1
|
Liu Y, Wang L, Li Z, Li L, Ding T, Chen S, Duan P, Wang X, Qiu Y, Ding X, Tian Y. DNA Methylation and Transcriptome Profiling Reveal the Role of the Antioxidant Pathway and Lipid Metabolism in Plectropomus leopardus Skin Color Formation. Antioxidants (Basel) 2025; 14:93. [PMID: 39857428 PMCID: PMC11763275 DOI: 10.3390/antiox14010093] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/25/2024] [Revised: 01/06/2025] [Accepted: 01/07/2025] [Indexed: 01/27/2025] Open
Abstract
Leopard coral grouper (Plectropomus leopardus), possessing a distinct red body color, is an important species in commercial markets; however, the high ratio of black individuals under intensive cultivation has limited the commercial value of the species. To dissect the regulatory mechanisms underlying the red skin trait in P. leopardus, gene expression and DNA methylation modifications were compared between red and black skin tissues after astaxanthin treatment. Astaxanthin effectively increased the redness value a* and body weight. Multi-omics analyses revealed the crucial roles of pathways related to antioxidants and lipid metabolism, particularly "Tyrosine metabolism", "Melanogenesis", "Fatty acid metabolism", "Fatty acid elongation", and "Biosynthesis of unsaturated acids", in red skin coloration. A molecular network for the regulation of red skin coloration in P. leopardus was constructed, and pmel, tyr, tyrp1a, tyrp1b, dct, slc24a5, wnt1, acsl4, elovl1, elovl6l.1, elovl6l.2, and elovl7 were identified as key genes. Notably, pmel, acsl4, and elovl7 were negatively regulated by differential DNA methylation. Our results provide new insight into the molecular and epigenetic mechanisms of body color variation, representing a significant step towards breeding for the red skin trait in P. leopardus.
Collapse
Affiliation(s)
- Yang Liu
- State Key Laboratory of Mariculture Biobreeding and Sustainable Goods, Yellow Sea Fisheries Research Institute, Chinese Academy of Fishery Sciences, Qingdao 266071, China; (Y.L.); (L.W.); (Z.L.); (L.L.); (T.D.); (S.C.); (P.D.); (X.W.); (Y.Q.); (X.D.)
- Key Laboratory for Sustainable Development of Marine Fisheries, Ministry of Agriculture and Rural Affairs, Yellow Sea Fisheries Research Institute, Qingdao 266071, China
- Hainan Innovation Research Institute, Chinese Academy of Fishery Sciences, Sanya 572025, China
| | - Linna Wang
- State Key Laboratory of Mariculture Biobreeding and Sustainable Goods, Yellow Sea Fisheries Research Institute, Chinese Academy of Fishery Sciences, Qingdao 266071, China; (Y.L.); (L.W.); (Z.L.); (L.L.); (T.D.); (S.C.); (P.D.); (X.W.); (Y.Q.); (X.D.)
- Key Laboratory for Sustainable Development of Marine Fisheries, Ministry of Agriculture and Rural Affairs, Yellow Sea Fisheries Research Institute, Qingdao 266071, China
- Hainan Innovation Research Institute, Chinese Academy of Fishery Sciences, Sanya 572025, China
| | - Zhentong Li
- State Key Laboratory of Mariculture Biobreeding and Sustainable Goods, Yellow Sea Fisheries Research Institute, Chinese Academy of Fishery Sciences, Qingdao 266071, China; (Y.L.); (L.W.); (Z.L.); (L.L.); (T.D.); (S.C.); (P.D.); (X.W.); (Y.Q.); (X.D.)
- Key Laboratory for Sustainable Development of Marine Fisheries, Ministry of Agriculture and Rural Affairs, Yellow Sea Fisheries Research Institute, Qingdao 266071, China
- Hainan Innovation Research Institute, Chinese Academy of Fishery Sciences, Sanya 572025, China
| | - Linlin Li
- State Key Laboratory of Mariculture Biobreeding and Sustainable Goods, Yellow Sea Fisheries Research Institute, Chinese Academy of Fishery Sciences, Qingdao 266071, China; (Y.L.); (L.W.); (Z.L.); (L.L.); (T.D.); (S.C.); (P.D.); (X.W.); (Y.Q.); (X.D.)
- Key Laboratory for Sustainable Development of Marine Fisheries, Ministry of Agriculture and Rural Affairs, Yellow Sea Fisheries Research Institute, Qingdao 266071, China
- Hainan Innovation Research Institute, Chinese Academy of Fishery Sciences, Sanya 572025, China
| | - Tangtang Ding
- State Key Laboratory of Mariculture Biobreeding and Sustainable Goods, Yellow Sea Fisheries Research Institute, Chinese Academy of Fishery Sciences, Qingdao 266071, China; (Y.L.); (L.W.); (Z.L.); (L.L.); (T.D.); (S.C.); (P.D.); (X.W.); (Y.Q.); (X.D.)
- College of Fisheries, Tianjin Agricultural University, Tianjin 300392, China
| | - Shuai Chen
- State Key Laboratory of Mariculture Biobreeding and Sustainable Goods, Yellow Sea Fisheries Research Institute, Chinese Academy of Fishery Sciences, Qingdao 266071, China; (Y.L.); (L.W.); (Z.L.); (L.L.); (T.D.); (S.C.); (P.D.); (X.W.); (Y.Q.); (X.D.)
| | - Pengfei Duan
- State Key Laboratory of Mariculture Biobreeding and Sustainable Goods, Yellow Sea Fisheries Research Institute, Chinese Academy of Fishery Sciences, Qingdao 266071, China; (Y.L.); (L.W.); (Z.L.); (L.L.); (T.D.); (S.C.); (P.D.); (X.W.); (Y.Q.); (X.D.)
| | - Xinyi Wang
- State Key Laboratory of Mariculture Biobreeding and Sustainable Goods, Yellow Sea Fisheries Research Institute, Chinese Academy of Fishery Sciences, Qingdao 266071, China; (Y.L.); (L.W.); (Z.L.); (L.L.); (T.D.); (S.C.); (P.D.); (X.W.); (Y.Q.); (X.D.)
| | - Yishu Qiu
- State Key Laboratory of Mariculture Biobreeding and Sustainable Goods, Yellow Sea Fisheries Research Institute, Chinese Academy of Fishery Sciences, Qingdao 266071, China; (Y.L.); (L.W.); (Z.L.); (L.L.); (T.D.); (S.C.); (P.D.); (X.W.); (Y.Q.); (X.D.)
| | - Xiaoyu Ding
- State Key Laboratory of Mariculture Biobreeding and Sustainable Goods, Yellow Sea Fisheries Research Institute, Chinese Academy of Fishery Sciences, Qingdao 266071, China; (Y.L.); (L.W.); (Z.L.); (L.L.); (T.D.); (S.C.); (P.D.); (X.W.); (Y.Q.); (X.D.)
| | - Yongsheng Tian
- State Key Laboratory of Mariculture Biobreeding and Sustainable Goods, Yellow Sea Fisheries Research Institute, Chinese Academy of Fishery Sciences, Qingdao 266071, China; (Y.L.); (L.W.); (Z.L.); (L.L.); (T.D.); (S.C.); (P.D.); (X.W.); (Y.Q.); (X.D.)
- Key Laboratory for Sustainable Development of Marine Fisheries, Ministry of Agriculture and Rural Affairs, Yellow Sea Fisheries Research Institute, Qingdao 266071, China
- Hainan Innovation Research Institute, Chinese Academy of Fishery Sciences, Sanya 572025, China
| |
Collapse
|
2
|
Chen K, Liang H, Yu Z, Guo G, Zheng H, Huang Y, Liu L, Lin J, Long J, Pan R, Chen X, Wang C, Zhang W, Xu Z. Analysis of early efficacy and immune reconstitution after autologous hematopoietic stem cell transplantation in multiple myeloma. Sci Rep 2025; 15:1222. [PMID: 39775096 PMCID: PMC11707290 DOI: 10.1038/s41598-024-84047-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/21/2024] [Accepted: 12/19/2024] [Indexed: 01/11/2025] Open
Abstract
This retrospective study aimed to stress the advantages of autologous hematopoietic stem cell transplantation (auto-HSCT) in treating primary MM. Ninety-four MM patients who underwent initial parallel sequential auto-HSCT were selected. Data on efficacy (efficacy evaluation, renal function and hemoglobin recovery), immune reconstitution (B-cell subsets, immunoglobulin levels, T-cell subsets, NK cells, neutrophil-to-lymphocyte ratio (NLR), lymphocyte-to-monocyte ratio (LMR)) and hematopoietic reconstitution times were collected and analyzed. Whether in all selected patients or in groups R-ISS II-III, there was a notable increase in the proportion of patients achieving in a very good partial response (VGPR) or better (P < 0.001, P = 0.02) and a complete response (CR) or better (P = 0.007, P = 0.014) after transplantation compared to the pre-transplant status. Post-Transplant Immune Reconstitution Analysis (Baseline vs. Pre-Transplant and Pre-Transplant vs. Post-Transplant): The level of CD19 + B cells, CD20 + B cells, CD22 + B cells, CD3 + T cells, IgG and LMR showed the same change trend, that is, it decreased before transplantation (P < 0.001, P < 0.001, P < 0.001, P < 0.001, P<0.007, P < 0.001) and then increased significantly after transplantation(P < 0.001, P < 0.001, P < 0.001, P < 0.001, P < 0.001, P < 0.001). CD3 + CD4 + T cells from 545.97 (342.11,708.60)/µL to 342.93 (168.38, 475.52)/µL (P < 0.001) and then to 251.48 (188.52, 406.98)/µL (P = 0.348); CD3 + CD8 + T cells from 391.36 (242.19, 563.37)/µL to 337.23 (192.54, 505.96)/µL (P = 0.065) and then to 797.96 (514.49, 1198.03)/µL (P < 0.001), so the CD3 + CD4+/CD3 + CD8 + T cell ratio still remained inverted post-transplant. NK cells changed from 309.86 (206.33, 460.96)/µL to 258.31 (160.75, 436.68)/ µL (P = 0.229) and then to 151.08 (108.17, 240.84)/µL (P = 0.007). Auto-HSCT can promote prolonged remission in patients with MM and also overcome some high-risk factors to achieve superior efficacy in group R-ISS II-III. Patients were immunodeficient before transplantation and auto-HSCT facilitated immune reconstitution.
Collapse
Affiliation(s)
- Kaili Chen
- Department of Blood Transfusion, Affiliated Hospital of Putian University, Putian, 351100, China
- Fujian Institute of Hematology, Fujian Provincial Key Laboratory on Hematology, Fujian Medical University Union Hospital, 29 Xinquan Rd, Fuzhou, 350001, China
| | - Huixin Liang
- Department of infectious diseases, Fujian Medical University Union Hospital, 29 Xinquan Rd, Fuzhou, 350001, China
| | - Zezhong Yu
- Fujian Institute of Hematology, Fujian Provincial Key Laboratory on Hematology, Fujian Medical University Union Hospital, 29 Xinquan Rd, Fuzhou, 350001, China
| | - Guangyao Guo
- Fujian Institute of Hematology, Fujian Provincial Key Laboratory on Hematology, Fujian Medical University Union Hospital, 29 Xinquan Rd, Fuzhou, 350001, China
| | - Huijian Zheng
- Fujian Institute of Hematology, Fujian Provincial Key Laboratory on Hematology, Fujian Medical University Union Hospital, 29 Xinquan Rd, Fuzhou, 350001, China
| | - Yun Huang
- Fujian Institute of Hematology, Fujian Provincial Key Laboratory on Hematology, Fujian Medical University Union Hospital, 29 Xinquan Rd, Fuzhou, 350001, China
| | - Liping Liu
- Fujian Institute of Hematology, Fujian Provincial Key Laboratory on Hematology, Fujian Medical University Union Hospital, 29 Xinquan Rd, Fuzhou, 350001, China
| | - Jie Lin
- Fujian Institute of Hematology, Fujian Provincial Key Laboratory on Hematology, Fujian Medical University Union Hospital, 29 Xinquan Rd, Fuzhou, 350001, China
| | - Jinlan Long
- Fujian Institute of Hematology, Fujian Provincial Key Laboratory on Hematology, Fujian Medical University Union Hospital, 29 Xinquan Rd, Fuzhou, 350001, China
| | - Renyao Pan
- Fujian Institute of Hematology, Fujian Provincial Key Laboratory on Hematology, Fujian Medical University Union Hospital, 29 Xinquan Rd, Fuzhou, 350001, China
| | - Xi Chen
- Fujian Institute of Hematology, Fujian Provincial Key Laboratory on Hematology, Fujian Medical University Union Hospital, 29 Xinquan Rd, Fuzhou, 350001, China
| | - Changgui Wang
- Fujian Institute of Hematology, Fujian Provincial Key Laboratory on Hematology, Fujian Medical University Union Hospital, 29 Xinquan Rd, Fuzhou, 350001, China
| | - Wenjie Zhang
- Fujian Institute of Hematology, Fujian Provincial Key Laboratory on Hematology, Fujian Medical University Union Hospital, 29 Xinquan Rd, Fuzhou, 350001, China.
| | - Zhenshu Xu
- Fujian Institute of Hematology, Fujian Provincial Key Laboratory on Hematology, Fujian Medical University Union Hospital, 29 Xinquan Rd, Fuzhou, 350001, China.
| |
Collapse
|
3
|
Lu S, Liu Y, Li M, Ge Q, Wang C, Song Y, Zhou B, Chen S. Gap-free telomere-to-telomere haplotype assembly of the tomato hind (Cephalopholis sonnerati). Sci Data 2024; 11:1268. [PMID: 39578472 PMCID: PMC11584678 DOI: 10.1038/s41597-024-04093-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/04/2024] [Accepted: 11/06/2024] [Indexed: 11/24/2024] Open
Abstract
The tomato hind (Cephalopholis sonnerati) is an emerging economically important grouper in recent years. With the increasing maturity of sequencing technologies and assembly methodologies, a higher quality reference genome has become both accessible and necessary. In this study, we present two telomere-to-telomere (T2T) gap-free haplotype assemblies of the tomato hind with lengths of 1039.53 Mb (YSFRI_Csonn_HA_1.0, N50 43.83 Mb) and 1039.91 Mb (YSFRI_Csonn_HB_1.0, N50 44.09 Mb). Reads from next-generation sequencing, ONT ultra-long sequencing, and PacBio HiFi sequencing exhibited mapping rates exceeding 99.8% when aligned to these two assemblies. Evaluation using Merqury indicated high accuracy for both assemblies, with average quality values of 51.80 and 51.83, respectively. Percentages of 97.9% and 97.8% of complete BUSCOs were achieved, and a total of 23,270 and 23,184 protein-code genes were inferred in each assembly. Moreover, telomere identification, centromere prediction, and repetitive sequence annotation were also successfully performed. These two assemblies provide robust foundation for the genetic analysis and development of molecular genetic breeding technologies in C. sonnerati.
