Terada
- Department of Neurosurgery, Kyoto University Graduate School of Medicine, Kyoto, 606-8507, Japan
| | - Masahiro Tanji
- Department of Neurosurgery, Kyoto University Graduate School of Medicine, Kyoto, 606-8507, Japan
| | - Daisuke Kanematsu
- Department of Biomedical Research and Innovation, Institute for Clinical Research, National Hospital Organization Osaka National Hospital, Osaka, 540-0006, Japan
| | - Yohei Mineharu
- Department of Neurosurgery, Kyoto University Graduate School of Medicine, Kyoto, 606-8507, Japan
| | - Susumu Miyamoto
- Department of Neurosurgery, Kyoto University Graduate School of Medicine, Kyoto, 606-8507, Japan
| | - Yonehiro Kanemura
- Department of Biomedical Research and Innovation, Institute for Clinical Research, National Hospital Organization Osaka National Hospital, Osaka, 540-0006, Japan.
- Department of Neurosurgery, National Hospital Organization Osaka National Hospital, Osaka, Japan.
| |
Collapse
|
17
|
Habiba U, Sugino H, Yordanova R, Ise K, Tanei ZI, Ishida Y, Tanikawa S, Terasaka S, Sato KI, Kamoshima Y, Katoh M, Nagane M, Shibahara J, Tsuda M, Tanaka S. Loss of H3K27 trimethylation is frequent in IDH1-R132H but not in non-canonical IDH1/2 mutated and 1p/19q codeleted oligodendroglioma: a Japanese cohort study. Acta Neuropathol Commun 2021; 9:95. [PMID: 34020723 PMCID: PMC8138926 DOI: 10.1186/s40478-021-01194-7] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/31/2021] [Accepted: 05/06/2021] [Indexed: 11/28/2022] Open
Abstract
Oligodendrogliomas are defined by mutation in isocitrate dehydrogenase (NADP(+)) (IDH)1/2 genes and chromosome 1p/19q codeletion. World Health Organisation diagnosis endorses testing for 1p/19q codeletion to distinguish IDH mutant (Mut) oligodendrogliomas from astrocytomas because these gliomas require different treatments and they have different outcomes. Several methods have been used to identify 1p/19q status; however, these techniques are not routinely available and require substantial infrastructure investment. Two recent studies reported reduced immunostaining for trimethylation at lysine 27 on histone H3 (H3K27me3) in IDH Mut 1p/19q codeleted oligodendroglioma. However, the specificity of H3K27me3 immunostaining in this setting is controversial. Therefore, we developed an easy-to-implement immunohistochemical surrogate for IDH Mut glioma subclassification and evaluated a validated adult glioma cohort. We screened 145 adult glioma cases, consisting of 45 IDH Mut and 1p/19q codeleted oligodendrogliomas, 30 IDH Mut astrocytomas, 16 IDH wild-type (Wt) astrocytomas, and 54 IDH Wt glioblastomas (GBMs). We compared immunostaining with DNA sequencing and fluorescent in situ hybridization analysis and assessed differences in H3K27me3 staining between oligodendroglial and astrocytic lineages and between IDH1-R132H and non-canonical (non-R132H) IDH1/2 Mut oligodendroglioma. A loss of H3K27me3 was observed in 36/40 (90%) of IDH1-R132H Mut oligodendroglioma. In contrast, loss of H3K27me3 was never seen in IDH1-R132L or IDH2-mutated 1p/19q codeleted oligodendrogliomas. IDH Mut astrocytoma, IDH Wt astrocytoma and GBM showed preserved nuclear staining in 87%, 94%, and 91% of cases, respectively. A high recursive partitioning model predicted probability score (0.9835) indicated that the loss of H3K27me3 is frequent to IDH1-R132H Mut oligodendroglioma. Our results demonstrate H3K27me3 immunohistochemical evaluation to be a cost-effective and reliable method for defining 1p/19q codeletion along with IDH1-R132H and ATRX immunostaining, even in the absence of 1p/19q testing.
Collapse
|
18
|
Furtak J, Rakowska J, Szylberg T, Harat M, Małkowski B, Harat M. Glioma Biopsy Based on Hybrid Dual Time-Point FET-PET/MRI-A Proof of Concept Study. Front Neurol 2021; 12:634609. [PMID: 34046002 PMCID: PMC8144440 DOI: 10.3389/fneur.2021.634609] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/28/2020] [Accepted: 03/15/2021] [Indexed: 11/13/2022] Open
Abstract
Neuroimaging based on O-[2-(18F)fluoroethyl]-l-tyrosine (FET)-PET provides additional information on tumor grade and extent compared with MRI. Dynamic PET for biopsy target selection further improves results but is often clinically impractical. Static FET-PET performed at two time-points may be a good compromise, but data on this approach are limited. The aim of this study was to compare the histology of lesions obtained from two challenging glioma patients with targets selected based on hybrid dual time-point FET-PET/MRI. Five neuronavigated tumor biopsies were performed in two difficult cases of suspected glioma. Lesions with (T1-CE) and without contrast enhancement (T1 and T2-FLAIR) on MRI were selected. Dual time-point FET-PET imaging was performed 5–15 min (PET10) and 45–60 min (PET60) after radionuclide injection. The most informative FET-PET/MRI images were coregistered with MRI in time of biopsy planning. Five biopsy targets (three from high uptake and two from moderate uptake FET areas) thought to represent the most malignant sites and tumor extent were selected. Histopathological findings were compared with FET-PET and MRI images. Increased FET uptake in the area of non-CE locations on MRI correlated well with high-grade gliomas localized as far as 3 cm from T1-CE foci. Selecting a target in the motor cortex based on FET kinetics defined by dual time-point PET resulted in a grade IV diagnosis after previous negative biopsies based on MRI. An additional grade III diagnosis was obtained from an area of glioma infiltration with moderate FET uptake (between 1 and 1.25 SUV). These findings seem to show that dual time-point FET-PET-based biopsies can provide additional and clinically useful information for glioma diagnosis. Selection of targets based on dual time-point images may be useful for determining the most malignant tumor areas and may therefore be useful for resection and radiotherapy planning.
Collapse
Affiliation(s)
- Jacek Furtak
- Department of Neurosurgery, 10th Military Research Hospital, Bydgoszcz, Poland
| | - Józefina Rakowska
- Department of Neurosurgery, 10th Military Research Hospital, Bydgoszcz, Poland
| | - Tadeusz Szylberg
- Department of Pathomorphology, 10th Military Research Hospital, Bydgoszcz, Poland
| | - Marek Harat
- Department of Neurosurgery, 10th Military Research Hospital, Bydgoszcz, Poland.,Department of Neurosurgery and Neurology, Faculty of Health Sciences, Ludwik Rydygier Collegium Medicum, Nicolaus Copernicus University, Bydgoszcz, Poland
| | - Bogdan Małkowski
- Department of Positron Emission Tomography and Molecular Imaging, Ludwik Rydygier Collegium Medicum, Nicolaus Copernicus University, Bydgoszcz, Poland.,Department of Nuclear Medicine, Franciszek Lukaszczyk Oncology Center, Bydgoszcz, Poland
| | - Maciej Harat
- Department of Oncology and Brachytherapy, Faculty of Medicine, Ludwik Rydygier Collegium Medicum, Nicolaus Copernicus University, Bydgoszcz, Poland.,Department of Neurooncology and Radiosurgery, Franciszek Lukaszczyk Oncology Center, Bydgoszcz, Poland
| |
Collapse
|
19
|
Cusenza VY, Bisagni A, Rinaldini M, Cattani C, Frazzi R. Copy Number Variation and Rearrangements Assessment in Cancer: Comparison of Droplet Digital PCR with the Current Approaches. Int J Mol Sci 2021; 22:ijms22094732. [PMID: 33946969 PMCID: PMC8124143 DOI: 10.3390/ijms22094732] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/05/2021] [Revised: 04/27/2021] [Accepted: 04/28/2021] [Indexed: 12/13/2022] Open
Abstract
The cytogenetic and molecular assessment of deletions, amplifications and rearrangements are key aspects in the diagnosis and therapy of cancer. Not only the initial evaluation and classification of the disease, but also the follow-up of the tumor rely on these laboratory approaches. The therapeutic choice can be guided by the results of the laboratory testing. Genetic deletions and/or amplifications directly affect the susceptibility or the resistance to specific therapies. In an era of personalized medicine, the correct and reliable molecular characterization of the disease, also during the therapeutic path, acquires a pivotal role. Molecular assays like multiplex ligation-dependent probe amplification and droplet digital PCR represent exceptional tools for a sensitive and reliable detection of genetic alterations and deserve a role in molecular oncology. In this manuscript we provide a technical comparison of these two approaches with the golden standard represented by fluorescence in situ hybridization. We also describe some relevant targets currently evaluated with these techniques in solid and hematologic tumors.
Collapse
Affiliation(s)
- Vincenza Ylenia Cusenza
- Laboratory of Translational Research, Azienda Unità Sanitaria Locale—IRCCS di Reggio Emilia, 42122 Reggio Emilia, Italy;
| | - Alessandra Bisagni
- Pathology Unit, Azienda Unità Sanitaria Locale—IRCCS di Reggio Emilia, 42122 Reggio Emilia, Italy;
| | - Monia Rinaldini
- Medical Genetics Unit, Azienda Unità Sanitaria Locale—IRCCS di Reggio Emilia, 42122 Reggio Emilia, Italy; (M.R.); (C.C.)
| | - Chiara Cattani
- Medical Genetics Unit, Azienda Unità Sanitaria Locale—IRCCS di Reggio Emilia, 42122 Reggio Emilia, Italy; (M.R.); (C.C.)
| | - Raffaele Frazzi
- Laboratory of Translational Research, Azienda Unità Sanitaria Locale—IRCCS di Reggio Emilia, 42122 Reggio Emilia, Italy;
- Correspondence:
| |
Collapse
|
20
|
Funakoshi Y, Hata N, Takigawa K, Arita H, Kuga D, Hatae R, Sangatsuda Y, Fujioka Y, Sako A, Umehara T, Yoshitake T, Togao O, Hiwatashi A, Yoshimoto K, Iwaki T, Mizoguchi M. Clinical significance of CDKN2A homozygous deletion in combination with methylated MGMT status for IDH-wildtype glioblastoma. Cancer Med 2021; 10:3177-3187. [PMID: 33838014 PMCID: PMC8124111 DOI: 10.1002/cam4.3860] [Citation(s) in RCA: 25] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/03/2020] [Revised: 03/08/2021] [Accepted: 03/09/2021] [Indexed: 01/29/2023] Open
Abstract
OBJECTIVE Accumulating evidence from recent molecular diagnostic studies has indicated the prognostic significance of various genetic markers for patients with glioblastoma (GBM). To evaluate the impact of such genetic markers on prognosis, we retrospectively analyzed the outcomes of patients with IDH-wildtype GBM in our institution. In addition, to assess the impact of bevacizumab (BEV) treatment, we compared overall survival (OS) between the pre- and post-BEV eras. METHODS We analyzed the data of 100 adult patients (over 18 years old) with IDH-wildtype GBM from our database between February 2006 and October 2018. Genetic markers, such as MGMT methylation status, EGFR amplification, CDKN2A homozygous deletion, and clinical factors were analyzed by evaluating the patients' OS. RESULTS CDKN2A homozygous deletion showed no significant impact on OS in patients with methylated MGMT status (p = 0.5268), whereas among patients with unmethylated MGMT status, there was a significant difference in OS between patients with and without CDKN2A homozygous deletion (median OS: 14.7 and 16.9 months, respectively, p = 0.0129). This difference was more evident in the pre-BEV era (median OS: 10.1 and 15.6 months, respectively, p = 0.0351) but has become nonsignificant in the post-BEV era (median OS: 16.0 and 16.9 months, respectively, p = 0.1010) due to OS improvement in patients with CDKN2A homozygous deletion. However, these findings could not be validated in The Cancer Genome Atlas cohort. CONCLUSIONS MGMT and CDKN2A status subdivided our cohort into three race-specific groups with different prognoses. Our findings indicate that BEV approval in Japan led to OS improvement exclusively for patients with concurrent unmethylated MGMT status and CDKN2A homozygous deletion.
Collapse
Affiliation(s)
- Yusuke Funakoshi
- Department of Neurosurgery, Graduate School of Medical Sciences, Kyushu University, Fukuoka, Japan
| | - Nobuhiro Hata
- Department of Neurosurgery, Graduate School of Medical Sciences, Kyushu University, Fukuoka, Japan
| | - Kosuke Takigawa
- Department of Neurosurgery, Graduate School of Medical Sciences, Kyushu University, Fukuoka, Japan
| | - Hideyuki Arita
- Department of Neurosurgery, Graduate School of Medicine, Osaka University, Suita, Japan
| | - Daisuke Kuga
- Department of Neurosurgery, Graduate School of Medical Sciences, Kyushu University, Fukuoka, Japan
| | - Ryusuke Hatae
- Department of Neurosurgery, Graduate School of Medical Sciences, Kyushu University, Fukuoka, Japan
| | - Yuhei Sangatsuda
- Department of Neurosurgery, Graduate School of Medical Sciences, Kyushu University, Fukuoka, Japan
| | - Yutaka Fujioka
- Department of Neurosurgery, Graduate School of Medical Sciences, Kyushu University, Fukuoka, Japan
| | - Aki Sako
- Department of Neurosurgery, Graduate School of Medical Sciences, Kyushu University, Fukuoka, Japan
| | - Toru Umehara
- Department of Neurosurgery, Graduate School of Medicine, Osaka University, Suita, Japan
| | - Tadamasa Yoshitake
- Department of Clinical Radiology, Graduate School of Medical Sciences, Kyushu University, Fukuoka, Japan
| | - Osamu Togao
- Department of Clinical Radiology, Graduate School of Medical Sciences, Kyushu University, Fukuoka, Japan
| | - Akio Hiwatashi
- Department of Clinical Radiology, Graduate School of Medical Sciences, Kyushu University, Fukuoka, Japan
| | - Koji Yoshimoto
- Department of Neurosurgery, Graduate School of Medical Sciences, Kyushu University, Fukuoka, Japan.,Department of Neurosurgery, Graduate School of Medical and Dental Sciences, Kagoshima University, Kagoshima, Japan
| | - Toru Iwaki
- Department of Neuropathology, Graduate School of Medical Sciences, Kyushu University, Fukuoka, Japan
| | - Masahiro Mizoguchi
- Department of Neurosurgery, Graduate School of Medical Sciences, Kyushu University, Fukuoka, Japan
| |
Collapse
|
21
|
Satomi K, Ohno M, Matsushita Y, Takahashi M, Miyakita Y, Narita Y, Ichimura K, Yoshida A. Utility of methylthioadenosine phosphorylase immunohistochemical deficiency as a surrogate for CDKN2A homozygous deletion in the assessment of adult-type infiltrating astrocytoma. Mod Pathol 2021; 34:688-700. [PMID: 33077924 DOI: 10.1038/s41379-020-00701-w] [Citation(s) in RCA: 33] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/19/2020] [Revised: 09/25/2020] [Accepted: 09/27/2020] [Indexed: 01/01/2023]
Abstract
Homozygous deletion (HD) of CDKN2A is one of the most promising biomarkers for predicting poor prognosis of IDH-mutant diffuse gliomas. The Consortium to Inform Molecular and Practical Approaches to CNS Tumor Taxonomy (cIMPACT-NOW) recommendations propose that IDH-mutant lower-grade astrocytomas with CDKN2A/B HD be classified as grade IV tumors. Loss of methylthioadenosine phosphorylase (MTAP) immunohistochemistry staining has been proposed as a surrogate of CDKN2A HD in various tumors but its performance has not been fully investigated in diffuse glioma. This study determined whether MTAP immunoreactivity could serve as a proxy for CDKN2A HD in adult-type diffuse glioma, thereby contributing to stratifying patient outcome. MTAP immunohistochemistry staining using clone EPR6893 was scored in 178 diffuse glioma specimens consisting of 77 IDH-mutant astrocytomas, 13 IDH-mutant oligodendrogliomas, and 88 IDH-wildtype glioblastomas. The use of MTAP immunohistochemical deficiency to predict CDKN2A HD was good for IDH-mutant astrocytomas (sensitivity, 88%; specificity, 98%) and IDH-wildtype glioblastomas (sensitivity, 89%; specificity, 100%), but poor for IDH-mutant oligodendrogliomas (sensitivity, 67%; specificity, 57%). Both CDKN2A HD and MTAP immunohistochemical deficiency were significant adverse prognostic factors of overall survival for IDH-mutant astrocytoma (P < 0.001 each), but neither were prognostically significant for oligodendroglioma or IDH-wildtype glioblastoma. IDH-mutant lower-grade astrocytoma with CDKN2A HD and deficient MTAP immunoreactivity exhibited overlapping unfavorable outcome with IDH-mutant glioblastoma. MTAP immunostaining was easily interpreted in 61% of the cases tested, but scoring required greater care in the remaining cases. An alternative MTAP antibody clone (2G4) produced identical scoring results in all but 1 case, and a slightly larger proportion (66%) of cases were considered easy to interpret compared to using EPR6893. In summary, loss of MTAP immunoreactivity could serve as a reasonable predictive surrogate for CDKN2A HD in IDH-mutant astrocytomas and IDH-wildtype glioblastomas and could provide significant prognostic value for IDH-mutant astrocytoma, comparable to CDKN2A HD.
