1
|
Knechtle B, Cuk I, Villiger E, Nikolaidis PT, Weiss K, Scheer V, Thuany M. The Effects of Sex, Age and Performance Level on Pacing in Ultra-Marathon Runners in the ‘Spartathlon’. SPORTS MEDICINE - OPEN 2022; 8:69. [PMID: 35552909 PMCID: PMC9106765 DOI: 10.1186/s40798-022-00452-9] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 01/10/2022] [Accepted: 04/18/2022] [Indexed: 11/21/2022]
Abstract
Background Pacing has been investigated in different kinds of ultra-marathon races, but not in one of the toughest ultra-marathons in the world, the ‘Spartathlon’. Objective The aim of the present study was to analyse the pacing of female and male finishers competing in the ‘Spartathlon’ in regards to their age and performance groups. Methods A total of 2598 runners (2255 men and 343 women) finishing ‘Spartathlon’ between 2011 and 2019 were analysed. We selected 10 checkpoints with split times corresponding to important race sections. Average running speed was calculated for each participant and the average checkpoint running speed for each of the 10 race checkpoints. Furthermore, to assess the pacing strategy of each runner, the percentage of change in checkpoint speed (CCS) in relation to the average race speed was calculated (for each of 10 checkpoints). Finally, the average change in checkpoint speed (ACCS) was calculated for each participant as a mean of the 10 CCSs. Results Both women and men slowed down through the first 7 checkpoints but increased running speed towards the end of the race (reverse J-shaped pacing). Men showed a significantly greater CCS in the first and second checkpoint (p < 0.01 and p < 0.05, respectively), whereas women showed a more significant change in CCS in the last checkpoint (p < 0.05). Furthermore, age and sex showed no effect on ACCS, whereas ACCS differed between the performance groups. In particular, the slowest and the fastest runners showed a more minor change in ACCS than the two medium groups of both men and women (p < 0.01). Conclusions In summary, successful finishers in ‘Spartathlon’ showed a reverse J-shaped pacing curve with a decrease in running speed from the start to the 7th checkpoint and an increase in running speed thereafter. This strategy was most probably due to the profile of the race course. Men showed a more significant change in checkpoint speed in the first two checkpoints, whereas women showed a more substantial change in the last checkpoint. Age and sex did not affect average checkpoint speed, whereas this speed was different between the different performance groups. The slowest and the fastest runners showed fewer changes in average checkpoint speed than the two medium groups in men and women.
Collapse
|
2
|
Knechtle B, Forte P, Weiss K, Cuk I, Nikolaidis PT, Sousa CV, Andrade MS, Thuany M. Biophysical characterization of the first ultra-cyclist in the world to break the 1,000 km barrier in 24-h non-stop road cycling: A case report. Front Cardiovasc Med 2022; 9:990382. [PMID: 36304551 PMCID: PMC9592711 DOI: 10.3389/fcvm.2022.990382] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/09/2022] [Accepted: 08/09/2022] [Indexed: 11/19/2022] Open
Abstract
A plethora of factors determine elite cycling performance. Those include training characteristics, pacing strategy, aerodynamics, nutritional habits, psychological traits, physical fitness level, body mass composition, and contextual features; even the slightest changes in any of these factors can be associated with performance improvement or deterioration. The aim of the present case report is to compare the performances of the same ultra-cyclist in achieving two world records (WR) in 24 h cycling. We have analyzed and compared the distance covered and speed for each WR. The 24 h period was split into four-time intervals (0–6 h; > 6–12 h; > 12–18 h; > 18–24 h), and we compared the differences in the distance covered and speed between the two WRs. For both WRs, a strong negative correlation between distance and speed was confirmed (r = –0.85; r = –0.89, for old and new WR, respectively). Differences in speed (km/h) were shown between the two WRs, with the most significant differences in 12–18 h (Δ = 6.50 km/h). For the covered distance in each block, the most significant differences were observed in the last part of the cycling (Δ = 38.54 km). The cyclist effective surface area (ACd) was 0.25 m2 less and 20% more drag in the new WR. Additionally, the mechanical power was 8%, the power to overcome drag was 31%, and the power-weight ratio was 8% higher in the new WR. The mechanical efficiency of the cyclist was 1% higher in the new WR. Finally, the heart rate (HR) presented significant differences for the first 6 h (Old WR: 145.80 ± 5.88 bpm; New WR: 139.45 ± 5.82 bpm) and between the 12 and 18 h time interval (Old WR: 133.19 ± 3.53 bpm; New WR: 137.63 ± 2.80 bpm). The marginal gains concept can explain the performance improvement in the new WR, given that the athlete made some improvements in technical specifications after the old WR.