Collapse
Affiliation(s)
- Sheng Lu
- State Key Laboratory of Mariculture Biobreeding and Sustainable Goods, Yellow Sea Fisheries Research Institute, Chinese Academy of Fishery Sciences, Qingdao, Shandong, 266071, China
- Laboratory for Marine Fisheries Science and Food Production Processes, Qingdao Marine Science and Technology Center, Qingdao, Shandong, 266237, China
| | - Yang Liu
- State Key Laboratory of Mariculture Biobreeding and Sustainable Goods, Yellow Sea Fisheries Research Institute, Chinese Academy of Fishery Sciences, Qingdao, Shandong, 266071, China
- Laboratory for Marine Fisheries Science and Food Production Processes, Qingdao Marine Science and Technology Center, Qingdao, Shandong, 266237, China
| | - Ming Li
- State Key Laboratory of Mariculture Biobreeding and Sustainable Goods, Yellow Sea Fisheries Research Institute, Chinese Academy of Fishery Sciences, Qingdao, Shandong, 266071, China
- Laboratory for Marine Fisheries Science and Food Production Processes, Qingdao Marine Science and Technology Center, Qingdao, Shandong, 266237, China
| | - Qijin Ge
- State Key Laboratory of Mariculture Biobreeding and Sustainable Goods, Yellow Sea Fisheries Research Institute, Chinese Academy of Fishery Sciences, Qingdao, Shandong, 266071, China
- Laboratory for Marine Fisheries Science and Food Production Processes, Qingdao Marine Science and Technology Center, Qingdao, Shandong, 266237, China
| | - Chongwei Wang
- State Key Laboratory of Mariculture Biobreeding and Sustainable Goods, Yellow Sea Fisheries Research Institute, Chinese Academy of Fishery Sciences, Qingdao, Shandong, 266071, China
- Laboratory for Marine Fisheries Science and Food Production Processes, Qingdao Marine Science and Technology Center, Qingdao, Shandong, 266237, China
| | - Yu Song
- State Key Laboratory of Mariculture Biobreeding and Sustainable Goods, Yellow Sea Fisheries Research Institute, Chinese Academy of Fishery Sciences, Qingdao, Shandong, 266071, China
- Laboratory for Marine Fisheries Science and Food Production Processes, Qingdao Marine Science and Technology Center, Qingdao, Shandong, 266237, China
| | - Bo Zhou
- Wanning Linlan Aquaculture Co., Ltd., Wanning, Hainan, 571528, China
| | - Songlin Chen
- State Key Laboratory of Mariculture Biobreeding and Sustainable Goods, Yellow Sea Fisheries Research Institute, Chinese Academy of Fishery Sciences, Qingdao, Shandong, 266071, China.
- Laboratory for Marine Fisheries Science and Food Production Processes, Qingdao Marine Science and Technology Center, Qingdao, Shandong, 266237, China.
| |
Collapse
|
4
|
Xu W, Liu Y, Li M, Lu S, Chen S. Advances in biotechnology and breeding innovations in China's marine aquaculture. ADVANCED BIOTECHNOLOGY 2024; 2:38. [PMID: 39883290 PMCID: PMC11740861 DOI: 10.1007/s44307-024-00043-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/07/2024] [Revised: 09/09/2024] [Accepted: 09/21/2024] [Indexed: 01/31/2025]
Abstract
Biotechnology is the key driving force behind the sustainable development of aquaculture, as biological innovation would significantly improve the capabilities of aquatic breeding and achieve independent and controllable seeding sources to ensure food safety. In this article, we have analyzed the current status and existing problems of marine aquaculture in China. Based on these data, we have summarized the recent (especially the last 10 years) biotechnological innovation and breeding progress of marine aquaculture in China, including whole genome sequencing, sex-related marker screening, genomic selection, and genome editing, as well as progress of improved marine fish varieties in China. Finally, the perspectives in this field have been discussed, and three future countermeasures have been proposed.
Collapse
Affiliation(s)
- Wenteng Xu
- State Key Laboratory of Mariculture Biobreeding and Sustainable Goods, Yellow Sea Fisheries Research Institute, Chinese Academy of Fishery Sciences, Qingdao, 266071, Shandong, China
- Laboratory for Marine Fisheries Science and Food Production Processes, Qingdao Marine Science and Technology Center, Qingdao, 266237, Shandong, China
| | - Yang Liu
- State Key Laboratory of Mariculture Biobreeding and Sustainable Goods, Yellow Sea Fisheries Research Institute, Chinese Academy of Fishery Sciences, Qingdao, 266071, Shandong, China
- Laboratory for Marine Fisheries Science and Food Production Processes, Qingdao Marine Science and Technology Center, Qingdao, 266237, Shandong, China
| | - Ming Li
- State Key Laboratory of Mariculture Biobreeding and Sustainable Goods, Yellow Sea Fisheries Research Institute, Chinese Academy of Fishery Sciences, Qingdao, 266071, Shandong, China
- Laboratory for Marine Fisheries Science and Food Production Processes, Qingdao Marine Science and Technology Center, Qingdao, 266237, Shandong, China
| | - Sheng Lu
- State Key Laboratory of Mariculture Biobreeding and Sustainable Goods, Yellow Sea Fisheries Research Institute, Chinese Academy of Fishery Sciences, Qingdao, 266071, Shandong, China
- Laboratory for Marine Fisheries Science and Food Production Processes, Qingdao Marine Science and Technology Center, Qingdao, 266237, Shandong, China
| | - Songlin Chen
- State Key Laboratory of Mariculture Biobreeding and Sustainable Goods, Yellow Sea Fisheries Research Institute, Chinese Academy of Fishery Sciences, Qingdao, 266071, Shandong, China.
- Laboratory for Marine Fisheries Science and Food Production Processes, Qingdao Marine Science and Technology Center, Qingdao, 266237, Shandong, China.
| |
Collapse
|
5
|
Zhou Q, Wang J, Li J, Chen Z, Wang N, Li M, Wang L, Si Y, Lu S, Cui Z, Liu X, Chen S. Decoding the fish genome opens a new era in important trait research and molecular breeding in China. SCIENCE CHINA. LIFE SCIENCES 2024; 67:2064-2083. [PMID: 39145867 DOI: 10.1007/s11427-023-2670-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/14/2024] [Accepted: 07/01/2024] [Indexed: 08/16/2024]
Abstract
Aquaculture represents the fastest-growing global food production sector, as it has become an essential component of the global food supply. China has the world's largest aquaculture industry in terms of production volume. However, the sustainable development of fish culture is hindered by several concerns, including germplasm degradation and disease outbreaks. The practice of genomic breeding, which relies heavily on genome information and genotypephenotype relationships, has significant potential for increasing the efficiency of aquaculture production. In 2014, the completion of the genome sequencing and annotation of the Chinese tongue sole signified the beginning of the fish genomics era in China. Since then, domestic researchers have made dramatic progress in functional genomic studies. To date, the genomes of more than 60 species of fish in China have been assembled and annotated. Based on these reference genomes, evolutionary, comparative, and functional genomic studies have revolutionized our understanding of a wide range of biologically and economically important traits of fishes, including growth and development, sex determination, disease resistance, metamorphosis, and pigmentation. Furthermore, genomic tools and breeding techniques such as SNP arrays, genomic selection, and genome editing have greatly accelerated genetic improvement through the incorporation of functional genomic information into breeding activities. This review aims to summarize the current status, advances, and perspectives of the genome resources, genomic study of important traits, and genomic breeding techniques of fish in China. The review will provide aquaculture researchers, fish breeders, and farmers with updated information concerning fish genomic research and breeding technology. The summary will help to promote the genetic improvement of production traits and thus will support the sustainable development of fish aquaculture.
Collapse
Affiliation(s)
- Qian Zhou
- State Key Laboratory of Mariculture Biobreeding and Sustainable Goods, Yellow Sea Fisheries Research Institute, Chinese Academy of Fishery Sciences, Qingdao, Shandong, 266071, China
- Laboratory for Marine Fisheries Science and Food Production Processes, Qingdao Marine Science and Technology Center, Qingdao, Shandong, 266237, China
| | - Jialin Wang
- State Key Laboratory of Mariculture Biobreeding and Sustainable Goods, Yellow Sea Fisheries Research Institute, Chinese Academy of Fishery Sciences, Qingdao, Shandong, 266071, China
- Laboratory for Marine Fisheries Science and Food Production Processes, Qingdao Marine Science and Technology Center, Qingdao, Shandong, 266237, China
| | - Jiongtang Li
- Key Laboratory of Aquatic Genomics, Ministry of Agriculture and Rural Affairs, Beijing Key Laboratory of Fishery Biotechnology, Chinese Academy of Fishery Sciences, Beijing, 100041, China
| | - Zhangfan Chen
- State Key Laboratory of Mariculture Biobreeding and Sustainable Goods, Yellow Sea Fisheries Research Institute, Chinese Academy of Fishery Sciences, Qingdao, Shandong, 266071, China
- Laboratory for Marine Fisheries Science and Food Production Processes, Qingdao Marine Science and Technology Center, Qingdao, Shandong, 266237, China
| | - Na Wang
- State Key Laboratory of Mariculture Biobreeding and Sustainable Goods, Yellow Sea Fisheries Research Institute, Chinese Academy of Fishery Sciences, Qingdao, Shandong, 266071, China
- Laboratory for Marine Fisheries Science and Food Production Processes, Qingdao Marine Science and Technology Center, Qingdao, Shandong, 266237, China
| | - Ming Li
- State Key Laboratory of Mariculture Biobreeding and Sustainable Goods, Yellow Sea Fisheries Research Institute, Chinese Academy of Fishery Sciences, Qingdao, Shandong, 266071, China
- Laboratory for Marine Fisheries Science and Food Production Processes, Qingdao Marine Science and Technology Center, Qingdao, Shandong, 266237, China
| | - Lei Wang
- State Key Laboratory of Mariculture Biobreeding and Sustainable Goods, Yellow Sea Fisheries Research Institute, Chinese Academy of Fishery Sciences, Qingdao, Shandong, 266071, China
- Laboratory for Marine Fisheries Science and Food Production Processes, Qingdao Marine Science and Technology Center, Qingdao, Shandong, 266237, China
| | - Yufeng Si
- State Key Laboratory of Mariculture Biobreeding and Sustainable Goods, Yellow Sea Fisheries Research Institute, Chinese Academy of Fishery Sciences, Qingdao, Shandong, 266071, China
- Laboratory for Marine Fisheries Science and Food Production Processes, Qingdao Marine Science and Technology Center, Qingdao, Shandong, 266237, China
| | - Sheng Lu
- State Key Laboratory of Mariculture Biobreeding and Sustainable Goods, Yellow Sea Fisheries Research Institute, Chinese Academy of Fishery Sciences, Qingdao, Shandong, 266071, China
- Laboratory for Marine Fisheries Science and Food Production Processes, Qingdao Marine Science and Technology Center, Qingdao, Shandong, 266237, China
| | - Zhongkai Cui
- State Key Laboratory of Mariculture Biobreeding and Sustainable Goods, Yellow Sea Fisheries Research Institute, Chinese Academy of Fishery Sciences, Qingdao, Shandong, 266071, China
- Laboratory for Marine Fisheries Science and Food Production Processes, Qingdao Marine Science and Technology Center, Qingdao, Shandong, 266237, China
| | - Xuhui Liu
- State Key Laboratory of Mariculture Biobreeding and Sustainable Goods, Yellow Sea Fisheries Research Institute, Chinese Academy of Fishery Sciences, Qingdao, Shandong, 266071, China
- Laboratory for Marine Fisheries Science and Food Production Processes, Qingdao Marine Science and Technology Center, Qingdao, Shandong, 266237, China
| | - Songlin Chen
- State Key Laboratory of Mariculture Biobreeding and Sustainable Goods, Yellow Sea Fisheries Research Institute, Chinese Academy of Fishery Sciences, Qingdao, Shandong, 266071, China.
- Laboratory for Marine Fisheries Science and Food Production Processes, Qingdao Marine Science and Technology Center, Qingdao, Shandong, 266237, China.
| |
Collapse
|
6
|
Hao X, Lin H, Lin Z, Yang K, Hu J, Ma Z, Yu W. Effect of Dietary Astragalus polysaccharides (APS) on the Growth Performance, Antioxidant Responses, Immunological Parameters, and Intestinal Microbiota of Coral Trout ( Plectropomus leopardus). Microorganisms 2024; 12:1980. [PMID: 39458289 PMCID: PMC11509791 DOI: 10.3390/microorganisms12101980] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/05/2024] [Revised: 09/26/2024] [Accepted: 09/26/2024] [Indexed: 10/28/2024] Open
Abstract
The potential effects of Astragalus polysaccharides (APS) were evaluated in coral trout (Plectropomus leopardus). Five APS levels (0%, 0.05%, 0.10%, 0.15%, and 0.20%) were added to the diet of coral trout, and a 56-day growth trial (initial weight 18.62 ± 0.05 g) was conducted. Dietary APS enhanced growth performance, with the highest improvement observed in fish fed the 0.15% APS diet. This concentration also enhanced the antioxidant capacity and immunomodulation of the fish by regulating the expression of genes associated with antioxidant enzymes and immune responses. Intestinal microbiota analysis revealed that APS supplementation significantly increased the Chao1 index and relative abundance of beneficial bacteria (Firmicutes and Bacillus). A high level of APS (0.20%) did not provide additional benefits for growth and health compared to a moderate level (0.15%). These findings indicate that an optimal APS dose promotes growth, enhances antioxidant activity, supports immune function, and improves intestinal microbiota in coral trout. Based on a cubic regression analysis of the specific growth rate, the optimal APS level for the maximal growth of coral trout was determined to be 0.1455%.
