1
|
Chen Z, Wang G, Wang W, Wang X, Huang Y, Jia J, Gao Q, Xu H, Xu Y, Ma Z, He L, Cheng J, Li C. PDE9A polymorphism and association analysis with growth performance and gastrointestinal weight of Hu sheep. Gene 2024; 900:148137. [PMID: 38184018 DOI: 10.1016/j.gene.2024.148137] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/20/2023] [Revised: 11/26/2023] [Accepted: 01/03/2024] [Indexed: 01/08/2024]
Abstract
Phosphodiesterase 9A (PDE9A) plays a crucial role in activating the cGMP-dependent signaling pathway and may have important effects on the growth and development of the gastrointestinal tract in Hu sheep. In this study, we analyzed the single nucleotide polymorphisms of PDE9A in 988 Hu sheep and their correlation with growth performance, feed efficiency, and gastrointestinal development. Additionally, we examined the expression level of different PDE9A genotypes in the gastrointestinal tract of Hu sheep by using fluorescence quantitative PCR. The results revealed a moderate level of polymorphism (0.25 < PIC < 0.50) at the g.286248617 T > C mutation site located in the first intron of PDE9A in Hu sheep, with three genotypes: CC, CT, and TT. The weights of the omasum, colon, and cecum were significantly greater in the CC genotype than in the TT genotype (P < 0.05), and the expression level of PDE9A in the tissues of the rumen, ileum, cecum, and colon was notably lower in the CC genotype individuals (P < 0.05). These findings suggest that the polymorphism of PDE9A affects the weight of the stomach, colon, and cecum in Hu sheep through expression regulation. Overall, the results of this study suggest that the g.286248617 T > C mutation site in the first intron of PDE9A can serve as a potential molecular marker for breeding practices related to the gastrointestinal weight of Hu sheep.
Collapse
Affiliation(s)
- Zhanyu Chen
- College of Animal Science and Technology, Gansu Agricultural University, Lanzhou, Gansu 730070, China
| | - Guoxiu Wang
- College of Animal Science and Technology, Gansu Agricultural University, Lanzhou, Gansu 730070, China
| | - Weimin Wang
- The State Key Laboratory of Grassland Agro-ecosystems, College of Pastoral Agriculture Science and Technology, Lanzhou University, Lanzhou Gansu 730020, China
| | - Xiaojuan Wang
- College of Animal Science and Technology, Gansu Agricultural University, Lanzhou, Gansu 730070, China
| | - Yongliang Huang
- College of Animal Science and Technology, Gansu Agricultural University, Lanzhou, Gansu 730070, China
| | - Jiale Jia
- College of Animal Science and Technology, Gansu Agricultural University, Lanzhou, Gansu 730070, China
| | - Qihao Gao
- College of Animal Science and Technology, Gansu Agricultural University, Lanzhou, Gansu 730070, China
| | - Haoyu Xu
- College of Animal Science and Technology, Gansu Agricultural University, Lanzhou, Gansu 730070, China
| | - Yunfei Xu
- College of Animal Science and Technology, Gansu Agricultural University, Lanzhou, Gansu 730070, China
| | - Zongwu Ma
- College of Animal Science and Technology, Gansu Agricultural University, Lanzhou, Gansu 730070, China
| | - Lijuan He
- College of Animal Science and Technology, Gansu Agricultural University, Lanzhou, Gansu 730070, China
| | - Jiangbo Cheng
- The State Key Laboratory of Grassland Agro-ecosystems, College of Pastoral Agriculture Science and Technology, Lanzhou University, Lanzhou Gansu 730020, China
| | - Chong Li
- College of Animal Science and Technology, Gansu Agricultural University, Lanzhou, Gansu 730070, China.
| |
Collapse
|
2
|
Zhang Y, Li J, Chu P, Shang R, Yin S, Wang T. Construction of a high-density genetic linkage map and QTL mapping of growth and cold tolerance traits in Takifugu fasciatus. BMC Genomics 2023; 24:645. [PMID: 37891474 PMCID: PMC10604518 DOI: 10.1186/s12864-023-09740-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/02/2023] [Accepted: 10/13/2023] [Indexed: 10/29/2023] Open
Abstract
Takifugu fasciatus is an aquaculture species with high economic value. In recent years, problems such as environmental pollution and inbreeding have caused a serious decline in T. fasciatus germplasm resources. In this study, a high-density genetic linkage map was constructed by whole-genome resequencing. The map consists of 4891 bin markers distributed across 22 linkage groups (LGs), with a total genetic coverage of 2381.353 cM and a mean density of 0.535 cM. Quantitative trait locus (QTL) localization analysis showed that a total of 19 QTLs associated with growth traits of T. fasciatus in the genome-wide significance threshold range, distributed on 11 LGs. In addition, 11 QTLs associated with cold tolerance traits were identified, each scattered on a different LG. Furthermore, we used QTL localization analysis to screen out three candidate genes (IGF1, IGF2, ADGRB) related to growth in T. fasciatus. Meanwhile, we screened three candidate genes (HSP90, HSP70, and HMGB1) related to T. fasciatus cold tolerance. Our study can provide a theoretical basis for the selection and breeding of cold-tolerant or fast-growing T. fasciatus.