Collapse
Affiliation(s)
- Kaishi Satomi
- Department of Diagnostic Pathology, National Cancer Center Hospital, 5-1-1 Tsukiji, Chuo-ku, Tokyo, 104-0045, Japan.
| | - Makoto Ohno
- Department of Neurosurgery and Neuro-Oncology, National Cancer Center Hospital, 5-1-1 Tsukiji, Chuo-ku, Tokyo, 104-0045, Japan
| | - Yuko Matsushita
- Department of Neurosurgery and Neuro-Oncology, National Cancer Center Hospital, 5-1-1 Tsukiji, Chuo-ku, Tokyo, 104-0045, Japan
| | - Masamichi Takahashi
- Department of Neurosurgery and Neuro-Oncology, National Cancer Center Hospital, 5-1-1 Tsukiji, Chuo-ku, Tokyo, 104-0045, Japan
| | - Yasuji Miyakita
- Department of Neurosurgery and Neuro-Oncology, National Cancer Center Hospital, 5-1-1 Tsukiji, Chuo-ku, Tokyo, 104-0045, Japan
| | - Yoshitaka Narita
- Department of Neurosurgery and Neuro-Oncology, National Cancer Center Hospital, 5-1-1 Tsukiji, Chuo-ku, Tokyo, 104-0045, Japan.,Rare Cancer Center, National Cancer Center Hospital, 5-1-1 Tsukiji, Chuo-ku, Tokyo, 104-0045, Japan
| | - Koichi Ichimura
- Rare Cancer Center, National Cancer Center Hospital, 5-1-1 Tsukiji, Chuo-ku, Tokyo, 104-0045, Japan.,Division of Brain Tumor Translational Research, National Cancer Center Research Institute, 5-1-1 Tsukiji, Chuo-ku, Tokyo, 104-0045, Japan
| | - Akihiko Yoshida
- Department of Diagnostic Pathology, National Cancer Center Hospital, 5-1-1 Tsukiji, Chuo-ku, Tokyo, 104-0045, Japan. .,Rare Cancer Center, National Cancer Center Hospital, 5-1-1 Tsukiji, Chuo-ku, Tokyo, 104-0045, Japan.
| |
Collapse
|
22
|
Wei J, Meng P, Terpstra MM, van Rijk A, Tamminga M, Scherpen F, Ter Elst A, Alimohamed MZ, Johansson LF, Stigt J, Gijtenbeek RPG, van Putten J, Hiltermann TJN, Groen HJM, Kok K, van der Wekken AJ, van den Berg A. Clinical Value of EGFR Copy Number Gain Determined by Amplicon-Based Targeted Next Generation Sequencing in Patients with EGFR-Mutated NSCLC. Target Oncol 2021; 16:215-226. [PMID: 33606136 PMCID: PMC7935828 DOI: 10.1007/s11523-021-00798-2] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 02/03/2021] [Indexed: 02/05/2023]
Abstract
BACKGROUND The clinical relevance of epidermal growth factor receptor (EGFR) copy number gain in patients with EGFR mutated advanced non-small cell lung cancer on first-line tyrosine kinase inhibitor treatment has not been fully elucidated. OBJECTIVE We aimed to estimate EGFR copy number gain using amplicon-based next generation sequencing data and explored its prognostic value. PATIENTS AND METHODS Next generation sequencing data were obtained for 1566 patients with non-small cell lung cancer. EGFR copy number gain was defined based on an increase in EGFR read counts relative to internal reference amplicons and normal controls in combination with a modified z-score ≥ 3.5. Clinical follow-up data were available for 60 patients treated with first-line EGFR-tyrosine kinase inhibitors. RESULTS Specificity and sensitivity of next generation sequencing-based EGFR copy number estimations were above 90%. EGFR copy number gain was observed in 27.9% of EGFR mutant cases and in 7.4% of EGFR wild-type cases. EGFR gain was not associated with progression-free survival but showed a significant effect on overall survival with an adjusted hazard ratio of 3.14 (95% confidence interval 1.46-6.78, p = 0.003). Besides EGFR copy number gain, osimertinib in second or subsequent lines of treatment and the presence of T790M at relapse revealed significant effects in a multivariate analysis with adjusted hazard ratio of 0.43 (95% confidence interval 0.20-0.91, p = 0.028) and 0.24 (95% confidence interval 0.1-0.59, p = 0.001), respectively. CONCLUSIONS Pre-treatment EGFR copy number gain determined by amplicon-based next generation sequencing data predicts worse overall survival in EGFR-mutated patients treated with first-line EGFR-tyrosine kinase inhibitors. T790M at relapse and subsequent treatment with osimertinib predict longer overall survival.
Collapse
Affiliation(s)
- Jiacong Wei
- Department of Genetics, University of Groningen, University Medical Center Groningen, Groningen, The Netherlands
- Department of Pathology, Cancer Hospital Chinese Academy of Medical Sciences, Beijing, China
| | - Pei Meng
- Department of Pathology and Medical Biology, University of Groningen, University Medical Center Groningen, HPC: EA10, Room F0-15, Hanzeplein 1, 9713 GZ, Groningen, The Netherlands
- Department of Pathology, Collaborative and Creative Centre, Shantou University Medical College, Shantou, Guangdong, China
| | - Miente Martijn Terpstra
- Department of Genetics, University of Groningen, University Medical Center Groningen, Groningen, The Netherlands
| | - Anke van Rijk
- Department of Pathology and Medical Biology, University of Groningen, University Medical Center Groningen, HPC: EA10, Room F0-15, Hanzeplein 1, 9713 GZ, Groningen, The Netherlands
| | - Menno Tamminga
- Department of Pulmonary Diseases, University of Groningen, University Medical Center Groningen, Groningen, The Netherlands
| | - Frank Scherpen
- Department of Pathology and Medical Biology, University of Groningen, University Medical Center Groningen, HPC: EA10, Room F0-15, Hanzeplein 1, 9713 GZ, Groningen, The Netherlands
| | - Arja Ter Elst
- Department of Pathology and Medical Biology, University of Groningen, University Medical Center Groningen, HPC: EA10, Room F0-15, Hanzeplein 1, 9713 GZ, Groningen, The Netherlands
| | - Mohamed Z Alimohamed
- Department of Genetics, University of Groningen, University Medical Center Groningen, Groningen, The Netherlands
- Department of Haematology and Blood Transfusion, Muhimbili University of Health and Allied Sciences, Dar-es-Salaam, Tanzania
| | - Lennart F Johansson
- Department of Genetics, University of Groningen, University Medical Center Groningen, Groningen, The Netherlands
| | - Jos Stigt
- Department of Pulmonary Diseases, Isala Clinic, Zwolle, The Netherlands
| | - Rolof P G Gijtenbeek
- Department of Pulmonary Diseases, Medical Center Leeuwarden, Leeuwarden, The Netherlands
| | - John van Putten
- Department of Pulmonary Diseases, Martini Hospital, Groningen, The Netherlands
| | - T Jeroen N Hiltermann
- Department of Pulmonary Diseases, University of Groningen, University Medical Center Groningen, Groningen, The Netherlands
| | - Harry J M Groen
- Department of Pulmonary Diseases, University of Groningen, University Medical Center Groningen, Groningen, The Netherlands
| | - Klaas Kok
- Department of Genetics, University of Groningen, University Medical Center Groningen, Groningen, The Netherlands
| | - Anthonie J van der Wekken
- Department of Pulmonary Diseases, University of Groningen, University Medical Center Groningen, Groningen, The Netherlands
| | - Anke van den Berg
- Department of Pathology and Medical Biology, University of Groningen, University Medical Center Groningen, HPC: EA10, Room F0-15, Hanzeplein 1, 9713 GZ, Groningen, The Netherlands.
| |
Collapse
|
23
|
Krokidis MG. Biomarker-Driven Analysis Using High-Throughput Approaches in Neuroinflammation and Neurodegenerative Diseases. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2021; 1339:51-58. [DOI: 10.1007/978-3-030-78787-5_8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/19/2022]
|
24
|
Identification of New Genetic Clusters in Glioblastoma Multiforme: EGFR Status and ADD3 Losses Influence Prognosis. Cells 2020; 9:cells9112429. [PMID: 33172155 PMCID: PMC7694764 DOI: 10.3390/cells9112429] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/05/2020] [Revised: 10/30/2020] [Accepted: 11/03/2020] [Indexed: 12/12/2022] Open
Abstract
Glioblastoma multiforme (GB) is one of the most aggressive tumors. Despite continuous efforts to improve its clinical management, there is still no strategy to avoid a rapid and fatal outcome. EGFR amplification is the most characteristic alteration of these tumors. Although effective therapy against it has not yet been found in GB, it may be central to classifying patients. We investigated somatic-copy number alterations (SCNA) by multiplex ligation-dependent probe amplification in a series of 137 GB, together with the detection of EGFRvIII and FISH analysis for EGFR amplification. Publicly available data from 604 patients were used as a validation cohort. We found statistical associations between EGFR amplification and/or EGFRvIII, and SCNA in CDKN2A, MSH6, MTAP and ADD3. Interestingly, we found that both EGFRvIII and losses on ADD3 were independent markers of bad prognosis (p = 0.028 and 0.014, respectively). Finally, we got an unsupervised hierarchical classification that differentiated three clusters of patients based on their genetic alterations. It offered a landscape of EGFR co-alterations that may improve the comprehension of the mechanisms underlying GB aggressiveness. Our findings can help in defining different genetic profiles, which is necessary to develop new and different approaches in the management of our patients.
Collapse
|
25
|
Higa N, Akahane T, Yokoyama S, Yonezawa H, Uchida H, Takajo T, Kirishima M, Hamada T, Matsuo K, Fujio S, Hanada T, Hosoyama H, Yonenaga M, Sakamoto A, Hiraki T, Tanimoto A, Yoshimoto K. A tailored next-generation sequencing panel identified distinct subtypes of wildtype IDH and TERT promoter glioblastomas. Cancer Sci 2020; 111:3902-3911. [PMID: 32748499 PMCID: PMC7541004 DOI: 10.1111/cas.14597] [Citation(s) in RCA: 33] [Impact Index Per Article: 6.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/23/2020] [Revised: 07/27/2020] [Accepted: 07/29/2020] [Indexed: 12/14/2022] Open
Abstract
Central nervous system tumors are classified based on an integrated diagnosis combining histology and molecular characteristics, including IDH1/2 and H3-K27M mutations, as well as 1p/19q codeletion. Here, we aimed to develop and assess the feasibility of a glioma-tailored 48-gene next-generation sequencing (NGS) panel for integrated glioma diagnosis. We designed a glioma-tailored 48-gene NGS panel for detecting 1p/19q codeletion and mutations in IDH1/2, TP53, PTEN, PDGFRA, NF1, RB1, CDKN2A/B, CDK4, and the TERT promoter (TERTp). We analyzed 106 glioma patients (grade II: 19 cases, grade III: 23 cases, grade IV: 64 cases) using this system. The 1p/19q codeletion was detected precisely in oligodendroglial tumors using our NGS panel. In a cohort of 64 grade Ⅳ gliomas, we identified 56 IDH-wildtype glioblastomas. Within these IDH-wildtype glioblastomas, 33 samples (58.9%) showed a mutation in TERTp. Notably, PDGFRA mutations and their amplification were more commonly seen in TERTp-wildtype glioblastomas (43%) than in TERTp-mutant glioblastomas (6%) (P = .001). Hierarchical molecular classification of IDH-wildtype glioblastomas revealed 3 distinct groups of IDH-wildtype glioblastomas. One major cluster was characterized by mutations in PDGFRA, amplification of CDK4 and PDGFRA, homozygous deletion of CDKN2A/B, and absence of TERTp mutations. This cluster was significantly associated with older age (P = .021), higher Ki-67 score (P = .007), poor prognosis (P = .012), and a periventricular tumor location. We report the development of a glioma-tailored NGS panel for detecting 1p/19q codeletion and driver gene mutations on a single platform. Our panel identified distinct subtypes of IDH- and TERTp-wildtype glioblastomas with frequent PDGFRA alterations.