Collapse
Affiliation(s)
- Xiaoqi Hao
- Key Laboratory of South China Sea Fishery Resources Exploitation & Utilization, Ministry of Agriculture and Rural Affairs, South China Sea Fisheries Research Institute, Chinese Academy of Fishery Sciences, Guangzhou 510300, China; (X.H.); (H.L.); (Z.L.); (K.Y.); (J.H.); (Z.M.)
- Ocean College, Hebei Agricultural University, Qinhuangdao 066003, China
| | - Heizhao Lin
- Key Laboratory of South China Sea Fishery Resources Exploitation & Utilization, Ministry of Agriculture and Rural Affairs, South China Sea Fisheries Research Institute, Chinese Academy of Fishery Sciences, Guangzhou 510300, China; (X.H.); (H.L.); (Z.L.); (K.Y.); (J.H.); (Z.M.)
- Shenzhen Base of South China Sea Fisheries Research Institute, Chinese Academy of Fishery Sciences, Shenzhen 518121, China
| | - Ziyang Lin
- Key Laboratory of South China Sea Fishery Resources Exploitation & Utilization, Ministry of Agriculture and Rural Affairs, South China Sea Fisheries Research Institute, Chinese Academy of Fishery Sciences, Guangzhou 510300, China; (X.H.); (H.L.); (Z.L.); (K.Y.); (J.H.); (Z.M.)
| | - Keng Yang
- Key Laboratory of South China Sea Fishery Resources Exploitation & Utilization, Ministry of Agriculture and Rural Affairs, South China Sea Fisheries Research Institute, Chinese Academy of Fishery Sciences, Guangzhou 510300, China; (X.H.); (H.L.); (Z.L.); (K.Y.); (J.H.); (Z.M.)
| | - Jing Hu
- Key Laboratory of South China Sea Fishery Resources Exploitation & Utilization, Ministry of Agriculture and Rural Affairs, South China Sea Fisheries Research Institute, Chinese Academy of Fishery Sciences, Guangzhou 510300, China; (X.H.); (H.L.); (Z.L.); (K.Y.); (J.H.); (Z.M.)
| | - Zhenhua Ma
- Key Laboratory of South China Sea Fishery Resources Exploitation & Utilization, Ministry of Agriculture and Rural Affairs, South China Sea Fisheries Research Institute, Chinese Academy of Fishery Sciences, Guangzhou 510300, China; (X.H.); (H.L.); (Z.L.); (K.Y.); (J.H.); (Z.M.)
- Key Laboratory of Efficient Utilization and Processing of Marine Fishery Resources of Hainan Province, Sanya Tropical Fisheries Research Institute, Sanya 572426, China
| | - Wei Yu
- Key Laboratory of South China Sea Fishery Resources Exploitation & Utilization, Ministry of Agriculture and Rural Affairs, South China Sea Fisheries Research Institute, Chinese Academy of Fishery Sciences, Guangzhou 510300, China; (X.H.); (H.L.); (Z.L.); (K.Y.); (J.H.); (Z.M.)
- Shenzhen Base of South China Sea Fisheries Research Institute, Chinese Academy of Fishery Sciences, Shenzhen 518121, China
- Key Laboratory of Efficient Utilization and Processing of Marine Fishery Resources of Hainan Province, Sanya Tropical Fisheries Research Institute, Sanya 572426, China
| |
Collapse
|
7
|
Wang Y, Liu S, Wang W, Liu L, Zhao Y, Qin Q, Huang X, Huang Y. SGIV VP82 inhibits the interferon response by degradation of IRF3 and IRF7. FISH & SHELLFISH IMMUNOLOGY 2024; 150:109611. [PMID: 38734119 DOI: 10.1016/j.fsi.2024.109611] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/10/2024] [Revised: 04/29/2024] [Accepted: 05/03/2024] [Indexed: 05/13/2024]
Abstract
During virus-host co-evolution, viruses have developed multiple strategies to dampen IFN response and prevent its antiviral activity in host cells. To date, the interactions between host IFN response and the immune evasion strategies exploited by fish iridoviruses still remain largely uncertain. Here, a potential immune evasion protein candidate of Singapore grouper iridovirus (SGIV), VP82 (encoded by SGIV ORF82) was screened and its roles during viral replication were investigated in detail. Firstly, VP82 overexpression dramatically decreased IFN or ISRE promoter activity and the transcription levels of IFN stimulated genes (ISGs) stimulated by grouper cyclic GMP-AMP synthase (EccGAS)/stimulator of interferon genes (EcSTING), TANK-binding kinase 1 (EcTBK1), IFN regulatory factor 3 (EcIRF3)and EcIRF7. Secondly, Co-IP assays indicated that VP82 interacted with EcIRF3 and EcIRF7, but not EcSTING and EcTBK1, which was consistent with the co-localization between VP82 and EcIRF3 or EcIRF7. Furthermore, VP82 promoted the degradation of EcIRF3 and EcIRF7 in a dose-dependent manner via the autophagy pathway. Finally, VP82 overexpression accelerated SGIV replication, evidenced by the increased transcriptions of viral core genes and viral production. Moreover, the antiviral action of EcIRF3 or EcIRF7 was significantly depressed in VP82 overexpressed cells. Together, VP82 was speculated to exert crucial roles for SGIV replication by inhibiting the IFN response via the degradation of IRF3 and IRF7. Our findings provided new insights into understanding the immune evasion strategies utilized by fish iridovirus through IFN regulation.
Collapse
Affiliation(s)
- Yu Wang
- College of Marine Sciences, South China Agricultural University, Guangdong Laboratory for Lingnan Modern Agriculture, Guangzhou, 510642, China
| | - Shanxing Liu
- College of Marine Sciences, South China Agricultural University, Guangdong Laboratory for Lingnan Modern Agriculture, Guangzhou, 510642, China
| | - Wenji Wang
- College of Marine Sciences, South China Agricultural University, Guangdong Laboratory for Lingnan Modern Agriculture, Guangzhou, 510642, China; Nansha-South China Agricultural University Fishery Research Institute, Guangzhou, 511464, China
| | - Lin Liu
- College of Marine Sciences, South China Agricultural University, Guangdong Laboratory for Lingnan Modern Agriculture, Guangzhou, 510642, China
| | - Yin Zhao
- College of Marine Sciences, South China Agricultural University, Guangdong Laboratory for Lingnan Modern Agriculture, Guangzhou, 510642, China
| | - Qiwei Qin
- College of Marine Sciences, South China Agricultural University, Guangdong Laboratory for Lingnan Modern Agriculture, Guangzhou, 510642, China; Nansha-South China Agricultural University Fishery Research Institute, Guangzhou, 511464, China; Southern Marine Science and Engineering Guangdong Laboratory, Zhuhai, 519082, China
| | - Xiaohong Huang
- College of Marine Sciences, South China Agricultural University, Guangdong Laboratory for Lingnan Modern Agriculture, Guangzhou, 510642, China; Nansha-South China Agricultural University Fishery Research Institute, Guangzhou, 511464, China.
| | - Youhua Huang
- College of Marine Sciences, South China Agricultural University, Guangdong Laboratory for Lingnan Modern Agriculture, Guangzhou, 510642, China; Nansha-South China Agricultural University Fishery Research Institute, Guangzhou, 511464, China.
| |
Collapse
|
8
|
Amorim KDJ, Costa GWWF, Motta-Neto CC, Soares RX, Borges AT, Benetti DD, Cioffi MB, Bertollo LAC, Tanomtong A, Molina WF. Karyotypic changes and diversification time in Epinephelidae groupers (Perciformes). Implications on reproductive isolation. AN ACAD BRAS CIENC 2024; 96:e20221011. [PMID: 38597487 DOI: 10.1590/0001-3765202420221011] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/17/2022] [Accepted: 06/26/2023] [Indexed: 04/11/2024] Open
Abstract
Groupers (Epinephelidae and Serranidae) have attracted special attention to fish farming, and their species offer good opportunities for successful hybridizations. Cytogenetic data allow a better understanding of the role of karyotypic diversification in the acquisition of post-zygotic reproductive isolation (RI). Thus, chromosomal analyses were performed on E. striatus (Caribbean Sea), E. coioides and E. tauvina (Indo-Pacific Region), using standard procedures and mapping of six repetitive DNA classes by the in situ hybridization. The three species have 2n=48 chromosomes. The karyotypes of E. coioides and E. striatus are composed only of acrocentric chromosomes (FN=48), while E. tauvina has 8 submetacentric chromosomes (FN=56). Heterochromatin has a preferential centromeric distribution, and the microsatellite repeats are dispersed throughout the chromosomes of all species. The 18S and 5S rDNA sites are unique but show a colocalization arrangement in E. tauvina and E. striatus. The chromosomal organization suggests that the three species still maintain a significant amount of syntenic regions. The range of the karyotype divergence and the RI levels showed low, but goes turn proportionally greater in relation to the divergence time between the parental species. The slow acquisition of postzygotic RI is consistent with the high karyotype homogeneity presented by Epinephelidae family.
Collapse
Affiliation(s)
- Karlla Danielle J Amorim
- Universidade Federal do Rio Grande do Norte, Centro de Biociências, Departamento de Biologia Celular e Genética, Av. Senador Salgado Filho, s/n, Campus Universitário, Lagoa Nova, 59078-970 Natal, RN, Brazil
| | - Gideão W W F Costa
- Universidade Federal do Rio Grande do Norte, Centro de Biociências, Departamento de Biologia Celular e Genética, Av. Senador Salgado Filho, s/n, Campus Universitário, Lagoa Nova, 59078-970 Natal, RN, Brazil
| | - Clóvis C Motta-Neto
- Universidade Federal do Rio Grande do Norte, Centro de Biociências, Departamento de Biologia Celular e Genética, Av. Senador Salgado Filho, s/n, Campus Universitário, Lagoa Nova, 59078-970 Natal, RN, Brazil
| | - Rodrigo X Soares
- Universidade Federal do Rio Grande do Norte, Centro de Biociências, Departamento de Biologia Celular e Genética, Av. Senador Salgado Filho, s/n, Campus Universitário, Lagoa Nova, 59078-970 Natal, RN, Brazil
| | - Amanda T Borges
- Universidade Federal do Rio Grande do Norte, Centro de Biociências, Departamento de Biologia Celular e Genética, Av. Senador Salgado Filho, s/n, Campus Universitário, Lagoa Nova, 59078-970 Natal, RN, Brazil
| | - Daniel D Benetti
- University of Miami, Rosenstiel School of Marine and Atmospheric Science (RSMAS), 4600 Rickenbacker Causeway, Miami, FL 33149, USA
| | - Marcelo B Cioffi
- Universidade Federal de São Carlos, Departamento de Genética e Evolução, Laboratório de Citogenética de Peixes, Caixa Postal 676, 13565-905 São Carlos, SP, Brazil
| | - Luiz A C Bertollo
- Universidade Federal de São Carlos, Departamento de Genética e Evolução, Laboratório de Citogenética de Peixes, Caixa Postal 676, 13565-905 São Carlos, SP, Brazil
| | - Alongklod Tanomtong
- Department of Biology, Faculty of Science, Khon Kaen University, Muang, Khon Kaen, 40002,Thailand
- Toxic Substances in Livestock and Aquatic Animals Research Group, Khon Kaen University, Muang, Khon Kaen 40002, Thailand
| | - Wagner F Molina
- Universidade Federal do Rio Grande do Norte, Centro de Biociências, Departamento de Biologia Celular e Genética, Av. Senador Salgado Filho, s/n, Campus Universitário, Lagoa Nova, 59078-970 Natal, RN, Brazil
| |
Collapse
|
9
|
Ding H, Wang M, Wang M, Wu S, Guo Y, Gao Y, Li L, Bao Z, Wang B, Hu J. Synchronously sexual maturity in hermaphrodite fish as revealed by transcriptome analysis in Plectropomus leopardus. Gene 2024; 901:148166. [PMID: 38242379 DOI: 10.1016/j.gene.2024.148166] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/25/2023] [Revised: 12/16/2023] [Accepted: 01/11/2024] [Indexed: 01/21/2024]
Abstract
Leopard coral grouper (Plectropomus leopardus) is a type of hermaphrodite fish, but the mechanisms of gonadal development and gametogenesis remain unclear. In the present study, we performed histological observation and transcriptomic analysis during the process of sexual differentiation in P. leopardus. According to the histological results, sexual differentiation was completed at 15 months old, developed synchronously in male and female individuals at 2 years old, and matured synchronously at 3 years old. Comparative transcriptomic analyses showed that the gonadal had differentiated by 15 months old, with enrichment of pathways associated with cell proliferation, transcriptional metabolism, and germline stem cell differentiation. Furthermore, cilium movement and fatty acid anabolism, which are associated with spermatogenesis and oocyte growth, were significantly enriched at 3 years old. In addition, key genes associated with male and female sex differentiation, such as amh, dmrt1, dmrt2a, zp4, sox3, gdf9, and gsdf, were identified by weighted gene co-expression network analysis (WGCNA). Finally, the localization and expression of the key genes amh and sox3 were observed in different cell types within the testes and ovaries, reflecting the development of the testes and ovaries, respectively. All the evidence indicates that P. leopardus is a hermaphrodite and synchronously sexually mature fish. Our study complements the gonadal development patterns of hermaphroditic fish by providing new insights into the molecular mechanisms underlying sexual differentiation and sex change in hermaphroditic groupers.