Collapse
Affiliation(s)
- Beat Knechtle
- Medbase St. Gallen Am Vadianplatz, St. Gallen, Switzerland,Institute of Primary Care, University of Zurich, Zurich, Switzerland,*Correspondence: Beat Knechtle,
| | - Pedro Forte
- Higher Institute of Educational Sciences of the Douro, Penafiel, Portugal,Instituto Politécnico de Bragança, Bragança, Portugal,Research Center in Sports, Health and Human Development, Covilhã, Portugal
| | - Katja Weiss
- Institute of Primary Care, University of Zurich, Zurich, Switzerland
| | - Ivan Cuk
- Faculty of Sport and Physical Education, University of Belgrade, Belgrade, Serbia
| | | | - Caio Victor Sousa
- Health and Human Sciences, Loyola Marymount University, Los Angeles, CA, United States
| | - Marilia Santos Andrade
- Departamento de Fisiologia, Disciplina de Neurofisiologia e Fisiologia do Exercício, Universidade Federal de São Paulo, São Paulo, Brazil
| | - Mabliny Thuany
- Centre of Research, Education, Innovation and Intervention in Sport (CIFI2D), Faculty of Sport, University of Porto, Porto, Portugal
| |
Collapse
|
3
|
Potential Long-Term Health Problems Associated with Ultra-Endurance Running: A Narrative Review. Sports Med 2021; 52:725-740. [PMID: 34542868 PMCID: PMC8450723 DOI: 10.1007/s40279-021-01561-3] [Citation(s) in RCA: 50] [Impact Index Per Article: 12.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 09/03/2021] [Indexed: 12/14/2022]
Abstract
It is well established that physical activity reduces all-cause mortality and can prolong life. Ultra-endurance running (UER) is an extreme sport that is becoming increasingly popular, and comprises running races above marathon distance, exceeding 6 h, and/or running fixed distances on multiple days. Serious acute adverse events are rare, but there is mounting evidence that UER may lead to long-term health problems. The purpose of this review is to present the current state of knowledge regarding the potential long-term health problems derived from UER, specifically potential maladaptation in key organ systems, including cardiovascular, respiratory, musculoskeletal, renal, immunological, gastrointestinal, neurological, and integumentary systems. Special consideration is given to youth, masters, and female athletes, all of whom may be more susceptible to certain long-term health issues. We present directions for future research into the pathophysiological mechanisms that underpin athlete susceptibility to long-term issues. Although all body systems can be affected by UER, one of the clearest effects of endurance exercise is on the cardiovascular system, including right ventricular dysfunction and potential increased risk of arrhythmias and hypertension. There is also evidence that rare cases of acute renal injury in UER could lead to progressive renal scarring and chronic kidney disease. There are limited data specific to female athletes, who may be at greater risk of certain UER-related health issues due to interactions between energy availability and sex-hormone concentrations. Indeed, failure to consider sex differences in the design of female-specific UER training programs may have a negative impact on athlete longevity. It is hoped that this review will inform risk stratification and stimulate further research about UER and the implications for long-term health.