Collapse
Affiliation(s)
- Nayuta Higa
- Department of Neurosurgery, Graduate School of Medical and Dental Sciences, Kagoshima University, Kagoshima, Japan
| | - Toshiaki Akahane
- Department of Pathology, Graduate School of Medical and Dental Sciences, Kagoshima University, Kagoshima, Japan.,Center for Human Genome and Gene Analysis, Kagoshima University Hospital, Kagoshima, Japan
| | - Seiya Yokoyama
- Department of Pathology, Graduate School of Medical and Dental Sciences, Kagoshima University, Kagoshima, Japan
| | - Hajime Yonezawa
- Department of Neurosurgery, Graduate School of Medical and Dental Sciences, Kagoshima University, Kagoshima, Japan
| | - Hiroyuki Uchida
- Department of Neurosurgery, Graduate School of Medical and Dental Sciences, Kagoshima University, Kagoshima, Japan
| | - Tomoko Takajo
- Department of Neurosurgery, Graduate School of Medical and Dental Sciences, Kagoshima University, Kagoshima, Japan
| | - Mari Kirishima
- Department of Pathology, Graduate School of Medical and Dental Sciences, Kagoshima University, Kagoshima, Japan
| | - Taiji Hamada
- Department of Pathology, Graduate School of Medical and Dental Sciences, Kagoshima University, Kagoshima, Japan
| | - Kei Matsuo
- Department of Pathology, Graduate School of Medical and Dental Sciences, Kagoshima University, Kagoshima, Japan
| | - Shingo Fujio
- Department of Neurosurgery, Graduate School of Medical and Dental Sciences, Kagoshima University, Kagoshima, Japan
| | - Tomoko Hanada
- Department of Neurosurgery, Graduate School of Medical and Dental Sciences, Kagoshima University, Kagoshima, Japan
| | - Hiroshi Hosoyama
- Department of Neurosurgery, Graduate School of Medical and Dental Sciences, Kagoshima University, Kagoshima, Japan
| | - Masanori Yonenaga
- Department of Neurosurgery, Graduate School of Medical and Dental Sciences, Kagoshima University, Kagoshima, Japan
| | - Akihisa Sakamoto
- Department of Neurosurgery, Graduate School of Medical and Dental Sciences, Kagoshima University, Kagoshima, Japan
| | - Tsubasa Hiraki
- Department of Pathology, Graduate School of Medical and Dental Sciences, Kagoshima University, Kagoshima, Japan
| | - Akihide Tanimoto
- Department of Pathology, Graduate School of Medical and Dental Sciences, Kagoshima University, Kagoshima, Japan.,Center for Human Genome and Gene Analysis, Kagoshima University Hospital, Kagoshima, Japan
| | - Koji Yoshimoto
- Department of Neurosurgery, Graduate School of Medical and Dental Sciences, Kagoshima University, Kagoshima, Japan
| |
Collapse
|
26
|
Fukai J, Arita H, Umehara T, Yoshioka E, Shofuda T, Kanematsu D, Kodama Y, Mano M, Kinoshita M, Okita Y, Nonaka M, Uda T, Tsuyuguchi N, Sakamoto D, Uematsu Y, Nakao N, Mori K, Kanemura Y. Molecular characteristics and clinical outcomes of elderly patients with IDH-wildtype glioblastomas: comparative study of older and younger cases in Kansai Network cohort. Brain Tumor Pathol 2020; 37:50-59. [PMID: 32361941 DOI: 10.1007/s10014-020-00363-1] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/11/2020] [Accepted: 04/21/2020] [Indexed: 12/13/2022]
Abstract
Aging is a known negative prognostic factor in glioblastomas (GBM). Whether particular genetic backgrounds are a factor in poor outcomes of elderly patients with GBM warrants investigation. We aim to elucidate any differences between older and younger adult patients with IDH-wildtype GBM regarding both molecular characteristics and clinical outcomes. We collected adult cases diagnosed with IDH-wildtype GBM from the Kansai Network. Clinical and pathological characteristics were analyzed retrospectively and compared between older (≥ 70 years) and younger (≤ 50 years) cases. Included were 92 older vs. 33 younger cases. The older group included more patients with preoperative Karnofsky performance status score < 70 and had a shorter survival time than the younger group. MGMT promoter was methylated more frequently in the older group. TERT promoter mutation was more common in the older group. There were significant differences in DNA copy-number alteration profiles between age groups in PTEN deletion and CDK4 amplification/gain. In the older group, no molecular markers were identified, but surgical resection was an independent prognostic factor. Age-specific survival difference was significant in the MGMT methylated and TERT wildtype subgroup. Elderly patients have several potential factors in poor prognosis of glioblastomas. Varying molecular profiles may explain differing rates of survival between generations.
Collapse
Affiliation(s)
- Junya Fukai
- Department of Neurological Surgery, Wakayama Medical University School of Medicine, Kimiidera 811-1, Wakayama, 641-0012, Japan. .,Kansai Molecular Diagnosis Network for CNS Tumors, Osaka, 540-0006, Japan.
| | - Hideyuki Arita
- Kansai Molecular Diagnosis Network for CNS Tumors, Osaka, 540-0006, Japan.,Department of Neurosurgery, Takatsuki General Hospital, Takatsuki, Osaka, 569-1192, Japan
| | - Toru Umehara
- Kansai Molecular Diagnosis Network for CNS Tumors, Osaka, 540-0006, Japan.,Department of Neurosurgery, Osaka University Graduate School of Medicine, Osaka, 565-0871, Japan
| | - Ema Yoshioka
- Kansai Molecular Diagnosis Network for CNS Tumors, Osaka, 540-0006, Japan.,Division of Stem Cell Research, Department of Biomedical Research and Innovation, Institute for Clinical Research, National Hospital Organization Osaka National Hospital, Osaka, 540-0006, Japan
| | - Tomoko Shofuda
- Kansai Molecular Diagnosis Network for CNS Tumors, Osaka, 540-0006, Japan.,Division of Stem Cell Research, Department of Biomedical Research and Innovation, Institute for Clinical Research, National Hospital Organization Osaka National Hospital, Osaka, 540-0006, Japan
| | - Daisuke Kanematsu
- Kansai Molecular Diagnosis Network for CNS Tumors, Osaka, 540-0006, Japan.,Division of Regenerative Medicine, Department of Biomedical Research and Innovation, Institute for Clinical Research, National Hospital Organization Osaka National Hospital, Osaka, 540-0006, Japan
| | - Yoshinori Kodama
- Kansai Molecular Diagnosis Network for CNS Tumors, Osaka, 540-0006, Japan.,Department of Diagnostic Pathology, Kobe University Graduate School of Medicine, Kobe, Hyogo, 650-0017, Japan
| | - Masayuki Mano
- Kansai Molecular Diagnosis Network for CNS Tumors, Osaka, 540-0006, Japan.,Department of Central Laboratory and Surgical Pathology, National Hospital Organization Osaka National Hospital, Osaka, 540-0006, Japan
| | - Manabu Kinoshita
- Kansai Molecular Diagnosis Network for CNS Tumors, Osaka, 540-0006, Japan.,Department of Neurosurgery, Osaka University Graduate School of Medicine, Osaka, 565-0871, Japan
| | - Yoshiko Okita
- Kansai Molecular Diagnosis Network for CNS Tumors, Osaka, 540-0006, Japan.,Department of Neurosurgery, Osaka International Cancer Institute, Osaka, 541-8567, Japan.,Department of Neurosurgery, National Hospital Organization Osaka National Hospital, Osaka, 540-0006, Japan
| | - Masahiro Nonaka
- Kansai Molecular Diagnosis Network for CNS Tumors, Osaka, 540-0006, Japan.,Department of Neurosurgery, Kansai Medical University, Hirakata, Osaka, 573-1191, Japan
| | - Takehiro Uda
- Kansai Molecular Diagnosis Network for CNS Tumors, Osaka, 540-0006, Japan.,Department of Neurosurgery, Osaka City University Graduate School of Medicine, Osaka, 545-0051, Japan
| | - Naohiro Tsuyuguchi
- Kansai Molecular Diagnosis Network for CNS Tumors, Osaka, 540-0006, Japan.,Department of Neurosurgery, Osaka City University Graduate School of Medicine, Osaka, 545-0051, Japan.,Department of Neurosurgery, Kindai University Faculty of Medicine, Higashiosaka, Osaka, 589-8511, Japan
| | - Daisuke Sakamoto
- Kansai Molecular Diagnosis Network for CNS Tumors, Osaka, 540-0006, Japan.,Department of Neurosurgery, Hyogo College of Medicine, Nishinomiya, Hyogo, 663-8501, Japan
| | - Yuji Uematsu
- Department of Neurological Surgery, Wakayama Medical University School of Medicine, Kimiidera 811-1, Wakayama, 641-0012, Japan.,Kansai Molecular Diagnosis Network for CNS Tumors, Osaka, 540-0006, Japan
| | - Naoyuki Nakao
- Department of Neurological Surgery, Wakayama Medical University School of Medicine, Kimiidera 811-1, Wakayama, 641-0012, Japan.,Kansai Molecular Diagnosis Network for CNS Tumors, Osaka, 540-0006, Japan
| | - Kanji Mori
- Kansai Molecular Diagnosis Network for CNS Tumors, Osaka, 540-0006, Japan.,Department of Neurosurgery, Kansai Rosai Hospital, Amagasaki, Hyogo, 660-8511, Japan
| | - Yonehiro Kanemura
- Kansai Molecular Diagnosis Network for CNS Tumors, Osaka, 540-0006, Japan.,Division of Regenerative Medicine, Department of Biomedical Research and Innovation, Institute for Clinical Research, National Hospital Organization Osaka National Hospital, Osaka, 540-0006, Japan.,Department of Neurosurgery, National Hospital Organization Osaka National Hospital, Osaka, 540-0006, Japan
| |
Collapse
|
27
|
Improving the sensitivity and selectivity of a DNA probe using graphene oxide-protected and T7 exonuclease-assisted signal amplification. Anal Bioanal Chem 2020; 412:3029-3035. [PMID: 32206848 DOI: 10.1007/s00216-020-02556-1] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/26/2019] [Revised: 12/18/2019] [Accepted: 02/27/2020] [Indexed: 12/21/2022]
Abstract
The accurate analysis of single-nucleotide polymorphisms is of great significance for clinical detection and diagnosis. Based on the hybridization hindrance caused by graphene oxide (GO) and hairpin probe, we report a T7 Exo-assisted cyclic amplification technique to distinguish single-base mismatch for highly sensitive and selective detection of mutant-type DNA. When the mutant-type target is completely complementary to the probe, the T7 Exo hydrolyzes the probe and releases the fluorescent molecule from the GO surface, resulting in a fluorescence signal. Conversely, when the wild-type mismatch target is present, the weak hybridization prevents the release of FAM-labeled probe from the GO surface. Therefore, the FAM-labeled probe cannot be degraded efficiently by T7 Exo, and the fluorescence is still quenched by GO. The detection limit of the proposed method can be as low as 34 fM due to the cyclic signal amplification. The experimental results showed that the established method could be used to detect single-nucleotide polymorphisms accurately and sensitively at low cost.
Collapse
|
28
|
Hench J, Bihl M, Bratic Hench I, Hoffmann P, Tolnay M, Bösch Al Jadooa N, Mariani L, Capper D, Frank S. Satisfying your neuro-oncologist: a fast approach to routine molecular glioma diagnostics. Neuro Oncol 2019; 20:1682-1683. [PMID: 30169880 PMCID: PMC6231198 DOI: 10.1093/neuonc/noy128] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/10/2023] Open
Affiliation(s)
- Jürgen Hench
- Institute for Medical Genetics and Pathology, University Hospital Basel, Basel, Switzerland
| | - Michel Bihl
- Institute for Medical Genetics and Pathology, University Hospital Basel, Basel, Switzerland
| | - Ivana Bratic Hench
- Institute for Medical Genetics and Pathology, University Hospital Basel, Basel, Switzerland
| | - Per Hoffmann
- Institute for Medical Genetics and Pathology, University Hospital Basel, Basel, Switzerland.,Institute of Human Genetics, University Hospital Bonn, Bonn, Germany
| | - Markus Tolnay
- Institute for Medical Genetics and Pathology, University Hospital Basel, Basel, Switzerland
| | - Nemya Bösch Al Jadooa
- Institute for Medical Genetics and Pathology, University Hospital Basel, Basel, Switzerland
| | - Luigi Mariani
- Institute for Medical Genetics and Pathology, University Hospital Basel, Basel, Switzerland.,Department of Neurosurgery, University Hospital Basel, Basel, Switzerland
| | - David Capper
- Charité?Universitätsmedizin Berlin, corporate member of Freie Universität Berlin, Humboldt-Universität zu Berlin, and Berlin Institute of Health, Department of Neuropathology, Berlin, Germany
| | - Stephan Frank
- Institute for Medical Genetics and Pathology, University Hospital Basel, Basel, Switzerland
| |
Collapse
|
29
|
Sasaki S, Hirose T, Nobusawa S, Myojin T, Morita K, Nakai T, Hirato J, Ohbayashi C. Anaplastic diffuse leptomeningeal glioneuronal tumor associated with H3 K27M mutation. HUMAN PATHOLOGY: CASE REPORTS 2019. [DOI: 10.1016/j.hpcr.2019.200296] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022] Open
|
30
|
McAleenan A, Jones HE, Kernohan A, Faulkner CL, Palmer A, Dawson S, Wragg C, Jefferies S, Brandner S, Vale L, Higgins JPT, Kurian KM. Diagnostic test accuracy and cost-effectiveness of tests for codeletion of chromosomal arms 1p and 19q in people with glioma. Hippokratia 2019. [DOI: 10.1002/14651858.cd013387] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022]
Affiliation(s)
- Alexandra McAleenan
- University of Bristol; Population Health Sciences, Bristol Medical School; 39 Whatley Road Bristol UK BS8 2PS
| | - Hayley E Jones
- University of Bristol; Population Health Sciences, Bristol Medical School; 39 Whatley Road Bristol UK BS8 2PS
| | - Ashleigh Kernohan
- Newcastle University; Institute of Health & Society; Baddiley-Clark Building, Richardson Road Newcastle upon Tyne UK NE2 4AA
| | - Claire L Faulkner
- Southmead Hospital; Bristol Genetics Laboratory, Pathology Sciences; North Bristol NHS Trust Bristol UK BS10 5NB
| | - Abigail Palmer
- Southmead Hospital; Bristol Genetics Laboratory, Pathology Sciences; North Bristol NHS Trust Bristol UK BS10 5NB
| | - Sarah Dawson
- University of Bristol; Population Health Sciences, Bristol Medical School; 39 Whatley Road Bristol UK BS8 2PS
| | - Christopher Wragg
- Southmead Hospital; Bristol Genetics Laboratory, Pathology Sciences; North Bristol NHS Trust Bristol UK BS10 5NB
| | - Sarah Jefferies
- Addenbrooke's Hospital; Department of Oncology; Hills Road Cambridge UK CB2 0QQ
| | - Sebastian Brandner
- The National Hospital for Neurology and Neurosurgery; Division of Neuropathology and Department of Neurodegeneration; University College Hospital NHS Foundation Trust and UCL Institute of Neurology Queen Square London UK WC1N 3BG
| | - Luke Vale
- Newcastle University; Institute of Health & Society; Baddiley-Clark Building, Richardson Road Newcastle upon Tyne UK NE2 4AA
| | - Julian P T Higgins
- University of Bristol; Population Health Sciences, Bristol Medical School; 39 Whatley Road Bristol UK BS8 2PS
| | - Kathreena M Kurian
- University of Bristol; Bristol Medical School: Brain Tumour Research Centre, Public Health Sciences; Oakfield House, Oakfield Grove Bristol UK BS8 2BN
| |
Collapse
|
31
|
Umehara T, Arita H, Yoshioka E, Shofuda T, Kanematsu D, Kinoshita M, Kodama Y, Mano M, Kagawa N, Fujimoto Y, Okita Y, Nonaka M, Nakajo K, Uda T, Tsuyuguchi N, Fukai J, Fujita K, Sakamoto D, Mori K, Kishima H, Kanemura Y. Distribution differences in prognostic copy number alteration profiles in IDH-wild-type glioblastoma cause survival discrepancies across cohorts. Acta Neuropathol Commun 2019; 7:99. [PMID: 31215469 PMCID: PMC6580599 DOI: 10.1186/s40478-019-0749-8] [Citation(s) in RCA: 38] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/11/2019] [Accepted: 05/30/2019] [Indexed: 02/08/2023] Open
Abstract
The diagnosis and prognostication of glioblastoma (GBM) remain to be solely dependent on histopathological findings and few molecular markers, despite the clinical heterogeneity in this entity. To address this issue, we investigated the prognostic impact of copy number alterations (CNAs) using two population-based IDH-wild-type GBM cohorts: an original Japanese cohort and a dataset from The Cancer Genome Atlas (TCGA). The molecular disproportions between these cohorts were dissected in light of cohort differences in GBM. The Japanese cohort was collected from cases registered in Kansai Molecular Diagnosis Network for CNS tumors (KNBTG). The somatic landscape around CNAs was analyzed for 212 KNBTG cases and 359 TCGA cases. Next, the clinical impacts of CNA profiles were investigated for 140 KNBTG cases and 152 TCGA cases treated by standard adjuvant therapy using temozolomide-based chemoradiation. The comparative profiling indicated unequal distribution of specific CNAs such as EGFR, CDKN2A, and PTEN among the two cohorts. Especially, the triple overlap CNAs in these loci (triple CNA) were much higher in frequency in TCGA (70.5%) than KNBTG (24.3%), and its prognostic impact was independently validated in both cohorts. The KNBTG cohort significantly showed better prognosis than the TCGA cohort (median overall survival 19.3 vs 15.6 months). This survival difference between the two cohorts completely resolved after subclassifying all cases according to the triple CNA status. The prognostic significance of triple CNA was identified in IDH-wild-type GBM. Distribution difference in prognostic CNA profiles potentially could cause survival differences across cohorts in clinical studies.