Collapse
Affiliation(s)
- Hui Ding
- MOE Key Laboratory of Marine Genetics and Breeding, College of Marine Life Sciences/Key Laboratory of Tropical Aquatic Germplasm of Hainan Province, Sanya Oceanographic Institution, Ocean University of China, Qingdao/Sanya, China
| | - Mengya Wang
- MOE Key Laboratory of Marine Genetics and Breeding, College of Marine Life Sciences/Key Laboratory of Tropical Aquatic Germplasm of Hainan Province, Sanya Oceanographic Institution, Ocean University of China, Qingdao/Sanya, China
| | - Mingyi Wang
- MOE Key Laboratory of Marine Genetics and Breeding, College of Marine Life Sciences/Key Laboratory of Tropical Aquatic Germplasm of Hainan Province, Sanya Oceanographic Institution, Ocean University of China, Qingdao/Sanya, China
| | - Shaoxuan Wu
- MOE Key Laboratory of Marine Genetics and Breeding, College of Marine Life Sciences/Key Laboratory of Tropical Aquatic Germplasm of Hainan Province, Sanya Oceanographic Institution, Ocean University of China, Qingdao/Sanya, China
| | - Yilan Guo
- MOE Key Laboratory of Marine Genetics and Breeding, College of Marine Life Sciences/Key Laboratory of Tropical Aquatic Germplasm of Hainan Province, Sanya Oceanographic Institution, Ocean University of China, Qingdao/Sanya, China
| | - Yurui Gao
- MOE Key Laboratory of Marine Genetics and Breeding, College of Marine Life Sciences/Key Laboratory of Tropical Aquatic Germplasm of Hainan Province, Sanya Oceanographic Institution, Ocean University of China, Qingdao/Sanya, China
| | - Lin Li
- MOE Key Laboratory of Marine Genetics and Breeding, College of Marine Life Sciences/Key Laboratory of Tropical Aquatic Germplasm of Hainan Province, Sanya Oceanographic Institution, Ocean University of China, Qingdao/Sanya, China
| | - Zhenmin Bao
- MOE Key Laboratory of Marine Genetics and Breeding, College of Marine Life Sciences/Key Laboratory of Tropical Aquatic Germplasm of Hainan Province, Sanya Oceanographic Institution, Ocean University of China, Qingdao/Sanya, China; Hainan Seed Industry Laboratory, Sanya 572025, China; Southern Marine Science and Engineer Guangdong Laboratory, Guangzhou 511458, China
| | - Bo Wang
- MOE Key Laboratory of Marine Genetics and Breeding, College of Marine Life Sciences/Key Laboratory of Tropical Aquatic Germplasm of Hainan Province, Sanya Oceanographic Institution, Ocean University of China, Qingdao/Sanya, China; Hainan Seed Industry Laboratory, Sanya 572025, China.
| | - Jingjie Hu
- MOE Key Laboratory of Marine Genetics and Breeding, College of Marine Life Sciences/Key Laboratory of Tropical Aquatic Germplasm of Hainan Province, Sanya Oceanographic Institution, Ocean University of China, Qingdao/Sanya, China; Hainan Seed Industry Laboratory, Sanya 572025, China; Southern Marine Science and Engineer Guangdong Laboratory, Guangzhou 511458, China.
| |
Collapse
|
10
|
Ruan Q, Yang S, Hua S, Zhang W, Li D, Yang Y, Wang X, Wang Q, Meng Z. Supplementation of Extender with Melatonin Improves the Motility, Mitochondrial Membrane Potential, and Fertilization Ability of Cryopreserved Brown-Marbled Grouper Sperm. Animals (Basel) 2024; 14:995. [PMID: 38612234 PMCID: PMC11010917 DOI: 10.3390/ani14070995] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/27/2024] [Revised: 03/19/2024] [Accepted: 03/21/2024] [Indexed: 04/14/2024] Open
Abstract
Sperm cryopreservation is a valuable tool for breeding, conservation, and genetic improvement in aquatic resources, while oxidative damage will cause a decline in sperm quality during this progress. Melatonin (MT), a natural antioxidant hormone, is used as an additive in sperm cryopreservation to reduce cellular damage from oxidative stress. Here, we aimed to investigate the effect of adding MT to the freezing medium in sperm cryopreservation of brown-marbled grouper (Epinephelus fuscoguttatus). Different concentrations of MT (0, 0.1, 0.25, and 0.5 mg/mL) were tested. We evaluated sperm motility, viability, apoptosis, mitochondrial membrane potential (MMP), and fertilization ability to assess the effects of MT supplementation. Our results demonstrated that the addition of MT to the extender improved the post-thaw motility, MMP, and fertilization ability of brown-marbled grouper sperm. The total motility, curvilinear velocity, straight linear velocity, and average path velocity in MT-treated groups (0.1 and 0.25 mg/mL) exhibited significantly higher values than that of the control group. A higher MMP (p < 0.05) was observed in the group treated with 0.25 mg/mL MT, suggesting that supplementation of MT in the extender might be able to protect mitochondrial membrane integrity effectively. Regarding fertilizing ability, 0.25 mg/mL MT yielded a significantly higher hatching rate than the control. An adverse effect was found with the concentration of MT up to 0.5 mg/mL, suggesting the possible toxicity of a high-dose addition. In this study, we optimized the sperm cryopreservation protocol of brown-marbled grouper, which might be valuable for sperm cryopreservation and sample commercialization of groupers and other fish.
Collapse
Affiliation(s)
- Qingxin Ruan
- State Key Laboratory of Biocontrol, Institute of Aquatic Economic Animals and Guangdong Province Key Laboratory of Aquatic Economic Animals, China-ASEAN Belt and Road Joint Laboratory on Mariculture Technology, School of Life Sciences, Sun Yat-Sen University, Guangzhou 510275, China; (Q.R.); (S.H.); (W.Z.); (D.L.); (Y.Y.); (X.W.); (Q.W.)
| | - Sen Yang
- College of Food Science and Technology, Guangdong Ocean University (Yangjiang Campus), Yangjiang 529599, China;
| | - Sijie Hua
- State Key Laboratory of Biocontrol, Institute of Aquatic Economic Animals and Guangdong Province Key Laboratory of Aquatic Economic Animals, China-ASEAN Belt and Road Joint Laboratory on Mariculture Technology, School of Life Sciences, Sun Yat-Sen University, Guangzhou 510275, China; (Q.R.); (S.H.); (W.Z.); (D.L.); (Y.Y.); (X.W.); (Q.W.)
| | - Weiwei Zhang
- State Key Laboratory of Biocontrol, Institute of Aquatic Economic Animals and Guangdong Province Key Laboratory of Aquatic Economic Animals, China-ASEAN Belt and Road Joint Laboratory on Mariculture Technology, School of Life Sciences, Sun Yat-Sen University, Guangzhou 510275, China; (Q.R.); (S.H.); (W.Z.); (D.L.); (Y.Y.); (X.W.); (Q.W.)
| | - Duo Li
- State Key Laboratory of Biocontrol, Institute of Aquatic Economic Animals and Guangdong Province Key Laboratory of Aquatic Economic Animals, China-ASEAN Belt and Road Joint Laboratory on Mariculture Technology, School of Life Sciences, Sun Yat-Sen University, Guangzhou 510275, China; (Q.R.); (S.H.); (W.Z.); (D.L.); (Y.Y.); (X.W.); (Q.W.)
| | - Yang Yang
- State Key Laboratory of Biocontrol, Institute of Aquatic Economic Animals and Guangdong Province Key Laboratory of Aquatic Economic Animals, China-ASEAN Belt and Road Joint Laboratory on Mariculture Technology, School of Life Sciences, Sun Yat-Sen University, Guangzhou 510275, China; (Q.R.); (S.H.); (W.Z.); (D.L.); (Y.Y.); (X.W.); (Q.W.)
| | - Xi Wang
- State Key Laboratory of Biocontrol, Institute of Aquatic Economic Animals and Guangdong Province Key Laboratory of Aquatic Economic Animals, China-ASEAN Belt and Road Joint Laboratory on Mariculture Technology, School of Life Sciences, Sun Yat-Sen University, Guangzhou 510275, China; (Q.R.); (S.H.); (W.Z.); (D.L.); (Y.Y.); (X.W.); (Q.W.)
| | - Qinghua Wang
- State Key Laboratory of Biocontrol, Institute of Aquatic Economic Animals and Guangdong Province Key Laboratory of Aquatic Economic Animals, China-ASEAN Belt and Road Joint Laboratory on Mariculture Technology, School of Life Sciences, Sun Yat-Sen University, Guangzhou 510275, China; (Q.R.); (S.H.); (W.Z.); (D.L.); (Y.Y.); (X.W.); (Q.W.)
| | - Zining Meng
- State Key Laboratory of Biocontrol, Institute of Aquatic Economic Animals and Guangdong Province Key Laboratory of Aquatic Economic Animals, China-ASEAN Belt and Road Joint Laboratory on Mariculture Technology, School of Life Sciences, Sun Yat-Sen University, Guangzhou 510275, China; (Q.R.); (S.H.); (W.Z.); (D.L.); (Y.Y.); (X.W.); (Q.W.)
- Southern Laboratory of Ocean Science and Engineering, Zhuhai 519000, China
| |
Collapse
|
11
|
Wu SX, Zeng QF, Han WT, Wang MY, Ding H, Teng MX, Wang MY, Li PY, Gao X, Bao ZM, Wang B, Hu JJ. Deciphering the population structure and genetic basis of growth traits from whole-genome resequencing of the leopard coral grouper ( Plectropomus leopardus). Zool Res 2024; 45:329-340. [PMID: 38485503 PMCID: PMC11017084 DOI: 10.24272/j.issn.2095-8137.2023.270] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/25/2023] [Accepted: 10/10/2023] [Indexed: 03/19/2024] Open
Abstract
The leopard coral grouper ( Plectropomus leopardus) is a species of significant economic importance. Although artificial cultivation of P. leopardus has thrived in recent decades, the advancement of selective breeding has been hindered by the lack of comprehensive population genomic data. In this study, we identified over 8.73 million single nucleotide polymorphisms (SNPs) through whole-genome resequencing of 326 individuals spanning six distinct groups. Furthermore, we categorized 226 individuals with high-coverage sequencing depth (≥14×) into eight clusters based on their genetic profiles and phylogenetic relationships. Notably, four of these clusters exhibited pronounced genetic differentiation compared with the other populations. To identify potentially advantageous loci for P. leopardus, we examined genomic regions exhibiting selective sweeps by analyzing the nucleotide diversity ( θπ) and fixation index ( F ST) in these four clusters. Using these high-coverage resequencing data, we successfully constructed the first haplotype reference panel specific to P. leopardus. This achievement holds promise for enabling high-quality, cost-effective imputation methods. Additionally, we combined low-coverage sequencing data with imputation techniques for a genome-wide association study, aiming to identify candidate SNP loci and genes associated with growth traits. A significant concentration of these genes was observed on chromosome 17, which is primarily involved in skeletal muscle and embryonic development and cell proliferation. Notably, our detailed investigation of growth-related SNPs across the eight clusters revealed that cluster 5 harbored the most promising candidate SNPs, showing potential for genetic selective breeding efforts. These findings provide a robust toolkit and valuable insights into the management of germplasm resources and genome-driven breeding initiatives targeting P. leopardus.