Collapse
Affiliation(s)
- Ying Zhang
- College of Marine Science and Engineering, Nanjing Normal University, Nanjing, 210023, Jiangsu, China
| | - Jie Li
- College of Marine Science and Engineering, Nanjing Normal University, Nanjing, 210023, Jiangsu, China
| | - Peng Chu
- College of Marine Science and Engineering, Nanjing Normal University, Nanjing, 210023, Jiangsu, China
| | - Ruhua Shang
- College of Marine Science and Engineering, Nanjing Normal University, Nanjing, 210023, Jiangsu, China
| | - Shaowu Yin
- College of Marine Science and Engineering, Nanjing Normal University, Nanjing, 210023, Jiangsu, China
| | - Tao Wang
- College of Marine Science and Engineering, Nanjing Normal University, Nanjing, 210023, Jiangsu, China.
| |
Collapse
|
3
|
Cheng J, Zhang X, Li F, Yuan L, Zhang D, Zhang Y, Song Q, Li X, Zhao Y, Xu D, Zhao L, Li W, Wang J, Zhou B, Lin C, Yang X, Wang W. Detecting Single Nucleotide Polymorphisms in MEF2B and UCP3 and Elucidating Their Association with Sheep Growth Traits. DNA Cell Biol 2021; 40:1554-1562. [PMID: 34797700 DOI: 10.1089/dna.2021.0782] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022] Open
Abstract
Herein we detected single nucleotide polymorphisms in MEF2B and UCP3 by DNA sequencing and the KASPar technology and analyzed their association with sheep growth traits. Two synonymous mutations, g.1826 C > T and g.10266 G > C, were detected, respectively, and they were found to be significantly associated with sheep growth traits (p < 0.05). In case of MEF2B g.1826 C > T, the average body weight and chest and cannon circumference of sheep with the CC genotype were significantly higher than those of sheep with the CT and TT genotypes (p < 0.05). Moreover, in case of UCP3 g.10266 G > C, the average body weight and chest and cannon circumference of sheep with the GG genotype were significantly higher than those of sheep with the GC and CC genotypes (p < 0.05). Moreover, the average body weight of sheep with the CC/GG genotype was higher compared with those of other genotype combinations. We also assessed MEF2B and UCP3 expression in different sheep tissues, confirming their expression in all examined tissues. To summarize, we believe that the polymorphisms identified in MEF2B and UCP3 can serve as molecular markers for sheep growth traits.
Collapse
Affiliation(s)
- Jiangbo Cheng
- College of Animal Science and Technology, Gansu Agricultural University, Lanzhou, Gansu, China
| | - Xiaoxue Zhang
- College of Animal Science and Technology, Gansu Agricultural University, Lanzhou, Gansu, China
| | - Fadi Li
- The State Key Laboratory of Grassland Agro-ecosystems, College of Pastoral Agriculture Science and Technology, Lanzhou University, Lanzhou, Gansu, China
| | - Lvfeng Yuan
- College of Animal Science and Technology, Gansu Agricultural University, Lanzhou, Gansu, China
| | - Deyin Zhang
- College of Animal Science and Technology, Gansu Agricultural University, Lanzhou, Gansu, China
| | - Yukun Zhang
- College of Animal Science and Technology, Gansu Agricultural University, Lanzhou, Gansu, China
| | - Qizhi Song
- College of Animal Science and Technology, Gansu Agricultural University, Lanzhou, Gansu, China
| | - Xiaolong Li
- College of Animal Science and Technology, Gansu Agricultural University, Lanzhou, Gansu, China
| | - Yuan Zhao
- College of Animal Science and Technology, Gansu Agricultural University, Lanzhou, Gansu, China
| | - Dan Xu
- College of Animal Science and Technology, Gansu Agricultural University, Lanzhou, Gansu, China
| | - Liming Zhao
- College of Animal Science and Technology, Gansu Agricultural University, Lanzhou, Gansu, China
| | - Wenxin Li
- College of Animal Science and Technology, Gansu Agricultural University, Lanzhou, Gansu, China
| | - Jianghui Wang
- College of Animal Science and Technology, Gansu Agricultural University, Lanzhou, Gansu, China
| | - Bubo Zhou
- College of Animal Science and Technology, Gansu Agricultural University, Lanzhou, Gansu, China
| | - Changchun Lin
- College of Animal Science and Technology, Gansu Agricultural University, Lanzhou, Gansu, China
| | - Xiaobin Yang
- College of Animal Science and Technology, Gansu Agricultural University, Lanzhou, Gansu, China
| | - Weimin Wang
- College of Animal Science and Technology, Gansu Agricultural University, Lanzhou, Gansu, China
| |
Collapse
|
4
|
Li BJ, Zhu ZX, Qin H, Meng ZN, Lin HR, Xia JH. Genome-Wide Characterization of Alternative Splicing Events and Their Responses to Cold Stress in Tilapia. Front Genet 2020; 11:244. [PMID: 32256528 PMCID: PMC7093569 DOI: 10.3389/fgene.2020.00244] [Citation(s) in RCA: 20] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/26/2019] [Accepted: 02/28/2020] [Indexed: 12/15/2022] Open