Collapse
|
32
|
Hsieh PC, Wang CC, Tsai CL, Yeh YM, Lee YS, Wu YR. POLG R964C and GBA L444P mutations in familial Parkinson's disease: Case report and literature review. Brain Behav 2019; 9:e01281. [PMID: 30941926 PMCID: PMC6520296 DOI: 10.1002/brb3.1281] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/16/2019] [Revised: 03/08/2019] [Accepted: 03/15/2019] [Indexed: 02/06/2023] Open
Abstract
Polymerase gamma (POLG) is an enzyme responsible for the replication and repair of mitochondrial DNA. Mutations in POLG may cause variable clinical manifestations, including parkinsonism, epilepsy, cerebellar ataxia, neuropathy, and progressive external ophthalmoplegia. However, mutations of this gene are rare in patients with typical Parkinson's disease (PD). We report a man (current age: 59 years) without any underlying disease presenting with right-hand tremor at the age of 39 years, followed by slow movement, rigidity, and postural instability. He developed motor fluctuation and levodopa-induced dyskinesia 8 years later. At the age of 58 years, cognitive decline and visual hallucination ensued; he was institutionalized thereafter. We used multiplex ligation-dependent probe amplification, which demonstrated no large deletions or duplications of relevant PD genes. Next, targeted sequencing panel covering 51 genes causative for PD was applied for the proband; it revealed a heterozygous missense substitution R964C in POLG and a heterozygous missense substitution L444P in GBA. The patient's father, who had been diagnosed as having PD and type 2 diabetes mellitus at the age of 70 years, demonstrated identical mutations. This is the first report of familial PD combined with POLG R964C and GBA L444P mutations. Two pathogenic gene mutations potentially cause double hit in pathological neurodegeneration. This finding extends our understanding of the PD genotype-phenotype correlation.
Collapse
Affiliation(s)
- Pei-Chen Hsieh
- Department of Neurology, Chang Gung Memorial Hospital at Linkou Medical Center, Taoyuan, Taiwan
| | - Chun-Chieh Wang
- Department of Neurology, Chang Gung Memorial Hospital at Linkou Medical Center, Taoyuan, Taiwan
| | - Chia-Lung Tsai
- Genomic Medicine Core Laboratory, Chang Gung Memorial Hospital, Taoyuan, Taiwan
| | - Yuan-Ming Yeh
- Genomic Medicine Core Laboratory, Chang Gung Memorial Hospital, Taoyuan, Taiwan
| | - Yun Shien Lee
- Department of Biotechnology, Ming Chuan University, Taoyuan, Taiwan
| | - Yih-Ru Wu
- Department of Neurology, Chang Gung Memorial Hospital at Linkou Medical Center, Taoyuan, Taiwan.,Department of Neurology, College of Medicine, Chang Gung University, Taoyuan, Taiwan
| |
Collapse
|
33
|
Deluche E, Bessette B, Durand S, Caire F, Rigau V, Robert S, Chaunavel A, Forestier L, Labrousse F, Jauberteau MO, Durand K, Lalloué F. CHI3L1, NTRK2, 1p/19q and IDH Status Predicts Prognosis in Glioma. Cancers (Basel) 2019; 11:cancers11040544. [PMID: 30991699 PMCID: PMC6521129 DOI: 10.3390/cancers11040544] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/08/2019] [Revised: 03/30/2019] [Accepted: 04/12/2019] [Indexed: 12/21/2022] Open
Abstract
The aim of this study was to identify relevant biomarkers for the prognosis of glioma considering current molecular changes such as IDH mutation and 1p19q deletion. Gene expression profiling was performed using the TaqMan Low Density Array and hierarchical clustering using 96 selected genes in 64 patients with newly diagnosed glioma. The expression dataset was validated on a large independent cohort from The Cancer Genome Atlas (TCGA) database. A differential expression panel of 26 genes discriminated two prognostic groups regardless of grade and molecular groups of tumors: Patients having a poor prognosis with a median overall survival (OS) of 23.0 ± 9.6 months (group A) and patients having a good prognosis with a median OS of 115.0 ± 6.6 months (group B) (p = 0.007). Hierarchical clustering of the glioma TCGA cohort supported the prognostic value of these 26 genes (p < 0.0001). Among these genes, CHI3L1 and NTRK2 were identified as factors that can be associated with IDH status and 1p/19q co-deletion to distinguish between prognostic groups of glioma from the TCGA cohort. Therefore, CHI3L1 associated with NTRK2 seemed to be able to provide new information on glioma prognosis.
Collapse
Affiliation(s)
- Elise Deluche
- EA3842 CAPTuR, Faculty of Medicine, University of Limoges, 2 Rue du Docteur Marcland, 87025 Limoges, France.
- Department of Medical Oncology, Limoges University Hospital, 2 rue Martin Luther King, 87042 Limoges, France.
| | - Barbara Bessette
- EA3842 CAPTuR, Faculty of Medicine, University of Limoges, 2 Rue du Docteur Marcland, 87025 Limoges, France.
| | - Stephanie Durand
- Bioinformatics Team, BISCEM Platform, CBRS, University of Limoges, 2 rue du Docteur Marcland, 87025 Limoges, France.
- EA7500 PEREINE, University of Limoges, 123 av. Albert Thomas, 87060 Limoges, France.
| | - François Caire
- Department of Neurosurgery, Limoges University Hospital, 2 rue Martin Luther King, 87042 Limoges, France.
| | - Valérie Rigau
- Department of Neuropathology and INSERM U1051, Hospital Saint Eloi-Gui de Chauliac, 80 av. Augustin Fliche, 34090 Montpellier, France.
| | - Sandrine Robert
- EA3842 CAPTuR, Faculty of Medicine, University of Limoges, 2 Rue du Docteur Marcland, 87025 Limoges, France.
- Department of Pathology, Limoges University Hospital, 2 rue Martin Luther King, 87042 Limoges, France.
| | - Alain Chaunavel
- EA3842 CAPTuR, Faculty of Medicine, University of Limoges, 2 Rue du Docteur Marcland, 87025 Limoges, France.
- Department of Pathology, Limoges University Hospital, 2 rue Martin Luther King, 87042 Limoges, France.
| | - Lionel Forestier
- Bioinformatics Team, BISCEM Platform, CBRS, University of Limoges, 2 rue du Docteur Marcland, 87025 Limoges, France.
| | - François Labrousse
- EA3842 CAPTuR, Faculty of Medicine, University of Limoges, 2 Rue du Docteur Marcland, 87025 Limoges, France.
- Department of Pathology, Limoges University Hospital, 2 rue Martin Luther King, 87042 Limoges, France.
| | - Marie-Odile Jauberteau
- EA3842 CAPTuR, Faculty of Medicine, University of Limoges, 2 Rue du Docteur Marcland, 87025 Limoges, France.
- Department of Immunology, Limoges University Hospital, 2 rue Martin Luther King, 87042 Limoges, France.
| | - Karine Durand
- EA3842 CAPTuR, Faculty of Medicine, University of Limoges, 2 Rue du Docteur Marcland, 87025 Limoges, France.
- Department of Pathology, Limoges University Hospital, 2 rue Martin Luther King, 87042 Limoges, France.
| | - Fabrice Lalloué
- EA3842 CAPTuR, Faculty of Medicine, University of Limoges, 2 Rue du Docteur Marcland, 87025 Limoges, France.
| |
Collapse
|
34
|
Bieńkowski M, Wöhrer A, Moser P, Kitzwögerer M, Ricken G, Ströbel T, Hainfellner JA. Molecular diagnostic testing of diffuse gliomas in the real-life setting: A practical approach. Clin Neuropathol 2018; 37:166-177. [PMID: 29923492 PMCID: PMC6102559 DOI: 10.5414/np301110] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/30/2018] [Accepted: 06/21/2018] [Indexed: 12/21/2022] Open
Abstract
Typing of diffuse gliomas according to the WHO 2016 Classification of Tumors of the Central Nervous System is based on the integration of histology with molecular biomarkers. However, the choice of appropriate methods for molecular analysis and criteria for interpretation of test results is left to each diagnostic laboratory. In the present study, we tested the applicability of combined immunohistochemistry, direct sequencing, and multiplex ligation-dependent probe amplification (MLPA) for diagnostic assessment of IDH1/2 mutation status, chromosome 1p/19q status, and TERT promoter mutations. To this end, we analyzed a consecutive series of 165 patients with diffuse low- and high-grade gliomas (WHO grade II and III) from three Austrian centers in which tissue specimens were routinely processed. We could reliably detect IDH1/2 mutations by combining immunohistochemistry, direct sequencing, and MLPA analysis. MLPA analysis also allowed reliable detection of combined whole chromosomal arm 1p/19q codeletion when using carefully selected criteria providing an optimal balance between sensitivity and specificity. Direct sequencing proved to be suitable for identification of TERT promoter mutations, although its analytical performance remains to be assessed. To conclude, we propose a practicable combination of methods and criteria which allow reliable molecular diagnostic testing of diffuse gliomas in the real-life setting.
.
Collapse
Affiliation(s)
- Michał Bieńkowski
- Institute of Neurology, Medical University of Vienna, Austria
- Department of Molecular Pathology and Neuropathology, Medical University of Lodz, Poland
| | - Adelheid Wöhrer
- Institute of Neurology, Medical University of Vienna, Austria
| | | | - Melitta Kitzwögerer
- Department of Pathology, University Hospital of St. Poelten, Karl Landsteiner University of Health Sciences, St. Poelten, Austria
| | - Gerda Ricken
- Institute of Neurology, Medical University of Vienna, Austria
| | - Thomas Ströbel
- Institute of Neurology, Medical University of Vienna, Austria
| | | |
Collapse
|
35
|
Tripathy S, Gangwar R, Supraja P, Rao AVSSN, Vanjari SRK, Singh SG. Graphene Doped Mn2
O3
Nanofibers as a Facile Electroanalytical DNA Point Mutation Detection Platform for Early Diagnosis of Breast/Ovarian Cancer. ELECTROANAL 2018. [DOI: 10.1002/elan.201800220] [Citation(s) in RCA: 22] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Affiliation(s)
| | - Rahul Gangwar
- Indian Institute of Technology; Hyderabad, Telangana India- 502285
| | - Patta Supraja
- Indian Institute of Technology; Hyderabad, Telangana India- 502285
| | | | | | | |
Collapse
|
36
|
Martínez-Treviño DA, León-Cachón RBR, Villarreal-Garza C, Aguilar Y Méndez D, Aguilar-Martínez E, Barrera-Saldaña HA. A novel method to detect the Mexican founder mutation BRCA1 ex9‑12del associated with breast and ovarian cancer using quantitative polymerase chain reaction and TaqMan® probes. Mol Med Rep 2018; 18:1531-1537. [PMID: 29901183 PMCID: PMC6072190 DOI: 10.3892/mmr.2018.9141] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/05/2017] [Accepted: 04/20/2018] [Indexed: 11/06/2022] Open
Abstract
In 2015, according to the National Institute of Statistics and Geography (INEGI), malignant breast tumors were the first cause of cancer fatality in women (6,273 fatalities) in Mexico, whereas 2,793 fatalities in women were due to ovarian cancer. A total of 5–10% of breast cancer and 10–15% of ovarian cancer cases are caused by a hereditary breast-ovarian cancer syndrome, with mutations predominantly identified in the BRCA1 and BRCA2 genes. Recently, the Mexican founder mutation BRCA1 ex9-12del was identified (deletion of exons 9–12 with recombination between introns 8–12). This is the most frequently reported mutation in hereditary breast/ovarian cancer in Mexico. Current detection methods include end-point polymerase chain reaction (PCR) and Multiplex Ligation-dependent Probe Amplification (MLPA). In the present study a cheap, sensitive and fast detection method was developed based on quantitative PCR and two TaqMan® probes, one to detect the deletion (recombination region between introns 8 and 12), and the other one a region from exon 11. With this assay, 90 samples were able to be analyzed in 2 h using 2.5 ng of DNA/reaction at a cost of ~2–3 USD. This method is capable of detecting positive samples for DNA deletion and excluding negative ones. Therefore, the method proposed may be a useful high-throughput diagnostic option that could be useful in future association or prevalence studies that use large populations.