Collapse
Affiliation(s)
- Shao-Xuan Wu
- MOE Key Laboratory of Marine Genetics and Breeding, College of Marine Life Sciences/Key Laboratory of Tropical Aquatic Germplasm of Hainan Province, Sanya Oceanographic Institution, Ocean University of China, Qingdao, Shandong/Sanya, Hainan 266100/572025, China
| | - Qi-Fan Zeng
- MOE Key Laboratory of Marine Genetics and Breeding, College of Marine Life Sciences/Key Laboratory of Tropical Aquatic Germplasm of Hainan Province, Sanya Oceanographic Institution, Ocean University of China, Qingdao, Shandong/Sanya, Hainan 266100/572025, China
- Hainan Seed Industry Laboratory, Sanya, Hainan 572025, China
| | - Wen-Tao Han
- MOE Key Laboratory of Marine Genetics and Breeding, College of Marine Life Sciences/Key Laboratory of Tropical Aquatic Germplasm of Hainan Province, Sanya Oceanographic Institution, Ocean University of China, Qingdao, Shandong/Sanya, Hainan 266100/572025, China
| | - Meng-Ya Wang
- MOE Key Laboratory of Marine Genetics and Breeding, College of Marine Life Sciences/Key Laboratory of Tropical Aquatic Germplasm of Hainan Province, Sanya Oceanographic Institution, Ocean University of China, Qingdao, Shandong/Sanya, Hainan 266100/572025, China
| | - Hui Ding
- MOE Key Laboratory of Marine Genetics and Breeding, College of Marine Life Sciences/Key Laboratory of Tropical Aquatic Germplasm of Hainan Province, Sanya Oceanographic Institution, Ocean University of China, Qingdao, Shandong/Sanya, Hainan 266100/572025, China
| | - Ming-Xuan Teng
- MOE Key Laboratory of Marine Genetics and Breeding, College of Marine Life Sciences/Key Laboratory of Tropical Aquatic Germplasm of Hainan Province, Sanya Oceanographic Institution, Ocean University of China, Qingdao, Shandong/Sanya, Hainan 266100/572025, China
| | - Ming-Yi Wang
- MOE Key Laboratory of Marine Genetics and Breeding, College of Marine Life Sciences/Key Laboratory of Tropical Aquatic Germplasm of Hainan Province, Sanya Oceanographic Institution, Ocean University of China, Qingdao, Shandong/Sanya, Hainan 266100/572025, China
| | - Pei-Yu Li
- MOE Key Laboratory of Marine Genetics and Breeding, College of Marine Life Sciences/Key Laboratory of Tropical Aquatic Germplasm of Hainan Province, Sanya Oceanographic Institution, Ocean University of China, Qingdao, Shandong/Sanya, Hainan 266100/572025, China
| | - Xin Gao
- MOE Key Laboratory of Marine Genetics and Breeding, College of Marine Life Sciences/Key Laboratory of Tropical Aquatic Germplasm of Hainan Province, Sanya Oceanographic Institution, Ocean University of China, Qingdao, Shandong/Sanya, Hainan 266100/572025, China
| | - Zhen-Min Bao
- MOE Key Laboratory of Marine Genetics and Breeding, College of Marine Life Sciences/Key Laboratory of Tropical Aquatic Germplasm of Hainan Province, Sanya Oceanographic Institution, Ocean University of China, Qingdao, Shandong/Sanya, Hainan 266100/572025, China
- Hainan Seed Industry Laboratory, Sanya, Hainan 572025, China
- Southern Marine Science and Engineer Guangdong Laboratory, Guangzhou, Guangdong 511458, China
| | - Bo Wang
- MOE Key Laboratory of Marine Genetics and Breeding, College of Marine Life Sciences/Key Laboratory of Tropical Aquatic Germplasm of Hainan Province, Sanya Oceanographic Institution, Ocean University of China, Qingdao, Shandong/Sanya, Hainan 266100/572025, China
- Hainan Seed Industry Laboratory, Sanya, Hainan 572025, China. E-mail:
| | - Jing-Jie Hu
- MOE Key Laboratory of Marine Genetics and Breeding, College of Marine Life Sciences/Key Laboratory of Tropical Aquatic Germplasm of Hainan Province, Sanya Oceanographic Institution, Ocean University of China, Qingdao, Shandong/Sanya, Hainan 266100/572025, China
- Hainan Seed Industry Laboratory, Sanya, Hainan 572025, China
- Southern Marine Science and Engineer Guangdong Laboratory, Guangzhou, Guangdong 511458, China. E-mail:
| |
Collapse
|
12
|
Xu XD, Zhou Y, Wang CQ, Huang X, Zhang K, Xu XW, He LW, Zhang XY, Fu XZ, Ma M, Qin QB, Liu SJ. Identification and effective regulation of scarb1 gene involved in pigmentation change in autotetraploid Carassius auratus. Zool Res 2024; 45:381-397. [PMID: 38485507 PMCID: PMC11017083 DOI: 10.24272/j.issn.2095-8137.2023.293] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/24/2023] [Accepted: 12/25/2023] [Indexed: 03/19/2024] Open
Abstract
The autotetraploid Carassius auratus (4nRR, 4 n=200, RRRR) is derived from whole-genome duplication of Carassius auratus red var. (RCC, 2 n=100, RR). In the current study, we demonstrated that chromatophores and pigment changes directly caused the coloration and variation of 4nRR skin (red in RCC, brownish-yellow in 4nRR). To further explore the molecular mechanisms underlying coloration formation and variation in 4nRR, we performed transcriptome profiling and molecular functional verification in RCC and 4nRR. Results revealed that scarb1, associated with carotenoid metabolism, underwent significant down-regulation in 4nRR. Efficient editing of this candidate pigment gene provided clear evidence of its significant role in RCC coloration. Subsequently, we identified four divergent scarb1 homeologs in 4nRR: two original scarb1 homeologs from RCC and two duplicated ones. Notably, three of these homeologs possessed two highly conserved alleles, exhibiting biased and allele-specific expression in the skin. Remarkably, after precise editing of both the original and duplicated scarb1 homeologs and/or alleles, 4nRR individuals, whether singly or multiply mutated, displayed a transition from brownish-yellow skin to a cyan-gray phenotype. Concurrently, the proportional areas of the cyan-gray regions displayed a gene-dose correlation. These findings illustrate the subfunctionalization of duplicated scarb1, with all scarb1 genes synergistically and equally contributing to the pigmentation of 4nRR. This is the first report concerning the functional differentiation of duplicated homeologs in an autopolyploid fish, substantially enriching our understanding of coloration formation and change within this group of organisms.
Collapse
Affiliation(s)
- Xi-Dan Xu
- State Key Laboratory of Developmental Biology of Freshwater Fish, Engineering Research Center of Polyploid Fish Reproduction and Breeding of the State Education Ministry, College of Life Sciences, Hunan Normal University, Changsha, Hunan 410081, China
- College of Chemistry and Chemical Engineering, Hunan Normal University, Changsha, Hunan 410081, China
| | - Yue Zhou
- State Key Laboratory of Developmental Biology of Freshwater Fish, Engineering Research Center of Polyploid Fish Reproduction and Breeding of the State Education Ministry, College of Life Sciences, Hunan Normal University, Changsha, Hunan 410081, China
| | - Chong-Qing Wang
- State Key Laboratory of Developmental Biology of Freshwater Fish, Engineering Research Center of Polyploid Fish Reproduction and Breeding of the State Education Ministry, College of Life Sciences, Hunan Normal University, Changsha, Hunan 410081, China
| | - Xu Huang
- State Key Laboratory of Developmental Biology of Freshwater Fish, Engineering Research Center of Polyploid Fish Reproduction and Breeding of the State Education Ministry, College of Life Sciences, Hunan Normal University, Changsha, Hunan 410081, China
| | - Kun Zhang
- State Key Laboratory of Developmental Biology of Freshwater Fish, Engineering Research Center of Polyploid Fish Reproduction and Breeding of the State Education Ministry, College of Life Sciences, Hunan Normal University, Changsha, Hunan 410081, China
| | - Xiao-Wei Xu
- State Key Laboratory of Developmental Biology of Freshwater Fish, Engineering Research Center of Polyploid Fish Reproduction and Breeding of the State Education Ministry, College of Life Sciences, Hunan Normal University, Changsha, Hunan 410081, China
| | - Li-Wen He
- State Key Laboratory of Developmental Biology of Freshwater Fish, Engineering Research Center of Polyploid Fish Reproduction and Breeding of the State Education Ministry, College of Life Sciences, Hunan Normal University, Changsha, Hunan 410081, China
| | - Xin-Yue Zhang
- State Key Laboratory of Developmental Biology of Freshwater Fish, Engineering Research Center of Polyploid Fish Reproduction and Breeding of the State Education Ministry, College of Life Sciences, Hunan Normal University, Changsha, Hunan 410081, China
| | - Xin-Zhu Fu
- State Key Laboratory of Developmental Biology of Freshwater Fish, Engineering Research Center of Polyploid Fish Reproduction and Breeding of the State Education Ministry, College of Life Sciences, Hunan Normal University, Changsha, Hunan 410081, China
| | - Ming Ma
- College of Chemistry and Chemical Engineering, Hunan Normal University, Changsha, Hunan 410081, China
| | - Qin-Bo Qin
- State Key Laboratory of Developmental Biology of Freshwater Fish, Engineering Research Center of Polyploid Fish Reproduction and Breeding of the State Education Ministry, College of Life Sciences, Hunan Normal University, Changsha, Hunan 410081, China
- Nansha-South China Agricultural University Fishery Research Institute, Guangzhou, Guangdong 511458, China
- Hunan Yuelu Mountain Science and Technology Co. Ltd. for Aquatic Breeding, Changsha, Hunan 410081, China. E-mail:
| | - Shao-Jun Liu
- State Key Laboratory of Developmental Biology of Freshwater Fish, Engineering Research Center of Polyploid Fish Reproduction and Breeding of the State Education Ministry, College of Life Sciences, Hunan Normal University, Changsha, Hunan 410081, China. E-mail:
| |
Collapse
|
13
|
Zhang WW, Weng ZY, Wang X, Yang Y, Li D, Wang L, Liu XC, Meng ZN. Genetic mechanism of body size variation in groupers: Insights from phylotranscriptomics. Zool Res 2024; 45:314-328. [PMID: 38485502 PMCID: PMC11017090 DOI: 10.24272/j.issn.2095-8137.2023.222] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/15/2023] [Accepted: 12/05/2023] [Indexed: 03/19/2024] Open
Abstract
Animal body size variation is of particular interest in evolutionary biology, but the genetic basis remains largely unknown. Previous studies have shown the presence of two parallel evolutionary genetic clusters within the fish genus Epinephelus with evident divergence in body size, providing an excellent opportunity to investigate the genetic basis of body size variation in vertebrates. Herein, we performed phylotranscriptomic analysis and reconstructed the phylogeny of 13 epinephelids originating from the South China Sea. Two genetic clades with an estimated divergence time of approximately 15.4 million years ago were correlated with large and small body size, respectively. A total of 180 rapidly evolving genes and two positively selected genes were identified between the two groups. Functional enrichment analyses of these candidate genes revealed distinct enrichment categories between the two groups. These pathways and genes may play important roles in body size variation in groupers through complex regulatory networks. Based on our results, we speculate that the ancestors of the two divergent groups of groupers may have adapted to different environments through habitat selection, leading to genetic variations in metabolic patterns, organ development, and lifespan, resulting in body size divergence between the two locally adapted populations. These findings provide important insights into the genetic mechanisms underlying body size variation in groupers and species differentiation.
Collapse
Affiliation(s)
- Wei-Wei Zhang
- State Key Laboratory of Biocontrol, Institute of Aquatic Economic Animals and Guangdong Province Key Laboratory of Aquatic Economic Animals, School of Life Sciences, Sun Yat-sen University, Guangzhou, Guangdong 510275, China
| | - Zhuo-Ying Weng
- State Key Laboratory of Biocontrol, Institute of Aquatic Economic Animals and Guangdong Province Key Laboratory of Aquatic Economic Animals, School of Life Sciences, Sun Yat-sen University, Guangzhou, Guangdong 510275, China
| | - Xi Wang
- Area of Ecology and Biodiversity, School of Biological Sciences, University of Hong Kong, Hong Kong SAR 999077, China
| | - Yang Yang
- State Key Laboratory of Biocontrol, Institute of Aquatic Economic Animals and Guangdong Province Key Laboratory of Aquatic Economic Animals, School of Life Sciences, Sun Yat-sen University, Guangzhou, Guangdong 510275, China
| | - Duo Li
- State Key Laboratory of Biocontrol, Institute of Aquatic Economic Animals and Guangdong Province Key Laboratory of Aquatic Economic Animals, School of Life Sciences, Sun Yat-sen University, Guangzhou, Guangdong 510275, China
| | - Le Wang
- Molecular Population Genetics Group, Temasek Life Sciences Laboratory, Singapore City 117604, Singapore
| | - Xiao-Chun Liu
- State Key Laboratory of Biocontrol, Institute of Aquatic Economic Animals and Guangdong Province Key Laboratory of Aquatic Economic Animals, School of Life Sciences, Sun Yat-sen University, Guangzhou, Guangdong 510275, China
- Southern Laboratory of Ocean Science and Engineering (Zhuhai), Zhuhai, Guangdong 519000, China
| | - Zi-Ning Meng
- State Key Laboratory of Biocontrol, Institute of Aquatic Economic Animals and Guangdong Province Key Laboratory of Aquatic Economic Animals, School of Life Sciences, Sun Yat-sen University, Guangzhou, Guangdong 510275, China
- Southern Laboratory of Ocean Science and Engineering (Zhuhai), Zhuhai, Guangdong 519000, China. E-mail:
| |
Collapse
|
14
|
Wang M, Wu S, Ding H, Wang M, Ma J, Xiao J, Wang B, Bao Z, Hu J. Dietary antarctic krill improves antioxidant capacity, immunity and reduces lipid accumulation, insights from physiological and transcriptomic analysis of Plectropomus leopardus. BMC Genomics 2024; 25:210. [PMID: 38408914 PMCID: PMC10895837 DOI: 10.1186/s12864-024-10099-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/05/2023] [Accepted: 02/08/2024] [Indexed: 02/28/2024] Open
Abstract
BACKGROUND Due to its enormous biomass, Antarctic krill (Euphausia superba) plays a crucial role in the Antarctic Ocean ecosystem. In recent years, Antarctic krill has found extensive application in aquaculture, emerging as a sustainable source of aquafeed with ideal nutritional profiles. However, a comprehensive study focused on the detailed effects of dietary Antarctic krill on aquaculture animals, especially farmed marine fishes, is yet to be demonstrated. RESULTS In this study, a comparative experiment was performed using juvenile P. leopardus, fed with diets supplemented with Antarctic krill (the krill group) or without Antarctic krill (the control group). Histological observation revealed that dietary Antarctic krill could reduce lipid accumulation in the liver while the intestine exhibited no obvious changes. Enzyme activity measurements demonstrated that dietary Antarctic krill had an inhibitory effect on oxidative stress in both the intestine and the liver. By comparative transcriptome analysis, a total of 1,597 and 1,161 differentially expressed genes (DEGs) were identified in the intestine and liver, respectively. Functional analysis of the DEGs showed multiple enriched terms significantly related to cholesterol metabolism, antioxidants, and immunity. Furthermore, the expression profiles of representative DEGs, such as dhcr7, apoa4, sc5d, and scarf1, were validated by qRT-PCR and fluorescence in situ hybridization. Finally, a comparative transcriptome analysis was performed to demonstrate the biased effects of dietary Antarctic krill and astaxanthin on the liver of P. leopardus. CONCLUSIONS Our study demonstrated that dietary Antarctic krill could reduce lipid accumulation in the liver of P. leopardus, enhance antioxidant capacities in both the intestine and liver, and exhibit molecular-level improvements in lipid metabolism, immunity, and antioxidants. It will contribute to understanding the protective effects of Antarctic krill in P. leopardus and provide insights into aquaculture nutritional strategies.
