1
|
Bonati MT, Feresin A, Prontera P, Michieletto P, Gambacorta V, Ricci G, Orzan E. Contiguous Gene Syndromes and Hearing Loss: A Clinical Report of Xq21 Deletion and Comprehensive Literature Review. Genes (Basel) 2024; 15:677. [PMID: 38927613 PMCID: PMC11202778 DOI: 10.3390/genes15060677] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/29/2024] [Revised: 05/17/2024] [Accepted: 05/21/2024] [Indexed: 06/28/2024] Open
Abstract
Given the crucial role of the personalized management and treatment of hearing loss (HL), etiological investigations are performed early on, and genetic analysis significantly contributes to the determination of most syndromic and nonsyndromic HL cases. Knowing hundreds of syndromic associations with HL, little comprehensive data about HL in genomic disorders due to microdeletion or microduplications of contiguous genes is available. Together with the description of a new patient with a novel 3.7 Mb deletion of the Xq21 critical locus, we propose an unreported literature review about clinical findings in patients and their family members with Xq21 deletion syndrome. We finally propose a comprehensive review of HL in contiguous gene syndromes in order to confirm the role of cytogenomic microarray analysis to investigate the etiology of unexplained HL.
Collapse
Affiliation(s)
- Maria Teresa Bonati
- Institute for Maternal and Child Health—Institute for Maternal and Child Health “Burlo Garofolo”, 34137 Trieste, Italy; (P.M.); (E.O.)
| | - Agnese Feresin
- Independent Researcher, 33059 Fiumicello Villa Vicentina, Italy
| | - Paolo Prontera
- Medical Genetics Unit, S. Maria della Misericordia Hospital, 06129 Perugia, Italy;
| | - Paola Michieletto
- Institute for Maternal and Child Health—Institute for Maternal and Child Health “Burlo Garofolo”, 34137 Trieste, Italy; (P.M.); (E.O.)
| | - Valeria Gambacorta
- Department of Medicine and Surgery, Section of Otorhinolaryngology, University of Perugia, 06129 Perugia, Italy; (V.G.)
| | - Giampietro Ricci
- Department of Medicine and Surgery, Section of Otorhinolaryngology, University of Perugia, 06129 Perugia, Italy; (V.G.)
| | - Eva Orzan
- Institute for Maternal and Child Health—Institute for Maternal and Child Health “Burlo Garofolo”, 34137 Trieste, Italy; (P.M.); (E.O.)
| |
Collapse
|
2
|
Talenti G, Robson C, Severino MS, Alves CA, Chitayat D, Dahmoush H, Smith L, Muntoni F, Blaser SI, D'Arco F. Characteristic Cochlear Hypoplasia in Patients with Walker-Warburg Syndrome: A Radiologic Study of the Inner Ear in α-Dystroglycan-Related Muscular Disorders. AJNR Am J Neuroradiol 2021; 42:167-172. [PMID: 33122211 PMCID: PMC7814787 DOI: 10.3174/ajnr.a6858] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/06/2020] [Accepted: 08/16/2020] [Indexed: 11/07/2022]
Abstract
BACKGROUND AND PURPOSE Walker-Warburg syndrome, muscle-eye-brain disease, and Fukuyama congenital muscular dystrophy are α-dystroglycan-related muscular disorders associated with brain malformations and eye abnormalities in which no structural inner ear abnormality has been described radiologically. We collected patients from 6 tertiary pediatric hospitals and reported the radiologic features and frequency of inner ear dysplasias. MATERIALS AND METHODS Patients previously diagnosed clinicoradiologically with Walker-Warburg syndrome, muscle-eye-brain disease, or Fukuyama congenital muscular dystrophy were included. We recorded the pathogenic variant, when available. Brain MR imaging and/or CT findings were reviewed in consensus, and inner ear anomalies were classified according to previous description in the literature. We then correlated the clinicoradiologic phenotype with the inner ear phenotype. RESULTS Thirteen patients fulfilled the criteria for the Walker-Warburg syndrome phenotype, 8 for muscle-eye-brain disease, and 3 for Fukuyama congenital muscular dystrophy. A dysplastic cochlea was demonstrated in 17/24. The most frequent finding was a pronounced cochlear hypoplasia type 4 with a very small