Collapse
Affiliation(s)
- Denisse Aideé Martínez-Treviño
- Center of Molecular Diagnostics and Personalized Medicine, Department of Basic Sciences, Division of Health Sciences, University of Monterrey, San Pedro Garza Garcia, Nuevo Leon 66238, Mexico
| | - Rafael Baltazar Reyes León-Cachón
- Center of Molecular Diagnostics and Personalized Medicine, Department of Basic Sciences, Division of Health Sciences, University of Monterrey, San Pedro Garza Garcia, Nuevo Leon 66238, Mexico
| | - Cynthia Villarreal-Garza
- Breast Cancer Center, Monterrey Institute of Technology and Higher Education, Monterrey, Nuevo Leon 64710, Mexico
| | - Dione Aguilar Y Méndez
- Breast Cancer Center, Monterrey Institute of Technology and Higher Education, Monterrey, Nuevo Leon 64710, Mexico
| | - Elisa Aguilar-Martínez
- Faculty of Biology, Medicine and Health, University of Manchester, M13 9PT Manchester, UK
| | | |
Collapse
|
37
|
Immunohistochemical ATRX expression is not a surrogate for 1p19q codeletion. Brain Tumor Pathol 2018; 35:106-113. [DOI: 10.1007/s10014-018-0312-5] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/23/2018] [Accepted: 03/07/2018] [Indexed: 10/17/2022]
|
38
|
Smrdel U, Popovic M, Zwitter M, Bostjancic E, Zupan A, Kovac V, Glavac D, Bokal D, Jerebic J. Long-term survival in glioblastoma: methyl guanine methyl transferase (MGMT) promoter methylation as independent favourable prognostic factor. Radiol Oncol 2016; 50:394-401. [PMID: 27904447 PMCID: PMC5120572 DOI: 10.1515/raon-2015-0041] [Citation(s) in RCA: 35] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/15/2015] [Accepted: 08/06/2015] [Indexed: 12/28/2022] Open
Abstract
Background In spite of significant improvement after multi-modality treatment, prognosis of most patients with glioblastoma remains poor. Standard clinical prognostic factors (age, gender, extent of surgery and performance status) do not clearly predict long-term survival. The aim of this case-control study was to evaluate immuno-histochemical and genetic characteristics of the tumour as additional prognostic factors in glioblastoma. Patients and methods Long-term survivor group were 40 patients with glioblastoma with survival longer than 30 months. Control group were 40 patients with shorter survival and matched to the long-term survivor group according to the clinical prognostic factors. All patients underwent multimodality treatment with surgery, postoperative conformal radiotherapy and temozolomide during and after radiotherapy. Biopsy samples were tested for the methylation of MGMT promoter (with methylation specific polymerase chain reaction), IDH1 (with immunohistochemistry), IDH2, CDKN2A and CDKN2B (with multiplex ligation-dependent probe amplification), and 1p and 19q mutations (with fluorescent in situ hybridization). Results Methylation of MGMT promoter was found in 95% and in 36% in the long-term survivor and control groups, respectively (p < 0.001). IDH1 R132H mutated patients had a non-significant lower risk of dying from glioblastoma (p = 0.437), in comparison to patients without this mutation. Other mutations were rare, with no significant difference between the two groups. Conclusions Molecular and genetic testing offers additional prognostic and predictive information for patients with glioblastoma. The most important finding of our analysis is that in the absence of MGMT promoter methylation, longterm survival is very rare. For patients without this mutation, alternative treatments should be explored.
Collapse
Affiliation(s)
- Uros Smrdel
- Department of Radiotherapy, Institute of Oncology Ljubljana, Ljubljana, Slovenia
| | - Mara Popovic
- Institute of Pathology, Faculty of Medicine, University of Ljubljana, Slovenia
| | | | - Emanuela Bostjancic
- Department of Molecular Genetics, Institute of Pathology, Faculty of Medicine, University of Ljubljana, Ljubljana, Slovenia
| | - Andrej Zupan
- Department of Molecular Genetics, Institute of Pathology, Faculty of Medicine, University of Ljubljana, Ljubljana, Slovenia
| | - Viljem Kovac
- Department of Radiotherapy, Institute of Oncology Ljubljana, Ljubljana, Slovenia
| | - Damjan Glavac
- Department of Molecular Genetics, Institute of Pathology, Faculty of Medicine, University of Ljubljana, Ljubljana, Slovenia
| | - Drago Bokal
- Department of Mathematics and Computer Science, Faculty of Natural Sciences and Mathematics, University of Maribor, Slovenia
| | - Janja Jerebic
- Department of Mathematics and Computer Science, Faculty of Natural Sciences and Mathematics, University of Maribor, Slovenia
| |
Collapse
|
39
|
Wartenberg M, Centeno I, Haemmig S, Vassella E, Zlobec I, Galván JA, Neuenschwander M, Schlup C, Gloor B, Lugli A, Perren A, Karamitopoulou E. PTEN alterations of the stromal cells characterise an aggressive subpopulation of pancreatic cancer with enhanced metastatic potential. Eur J Cancer 2016; 65:80-90. [PMID: 27475963 DOI: 10.1016/j.ejca.2016.06.013] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/07/2016] [Revised: 06/14/2016] [Accepted: 06/16/2016] [Indexed: 01/27/2023]
Abstract
BACKGROUND Neoplastic stroma is believed to influence tumour progression. Here, we examine phosphatase and tensin homolog deleted on chromosome ten (PTEN) status in the tumour microenvironment of pancreatic ductal adenocarcinoma (PDAC) focussing especially at the stromal cells. METHODS We asses PTEN at protein, messenger RNA and DNA level using a well-characterised PDAC cohort (n = 117). miR-21, known to target PTEN, is assessed after RNA extraction from different laser-capture-microdissected cell populations, including cancer cells and juxta-tumoural and tumour-remote stroma. RESULTS PTEN deletion was the most frequent cause of PTEN protein loss in PDAC cells (71%) and correlated with vascular invasion (p = 0.0176) and decreased overall survival (p = 0.0127). Concomitant PTEN protein loss in tumour and juxta-tumoural stroma, found in 21.4% of PDACs, correlated with increased distant metastasis (p = 0.0045). Stromal cells with PTEN protein loss frequently showed PTEN genetic aberrations, including hemizygous PTEN deletion (46.6%) or chromosome 10 monosomy (40%). No alterations were found in the tumour-remote stroma. miR-21 was overexpressed by cancer- and juxta-tumoural stromal cells, in some cases without simultaneous PTEN gene alterations. No PTEN mutations or promoter methylation were detected. CONCLUSIONS We find various mechanisms of PTEN protein loss in the different tumour cell populations, including allelic PTEN deletions, gross chromosomal 10 aberrations and altered miR-21 expression. PTEN deletion is a major cause of PTEN protein loss in PDAC and correlates with aggressive characteristics and worse outcome. PTEN protein loss in juxta-tumoural stromal cells is mostly due to PTEN haplo-insufficiency and characterises a subgroup of PDACs with enhanced metastatic potential. In the tumour microenvironment of the invasive front, PTEN silencing by miR-21 in cancer and surrounding stromal cells acts not only cooperatively but also independently of the genetic aberrations to precipitate PTEN protein loss and promote further tumour growth.
Collapse
Affiliation(s)
- Martin Wartenberg
- Clinical Pathology Division, Institute of Pathology, University of Bern, Murtenstrasse 31, Bern, CH-3010, Switzerland; Translational Research Unit, Institute of Pathology, University of Bern, Murtenstrasse 31, Bern, CH-3010, Switzerland
| | - Irene Centeno
- Translational Research Unit, Institute of Pathology, University of Bern, Murtenstrasse 31, Bern, CH-3010, Switzerland
| | - Stefan Haemmig
- Molecular Unit, Institute of Pathology, University of Bern, Murtenstrasse 31, Bern, CH-3010, Switzerland
| | - Erik Vassella
- Molecular Unit, Institute of Pathology, University of Bern, Murtenstrasse 31, Bern, CH-3010, Switzerland
| | - Inti Zlobec
- Translational Research Unit, Institute of Pathology, University of Bern, Murtenstrasse 31, Bern, CH-3010, Switzerland
| | - José A Galván
- Translational Research Unit, Institute of Pathology, University of Bern, Murtenstrasse 31, Bern, CH-3010, Switzerland
| | - Maja Neuenschwander
- Molecular Unit, Institute of Pathology, University of Bern, Murtenstrasse 31, Bern, CH-3010, Switzerland
| | - Cornelia Schlup
- Molecular Unit, Institute of Pathology, University of Bern, Murtenstrasse 31, Bern, CH-3010, Switzerland
| | - Beat Gloor
- Department of Visceral Surgery, Insel University Hospital, Freiburgstrasse 4, CH-3010, Bern, Switzerland
| | - Alessandro Lugli
- Clinical Pathology Division, Institute of Pathology, University of Bern, Murtenstrasse 31, Bern, CH-3010, Switzerland; Translational Research Unit, Institute of Pathology, University of Bern, Murtenstrasse 31, Bern, CH-3010, Switzerland
| | - Aurel Perren
- Clinical Pathology Division, Institute of Pathology, University of Bern, Murtenstrasse 31, Bern, CH-3010, Switzerland; Translational Research Unit, Institute of Pathology, University of Bern, Murtenstrasse 31, Bern, CH-3010, Switzerland
| | - Eva Karamitopoulou
- Clinical Pathology Division, Institute of Pathology, University of Bern, Murtenstrasse 31, Bern, CH-3010, Switzerland; Translational Research Unit, Institute of Pathology, University of Bern, Murtenstrasse 31, Bern, CH-3010, Switzerland.
| |
Collapse
|
40
|
Molecular Analysis of Tumor Cell Components in Pilocytic Astrocytomas, Gangliogliomas, and Oligodendrogliomas. Appl Immunohistochem Mol Morphol 2016; 24:496-500. [DOI: 10.1097/pai.0000000000000288] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
|
41
|
Dubbink HJ, Atmodimedjo PN, van Marion R, Krol NMG, Riegman PHJ, Kros JM, van den Bent MJ, Dinjens WNM. Diagnostic Detection of Allelic Losses and Imbalances by Next-Generation Sequencing: 1p/19q Co-Deletion Analysis of Gliomas. J Mol Diagn 2016; 18:775-786. [PMID: 27461031 DOI: 10.1016/j.jmoldx.2016.06.002] [Citation(s) in RCA: 64] [Impact Index Per Article: 7.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/12/2015] [Revised: 05/06/2016] [Accepted: 06/01/2016] [Indexed: 02/05/2023] Open
Abstract
Cancer cells are genomically unstable and accumulate tumor type-specific molecular aberrations, which may represent hallmarks for predicting prognosis and targets for therapy. Co-deletion of chromosomes 1p and 19q marks gliomas with an oligodendroglioma component and predicts a better prognosis and response to chemotherapy. In the current study, we present a novel method to detect chromosome 1p/19q co-deletion or loss of heterozygosity (LOH) in a diagnostic setting, based on single-nucleotide polymorphism (SNP) analysis and next-generation sequencing (NGS). We selected highly polymorphic SNPs distributed evenly over both chromosome arms. To experimentally determine the sensitivity and specificity of targeted SNP analysis, we used DNAs extracted from 49 routine formalin-fixed, paraffin-embedded glioma tissues and compared the outcome with diagnostic microsatellite-based LOH analysis and calculated estimates. We show that targeted SNP analysis by NGS allows reliable detection of 1p and/or 19q deletion in a background of 70% of normal cells according to calculated outcomes, is more sensitive than microsatellite-based LOH analysis, and requires much less DNA. This specific and sensitive SNP assay is broadly applicable for simultaneous allelic imbalance analysis of multiple genomic regions and can be incorporated easily into NGS mutation analyses. The combined mutation and chromosomal imbalance analysis in a single NGS assay is suited perfectly for routine glioma diagnostics and other diagnostic molecular pathology applications.
Collapse
Affiliation(s)
- Hendrikus J Dubbink
- Department of Pathology, Erasmus MC Cancer Institute, University Medical Center Rotterdam, Rotterdam, The Netherlands.
| | - Peggy N Atmodimedjo
- Department of Pathology, Erasmus MC Cancer Institute, University Medical Center Rotterdam, Rotterdam, The Netherlands
| | - Ronald van Marion
- Department of Pathology, Erasmus MC Cancer Institute, University Medical Center Rotterdam, Rotterdam, The Netherlands
| | - Niels M G Krol
- Department of Pathology, Erasmus MC Cancer Institute, University Medical Center Rotterdam, Rotterdam, The Netherlands
| | - Peter H J Riegman
- Department of Pathology, Erasmus MC Cancer Institute, University Medical Center Rotterdam, Rotterdam, The Netherlands
| | - Johan M Kros
- Department of Pathology, Erasmus MC Cancer Institute, University Medical Center Rotterdam, Rotterdam, The Netherlands
| | - Martin J van den Bent
- Department of Neuro-Oncology, Erasmus MC Cancer Institute, University Medical Center Rotterdam, Rotterdam, The Netherlands
| | - Winand N M Dinjens
- Department of Pathology, Erasmus MC Cancer Institute, University Medical Center Rotterdam, Rotterdam, The Netherlands
| |
Collapse
|
42
|
Impact of gross total resection in patients with WHO grade III glioma harboring the IDH 1/2 mutation without the 1p/19q co-deletion. J Neurooncol 2016; 129:505-514. [DOI: 10.1007/s11060-016-2201-2] [Citation(s) in RCA: 71] [Impact Index Per Article: 7.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/09/2016] [Accepted: 07/04/2016] [Indexed: 10/21/2022]
|
43
|
Tumer S, Altungoz O, Bagci O, Olgun HN. The Detection of Genetic Parameters for Prognostic Stratification of Neuroblastoma Using Multiplex Ligation-Dependent Probe Amplification Technique. Genet Test Mol Biomarkers 2016; 20:74-80. [PMID: 26790040 DOI: 10.1089/gtmb.2015.0165] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022] Open
Abstract
BACKGROUND Neuroblastoma (NB) is a neoplasm of the sympathetic nervous system and the most frequent extra cranial solid tumor of early childhood. These tumors display a wide range of clinical behavior and are characterized by complex chromosomal changes, some of which are associated with distinct clinical phenotypes. We investigated the contribution of genetic variables to staging and histology by logistic regression analyses. METHODS We used multiplex ligation-dependent probe amplification (MLPA) to detect segmental genomic imbalances and gene copy number changes in 202 primary NBs. RESULTS Cases with NB were categorized into four distinct groups based on the genomic changes. Group 1 (48 cases, 23.7%) contained tumors with a 1p deletion and/or MYCN gene amplification (MNA). Group 2 included 46 cases (22.8%) with 3p and/or 11q deletions without 1p deletion and MYCN gene amplification. Tumors harboring at least two commonly observed deletions with or without MNA were classified as Group 3 (25 cases, 12.4%). Tumors with chromosomal imbalance other than MYCN gene amplification and 1p, 3p, and 11q deletions were in Group 4 (83 cases, 41.1%). MYCN gene amplification and 17q gain were significant predisposing factors for unfavorable histology. Significant correlations were detected between 1p deletion and MYCN gene amplification; 3p and 11q deletions; and 11q deletion and 17q gain. CONCLUSION MLPA can be used effectively to simultaneously detect multiple genomic imbalances and these changes can be utilized to classify neuroblastomas by prognostic subtypes. The genetic changes detected in NB in this study and their associations with clinical characteristics are in line with previously published reports.