Abstract
Alternative splicing (AS) is an important post-transcriptional regulatory mechanism for cells to generate transcript variability and proteome diversity. No systematic investigation of AS events among different tissues in response to stressors is available for tilapia currently. In this study, AS among different tissues was identified and the cold stress-related AS events were explored in a Nile tilapia (Oreochromis niloticus) line based on 42 RNA-seq datasets using a bioinformatics pipeline. 14,796 (82.76%; SD = 2,840) of the expression genes showed AS events. The two most abundant AS types were alternative transcription start site (TSS) and terminal site (TTS) in tilapia. Testis, brain and kidney possess the most abundant AS gene number, while the blood, muscle and liver possess the least number in each tissue. Furthermore, 208 differentially alternative splicing (DAS) genes in heart and 483 DAS in brain in response to cold stress. The number of AS types for alternative exon end, exon skipping and retention of single intron increased significantly under cold stress. GO enrichment and pathway overrepresentation analysis indicated that many DAS genes, e.g., genes in circadian clock pathway, may influence expression of downstream genes under cold stress. Our study revealed that AS exists extensively in tilapia and plays an important role in cold adaption.
Collapse
Affiliation(s)
| | | | | | | | | | - Jun Hong Xia
- State Key Laboratory of Biocontrol, Institute of Aquatic Economic Animals and Guangdong Provincial Key Laboratory for Aquatic Economic Animals, College of Life Sciences, Sun Yat-sen University, Guangzhou, China
| |
Collapse
|
5
|
Li BJ, Zhu ZX, Gu XH, Lin HR, Xia JH. QTL Mapping for Red Blotches in Malaysia Red Tilapia (Oreochromis spp.). MARINE BIOTECHNOLOGY (NEW YORK, N.Y.) 2019; 21:384-395. [PMID: 30863905 DOI: 10.1007/s10126-019-09888-9] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/14/2018] [Accepted: 02/21/2019] [Indexed: 06/09/2023]
Abstract
Body color is an interesting economic trait in fish. Red tilapia with red blotches may decrease its commercial values. Conventional selection of pure red color lines is a time-consuming and labor-intensive process. To accelerate selection of pure lines through marker-assisted selection, in this study, double-digest restriction site-associated DNA sequencing (ddRAD-seq) technology was applied to genotype a full-sib mapping family of Malaysia red tilapia (Oreochromis spp.) (N = 192). Genome-wide significant quantitative trait locus (QTL)-controlling red blotches were mapped onto two chromosomes (chrLG5 and chrLG15) explaining 9.7% and 8.2% of phenotypic variances by a genome-wide association study (GWAS) and linkage-based QTL mapping. Six SNPs from the chromosome chrLG5 (four), chrLG15 (one), and unplaced supercontig GL831288-1 (one) were significantly associated to the red blotch trait in GWAS analysis. We developed nine microsatellite markers and validated significant correlations between genotypes and blotch data (p < 0.05). Our study laid a foundation for exploring a genetic mechanism of body colors and carrying out genetic improvement for color quality in tilapia.
Collapse
Affiliation(s)
- Bi Jun Li
- State Key Laboratory of Biocontrol, Institute of Aquatic Economic Animals and Guangdong Provincial Key Laboratory for Aquatic Economic Animals, College of Life Sciences, Sun Yat-sen University, Guangzhou, 510275, People's Republic of China
| | - Zong Xian Zhu
- State Key Laboratory of Biocontrol, Institute of Aquatic Economic Animals and Guangdong Provincial Key Laboratory for Aquatic Economic Animals, College of Life Sciences, Sun Yat-sen University, Guangzhou, 510275, People's Republic of China
| | - Xiao Hui Gu
- State Key Laboratory of Biocontrol, Institute of Aquatic Economic Animals and Guangdong Provincial Key Laboratory for Aquatic Economic Animals, College of Life Sciences, Sun Yat-sen University, Guangzhou, 510275, People's Republic of China
| | - Hao Ran Lin
- State Key Laboratory of Biocontrol, Institute of Aquatic Economic Animals and Guangdong Provincial Key Laboratory for Aquatic Economic Animals, College of Life Sciences, Sun Yat-sen University, Guangzhou, 510275, People's Republic of China
| | - Jun Hong Xia
- State Key Laboratory of Biocontrol, Institute of Aquatic Economic Animals and Guangdong Provincial Key Laboratory for Aquatic Economic Animals, College of Life Sciences, Sun Yat-sen University, Guangzhou, 510275, People's Republic of China.