Collapse
Affiliation(s)
- Mengya Wang
- MOE Key Laboratory of Marine Genetics and Breeding, College of Marine Life Sciences/Key Laboratory of Tropical Aquatic Germplasm of Hainan Province, Sanya Oceanographic Institution, Ocean University of China, Qingdao, Sanya, China
| | - Shaoxuan Wu
- MOE Key Laboratory of Marine Genetics and Breeding, College of Marine Life Sciences/Key Laboratory of Tropical Aquatic Germplasm of Hainan Province, Sanya Oceanographic Institution, Ocean University of China, Qingdao, Sanya, China
| | - Hui Ding
- MOE Key Laboratory of Marine Genetics and Breeding, College of Marine Life Sciences/Key Laboratory of Tropical Aquatic Germplasm of Hainan Province, Sanya Oceanographic Institution, Ocean University of China, Qingdao, Sanya, China
| | - Mingyi Wang
- MOE Key Laboratory of Marine Genetics and Breeding, College of Marine Life Sciences/Key Laboratory of Tropical Aquatic Germplasm of Hainan Province, Sanya Oceanographic Institution, Ocean University of China, Qingdao, Sanya, China
| | - Jiayi Ma
- MOE Key Laboratory of Marine Genetics and Breeding, College of Marine Life Sciences/Key Laboratory of Tropical Aquatic Germplasm of Hainan Province, Sanya Oceanographic Institution, Ocean University of China, Qingdao, Sanya, China
| | - Jie Xiao
- MOE Key Laboratory of Marine Genetics and Breeding, College of Marine Life Sciences/Key Laboratory of Tropical Aquatic Germplasm of Hainan Province, Sanya Oceanographic Institution, Ocean University of China, Qingdao, Sanya, China
| | - Bo Wang
- MOE Key Laboratory of Marine Genetics and Breeding, College of Marine Life Sciences/Key Laboratory of Tropical Aquatic Germplasm of Hainan Province, Sanya Oceanographic Institution, Ocean University of China, Qingdao, Sanya, China.
- Hainan Yazhou Bay Seed Laboratory, 572025, Sanya, China.
| | - Zhenmin Bao
- MOE Key Laboratory of Marine Genetics and Breeding, College of Marine Life Sciences/Key Laboratory of Tropical Aquatic Germplasm of Hainan Province, Sanya Oceanographic Institution, Ocean University of China, Qingdao, Sanya, China
- Hainan Yazhou Bay Seed Laboratory, 572025, Sanya, China
| | - Jingjie Hu
- MOE Key Laboratory of Marine Genetics and Breeding, College of Marine Life Sciences/Key Laboratory of Tropical Aquatic Germplasm of Hainan Province, Sanya Oceanographic Institution, Ocean University of China, Qingdao, Sanya, China
- Hainan Yazhou Bay Seed Laboratory, 572025, Sanya, China
| |
Collapse
|
15
|
Zhang W, Yang Y, Hua S, Ruan Q, Li D, Wang L, Wang X, Wen X, Liu X, Meng Z. Chromosome-level genome assembly and annotation of the yellow grouper, Epinephelus awoara. Sci Data 2024; 11:151. [PMID: 38296995 PMCID: PMC10830450 DOI: 10.1038/s41597-024-02989-8] [Citation(s) in RCA: 6] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/23/2023] [Accepted: 01/18/2024] [Indexed: 02/02/2024] Open
Abstract
Epinephelus awoara, as known as yellow grouper, is a significant economic marine fish that has been bred artificially in China. However, the genetic structure and evolutionary history of yellow grouper remains largely unknown. Here, this work presents the high-quality chromosome-level genome assembly of yellow grouper using PacBio single molecule sequencing technique (SMRT) and High-through chromosome conformation capture (Hi-C) technologies. The 984.48 Mb chromosome-level genome of yellow grouper was assembled, with a contig N50 length of 39.77 Mb and scaffold N50 length of 41.39 Mb. Approximately 99.76% of assembled sequences were anchored into 24 pseudo-chromosomes with the assistance of Hi-C reads. Furthermore, approximately 41.17% of the genome was composed of repetitive elements. In total, 24,541 protein-coding genes were predicted, of which 22,509 (91.72%) genes were functionally annotated. The highly accurate, chromosome-level reference genome assembly and annotation are crucial to the understanding of population genetic structure, adaptive evolution and speciation of the yellow grouper.
Collapse
Affiliation(s)
- Weiwei Zhang
- State Key Laboratory of Biocontrol, Institute of Aquatic Economic Animals and Guangdong Province Key Laboratory of Aquatic Economic Animals, School of Life Sciences, Sun Yat-sen University, Guangzhou, 510275, China
| | - Yang Yang
- State Key Laboratory of Biocontrol, Institute of Aquatic Economic Animals and Guangdong Province Key Laboratory of Aquatic Economic Animals, School of Life Sciences, Sun Yat-sen University, Guangzhou, 510275, China
- Key Laboratory of Tropical Marine Fish Germplasm Innovation and Utilization, Ministry of Agriculture and Rural Affairs, Sanya, 570000, China
- Hainan Engineering Research Center for Germplasm Innovation and Utilization, Sanya, 570000, China
| | - Sijie Hua
- State Key Laboratory of Biocontrol, Institute of Aquatic Economic Animals and Guangdong Province Key Laboratory of Aquatic Economic Animals, School of Life Sciences, Sun Yat-sen University, Guangzhou, 510275, China
| | - Qingxin Ruan
- State Key Laboratory of Biocontrol, Institute of Aquatic Economic Animals and Guangdong Province Key Laboratory of Aquatic Economic Animals, School of Life Sciences, Sun Yat-sen University, Guangzhou, 510275, China
| | - Duo Li
- State Key Laboratory of Biocontrol, Institute of Aquatic Economic Animals and Guangdong Province Key Laboratory of Aquatic Economic Animals, School of Life Sciences, Sun Yat-sen University, Guangzhou, 510275, China
| | - Le Wang
- Molecular Population Genetics Group, Temasek Life Sciences Laboratory, National University of Singapore, Singapore City, 119077, Singapore
| | - Xi Wang
- Area of Ecology and Biodiversity, School of Biological Sciences, University of Hong Kong, Hong Kong SAR, 999077, China
| | - Xin Wen
- School of Marine Biology and Fisheries, Hainan Aquaculture Breeding Engineering Research Center, Hainan Academician Team Innovation Center, Hainan University, Haikou, 570228, China
| | - Xiaochun Liu
- State Key Laboratory of Biocontrol, Institute of Aquatic Economic Animals and Guangdong Province Key Laboratory of Aquatic Economic Animals, School of Life Sciences, Sun Yat-sen University, Guangzhou, 510275, China
- Southern Laboratory of Ocean Science and Engineering (Zhuhai), Zhuhai, 519000, China
| | - Zining Meng
- State Key Laboratory of Biocontrol, Institute of Aquatic Economic Animals and Guangdong Province Key Laboratory of Aquatic Economic Animals, School of Life Sciences, Sun Yat-sen University, Guangzhou, 510275, China.
- Southern Laboratory of Ocean Science and Engineering (Zhuhai), Zhuhai, 519000, China.
| |
Collapse
|
16
|
Anuraga G, Lang J, Xuan DTM, Ta HDK, Jiang JZ, Sun Z, Dey S, Kumar S, Singh A, Kajla G, Wang WJ, Wang CY. Integrated bioinformatics approaches to investigate alterations in transcriptomic profiles of monkeypox infected human cell line model. J Infect Public Health 2024; 17:60-69. [PMID: 37992435 DOI: 10.1016/j.jiph.2023.10.035] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/20/2023] [Revised: 09/15/2023] [Accepted: 10/30/2023] [Indexed: 11/24/2023] Open
Abstract
BACKGROUND The recent re-emergence of the monkeypox (mpox) epidemic in nonendemic regions has raised concerns regarding a potential global outbreak. The mpox virus (MPV) is a smallpox-like virus belonging to the genus Orthopoxvirus (family: Poxviridae). Although studies suggest that MPV infection suppresses the Toll-like receptor-3- and tumor necrosis factor-α-related signaling pathways, whether MPV regulates other immune-related pathways remains unclear. METHODS In this study, two distinct temporal patterns were used for establishing an MPV-infected human immortal epithelial cancer cell line (HeLa). These two durations 2 and 12 h of incubation were selected to identify the coregulated genes and pathways affected by MPV infection. RESULTS The use of the Gene Ontology framework, Kyoto Encyclopedia of Genes and Genome database, and MetaCore software yielded valuable insights. Specifically, various pathways were found to be enriched in HeLa cells infected with MPV for 2 and 12 h. These pathways included Notch, CD40, CD95, hypoxia-inducible factor-1-α, interleukin (IL)- 1, IL-6, phosphoinositide 3-kinase, nuclear factor-κB, mitogen-activated protein kinase, and oxidative stress-induced signalling pathways. Clusters and pathways of metabolism and viral replication cycles were significantly associated with the 2-hour infection group. This association was identified based on the regulation of genes such as HSPG2, RHPN2, MYL1, ASPHD2, CA9, VIPR1, SNX12, MGC2752, SLC25A1, PEX19, and AREG. Furthermore, clusters and pathways related to immunity and cell movement were found to be associated with the 12-hour infection group. This association was identified based on the regulation of genes such as C1orf21, C19orf48, HRK, IL8, GULP1, SCAND2, ATP5C1, FEZ1, SGSH, TACC2, CYP4X1, MMP1, CPB1, P2RY13, WDR27, PRPF4, and ENDOD1. CONCLUSIONS This study can improve our understanding of the mechanisms underlying the pathophysiology and post-infection sequelae of mpox. Our findings provide valuable insights into the various modes of MPV infection.
Collapse
Affiliation(s)
- Gangga Anuraga
- PhD Program for Cancer Molecular Biology and Drug Discovery, College of Medical Science and Technology, Taipei Medical University and Academia Sinica, Taipei 11031, Taiwan; Department of Statistics, Faculty of Science and Technology, Universitas PGRI Adi Buana, Surabaya, East Java 60234, Indonesia
| | - Jilu Lang
- Peking University Shenzhen Hospital Cardiovascular Surgery and Department of Cardiac Vascular Center, The Seventh Affiliated Hospital, Sun Yat-Sen University, Shenzhen, People's Republic of China
| | - Do Thi Minh Xuan
- Graduate Institute of Cancer Biology and Drug Discovery, College of Medical Science and Technology, Taipei Medical University, Taipei 11031, Taiwan
| | - Hoang Dang Khoa Ta
- PhD Program for Cancer Molecular Biology and Drug Discovery, College of Medical Science and Technology, Taipei Medical University and Academia Sinica, Taipei 11031, Taiwan
| | - Jia-Zhen Jiang
- Emergency Department, Huashan Hospital North, Fudan University, Shanghai 201508, People's Republic of China
| | - Zhengda Sun
- Kaiser Permanente, Northern California Regional Laboratories, The Permanente Medical Group, 1725 Eastshore Hwy, Berkeley, CA 94710, USA
| | - Sanskriti Dey
- Graduate Institute of Cancer Biology and Drug Discovery, College of Medical Science and Technology, Taipei Medical University, Taipei 11031, Taiwan
| | - Sachin Kumar
- Graduate Institute of Cancer Biology and Drug Discovery, College of Medical Science and Technology, Taipei Medical University, Taipei 11031, Taiwan; Faculty of Biotechnology and Applied Sciences, Shoolini University of Biotechnology and Management Sciences, Himachal Pradesh, India
| | - Ayushi Singh
- Faculty of Biotechnology and Applied Sciences, Shoolini University of Biotechnology and Management Sciences, Himachal Pradesh, India
| | - Gagan Kajla
- Graduate Institute of Cancer Biology and Drug Discovery, College of Medical Science and Technology, Taipei Medical University, Taipei 11031, Taiwan; Faculty of Biotechnology and Applied Sciences, Shoolini University of Biotechnology and Management Sciences, Himachal Pradesh, India
| | - Wei-Jan Wang
- Department of Biological Science and Technology, College of Life Sciences, China Medical University, Taichung, Taiwan; Cancer Biology and Precision Therapeutics Center and Research Center for Cancer Biology, China Medical University, Taichung, Taiwan.
| | - Chih-Yang Wang
- PhD Program for Cancer Molecular Biology and Drug Discovery, College of Medical Science and Technology, Taipei Medical University and Academia Sinica, Taipei 11031, Taiwan; Department of Statistics, Faculty of Science and Technology, Universitas PGRI Adi Buana, Surabaya, East Java 60234, Indonesia; TMU Research Center of Cancer Translational Medicine, Taipei Medical University, Taipei 11031, Taiwan.
| |
Collapse
|
17
|
Song F, Yang Z, Shi L, Zheng D, Liang H, Wang L, Sun J, Luo J. Transcriptome analysis reveals candidate miRNAs involved in skin color differentiation of juvenile Plectropomus leopardus in response to different background colors. COMPARATIVE BIOCHEMISTRY AND PHYSIOLOGY. PART D, GENOMICS & PROTEOMICS 2023; 48:101141. [PMID: 37690214 DOI: 10.1016/j.cbd.2023.101141] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/08/2023] [Revised: 09/03/2023] [Accepted: 09/04/2023] [Indexed: 09/12/2023]
Abstract
Red skin color in Plectropomus leopardus is important to its ornamental and economic value. However, the color of P. leopardus can change during the rearing process, darkening and turning black due to the influence of environmental background color. The underlying molecular mechanisms that regulate this phenomenon remain unclear. MicroRNAs (miRNAs) are endogenous, small non-coding RNAs that play important roles in numerous biological processes, such as skin differentiation and color formation in many animals. Therefore, we performed miRNA sequencing of P. leopardus skin before (initial) and after rearing with three different background colors (white, black, and blue) using Illumina sequencing to identify candidate miRNAs that may contribute to skin color differentiation. In total, 154,271,376 clean reads were obtained, with over 92 % of them successfully mapped to the P. leopardus reference genome. The miRNA length distributions of all samples displayed peaks around a typical length of 22 nt. Within these sequences, 243 known and 287 novel miRNAs were identified. A total of 65 significantly differentially expressed miRNAs (DEMs) were identified (P < 0.05), including 40 known DEMs and 25 novel DEMs. These DEMs included novel_561, miR-141-3p, and miR-129-5p, whose target genes were primarily associated with pigmentation related processes, including tyrosine metabolism, melanogenesis, and the Wnt signaling pathway. These findings shed light on the potential roles of miRNAs in the darkening of skin color in P. leopardus, thus enhancing our understanding of the molecular mechanisms involved in skin pigmentation differentiation in this species.