Collapse
Affiliation(s)
- Sait Tumer
- 1 Department of Medical Biology and Genetics, School of Medicine, Dokuz Eylul University , Izmir, Turkey .,2 Acibadem Genetic Diagnosis Center , Istanbul, Turkey
| | - Oguz Altungoz
- 1 Department of Medical Biology and Genetics, School of Medicine, Dokuz Eylul University , Izmir, Turkey
| | - Ozkan Bagci
- 1 Department of Medical Biology and Genetics, School of Medicine, Dokuz Eylul University , Izmir, Turkey .,3 Department of Medical Genetics, School of Medicine, Suleyman Demirel University , Isparta, Turkey
| | - H Nur Olgun
- 4 Department of Pediatric Oncology, School of Medicine, Dokuz Eylul University , Izmir, Turkey
| |
Collapse
|
44
|
Detection of MDM2/CDK4 amplification in lipomatous soft tissue tumors from formalin-fixed, paraffin-embedded tissue: comparison of multiplex ligation-dependent probe amplification (MLPA) and fluorescence in situ hybridization (FISH). Appl Immunohistochem Mol Morphol 2015; 23:126-33. [PMID: 25679065 DOI: 10.1097/pdm.0000000000000041] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/08/2023]
Abstract
In this study, the detection of MDM2 and CDK4 amplification was evaluated in lipomatous soft tissue tumors using multiplex ligation-dependent probe amplification (MLPA), a PCR-based technique, in comparison with fluorescence in situ hybridization (FISH). These 2 techniques were evaluated in a series of 77 formalin-fixed, paraffin-embedded lipomatous tumors (27 benign adipose tumors, 28 atypical lipomatous tumors/well-differentiated liposarcomas, 18 dedifferentiated liposarcomas, and 4 pleomorphic liposarcomas). Using MLPA, with a cut-off ratio of >2, 36/71 samples (22 atypical lipomatous tumors/well-differentiated liposarcomas, and 14 dedifferentiated liposarcomas) showed MDM2 and CDK4 amplification. Using FISH as gold standard, MLPA showed a sensitivity of 90% (36/40) and a specificity of 100% (31/31) in detecting amplification of MDM2 and CDK4 in lipomatous soft tissue tumors. In case of high-level amplification (MDM2-CDK4/CEP12 ratio >5), concordance was 100%. Four cases of atypical lipomatous tumor/well-differentiated liposarcoma (4/26, 15%) with a low MDM2 and CDK4 amplification level (MDM2-CDK4/CEP12 ratio ranging between 2 and 2.5) detected by FISH showed no amplification by MLPA, although gain of MDM2 and CDK4 (ratios ranging between 1.6 and 1.9) was seen with MLPA. No amplification was detected in benign lipomatous tumors and pleomorphic liposarcomas. Furthermore, there was a very high concordance between the ratios obtained by FISH and MLPA. In conclusion, MLPA proves to be an appropriate and straightforward technique for screening MDM2/CDK4 amplification in lipomatous tumors, especially when a correct cut-off value and reference samples are chosen, and could be considered a good alternative to FISH to determine MDM2 and CDK4 amplification in liposarcomas. Moreover, because MLPA, as a multiplex technique, allows simultaneous detection of multiple chromosomal changes of interest, it could be in the future a very reliable and fast molecular analysis on paraffin-embedded material to test for other diagnostically, prognostically, or therapeutically relevant genomic mutations in lipomatous tumors.
Collapse
|
45
|
Woehrer A, Hainfellner JA. Molecular diagnostics: techniques and recommendations for 1p/19q assessment. CNS Oncol 2015; 4:295-306. [PMID: 26545171 DOI: 10.2217/cns.15.28] [Citation(s) in RCA: 30] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/29/2023] Open
Abstract
Several morphology- and polymerase chain reaction (PCR)-based methods for chromosome 1p 19q deletion status assessment are available. Important prerequisites for all molecular techniques concern tissue quality and selection of regions of interest. The most common methods for diagnostic 1p 19q assessment are fluorescence in situ hybridization and PCR-based microsatellite analysis. While the latter requires the use of autologous blood samples, more advanced techniques such as array comparative genomic hybridization, multiplex ligation-dependent probe amplification or real-time PCR are independent from autologous DNA samples. However, due to high technical demand and experience required their applicability as diagnostic tests remains to be shown. On the other hand, chromogenic in situ hybridization evolves as attractive alternative to FISH. Herein, the available test methods are reviewed and outlined, their advantages and drawbacks being discussed in detail.
Collapse
Affiliation(s)
- Adelheid Woehrer
- Institute of Neurology, Medical University of Vienna, Währinger Gürtel 18-20, 1090 Vienna, Austria
| | - Johannes A Hainfellner
- Institute of Neurology, Medical University of Vienna, Währinger Gürtel 18-20, 1090 Vienna, Austria
| |
Collapse
|
46
|
Oligodendroglioma: pathology, molecular mechanisms and markers. Acta Neuropathol 2015; 129:809-27. [PMID: 25943885 PMCID: PMC4436696 DOI: 10.1007/s00401-015-1424-1] [Citation(s) in RCA: 123] [Impact Index Per Article: 12.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/12/2015] [Revised: 04/08/2015] [Accepted: 04/10/2015] [Indexed: 02/07/2023]
Abstract
For nearly a century, the diagnosis and grading of oligodendrogliomas and oligoastrocytomas has been based on histopathology alone. Roughly 20 years ago, the first glioma-associated molecular signature was found with complete chromosome 1p and 19q codeletion being particularly common in histologically classic oligodendrogliomas. Subsequently, this codeletion appeared to not only carry diagnostic, but also prognostic and predictive information, the latter aspect only recently resolved after carefully constructed clinical trials with very long follow-up times. More recently described biomarkers, including the non-balanced translocation leading to 1p/19q codeletion, promoter hypermethylation of the MGMT gene, mutations of the IDH1 or IDH2 gene, and mutations of FUBP1 (on 1p) or CIC (on 19q), have greatly enhanced our understanding of oligodendroglioma biology, although their diagnostic, prognostic, and predictive roles are less clear. It has therefore been suggested that complete 1p/19q codeletion be required for the diagnosis of 'canonical oligodendroglioma'. This transition to an integrated morphological and molecular diagnosis may result in the disappearance of oligoastrocytoma as an entity, but brings new challenges as well. For instance it needs to be sorted out how (histopathological) criteria for grading of 'canonical oligodendrogliomas' should be adapted, how pediatric oligodendrogliomas (known to lack codeletions) should be defined, which platforms and cut-off levels should ideally be used for demonstration of particular molecular aberrations, and how the diagnosis of oligodendroglioma should be made in centers/countries where molecular diagnostics is not available. Meanwhile, smart integration of morphological and molecular information will lead to recognition of biologically much more uniform groups within the spectrum of diffuse gliomas and thereby facilitate tailored treatments for individual patients.
Collapse
|
47
|
The use of a two-tiered testing strategy for the simultaneous detection of small EGFR mutations and EGFR amplification in lung cancer. PLoS One 2015; 10:e0117983. [PMID: 25719557 PMCID: PMC4342230 DOI: 10.1371/journal.pone.0117983] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/16/2014] [Accepted: 01/05/2015] [Indexed: 01/18/2023] Open
Abstract
Lung cancer is the leading cause of cancer-related death worldwide. Recent progress in lung cancer diagnosis and treatment has been achieved due to a better understanding the molecular mechanisms of the disease and the identification of biomarkers that allow more specific cancer treatments. One of the best known examples of personalized therapy is the use of tyrosine kinase inhibitors, such as gefitinib and erlotinib, for the successful treatment of non-small-cell lung cancer patients selected based on the specific EGFR mutations. Therefore, the reliable detection of mutations is critical for the application of appropriate therapy. In this study, we tested a two-tiered mutation detection strategy using real-time PCR assays as a well-validated high-sensitivity method and multiplex ligation-dependent probe amplification (MLPA)-based EGFRmut+ assay as a second-tier standard-sensitivity method. One additional advantage of the applied MLPA method is that it allows the simultaneous detection of EGFR mutations and copy-number alterations (i.e., amplifications) in EGFR, MET and ERBB2. Our analysis showed high concordance between these two methods. With the use of this two-tier strategy, we reliably determined the frequency of EGFR mutations and EGFR, MET and ERBB2 amplifications in over 200 lung cancer samples. Additionally, taking advantage of simultaneous copy number and small mutation analyses, we showed a very strong correlation between EGFR mutations and EGFR amplifications and a mutual exclusiveness of EGFR mutations/amplifications with MET and ERBB2 amplifications. Our results proved the reliability and usefulness of the two-tiered EGFR testing strategy.
Collapse
|
48
|
Molenaar RJ, Verbaan D, Lamba S, Zanon C, Jeuken JWM, Boots-Sprenger SHE, Wesseling P, Hulsebos TJM, Troost D, van Tilborg AA, Leenstra S, Vandertop WP, Bardelli A, van Noorden CJF, Bleeker FE. The combination of IDH1 mutations and MGMT methylation status predicts survival in glioblastoma better than either IDH1 or MGMT alone. Neuro Oncol 2014; 16:1263-73. [PMID: 24510240 PMCID: PMC4136888 DOI: 10.1093/neuonc/nou005] [Citation(s) in RCA: 146] [Impact Index Per Article: 13.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/24/2013] [Accepted: 01/10/2014] [Indexed: 12/21/2022] Open
Abstract
BACKGROUND Genetic and epigenetic profiling of glioblastomas has provided a comprehensive list of altered cancer genes of which only O(6)-methylguanine-methyltransferase (MGMT) methylation is used thus far as a predictive marker in a clinical setting. We investigated the prognostic significance of genetic and epigenetic alterations in glioblastoma patients. METHODS We screened 98 human glioblastoma samples for genetic and epigenetic alterations in 10 genes and chromosomal loci by PCR and multiplex ligation-dependent probe amplification (MLPA). We tested the association between these genetic and epigenetic alterations and glioblastoma patient survival. Subsequently, we developed a 2-gene survival predictor. RESULTS Multivariate analyses revealed that mutations in isocitrate dehydrogenase 1 (IDH1), promoter methylation of MGMT, irradiation dosage, and Karnofsky Performance Status (KFS) were independent prognostic factors. A 2-gene predictor for glioblastoma survival was generated. Based on the genetic and epigenetic status of IDH1 and MGMT, glioblastoma patients were stratified into 3 clinically different genotypes: glioblastoma patients with IDH1mt/MGMTmet had the longest survival, followed by patients with IDH1mt/MGMTunmet or IDH1wt/MGMTmet, and patients with IDH1wt/MGMTunmet had the shortest survival. This 2-gene predictor was an independent prognostic factor and performed significantly better in predicting survival than either IDH1 mutations or MGMT methylation alone. The predictor was validated in 3 external datasets. DISCUSSION The combination of IDH1 mutations and MGMT methylation outperforms either IDH1 mutations or MGMT methylation alone in predicting survival of glioblastoma patients. This information will help to increase our understanding of glioblastoma biology, and it may be helpful for baseline comparisons in future clinical trials.
Collapse
Affiliation(s)
- Remco J Molenaar
- Department of Cell Biology and Histology, Academic Medical Center, University of Amsterdam, Amsterdam, The Netherlands (R.J.M., C.J.F.v.N.); Neurosurgical Center Amsterdam, Academic Medical Center, Amsterdam, The Netherlands (F.E.B., D.V., W.P.V.); Laboratory of Molecular Genetics, The Oncogenomics Center, Institute for Cancer Research and Treatment, University of Torino Medical School, Candiolo, Italy (S.La., C.Z., A.B., F.E.B.); Department of Pathology, Radboud University Medical Center Nijmegen, Nijmegen, The Netherlands (J.W.M.J., S.H.E.B.-S., P.W.); Department of Pathology, VU University Medical Center, Amsterdam, The Netherlands (P.W.); Department of Neurogenetics, Academic Medical Center, University of Amsterdam, Amsterdam, The Netherlands (T.J.M.H.); Department of Neuropathology, Academic Medical Center, University of Amsterdam, Amsterdam, The Netherlands (D.T., A.A.v.T.); Neurosurgical Center Amsterdam, VU University Medical Center, Amsterdam, The Netherlands (W.P.V.); Department of Neurosurgery, St. Elisabeth Hospital Tilburg, The Netherlands (S.Le.); Department of Neurosurgery, Erasmus Medical Center, Rotterdam, The Netherlands (S.Le.); FIRC Institute of Molecular Oncology, Milan, Italy (A.B.)Present affiliation: Department of Clinical Genetics, Academic Medical Center and University of Amsterdam, Meibergdreef 9, 1105 AZ Amsterdam, The Netherlands (F.E.B.); Department of Pathology, Radboud University Medical Center Nijmegen, Geert Grooteplein-Zuid 10, 6525 GA Nijmegen, The Netherlands (A.A.v.T.); Department of Neurology, Radboud University Medical Centre Nijmegen, Geert Grooteplein-Zuid 10, 6525 GA Nijmegen, The Netherlands (S.H.E.B.-S.); Department of Pathology, Stichting PAMM, Michelangelolaan 2, 5623 EJ Eindhoven, The Netherlands (J.W.M.J.)
| | - Dagmar Verbaan
- Department of Cell Biology and Histology, Academic Medical Center, University of Amsterdam, Amsterdam, The Netherlands (R.J.M., C.J.F.v.N.); Neurosurgical Center Amsterdam, Academic Medical Center, Amsterdam, The Netherlands (F.E.B., D.V., W.P.V.); Laboratory of Molecular Genetics, The Oncogenomics Center, Institute for Cancer Research and Treatment, University of Torino Medical School, Candiolo, Italy (S.La., C.Z., A.B., F.E.B.); Department of Pathology, Radboud University Medical Center Nijmegen, Nijmegen, The Netherlands (J.W.M.J., S.H.E.B.-S., P.W.); Department of Pathology, VU University Medical Center, Amsterdam, The Netherlands (P.W.); Department of Neurogenetics, Academic Medical Center, University of Amsterdam, Amsterdam, The Netherlands (T.J.M.H.); Department of Neuropathology, Academic Medical Center, University of Amsterdam, Amsterdam, The Netherlands (D.T., A.A.v.T.); Neurosurgical Center Amsterdam, VU University Medical Center, Amsterdam, The Netherlands (W.P.V.); Department of Neurosurgery, St. Elisabeth Hospital Tilburg, The Netherlands (S.Le.); Department of Neurosurgery, Erasmus Medical Center, Rotterdam, The Netherlands (S.Le.); FIRC Institute of Molecular Oncology, Milan, Italy (A.B.)Present affiliation: Department of Clinical Genetics, Academic Medical Center and University of Amsterdam, Meibergdreef 9, 1105 AZ Amsterdam, The Netherlands (F.E.B.); Department of Pathology, Radboud University Medical Center Nijmegen, Geert Grooteplein-Zuid 10, 6525 GA Nijmegen, The Netherlands (A.A.v.T.); Department of Neurology, Radboud University Medical Centre Nijmegen, Geert Grooteplein-Zuid 10, 6525 GA Nijmegen, The Netherlands (S.H.E.B.-S.); Department of Pathology, Stichting PAMM, Michelangelolaan 2, 5623 EJ Eindhoven, The Netherlands (J.W.M.J.)