anteriorly offset turn beyond the normal-appearing basal turn (12/13 patients with Walker-Warburg syndrome and 1/11 with muscle-eye-brain disease or Fukuyama congenital muscular dystophy). Two of 8 patients with muscle-eye-brain disease, 1/3 with Fukuyama congenital muscular dystrophy, and 1/13 with Walker-Warburg syndrome showed a less severe cochlear hypoplasia type 4. The remaining patients without Walker-Warburg syndrome were healthy. The vestibule and lateral semicircular canals of all patients were normal. Cranial nerve VIII was present in all patients with diagnostic MR imaging. CONCLUSIONS Most patients with the severe α-dystroglycanopathy Walker-Warburg syndrome phenotype have a highly characteristic cochlear hypoplasia type 4. Patients with the milder variants, muscle-eye-brain disease and Fukuyama congenital muscular dystrophy, more frequently have a normal cochlea or milder forms of hypoplasia.
Collapse
Affiliation(s)
- G Talenti
- From the Department of Diagnostics and Pathology (G.T.), Neuroradiology Unit, Verona University Hospital, Verona, Italy
| | - C Robson
- Division of Neuroradiology (C.R.), Department of Radiology, Boston Children's Hospital and Harvard Medical School, Boston, Massachusetts
| | - M S Severino
- Neuroradiology Unit (M.S.S.), Istituti di Ricovero e Cura a Carattere Scientifico, Istituto Giannina Gaslini, Genova, Italy
| | - C A Alves
- Departments of Radiology and Division of Neuroradiology (C.A.A.), Children's Hospital of Philadelphia, Philadelphia, Pennsylvania
| | - D Chitayat
- The Prenatal Diagnosis and Medical Genetics Program (D.C.), Department of Obstetrics and Gynecology, Mount Sinai Hospital, University of Toronto, Toronto, Ontario, Canada
| | - H Dahmoush
- Department of Radiology (H.D.), Lucile Packard Children's Hospital, Stanford University School of Medicine, Stanford, California
| | - L Smith
- Dental and Maxillofacial Surgery Department (L.S.), Great Ormond Street Hospital, London, UK
| | - F Muntoni
- Dubowitz Neuromuscular Centre (F.M.), UCL Great Ormond Street Institute of Child Health and Great Ormond Street Hospital, London, UK
| | - S I Blaser
- Division of Neuroradiology (S.I.B.), Department of Diagnostic Imaging, The Hospital for Sick Children, Toronto, Ontario, Canada
| | - F D'Arco
- Neuroradiology Unit (F.D.), Department of Radiology, Great Ormond Street Hospital for Children, National Health Service Trust, London, UK felice.d'
| |
Collapse
|
3
|
Zhang C, Hao S, Zhang Q, Liu F, Zhou B, Xuan F, Xing W, Chen X, Wang Y, Ma P, Cao Z, Ma X. Maternal UPD of chromosome 7 in a patient with Silver-Russell syndrome and Pendred syndrome. J Clin Lab Anal 2020; 34:e23407. [PMID: 32666542 PMCID: PMC7521231 DOI: 10.1002/jcla.23407] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/25/2020] [Revised: 04/28/2020] [Accepted: 05/09/2020] [Indexed: 01/16/2023] Open
Abstract
Background Silver‐Russell syndrome (SRS) is a heterogeneous imprinting disorder featuring severe intrauterine and postnatal growth retardation and dysmorphic features. Pendred syndrome (PDS) is an autosomal recessive disorder caused by mutations in the SLC26A4 gene characterized by sensorineural hearing loss. Methods Karyotyping analysis was performed to investigate any chromosomal abnormalities. Whole‐genome copy number variation and loss of heterozygosity were analyzed using an Affymetrix CytoScan 750 K Microarray. Variant screening was performed by targeted next‐generation sequencing on all known deafness‐causing genes. Results The proband was a patient with SRS caused by maternal uniparental disomy 7. The PDS of the proband was caused by homozygous variant c.919‐2A > G of SLC26A4; both mutated alleles were inherited from his mother. Conclusion This is the first report of uniparental disomy 7 leading to SRS and Pendred syndrome. Patients with intrauterine growth retardation or those born small for gestational age and exhibiting postnatal growth failure should undergo molecular testing to reach a clinical diagnosis.