Collapse
Affiliation(s)
- Feibiao Song
- State Key Laboratory of Marine Resource Utilization in South China Sea, Hainan Aquaculture Breeding Engineering Research Center, Hainan Academician Team Innovation Center, Sanya Nanfan Research Institute of Hainan University, College of Marine Sciences, Hainan University, Haikou 570228, China.
| | - Zihang Yang
- State Key Laboratory of Marine Resource Utilization in South China Sea, Hainan Aquaculture Breeding Engineering Research Center, Hainan Academician Team Innovation Center, Sanya Nanfan Research Institute of Hainan University, College of Marine Sciences, Hainan University, Haikou 570228, China
| | - Liping Shi
- State Key Laboratory of Marine Resource Utilization in South China Sea, Hainan Aquaculture Breeding Engineering Research Center, Hainan Academician Team Innovation Center, Sanya Nanfan Research Institute of Hainan University, College of Marine Sciences, Hainan University, Haikou 570228, China
| | - Da Zheng
- State Key Laboratory of Marine Resource Utilization in South China Sea, Hainan Aquaculture Breeding Engineering Research Center, Hainan Academician Team Innovation Center, Sanya Nanfan Research Institute of Hainan University, College of Marine Sciences, Hainan University, Haikou 570228, China
| | - Huan Liang
- State Key Laboratory of Marine Resource Utilization in South China Sea, Hainan Aquaculture Breeding Engineering Research Center, Hainan Academician Team Innovation Center, Sanya Nanfan Research Institute of Hainan University, College of Marine Sciences, Hainan University, Haikou 570228, China
| | - Lei Wang
- State Key Laboratory of Marine Resource Utilization in South China Sea, Hainan Aquaculture Breeding Engineering Research Center, Hainan Academician Team Innovation Center, Sanya Nanfan Research Institute of Hainan University, College of Marine Sciences, Hainan University, Haikou 570228, China
| | - Junlong Sun
- State Key Laboratory of Marine Resource Utilization in South China Sea, Hainan Aquaculture Breeding Engineering Research Center, Hainan Academician Team Innovation Center, Sanya Nanfan Research Institute of Hainan University, College of Marine Sciences, Hainan University, Haikou 570228, China
| | - Jian Luo
- State Key Laboratory of Marine Resource Utilization in South China Sea, Hainan Aquaculture Breeding Engineering Research Center, Hainan Academician Team Innovation Center, Sanya Nanfan Research Institute of Hainan University, College of Marine Sciences, Hainan University, Haikou 570228, China.
| |
Collapse
|
18
|
Tang H, Liu J, Wang Z, Zhang L, Yang M, Huang J, Wen X, Luo J. Genome-wide association study (GWAS) analysis of black color trait in the leopard coral grouper (Plectropomus leopardus) using whole genome resequencing. COMPARATIVE BIOCHEMISTRY AND PHYSIOLOGY. PART D, GENOMICS & PROTEOMICS 2023; 48:101138. [PMID: 37683359 DOI: 10.1016/j.cbd.2023.101138] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/28/2023] [Revised: 08/28/2023] [Accepted: 08/31/2023] [Indexed: 09/10/2023]
Abstract
The leopard coral grouper (Plectropomus leopardus) is a coral reef fish species that exhibits rapid and diverse color variation. However, the presence of melanoma and the high proportion of individuals displaying black color in artificial breeding have led to reduced economic and ornamental value. To pinpoint single nucleotide polymorphisms (SNPs) and potential genes linked to the black pigmentation characteristic in this particular species, This study gathered a cohort of 360 specimens from diverse origins and conducted a comprehensive genome-wide association analysis (GWAS) employing whole-genome resequencing. As a result, 57 SNPs related to the black skin trait were identified, and a grand total of 158 genes were annotated within 50 kb of these SNPs. Subsequently, GWAS was applied to three populations (LED, QHH, and QHL), and the corresponding results were compared with the analysis results of the total population. The results of the four GWAS models showed significant enrichment in Rap1 signaling pathway, melanin biosynthesis, metabolic pathways, tyrosine metabolism, cAMP signaling pathway, AMPK signaling pathway, PI3K-Akt signaling pathway, EGFR tyrosine kinase inhibitor resistance, HIF-1 signaling pathway, Ras signaling pathway, MAPK signaling pathway, etc. (p < 0.05), which were mainly associated with eleven genes (POL4, MET, E2F2, COMT, ZBED1, TYRP2, FOXP2, THIKA, LORF2, MYH16 and SOX2). Significant differences (p < 0.05) were observed in the expression of all 11 genes in the dorsal skin tissue, in 10 genes except COMT in the ventral skin tissue, and in all 11 genes in the caudal fin tissue. These findings imply that the control of body color in the P. leopardus is the result of the joint action of multiple genes and signaling pathways. These findings will contribute to a more profound comprehension of the genetic attributes that underlie the development of black skin in the vibrant P. leopardus, thus furnishing a theoretical foundation for genetic enhancement.
Collapse
Affiliation(s)
- Haizhan Tang
- Sanya Nanfan Research Institute of Hainan University, Hainan Aquaculture Breeding Engineering Research Center, Key Laboratory of Tropical Hydrobiology and Biotechnology of Hainan Province, Hainan Academician Team Innovation Center, Hainan University, Haikou 570228, China
| | - Junchi Liu
- Sanya Nanfan Research Institute of Hainan University, Hainan Aquaculture Breeding Engineering Research Center, Key Laboratory of Tropical Hydrobiology and Biotechnology of Hainan Province, Hainan Academician Team Innovation Center, Hainan University, Haikou 570228, China
| | - Zirui Wang
- Sanya Nanfan Research Institute of Hainan University, Hainan Aquaculture Breeding Engineering Research Center, Key Laboratory of Tropical Hydrobiology and Biotechnology of Hainan Province, Hainan Academician Team Innovation Center, Hainan University, Haikou 570228, China
| | - Lianjie Zhang
- Sanya Nanfan Research Institute of Hainan University, Hainan Aquaculture Breeding Engineering Research Center, Key Laboratory of Tropical Hydrobiology and Biotechnology of Hainan Province, Hainan Academician Team Innovation Center, Hainan University, Haikou 570228, China
| | - Min Yang
- Sanya Nanfan Research Institute of Hainan University, Hainan Aquaculture Breeding Engineering Research Center, Key Laboratory of Tropical Hydrobiology and Biotechnology of Hainan Province, Hainan Academician Team Innovation Center, Hainan University, Haikou 570228, China
| | - Jie Huang
- Sanya Nanfan Research Institute of Hainan University, Hainan Aquaculture Breeding Engineering Research Center, Key Laboratory of Tropical Hydrobiology and Biotechnology of Hainan Province, Hainan Academician Team Innovation Center, Hainan University, Haikou 570228, China
| | - Xin Wen
- Sanya Nanfan Research Institute of Hainan University, Hainan Aquaculture Breeding Engineering Research Center, Key Laboratory of Tropical Hydrobiology and Biotechnology of Hainan Province, Hainan Academician Team Innovation Center, Hainan University, Haikou 570228, China.
| | - Jian Luo
- Sanya Nanfan Research Institute of Hainan University, Hainan Aquaculture Breeding Engineering Research Center, Key Laboratory of Tropical Hydrobiology and Biotechnology of Hainan Province, Hainan Academician Team Innovation Center, Hainan University, Haikou 570228, China.
| |
Collapse
|
19
|
Ding H, Ao C, Zhang X. Potential use of garlic products in ruminant feeding: A review. ANIMAL NUTRITION (ZHONGGUO XU MU SHOU YI XUE HUI) 2023; 14:343-355. [PMID: 37635929 PMCID: PMC10448032 DOI: 10.1016/j.aninu.2023.04.011] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 03/31/2022] [Revised: 01/23/2023] [Accepted: 04/06/2023] [Indexed: 08/29/2023]
Abstract
The addition of antibiotics as growth promoters to ruminant feed can result in bacterial resistance and antibiotic residues in ruminant products. Correspondingly, there is serious public concern regarding the presence of antibiotic residue in ruminant products and the consequent threat to human health. As a result, the addition of plants and their products to ruminant feeds, as an alternative to antibiotics, has received much attention recently. Garlic and its products are rich in organosulphur compounds, which have a variety of biological activities and have been widely used as natural additives in animal production. This review presents recent knowledge on the addition of garlic products (powder, skin, oil, leaf and extracts) to the diets of ruminants. In this paper, garlic products are evaluated with respect to their chemical composition, bioactive compounds, and their impacts on the rumen ecosystem, antioxidant status, immune response, parasitic infection, growth performance and product quality of ruminants. This review provides valuable guidance and a theoretical basis for the development of garlic products as green, highly efficient and safe additives, with the aims of promoting ruminant growth and health, reducing methane emissions and improving ruminant product quality. Garlic extracts have the potential to control parasite infections by decreasing the faecal egg count. Garlic powder, oil and allicin are able to reduce the methane emissions of ruminants. Organosulphur compounds such as allicin, which is present in garlic products, have the potential to inhibit membrane lipid synthesis of the archaeal community, thus influencing the population of methanogenic archaea and resulting in a reduction in methane emissions. Some garlic products are also able to increase the average daily gain (garlic skin, water extract, and leaf) and the feed conversion ratio (garlic skin and leaf) of ruminants. Garlic stalk silage fed to sheep has the potential to improve the nutritional value of mutton by increasing the concentrations of linoleic and linolenic acids and essential amino acids. Sheep fed a diet containing garlic powder or oil are able to produce milk with higher concentrations of the conjugated linoleic acids and n-3 fatty acids, which has health benefits for consumers, due to the widely recognized positive impact of n-3 polyunsaturated fatty acids and conjugated linoleic acids on human heart health, improving platelet aggregation, vasodilation and thrombotic tendency. Overall, garlic products have the potential to enhance growth performance and product quality and reduce parasite infections, as well as methane emissions of ruminants.
Collapse
Affiliation(s)
- He Ding
- Institute of Grassland Research, Chinese Academy of Agricultural Sciences, Hohhot 010010, China
| | - Changjin Ao
- Key Laboratory of Animal Feed and Nutrition of Inner Mongolia Autonomous Region, College of Animal Science, Inner Mongolia Agricultural University, Hohhot 010018, China
| | - Xiaoqing Zhang
- Institute of Grassland Research, Chinese Academy of Agricultural Sciences, Hohhot 010010, China
| |
Collapse
|
20
|
Han W, Wu S, Ding H, Wang M, Wang M, Bao Z, Wang B, Hu J. Improved chromosomal-level genome assembly and re-annotation of leopard coral grouper. Sci Data 2023; 10:156. [PMID: 36949049 PMCID: PMC10033899 DOI: 10.1038/s41597-023-02051-z] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/22/2022] [Accepted: 03/06/2023] [Indexed: 03/24/2023] Open
Abstract
Plectropomus leopardus, as known as leopard coral grouper, is a valuable marine fish that has gradually been bred artificially. To promote future conservation, molecular breeding, and comparative studies, we generated an improved high-quality chromosomal-level genome assembly of leopard coral grouper using Nanopore long-reads, Illumina short reads, and the Hi-C sequencing data. The draft genome is 849.74 Mb with 45 contigs and N50 of 35.59 Mb. Finally, a total of 846.49 Mb corresponding to 99.6% of the contig sequences was anchored to 24 pseudo-chromosomes using Hi-C technology. A final set of 25,965 genes is annotated after manual curation of the predicted gene models, and BUSCO analysis yielded a completeness score of 99.5%. This study significantly improves the utility of the grouper genome and provided a reference for the study of molecular breeding, genomics and biology in this species.