| | - Simona Lamba
- Department of Cell Biology and Histology, Academic Medical Center, University of Amsterdam, Amsterdam, The Netherlands (R.J.M., C.J.F.v.N.); Neurosurgical Center Amsterdam, Academic Medical Center, Amsterdam, The Netherlands (F.E.B., D.V., W.P.V.); Laboratory of Molecular Genetics, The Oncogenomics Center, Institute for Cancer Research and Treatment, University of Torino Medical School, Candiolo, Italy (S.La., C.Z., A.B., F.E.B.); Department of Pathology, Radboud University Medical Center Nijmegen, Nijmegen, The Netherlands (J.W.M.J., S.H.E.B.-S., P.W.); Department of Pathology, VU University Medical Center, Amsterdam, The Netherlands (P.W.); Department of Neurogenetics, Academic Medical Center, University of Amsterdam, Amsterdam, The Netherlands (T.J.M.H.); Department of Neuropathology, Academic Medical Center, University of Amsterdam, Amsterdam, The Netherlands (D.T., A.A.v.T.); Neurosurgical Center Amsterdam, VU University Medical Center, Amsterdam, The Netherlands (W.P.V.); Department of Neurosurgery, St. Elisabeth Hospital Tilburg, The Netherlands (S.Le.); Department of Neurosurgery, Erasmus Medical Center, Rotterdam, The Netherlands (S.Le.); FIRC Institute of Molecular Oncology, Milan, Italy (A.B.)Present affiliation: Department of Clinical Genetics, Academic Medical Center and University of Amsterdam, Meibergdreef 9, 1105 AZ Amsterdam, The Netherlands (F.E.B.); Department of Pathology, Radboud University Medical Center Nijmegen, Geert Grooteplein-Zuid 10, 6525 GA Nijmegen, The Netherlands (A.A.v.T.); Department of Neurology, Radboud University Medical Centre Nijmegen, Geert Grooteplein-Zuid 10, 6525 GA Nijmegen, The Netherlands (S.H.E.B.-S.); Department of Pathology, Stichting PAMM, Michelangelolaan 2, 5623 EJ Eindhoven, The Netherlands (J.W.M.J.)
| | - Carlo Zanon
- Department of Cell Biology and Histology, Academic Medical Center, University of Amsterdam, Amsterdam, The Netherlands (R.J.M., C.J.F.v.N.); Neurosurgical Center Amsterdam, Academic Medical Center, Amsterdam, The Netherlands (F.E.B., D.V., W.P.V.); Laboratory of Molecular Genetics, The Oncogenomics Center, Institute for Cancer Research and Treatment, University of Torino Medical School, Candiolo, Italy (S.La., C.Z., A.B., F.E.B.); Department of Pathology, Radboud University Medical Center Nijmegen, Nijmegen, The Netherlands (J.W.M.J., S.H.E.B.-S., P.W.); Department of Pathology, VU University Medical Center, Amsterdam, The Netherlands (P.W.); Department of Neurogenetics, Academic Medical Center, University of Amsterdam, Amsterdam, The Netherlands (T.J.M.H.); Department of Neuropathology, Academic Medical Center, University of Amsterdam, Amsterdam, The Netherlands (D.T., A.A.v.T.); Neurosurgical Center Amsterdam, VU University Medical Center, Amsterdam, The Netherlands (W.P.V.); Department of Neurosurgery, St. Elisabeth Hospital Tilburg, The Netherlands (S.Le.); Department of Neurosurgery, Erasmus Medical Center, Rotterdam, The Netherlands (S.Le.); FIRC Institute of Molecular Oncology, Milan, Italy (A.B.)Present affiliation: Department of Clinical Genetics, Academic Medical Center and University of Amsterdam, Meibergdreef 9, 1105 AZ Amsterdam, The Netherlands (F.E.B.); Department of Pathology, Radboud University Medical Center Nijmegen, Geert Grooteplein-Zuid 10, 6525 GA Nijmegen, The Netherlands (A.A.v.T.); Department of Neurology, Radboud University Medical Centre Nijmegen, Geert Grooteplein-Zuid 10, 6525 GA Nijmegen, The Netherlands (S.H.E.B.-S.); Department of Pathology, Stichting PAMM, Michelangelolaan 2, 5623 EJ Eindhoven, The Netherlands (J.W.M.J.)
| | - Judith W M Jeuken
- Department of Cell Biology and Histology, Academic Medical Center, University of Amsterdam, Amsterdam, The Netherlands (R.J.M., C.J.F.v.N.); Neurosurgical Center Amsterdam, Academic Medical Center, Amsterdam, The Netherlands (F.E.B., D.V., W.P.V.); Laboratory of Molecular Genetics, The Oncogenomics Center, Institute for Cancer Research and Treatment, University of Torino Medical School, Candiolo, Italy (S.La., C.Z., A.B., F.E.B.); Department of Pathology, Radboud University Medical Center Nijmegen, Nijmegen, The Netherlands (J.W.M.J., S.H.E.B.-S., P.W.); Department of Pathology, VU University Medical Center, Amsterdam, The Netherlands (P.W.); Department of Neurogenetics, Academic Medical Center, University of Amsterdam, Amsterdam, The Netherlands (T.J.M.H.); Department of Neuropathology, Academic Medical Center, University of Amsterdam, Amsterdam, The Netherlands (D.T., A.A.v.T.); Neurosurgical Center Amsterdam, VU University Medical Center, Amsterdam, The Netherlands (W.P.V.); Department of Neurosurgery, St. Elisabeth Hospital Tilburg, The Netherlands (S.Le.); Department of Neurosurgery, Erasmus Medical Center, Rotterdam, The Netherlands (S.Le.); FIRC Institute of Molecular Oncology, Milan, Italy (A.B.)Present affiliation: Department of Clinical Genetics, Academic Medical Center and University of Amsterdam, Meibergdreef 9, 1105 AZ Amsterdam, The Netherlands (F.E.B.); Department of Pathology, Radboud University Medical Center Nijmegen, Geert Grooteplein-Zuid 10, 6525 GA Nijmegen, The Netherlands (A.A.v.T.); Department of Neurology, Radboud University Medical Centre Nijmegen, Geert Grooteplein-Zuid 10, 6525 GA Nijmegen, The Netherlands (S.H.E.B.-S.); Department of Pathology, Stichting PAMM, Michelangelolaan 2, 5623 EJ Eindhoven, The Netherlands (J.W.M.J.)
| | - Sandra H E Boots-Sprenger
- Department of Cell Biology and Histology, Academic Medical Center, University of Amsterdam, Amsterdam, The Netherlands (R.J.M., C.J.F.v.N.); Neurosurgical Center Amsterdam, Academic Medical Center, Amsterdam, The Netherlands (F.E.B., D.V., W.P.V.); Laboratory of Molecular Genetics, The Oncogenomics Center, Institute for Cancer Research and Treatment, University of Torino Medical School, Candiolo, Italy (S.La., C.Z., A.B., F.E.B.); Department of Pathology, Radboud University Medical Center Nijmegen, Nijmegen, The Netherlands (J.W.M.J., S.H.E.B.-S., P.W.); Department of Pathology, VU University Medical Center, Amsterdam, The Netherlands (P.W.); Department of Neurogenetics, Academic Medical Center, University of Amsterdam, Amsterdam, The Netherlands (T.J.M.H.); Department of Neuropathology, Academic Medical Center, University of Amsterdam, Amsterdam, The Netherlands (D.T., A.A.v.T.); Neurosurgical Center Amsterdam, VU University Medical Center, Amsterdam, The Netherlands (W.P.V.); Department of Neurosurgery, St. Elisabeth Hospital Tilburg, The Netherlands (S.Le.); Department of Neurosurgery, Erasmus Medical Center, Rotterdam, The Netherlands (S.Le.); FIRC Institute of Molecular Oncology, Milan, Italy (A.B.)Present affiliation: Department of Clinical Genetics, Academic Medical Center and University of Amsterdam, Meibergdreef 9, 1105 AZ Amsterdam, The Netherlands (F.E.B.); Department of Pathology, Radboud University Medical Center Nijmegen, Geert Grooteplein-Zuid 10, 6525 GA Nijmegen, The Netherlands (A.A.v.T.); Department of Neurology, Radboud University Medical Centre Nijmegen, Geert Grooteplein-Zuid 10, 6525 GA Nijmegen, The Netherlands (S.H.E.B.-S.); Department of Pathology, Stichting PAMM, Michelangelolaan 2, 5623 EJ Eindhoven, The Netherlands (J.W.M.J.)
| | - Pieter Wesseling
- Department of Cell Biology and Histology, Academic Medical Center, University of Amsterdam, Amsterdam, The Netherlands (R.J.M., C.J.F.v.N.); Neurosurgical Center Amsterdam, Academic Medical Center, Amsterdam, The Netherlands (F.E.B., D.V., W.P.V.); Laboratory of Molecular Genetics, The Oncogenomics Center, Institute for Cancer Research and Treatment, University of Torino Medical School, Candiolo, Italy (S.La., C.Z., A.B., F.E.B.); Department of Pathology, Radboud University Medical Center Nijmegen, Nijmegen, The Netherlands (J.W.M.J., S.H.E.B.-S., P.W.); Department of Pathology, VU University Medical Center, Amsterdam, The Netherlands (P.W.); Department of Neurogenetics, Academic Medical Center, University of Amsterdam, Amsterdam, The Netherlands (T.J.M.H.); Department of Neuropathology, Academic Medical Center, University of Amsterdam, Amsterdam, The Netherlands (D.T., A.A.v.T.); Neurosurgical Center Amsterdam, VU University Medical Center, Amsterdam, The Netherlands (W.P.V.); Department of Neurosurgery, St. Elisabeth Hospital Tilburg, The Netherlands (S.Le.); Department of Neurosurgery, Erasmus Medical Center, Rotterdam, The Netherlands (S.Le.); FIRC Institute of Molecular Oncology, Milan, Italy (A.B.)Present affiliation: Department of Clinical Genetics, Academic Medical Center and University of Amsterdam, Meibergdreef 9, 1105 AZ Amsterdam, The Netherlands (F.E.B.); Department of Pathology, Radboud University Medical Center Nijmegen, Geert Grooteplein-Zuid 10, 6525 GA Nijmegen, The Netherlands (A.A.v.T.); Department of Neurology, Radboud University Medical Centre Nijmegen, Geert Grooteplein-Zuid 10, 6525 GA Nijmegen, The Netherlands (S.H.E.B.-S.); Department of Pathology, Stichting PAMM, Michelangelolaan 2, 5623 EJ Eindhoven, The Netherlands (J.W.M.J.)
| | - Theo J M Hulsebos
- Department of Cell Biology and Histology, Academic Medical Center, University of Amsterdam, Amsterdam, The Netherlands (R.J.M., C.J.F.v.N.); Neurosurgical Center Amsterdam, Academic Medical Center, Amsterdam, The Netherlands (F.E.B., D.V., W.P.V.); Laboratory of Molecular Genetics, The Oncogenomics Center, Institute for Cancer Research and Treatment, University of Torino Medical School, Candiolo, Italy (S.La., C.Z., A.B., F.E.B.); Department of Pathology, Radboud University Medical Center Nijmegen, Nijmegen, The Netherlands (J.W.M.J., S.H.E.B.-S., P.W.); Department of Pathology, VU University Medical Center, Amsterdam, The Netherlands (P.W.); Department of Neurogenetics, Academic Medical Center, University of Amsterdam, Amsterdam, The Netherlands (T.J.M.H.); Department of Neuropathology, Academic Medical Center, University of Amsterdam, Amsterdam, The Netherlands (D.T., A.A.v.T.); Neurosurgical Center Amsterdam, VU University Medical Center, Amsterdam, The Netherlands (W.P.V.); Department of Neurosurgery, St. Elisabeth Hospital Tilburg, The Netherlands (S.Le.); Department of Neurosurgery, Erasmus Medical Center, Rotterdam, The Netherlands (S.Le.); FIRC Institute of Molecular Oncology, Milan, Italy (A.B.)Present affiliation: Department of Clinical Genetics, Academic Medical Center and University of Amsterdam, Meibergdreef 9, 1105 AZ Amsterdam, The Netherlands (F.E.B.); Department of Pathology, Radboud University Medical Center Nijmegen, Geert Grooteplein-Zuid 10, 6525 GA Nijmegen, The Netherlands (A.A.v.T.); Department of Neurology, Radboud University Medical Centre Nijmegen, Geert Grooteplein-Zuid 10, 6525 GA Nijmegen, The Netherlands (S.H.E.B.-S.); Department of Pathology, Stichting PAMM, Michelangelolaan 2, 5623 EJ Eindhoven, The Netherlands (J.W.M.J.)
| | - Dirk Troost
- Department of Cell Biology and Histology, Academic Medical Center, University of Amsterdam, Amsterdam, The Netherlands (R.J.M., C.J.F.v.N.); Neurosurgical Center Amsterdam, Academic Medical Center, Amsterdam, The Netherlands (F.E.B., D.V., W.P.V.); Laboratory of Molecular Genetics, The Oncogenomics Center, Institute for Cancer Research and Treatment, University of Torino Medical School, Candiolo, Italy (S.La., C.Z., A.B., F.E.B.); Department of Pathology, Radboud University Medical Center Nijmegen, Nijmegen, The Netherlands (J.W.M.J., S.H.E.B.-S., P.W.); Department of Pathology, VU University Medical Center, Amsterdam, The Netherlands (P.W.); Department of Neurogenetics, Academic Medical Center, University of Amsterdam, Amsterdam, The Netherlands (T.J.M.H.); Department of Neuropathology, Academic Medical Center, University of Amsterdam, Amsterdam, The Netherlands (D.T., A.A.v.T.); Neurosurgical Center Amsterdam, VU University Medical Center, Amsterdam, The Netherlands (W.P.V.); Department of Neurosurgery, St. Elisabeth Hospital Tilburg, The Netherlands (S.Le.); Department of Neurosurgery, Erasmus Medical Center, Rotterdam, The Netherlands (S.Le.); FIRC Institute of Molecular Oncology, Milan, Italy (A.B.)Present affiliation: Department of Clinical Genetics, Academic Medical Center and University of Amsterdam, Meibergdreef 9, 1105 AZ Amsterdam, The Netherlands (F.E.B.); Department of Pathology, Radboud University Medical Center Nijmegen, Geert Grooteplein-Zuid 10, 6525 GA Nijmegen, The Netherlands (A.A.v.T.); Department of Neurology, Radboud University Medical Centre Nijmegen, Geert Grooteplein-Zuid 10, 6525 GA Nijmegen, The Netherlands (S.H.E.B.-S.); Department of Pathology, Stichting PAMM, Michelangelolaan 2, 5623 EJ Eindhoven, The Netherlands (J.W.M.J.)