Collapse
Affiliation(s)
- Chuan Zhang
- Graduate School of Peking Union Medical College, Beijing, China.,National Research Institute for Family Planning, National Human Genetic Resources Center, Beijing, China.,Gansu Province Medical Genetics Center, Gansu Province Maternal and Child Health Care Hospital, Lanzhou, China
| | - Shengju Hao
- Gansu Province Medical Genetics Center, Gansu Province Maternal and Child Health Care Hospital, Lanzhou, China
| | - Qinghua Zhang
- Gansu Province Medical Genetics Center, Gansu Province Maternal and Child Health Care Hospital, Lanzhou, China
| | - Furong Liu
- Gansu Province Medical Genetics Center, Gansu Province Maternal and Child Health Care Hospital, Lanzhou, China
| | - Bingbo Zhou
- Gansu Province Medical Genetics Center, Gansu Province Maternal and Child Health Care Hospital, Lanzhou, China
| | - Feng Xuan
- Gansu Province Medical Genetics Center, Gansu Province Maternal and Child Health Care Hospital, Lanzhou, China
| | - Wang Xing
- Gansu Province Medical Genetics Center, Gansu Province Maternal and Child Health Care Hospital, Lanzhou, China
| | - Xue Chen
- Gansu Province Medical Genetics Center, Gansu Province Maternal and Child Health Care Hospital, Lanzhou, China
| | - Yan Wang
- Gansu Province Medical Genetics Center, Gansu Province Maternal and Child Health Care Hospital, Lanzhou, China
| | - Panpan Ma
- Gansu Province Medical Genetics Center, Gansu Province Maternal and Child Health Care Hospital, Lanzhou, China
| | - Zongfu Cao
- Graduate School of Peking Union Medical College, Beijing, China.,National Research Institute for Family Planning, National Human Genetic Resources Center, Beijing, China
| | - Xu Ma
- Graduate School of Peking Union Medical College, Beijing, China.,National Research Institute for Family Planning, National Human Genetic Resources Center, Beijing, China
| |
Collapse
|
4
|
Cirello V, Giorgini V, Castronovo C, Marelli S, Mainini E, Sironi A, Recalcati MP, Pessina M, Giardino D, Larizza L, Persani L, Finelli P, Russo S, Fugazzola L. Segmental Maternal UPD of Chromosome 7q in a Patient With Pendred and Silver Russell Syndromes-Like Features. Front Genet 2018; 9:600. [PMID: 30555519 PMCID: PMC6284021 DOI: 10.3389/fgene.2018.00600] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/27/2018] [Accepted: 11/15/2018] [Indexed: 11/24/2022] Open
Abstract
Pendred syndrome (PS) is an autosomal recessive disorder due to mutations in the SLC26A4 gene (chr7q22. 3) and characterized by sensorineural hearing loss and variable thyroid phenotype. Silver-Russell syndrome (SRS) is a heterogeneous imprinting disorder including severe intrauterine and postnatal growth retardation, and dysmorphic features. Maternal uniparental disomy of either the whole chromosome 7 (upd(7)mat) or 7q (upd(7q)mat) is one of the multiple mechanisms impacting the expression of imprinted genes in SRS, and is associated with milder clinical features. Here, we report genetic and clinical characterization of a female child with PS, postnatal growth retardation, and minor dysmorphic features. A gross homozygous deletion of SLC26A4 exons 17-20 was suspected by Sanger sequencing and then confirmed by array-CGH. Moreover, an insertion of about 1 kb of the CCDC126 gene (7p15.3), which does not appear to be clinically relevant, was detected. The possible occurrence of a balanced rearrangement between 7p and 7q was excluded. The absence of the deletion in the father led to the investigation of upd, and microsatellite segregation analysis revealed a segmental 7q (upd(7q)mat), leading to SLC26A4 homozygosity and responsible for both PS and SRS-like traits. The proband matched 3 out of 6 major SRS criteria. In conclusion, this is the first report of uniparental isodisomy encompassing almost the whole long arm of chromosome 7 resulting in PS and SRS-like features. Whereas, the inner ear phenotype of PS is typical, the clinical features suggestive of SRS might have been overlooked.