| |
Collapse
|
6
|
Jiang DL, Gu XH, Li BJ, Zhu ZX, Qin H, Meng ZN, Lin HR, Xia JH. Identifying a Long QTL Cluster Across chrLG18 Associated with Salt Tolerance in Tilapia Using GWAS and QTL-seq. MARINE BIOTECHNOLOGY (NEW YORK, N.Y.) 2019; 21:250-261. [PMID: 30737627 DOI: 10.1007/s10126-019-09877-y] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/28/2018] [Accepted: 01/14/2019] [Indexed: 06/09/2023]
Abstract
Understanding the genetic mechanism of osmoregulation is important for the improvement of salt tolerance in tilapia. In our previous study, we have identified a major quantitative trait locus (QTL) region located at 23.0 Mb of chrLG18 in a Nile tilapia line by QTL-seq. However, the conservation of these QTLs in other tilapia populations or species is not clear. In this study, we successfully investigated the QTLs associated with salt tolerance in a mass cross population from the GIFT line of Nile tilapia (Oreochromis niloticus) using a ddRAD-seq-based genome-wide association study (GWAS) and in a full-sib family from the Malaysia red tilapia strain (Oreochromis spp) using QTL-seq. Our study confirmed the major QTL interval that is located at nearly 23.0 Mb of chrLG18 in Nile tilapia and revealed a long QTL cluster across chrLG18 controlling for the salt-tolerant trait in both red tilapia and Nile tilapia. This is the first GWAS analysis on salt tolerance in tilapia. Our finding provides important insights into the genetic architecture of salinity tolerance in tilapia and supplies a basis for fine mapping QTLs, marker-assisted selection, and further detailed functional analysis of the underlying genes for salt tolerance in tilapia.
Collapse
Affiliation(s)
- Dan Li Jiang
- State Key Laboratory of Biocontrol, Institute of Aquatic Economic Animals and Guangdong Provincial Key Laboratory for Aquatic Economic Animals, College of Life Sciences, Sun Yat-Sen University, Guangzhou, 510275, People's Republic of China
| | - Xiao Hui Gu
- State Key Laboratory of Biocontrol, Institute of Aquatic Economic Animals and Guangdong Provincial Key Laboratory for Aquatic Economic Animals, College of Life Sciences, Sun Yat-Sen University, Guangzhou, 510275, People's Republic of China
| | - Bi Jun Li
- State Key Laboratory of Biocontrol, Institute of Aquatic Economic Animals and Guangdong Provincial Key Laboratory for Aquatic Economic Animals, College of Life Sciences, Sun Yat-Sen University, Guangzhou, 510275, People's Republic of China
| | - Zong Xian Zhu
- State Key Laboratory of Biocontrol, Institute of Aquatic Economic Animals and Guangdong Provincial Key Laboratory for Aquatic Economic Animals, College of Life Sciences, Sun Yat-Sen University, Guangzhou, 510275, People's Republic of China
| | - Hui Qin
- State Key Laboratory of Biocontrol, Institute of Aquatic Economic Animals and Guangdong Provincial Key Laboratory for Aquatic Economic Animals, College of Life Sciences, Sun Yat-Sen University, Guangzhou, 510275, People's Republic of China
| | - Zi Ning Meng
- State Key Laboratory of Biocontrol, Institute of Aquatic Economic Animals and Guangdong Provincial Key Laboratory for Aquatic Economic Animals, College of Life Sciences, Sun Yat-Sen University, Guangzhou, 510275, People's Republic of China
| | - Hao Ran Lin
- State Key Laboratory of Biocontrol, Institute of Aquatic Economic Animals and Guangdong Provincial Key Laboratory for Aquatic Economic Animals, College of Life Sciences, Sun Yat-Sen University, Guangzhou, 510275, People's Republic of China
| | - Jun Hong Xia
- State Key Laboratory of Biocontrol, Institute of Aquatic Economic Animals and Guangdong Provincial Key Laboratory for Aquatic Economic Animals, College of Life Sciences, Sun Yat-Sen University, Guangzhou, 510275, People's Republic of China.
| |
Collapse
|