Collapse
|
4
|
Schütz U, Ehrhardt M, Göd S, Billich C, Beer M, Trattnig S. A mobile MRI field study of the biochemical cartilage reaction of the knee joint during a 4,486 km transcontinental multistage ultra-marathon using T2* mapping. Sci Rep 2020; 10:8157. [PMID: 32424133 PMCID: PMC7235258 DOI: 10.1038/s41598-020-64994-2] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/21/2019] [Accepted: 04/21/2020] [Indexed: 02/08/2023] Open
Abstract
Nearly nothing is known about the consequences of ultra-long-distance running on knee cartilage. In this mobile MRI field study, we analysed the biochemical effects of a 4,486 km transcontinental multistage ultra-marathon on femorotibial joint (FTJ) cartilage. Serial MRI data were acquired from 22 subjects (20 male, 18 finisher) using a 1.5 T MR scanner mounted on a 38-ton trailer, travelling with the participants of the TransEurope FootRace (TEFR) day by day over 64 stages. The statistical analyses focused on intrachondral T2* behaviour during the course of the TEFR as the main outcome variable of interest. T2* mapping (sagittal FLASH T2* weighted gradient echo) is a validated and highly accurate method for quantitative compositional cartilage analysis of specific weightbearing areas of the FTJ. T2* mapping is sensitive to changes in the equilibrium of free intrachondral water, which depends on the content and orientation of collagen and the proteoglycan content in the extracellular cartilage matrix. Within the first 1,100 km, a significant running load-induced T2* increase occurred in all joint regions: 44.0% femoral-lateral, 42.9% tibial-lateral, 34.9% femoral-medial, and 25.1% tibial-medial. Osteochondral lesions showed no relevant changes or new occurrence during the TEFR. The reasons for stopping the race were not associated with knee problems. As no further T2* elevation was found in the second half of the TEFR but a decreasing T2* trend (recovery) was observed after the 3,500 km run, we assume that no further softening of the cartilage occurs with ongoing running burden over ultra-long distances extending 4,500 km. Instead, we assume the ability of the FTJ cartilage matrix to reorganize and adapt to the load.
Collapse
Affiliation(s)
- Uwe Schütz
- Department of Diagnostic and Interventional Radiology, University Hospital of Ulm, Albert-Einstein-Allee 23, D-89081, Ulm, Germany.
| | - Martin Ehrhardt
- Department of Diagnostic and Interventional Radiology, University Hospital of Ulm, Albert-Einstein-Allee 23, D-89081, Ulm, Germany
| | - Sabine Göd
- MR Centre of Excellence- High Field MR Centre, Department of Biomedical Imaging and Image-Guided Therapy, Medical University of Vienna, BT32, Lazarettgasse 14, 1090, Vienna, Austria
| | - Christian Billich
- Department of Diagnostic and Interventional Radiology, University Hospital of Ulm, Albert-Einstein-Allee 23, D-89081, Ulm, Germany
| | - Meinrad Beer
- Department of Diagnostic and Interventional Radiology, University Hospital of Ulm, Albert-Einstein-Allee 23, D-89081, Ulm, Germany
| | - Siegfried Trattnig
- MR Centre of Excellence- High Field MR Centre, Department of Biomedical Imaging and Image-Guided Therapy, Medical University of Vienna, BT32, Lazarettgasse 14, 1090, Vienna, Austria
| |
Collapse
|
5
|
Self-Selected Pacing During a World Record Attempt in 40 Ironman-Distance Triathlons in 40 Days. INTERNATIONAL JOURNAL OF ENVIRONMENTAL RESEARCH AND PUBLIC HEALTH 2020; 17:ijerph17072390. [PMID: 32244582 PMCID: PMC7177248 DOI: 10.3390/ijerph17072390] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 02/08/2020] [Revised: 03/26/2020] [Accepted: 03/27/2020] [Indexed: 11/16/2022]
Abstract
The present case study analyzed performance, pacing, and potential predictors in a self-paced world record attempt of a professional triathlete to finish 40 Ironman-distance triathlons within 40 days. Split times (i.e., swimming, cycling, running) and overall times, body weight, daily highest temperature, wind speed, energy expenditure, mean heart rate, and sleeping time were recorded. Non-linear regressions were applied to investigate changes in split and overall times across days. Multivariate regression analyses were performed to test which variables showed the greatest influence on the dependent variables cycling, running and overall time. The athlete completed the 40×Ironman distances in a total time of 444:22 h:min. He spent 50:26 h:min in swimming, 245:37 h:min in cycling, 137:17 h:min in running and 11:02 h:min in transition times. Swimming and cycling times became slower across days, whereas running times got faster until the 20th day and, thereafter, became slower until the 40th day. Overall times got slower until the 15th day, became faster to 31st, and started then to get slower until the end. Wind speed, previous day’s race time and average heart race during cycling were significant independent variables influencing cycling time. Body weight and average heart rate during running were significant independent variables influencing running performance. Cycling performance, running performance, and body weight were significant independent variables influencing overall time. In summary, running time was influenced by body weight, cycling by wind speed, and overall time by both running and cycling performances.
Collapse
|