Collapse
Affiliation(s)
- Valentina Cirello
- Division of Endocrine and Metabolic Diseases, Laboratory of Endocrine and Metabolic Research, IRCCS Istituto Auxologico Italiano, Milan, Italy
| | - Valentina Giorgini
- Laboratory of Medical Cytogenetics and Molecular Genetics, IRCCS Istituto Auxologico Italiano, Milan, Italy
| | - Chiara Castronovo
- Laboratory of Medical Cytogenetics and Molecular Genetics, IRCCS Istituto Auxologico Italiano, Milan, Italy
| | - Susan Marelli
- Neuropsychiatry and Neurorehabilitation Unit, Scientific Institute, IRCCS Eugenio Medea, Lecco, Italy
| | - Ester Mainini
- Laboratory of Medical Cytogenetics and Molecular Genetics, IRCCS Istituto Auxologico Italiano, Milan, Italy
| | - Alessandra Sironi
- Laboratory of Medical Cytogenetics and Molecular Genetics, IRCCS Istituto Auxologico Italiano, Milan, Italy.,Department of Medical Biotechnologies and Translational Medicine, University of Milan, Milan, Italy
| | - Maria Paola Recalcati
- Laboratory of Medical Cytogenetics and Molecular Genetics, IRCCS Istituto Auxologico Italiano, Milan, Italy
| | - Marco Pessina
- Neuropsychiatry and Neurorehabilitation Unit, Scientific Institute, IRCCS Eugenio Medea, Lecco, Italy
| | - Daniela Giardino
- Laboratory of Medical Cytogenetics and Molecular Genetics, IRCCS Istituto Auxologico Italiano, Milan, Italy
| | - Lidia Larizza
- Laboratory of Medical Cytogenetics and Molecular Genetics, IRCCS Istituto Auxologico Italiano, Milan, Italy
| | - Luca Persani
- Division of Endocrine and Metabolic Diseases, Laboratory of Endocrine and Metabolic Research, IRCCS Istituto Auxologico Italiano, Milan, Italy.,Department of Clinical Sciences and Community Health, University of Milan, Milan, Italy
| | - Palma Finelli
- Laboratory of Medical Cytogenetics and Molecular Genetics, IRCCS Istituto Auxologico Italiano, Milan, Italy.,Department of Medical Biotechnologies and Translational Medicine, University of Milan, Milan, Italy
| | - Silvia Russo
- Laboratory of Medical Cytogenetics and Molecular Genetics, IRCCS Istituto Auxologico Italiano, Milan, Italy
| | - Laura Fugazzola
- Division of Endocrine and Metabolic Diseases, Laboratory of Endocrine and Metabolic Research, IRCCS Istituto Auxologico Italiano, Milan, Italy.,Department of Pathophysiology and Transplantation, University of Milan, Milan, Italy
| |
Collapse
|