| | - Angela A van Tilborg
- Department of Cell Biology and Histology, Academic Medical Center, University of Amsterdam, Amsterdam, The Netherlands (R.J.M., C.J.F.v.N.); Neurosurgical Center Amsterdam, Academic Medical Center, Amsterdam, The Netherlands (F.E.B., D.V., W.P.V.); Laboratory of Molecular Genetics, The Oncogenomics Center, Institute for Cancer Research and Treatment, University of Torino Medical School, Candiolo, Italy (S.La., C.Z., A.B., F.E.B.); Department of Pathology, Radboud University Medical Center Nijmegen, Nijmegen, The Netherlands (J.W.M.J., S.H.E.B.-S., P.W.); Department of Pathology, VU University Medical Center, Amsterdam, The Netherlands (P.W.); Department of Neurogenetics, Academic Medical Center, University of Amsterdam, Amsterdam, The Netherlands (T.J.M.H.); Department of Neuropathology, Academic Medical Center, University of Amsterdam, Amsterdam, The Netherlands (D.T., A.A.v.T.); Neurosurgical Center Amsterdam, VU University Medical Center, Amsterdam, The Netherlands (W.P.V.); Department of Neurosurgery, St. Elisabeth Hospital Tilburg, The Netherlands (S.Le.); Department of Neurosurgery, Erasmus Medical Center, Rotterdam, The Netherlands (S.Le.); FIRC Institute of Molecular Oncology, Milan, Italy (A.B.)Present affiliation: Department of Clinical Genetics, Academic Medical Center and University of Amsterdam, Meibergdreef 9, 1105 AZ Amsterdam, The Netherlands (F.E.B.); Department of Pathology, Radboud University Medical Center Nijmegen, Geert Grooteplein-Zuid 10, 6525 GA Nijmegen, The Netherlands (A.A.v.T.); Department of Neurology, Radboud University Medical Centre Nijmegen, Geert Grooteplein-Zuid 10, 6525 GA Nijmegen, The Netherlands (S.H.E.B.-S.); Department of Pathology, Stichting PAMM, Michelangelolaan 2, 5623 EJ Eindhoven, The Netherlands (J.W.M.J.)
| | - Sieger Leenstra
- Department of Cell Biology and Histology, Academic Medical Center, University of Amsterdam, Amsterdam, The Netherlands (R.J.M., C.J.F.v.N.); Neurosurgical Center Amsterdam, Academic Medical Center, Amsterdam, The Netherlands (F.E.B., D.V., W.P.V.); Laboratory of Molecular Genetics, The Oncogenomics Center, Institute for Cancer Research and Treatment, University of Torino Medical School, Candiolo, Italy (S.La., C.Z., A.B., F.E.B.); Department of Pathology, Radboud University Medical Center Nijmegen, Nijmegen, The Netherlands (J.W.M.J., S.H.E.B.-S., P.W.); Department of Pathology, VU University Medical Center, Amsterdam, The Netherlands (P.W.); Department of Neurogenetics, Academic Medical Center, University of Amsterdam, Amsterdam, The Netherlands (T.J.M.H.); Department of Neuropathology, Academic Medical Center, University of Amsterdam, Amsterdam, The Netherlands (D.T., A.A.v.T.); Neurosurgical Center Amsterdam, VU University Medical Center, Amsterdam, The Netherlands (W.P.V.); Department of Neurosurgery, St. Elisabeth Hospital Tilburg, The Netherlands (S.Le.); Department of Neurosurgery, Erasmus Medical Center, Rotterdam, The Netherlands (S.Le.); FIRC Institute of Molecular Oncology, Milan, Italy (A.B.)Present affiliation: Department of Clinical Genetics, Academic Medical Center and University of Amsterdam, Meibergdreef 9, 1105 AZ Amsterdam, The Netherlands (F.E.B.); Department of Pathology, Radboud University Medical Center Nijmegen, Geert Grooteplein-Zuid 10, 6525 GA Nijmegen, The Netherlands (A.A.v.T.); Department of Neurology, Radboud University Medical Centre Nijmegen, Geert Grooteplein-Zuid 10, 6525 GA Nijmegen, The Netherlands (S.H.E.B.-S.); Department of Pathology, Stichting PAMM, Michelangelolaan 2, 5623 EJ Eindhoven, The Netherlands (J.W.M.J.)
| | - W Peter Vandertop
- Department of Cell Biology and Histology, Academic Medical Center, University of Amsterdam, Amsterdam, The Netherlands (R.J.M., C.J.F.v.N.); Neurosurgical Center Amsterdam, Academic Medical Center, Amsterdam, The Netherlands (F.E.B., D.V., W.P.V.); Laboratory of Molecular Genetics, The Oncogenomics Center, Institute for Cancer Research and Treatment, University of Torino Medical School, Candiolo, Italy (S.La., C.Z., A.B., F.E.B.); Department of Pathology, Radboud University Medical Center Nijmegen, Nijmegen, The Netherlands (J.W.M.J., S.H.E.B.-S., P.W.); Department of Pathology, VU University Medical Center, Amsterdam, The Netherlands (P.W.); Department of Neurogenetics, Academic Medical Center, University of Amsterdam, Amsterdam, The Netherlands (T.J.M.H.); Department of Neuropathology, Academic Medical Center, University of Amsterdam, Amsterdam, The Netherlands (D.T., A.A.v.T.); Neurosurgical Center Amsterdam, VU University Medical Center, Amsterdam, The Netherlands (W.P.V.); Department of Neurosurgery, St. Elisabeth Hospital Tilburg, The Netherlands (S.Le.); Department of Neurosurgery, Erasmus Medical Center, Rotterdam, The Netherlands (S.Le.); FIRC Institute of Molecular Oncology, Milan, Italy (A.B.)Present affiliation: Department of Clinical Genetics, Academic Medical Center and University of Amsterdam, Meibergdreef 9, 1105 AZ Amsterdam, The Netherlands (F.E.B.); Department of Pathology, Radboud University Medical Center Nijmegen, Geert Grooteplein-Zuid 10, 6525 GA Nijmegen, The Netherlands (A.A.v.T.); Department of Neurology, Radboud University Medical Centre Nijmegen, Geert Grooteplein-Zuid 10, 6525 GA Nijmegen, The Netherlands (S.H.E.B.-S.); Department of Pathology, Stichting PAMM, Michelangelolaan 2, 5623 EJ Eindhoven, The Netherlands (J.W.M.J.)
| | - Alberto Bardelli
- Department of Cell Biology and Histology, Academic Medical Center, University of Amsterdam, Amsterdam, The Netherlands (R.J.M., C.J.F.v.N.); Neurosurgical Center Amsterdam, Academic Medical Center, Amsterdam, The Netherlands (F.E.B., D.V., W.P.V.); Laboratory of Molecular Genetics, The Oncogenomics Center, Institute for Cancer Research and Treatment, University of Torino Medical School, Candiolo, Italy (S.La., C.Z., A.B., F.E.B.); Department of Pathology, Radboud University Medical Center Nijmegen, Nijmegen, The Netherlands (J.W.M.J., S.H.E.B.-S., P.W.); Department of Pathology, VU University Medical Center, Amsterdam, The Netherlands (P.W.); Department of Neurogenetics, Academic Medical Center, University of Amsterdam, Amsterdam, The Netherlands (T.J.M.H.); Department of Neuropathology, Academic Medical Center, University of Amsterdam, Amsterdam, The Netherlands (D.T., A.A.v.T.); Neurosurgical Center Amsterdam, VU University Medical Center, Amsterdam, The Netherlands (W.P.V.); Department of Neurosurgery, St. Elisabeth Hospital Tilburg, The Netherlands (S.Le.); Department of Neurosurgery, Erasmus Medical Center, Rotterdam, The Netherlands (S.Le.); FIRC Institute of Molecular Oncology, Milan, Italy (A.B.)Present affiliation: Department of Clinical Genetics, Academic Medical Center and University of Amsterdam, Meibergdreef 9, 1105 AZ Amsterdam, The Netherlands (F.E.B.); Department of Pathology, Radboud University Medical Center Nijmegen, Geert Grooteplein-Zuid 10, 6525 GA Nijmegen, The Netherlands (A.A.v.T.); Department of Neurology, Radboud University Medical Centre Nijmegen, Geert Grooteplein-Zuid 10, 6525 GA Nijmegen, The Netherlands (S.H.E.B.-S.); Department of Pathology, Stichting PAMM, Michelangelolaan 2, 5623 EJ Eindhoven, The Netherlands (J.W.M.J.)
| | - Cornelis J F van Noorden
- Department of Cell Biology and Histology, Academic Medical Center, University of Amsterdam, Amsterdam, The Netherlands (R.J.M., C.J.F.v.N.); Neurosurgical Center Amsterdam, Academic Medical Center, Amsterdam, The Netherlands (F.E.B., D.V., W.P.V.); Laboratory of Molecular Genetics, The Oncogenomics Center, Institute for Cancer Research and Treatment, University of Torino Medical School, Candiolo, Italy (S.La., C.Z., A.B., F.E.B.); Department of Pathology, Radboud University Medical Center Nijmegen, Nijmegen, The Netherlands (J.W.M.J., S.H.E.B.-S., P.W.); Department of Pathology, VU University Medical Center, Amsterdam, The Netherlands (P.W.); Department of Neurogenetics, Academic Medical Center, University of Amsterdam, Amsterdam, The Netherlands (T.J.M.H.); Department of Neuropathology, Academic Medical Center, University of Amsterdam, Amsterdam, The Netherlands (D.T., A.A.v.T.); Neurosurgical Center Amsterdam, VU University Medical Center, Amsterdam, The Netherlands (W.P.V.); Department of Neurosurgery, St. Elisabeth Hospital Tilburg, The Netherlands (S.Le.); Department of Neurosurgery, Erasmus Medical Center, Rotterdam, The Netherlands (S.Le.); FIRC Institute of Molecular Oncology, Milan, Italy (A.B.)Present affiliation: Department of Clinical Genetics, Academic Medical Center and University of Amsterdam, Meibergdreef 9, 1105 AZ Amsterdam, The Netherlands (F.E.B.); Department of Pathology, Radboud University Medical Center Nijmegen, Geert Grooteplein-Zuid 10, 6525 GA Nijmegen, The Netherlands (A.A.v.T.); Department of Neurology, Radboud University Medical Centre Nijmegen, Geert Grooteplein-Zuid 10, 6525 GA Nijmegen, The Netherlands (S.H.E.B.-S.); Department of Pathology, Stichting PAMM, Michelangelolaan 2, 5623 EJ Eindhoven, The Netherlands (J.W.M.J.)
| | - Fonnet E Bleeker
- Department of Cell Biology and Histology, Academic Medical Center, University of Amsterdam, Amsterdam, The Netherlands (R.J.M., C.J.F.v.N.); Neurosurgical Center Amsterdam, Academic Medical Center, Amsterdam, The Netherlands (F.E.B., D.V., W.P.V.); Laboratory of Molecular Genetics, The Oncogenomics Center, Institute for Cancer Research and Treatment, University of Torino Medical School, Candiolo, Italy (S.La., C.Z., A.B., F.E.B.); Department of Pathology, Radboud University Medical Center Nijmegen, Nijmegen, The Netherlands (J.W.M.J., S.H.E.B.-S., P.W.); Department of Pathology, VU University Medical Center, Amsterdam, The Netherlands (P.W.); Department of Neurogenetics, Academic Medical Center, University of Amsterdam, Amsterdam, The Netherlands (T.J.M.H.); Department of Neuropathology, Academic Medical Center, University of Amsterdam, Amsterdam, The Netherlands (D.T., A.A.v.T.); Neurosurgical Center Amsterdam, VU University Medical Center, Amsterdam, The Netherlands (W.P.V.); Department of Neurosurgery, St. Elisabeth Hospital Tilburg, The Netherlands (S.Le.); Department of Neurosurgery, Erasmus Medical Center, Rotterdam, The Netherlands (S.Le.); FIRC Institute of Molecular Oncology, Milan, Italy (A.B.)Present affiliation: Department of Clinical Genetics, Academic Medical Center and University of Amsterdam, Meibergdreef 9, 1105 AZ Amsterdam, The Netherlands (F.E.B.); Department of Pathology, Radboud University Medical Center Nijmegen, Geert Grooteplein-Zuid 10, 6525 GA Nijmegen, The Netherlands (A.A.v.T.); Department of Neurology, Radboud University Medical Centre Nijmegen, Geert Grooteplein-Zuid 10, 6525 GA Nijmegen, The Netherlands (S.H.E.B.-S.); Department of Pathology, Stichting PAMM, Michelangelolaan 2, 5623 EJ Eindhoven, The Netherlands (J.W.M.J.)
| |
Collapse
|
49
|
Genetic imbalances detected by multiplex ligation-dependent probe amplification in a cohort of patients with oral squamous cell carcinoma-the first step towards clinical personalized medicine. Tumour Biol 2014; 35:4687-95. [PMID: 24477574 DOI: 10.1007/s13277-014-1614-9] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/10/2013] [Accepted: 01/03/2014] [Indexed: 12/25/2022] Open
Abstract
Oral tumors are a growing health problem worldwide; thus, it is mandatory to establish genetic markers in order to improve diagnosis and early detection of tumors, control relapses and, ultimately, delineate individualized therapies. This study was the first to evaluate and discuss the clinical applicability of a multiplex ligation-dependent probe amplification (MLPA) probe panel directed to head and neck cancer. Thirty primary oral squamous cell tumors were analyzed using the P428 MLPA probe panel. We detected genetic imbalances in 26 patients and observed a consistent pattern of distribution of genetic alterations in terms of losses and gains for some chromosomes, particularly for chromosomes 3, 8, and 11. Regarding the latter, some specific genes were highlighted due to frequent losses of genetic material--RARB, FHIT, CSMD1, GATA4, and MTUS1--and others due to gains--MCCC1, MYC, WISP1, PTK2, CCND1, FGF4, FADD, and CTTN. We also verified that the gains of MYC and WISP1 genes seem to suggest higher propensity of tumors localized in the floor of the mouth. This study proved the value of this MLPA probe panel for a first-tier analysis of oral tumors. The probemix was developed to include target regions that have been already shown to be of diagnostic/prognostic relevance for oral tumors. Furthermore, this study emphasized several of those specific genetic targets, suggesting its importance to oral tumor development, to predict patients' outcomes, and also to guide the development of novel molecular therapies.
Collapse
|
50
|
Alentorn A, Sanson M, Mokhtari K, Marie Y, Hoang-Xuan K, Delattre JY, Idbaih A. Insights revealed by high-throughput genomic arrays in nonglial primary brain tumors. Expert Rev Mol Diagn 2014; 12:265-77. [DOI: 10.1586/erm.12.17] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/29/2023]
|