Collapse
Affiliation(s)
- Wentao Han
- MOE Key Laboratory of Marine Genetics and Breeding, College of Marine Life Sciences/Key Laboratory of Tropical Aquatic Germplasm of Hainan Province, Sanya Oceanographic Institution, Ocean University of China, Qingdao/Sanya, China
| | - Shaoxuan Wu
- MOE Key Laboratory of Marine Genetics and Breeding, College of Marine Life Sciences/Key Laboratory of Tropical Aquatic Germplasm of Hainan Province, Sanya Oceanographic Institution, Ocean University of China, Qingdao/Sanya, China
| | - Hui Ding
- MOE Key Laboratory of Marine Genetics and Breeding, College of Marine Life Sciences/Key Laboratory of Tropical Aquatic Germplasm of Hainan Province, Sanya Oceanographic Institution, Ocean University of China, Qingdao/Sanya, China
| | - Mingyi Wang
- MOE Key Laboratory of Marine Genetics and Breeding, College of Marine Life Sciences/Key Laboratory of Tropical Aquatic Germplasm of Hainan Province, Sanya Oceanographic Institution, Ocean University of China, Qingdao/Sanya, China
| | - Mengya Wang
- MOE Key Laboratory of Marine Genetics and Breeding, College of Marine Life Sciences/Key Laboratory of Tropical Aquatic Germplasm of Hainan Province, Sanya Oceanographic Institution, Ocean University of China, Qingdao/Sanya, China
| | - Zhenmin Bao
- MOE Key Laboratory of Marine Genetics and Breeding, College of Marine Life Sciences/Key Laboratory of Tropical Aquatic Germplasm of Hainan Province, Sanya Oceanographic Institution, Ocean University of China, Qingdao/Sanya, China
| | - Bo Wang
- MOE Key Laboratory of Marine Genetics and Breeding, College of Marine Life Sciences/Key Laboratory of Tropical Aquatic Germplasm of Hainan Province, Sanya Oceanographic Institution, Ocean University of China, Qingdao/Sanya, China.
| | - Jingjie Hu
- MOE Key Laboratory of Marine Genetics and Breeding, College of Marine Life Sciences/Key Laboratory of Tropical Aquatic Germplasm of Hainan Province, Sanya Oceanographic Institution, Ocean University of China, Qingdao/Sanya, China.
| |
Collapse
|
21
|
Martínez Sosa F, Pilot M. Molecular Mechanisms Underlying Vertebrate Adaptive Evolution: A Systematic Review. Genes (Basel) 2023; 14:416. [PMID: 36833343 PMCID: PMC9957108 DOI: 10.3390/genes14020416] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/03/2022] [Revised: 01/24/2023] [Accepted: 02/01/2023] [Indexed: 02/08/2023] Open
Abstract
Adaptive evolution is a process in which variation that confers an evolutionary advantage in a specific environmental context arises and is propagated through a population. When investigating this process, researchers have mainly focused on describing advantageous phenotypes or putative advantageous genotypes. A recent increase in molecular data accessibility and technological advances has allowed researchers to go beyond description and to make inferences about the mechanisms underlying adaptive evolution. In this systematic review, we discuss articles from 2016 to 2022 that investigated or reviewed the molecular mechanisms underlying adaptive evolution in vertebrates in response to environmental variation. Regulatory elements within the genome and regulatory proteins involved in either gene expression or cellular pathways have been shown to play key roles in adaptive evolution in response to most of the discussed environmental factors. Gene losses were suggested to be associated with an adaptive response in some contexts. Future adaptive evolution research could benefit from more investigations focused on noncoding regions of the genome, gene regulation mechanisms, and gene losses potentially yielding advantageous phenotypes. Investigating how novel advantageous genotypes are conserved could also contribute to our knowledge of adaptive evolution.
Collapse
Affiliation(s)
| | - Małgorzata Pilot
- Museum and Institute of Zoology, Polish Academy of Sciences, 80-680 Gdańsk, Poland
- Faculty of Biology, University of Gdańsk, 80-308 Gdańsk, Poland
| |
Collapse
|
22
|
Wu HY, Chen KS, Huang YS, Hsieh HY, Tsai H. Comparative transcriptome analysis of skin color-associated genes in leopard coral grouper (Plectropomus leopardus). BMC Genomics 2023; 24:5. [PMID: 36604632 PMCID: PMC9817277 DOI: 10.1186/s12864-022-09091-6] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/16/2022] [Accepted: 12/20/2022] [Indexed: 01/07/2023] Open
Abstract
BACKGROUND The leopard coral grouper (Plectropomus leopardus) is an important economic species in East Asia-Pacific countries. To meet the market demand, leopard coral grouper is facing overfishing and their population is rapidly declining. With the improvement of the artificial propagation technique, the leopard coral grouper has been successfully cultured by Fisheries Research Institute in Taiwan. However, the skin color of farmed individuals is often lacking bright redness. As such, the market price of farmed individuals is lower than wild-type. RESULTS To understand the genetic mechanisms of skin coloration in leopard coral grouper, we compared leopard coral grouper with different skin colors through transcriptome analysis. Six cDNA libraries generated from wild-caught leopard coral grouper with different skin colors were characterized by using the Illumina platform. Reference-guided de novo transcriptome data of leopard coral grouper obtained 24,700 transcripts, and 1,089 differentially expressed genes (DEGs) were found between red and brown skin color individuals. The results showed that nine candidate DEGs (epha2, sema6d, acsl4, slc7a5, hipk1, nol6, timp2, slc25a42, and kdf1) significantly associated with skin color were detected by using comparative transcriptome analysis and quantitative real-time polymerase chain reaction (qRT-PCR). CONCLUSIONS The findings may provide genetic information for further skin color research, and to boost the market price of farmed leopard coral grouper by selective breeding.
Collapse
Affiliation(s)
- Hung-Yi Wu
- grid.412036.20000 0004 0531 9758Department of Marine Biotechnology and Resources, National Sun Yat-Sen University, Kaohsiung City, Taiwan
| | - Kao-Sung Chen
- grid.453140.70000 0001 1957 0060Planning and Information Division, Fisheries Research Institute, Council of Agriculture, Keelung, Taiwan
| | - You-Syu Huang
- Eastern Marine Biology Research Center, Taitung City, Taiwan
| | - Hern-Yi Hsieh
- Penghu Marine Biology Research Center, Penghu County, Magong, Taiwan
| | - HsinYuan Tsai
- Department of Marine Biotechnology and Resources, National Sun Yat-Sen University, Kaohsiung City, Taiwan. .,Doctoral Degree Program in Marine Biotechnology, National Sun Yat-Sen University, Kaohsiung City, Taiwan.
| |
Collapse
|
23
|
Cao X, Zhang J, Deng S, Ding S. Chromosome-Level Genome Assembly of the Speckled Blue Grouper ( Epinephelus cyanopodus) Provides Insight into Its Adaptive Evolution. BIOLOGY 2022; 11:1810. [PMID: 36552321 PMCID: PMC9775623 DOI: 10.3390/biology11121810] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 11/21/2022] [Revised: 12/09/2022] [Accepted: 12/11/2022] [Indexed: 12/15/2022]
Abstract
Epinephelus cyanopodus is a coral reef-dwelling grouper with important economic and ecological value and is widely distributed in the western Pacific Ocean. The lack of genomic resources for E. cyanopodus hinders its adaptive evolution and phylogeny research. We constructed the first high-quality genome of E. cyanopodus based on DNBSEQ, PacBio, and Hic sequencing technologies, with a genome size of 998.82 Mb, contig N50 of 5.855 Mb, and scaffold N50 of 41.98 Mb. More than 99.7% of contigs were anchored to 24 pseudochromosomes, and 94.2% of BUSCO genes were found in the E. cyanopodus genome, indicating a high genome assembly completeness. A total of 26,337 protein-coding genes were predicted, of which 98.77% were functionally annotated. Phylogenetic analysis showed that E. cyanopodus separated from its closely related species Epinephelus akaara about 11.5-26.5 million years ago, and the uplift of the Indo-Australian archipelago may have provided an opportunity for its rapid radiation. Moreover, several gene families associated with innate and adaptive immunity were significantly expanded in speckled blue grouper compared to other teleost genomes. Additionally, we identified several genes associated with immunity, growth and reproduction that are under positive selection in E. cyanopodus compared to other groupers, suggesting that E. cyanopodus has evolved broad adaptability in response to complex survival environment, which may provide the genetic basis for its rapid radiation. In brief, the high-quality reference genome of the speckled blue grouper provides a foundation for research on its biological traits and adaptive evolution and will be an important genetic tool to guide aquaculture and resolve its taxonomic controversies in future studies.
Collapse
Affiliation(s)
- Xiaoying Cao
- State Key Laboratory of Marine Environment Science, College of Ocean and Earth Sciences, Xiamen University, Xiamen 361000, China
| | - Jiajun Zhang
- State Key Laboratory of Marine Environment Science, College of Ocean and Earth Sciences, Xiamen University, Xiamen 361000, China
| | - Shunyun Deng
- State Key Laboratory of Marine Environment Science, College of Ocean and Earth Sciences, Xiamen University, Xiamen 361000, China
| | - Shaoxiong Ding
- State Key Laboratory of Marine Environment Science, College of Ocean and Earth Sciences, Xiamen University, Xiamen 361000, China
- Function Laboratory for Marine Fisheries Science and Food Production Processes, Qingdao National Laboratory for Marine Science and Technology, Qingdao 266000, China
| |
Collapse
|
24
|
Liu F, Sun F, Kuang GQ, Wang L, Yue GH. The Insertion in the 3' UTR of Pmel17 Is the Causal Variant for Golden Skin Color in Tilapia. MARINE BIOTECHNOLOGY (NEW YORK, N.Y.) 2022; 24:566-573. [PMID: 35416601 DOI: 10.1007/s10126-022-10125-z] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/11/2021] [Accepted: 03/25/2022] [Indexed: 06/14/2023]
Abstract
Understanding of the relationships between genotypes and phenotypes is a central problem in biology. Although teleosts have colorful phenotypes, not much is known about their underlying mechanisms. Our previous study showed that golden skin color in Mozambique tilapia was mapped in the major locus containing the Pmel gene, and an insertion in 3' UTR of Pmel17 was fully correlated with the golden color. However, the molecular mechanism of how Pmel17 determines the golden skin color is unknown. In this study, knockout of Pmel17 with CRISPR/Cas9 in blackish tilapias resulted in golden coloration, and rescue of Pmel17 in golden tilapias recovered the wild-type blackish color, indicating that Pmel17 is the gene determining the golden and blackish color. Functional analysis in vitro showed that the insertion in the 3' UTR of Pmel17 reduced the transcripts of Pmel17. Our data supplies more evidence to support that Pmel17 is the gene for blackish and golden colors, and highlights that the insertion in the 3' UTR of Pmel17 is the causative mutation for the golden coloration.
Collapse
Affiliation(s)
- Feng Liu
- Molecular Population Genetics & Breeding Group, Temasek Life Sciences Laboratory, 1 Research Link, National University of Singapore, Singapore, 117604, Singapore
- Shanghai Fisheries Institute, 265 Jiamusi Road, Shanghai, 200433, China
| | - Fei Sun
- Molecular Population Genetics & Breeding Group, Temasek Life Sciences Laboratory, 1 Research Link, National University of Singapore, Singapore, 117604, Singapore
| | - Gang Qiao Kuang
- Department of Fisheries, Southwestern University, Rongchang Campus, 160 Xueyuan Road, Rongchang, Chongqing, 402460, China
| | - Le Wang
- Molecular Population Genetics & Breeding Group, Temasek Life Sciences Laboratory, 1 Research Link, National University of Singapore, Singapore, 117604, Singapore
| | - Gen Hua Yue
- Molecular Population Genetics & Breeding Group, Temasek Life Sciences Laboratory, 1 Research Link, National University of Singapore, Singapore, 117604, Singapore.
- Department of Biological Sciences, National University of Singapore, 14 Science Drive, Queenstown, 117543, Singapore.
| |
Collapse
|
25
|
Liang Q, Afriyie G, Chen Z, Xu Z, Dong Z, Guo Y, Wang Z. Analysis of opsin gene family of Crimson snapper (Lutjanus erythropterus). Gene 2022; 807:145960. [PMID: 34509581 DOI: 10.1016/j.gene.2021.145960] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/09/2021] [Revised: 08/27/2021] [Accepted: 09/07/2021] [Indexed: 11/30/2022]
Abstract
Opsin is a fellow of the G protein-coupled receptors (GPCRs) superfamily. It can be divided into visual and non-visual opsin according to whether it is directly involved in visual imaging. Opsin plays an important role in visual image formation and the regulation of non-image forming functions such as circadian entrainment in the growth, development and evolution of fish. Crimson snapper belongs to Perciforme mainly found in the Indo-West Pacific and the South China Sea. It is one of the most influential economic fishes in the South China Sea. In order to study the existence and expression of opsin gene in Crimson snapper, we sequenced the genome and tissue sample transcriptome of Crimson snapper. In this study, 32 opsin genes were identified from the genome of Crimson snapper. The length of these genes ranged from 1061 bp to 86203 bp and were distributed on 15 different chromosomes. The analysis of opsin gene family of Crimson snapper showed that the sws2 had two extra copies as compared with that of Zebrafish. Domain and motif analysis revealed that all the 32 opsin genes have seven-(pass)-transmembrane domain receptors (7TM receptors) each, and the opsin family contained 10 common motifs. The expression level of opsin gene, confirmed by RT-qPCR, was analyzed by using nine tissues transcriptome databases of Crimson snapper. The results showed that almost all opsin genes were highly expressed in the retina and brain, except opn7a and opn7b which were expressed in intestine and red skin, and almost no expression in other tissues. Our results provide a comprehensive basic knowledge for the opsin gene family of Crimson snapper, which has significance for the study of the function of opsin in Lutjanidaes.
Collapse
Affiliation(s)
- Qiulu Liang
- Key Laboratory of Aquaculture in South China Sea for Aquatic Economic Animal of Guangdong Higher Education Institutes, Fisheries College, Guangdong Ocean University, Zhanjiang 524025, China
| | - Gyamfua Afriyie
- Key Laboratory of Aquaculture in South China Sea for Aquatic Economic Animal of Guangdong Higher Education Institutes, Fisheries College, Guangdong Ocean University, Zhanjiang 524025, China
| | - Zizhao Chen
- Key Laboratory of Aquaculture in South China Sea for Aquatic Economic Animal of Guangdong Higher Education Institutes, Fisheries College, Guangdong Ocean University, Zhanjiang 524025, China
| | - Zhenmin Xu
- Key Laboratory of Aquaculture in South China Sea for Aquatic Economic Animal of Guangdong Higher Education Institutes, Fisheries College, Guangdong Ocean University, Zhanjiang 524025, China
| | - Zhongdian Dong
- Key Laboratory of Aquaculture in South China Sea for Aquatic Economic Animal of Guangdong Higher Education Institutes, Fisheries College, Guangdong Ocean University, Zhanjiang 524025, China
| | - Yusong Guo
- Key Laboratory of Aquaculture in South China Sea for Aquatic Economic Animal of Guangdong Higher Education Institutes, Fisheries College, Guangdong Ocean University, Zhanjiang 524025, China.
| | - Zhongduo Wang
- Key Laboratory of Aquaculture in South China Sea for Aquatic Economic Animal of Guangdong Higher Education Institutes, Fisheries College, Guangdong Ocean University, Zhanjiang 524025, China.
| |
Collapse
|
26
|
Zhang CY, Xiao X, Zhang Z, Hu Z, Li M. An alternative splicing hypothesis for neuropathology of schizophrenia: evidence from studies on historical candidate genes and multi-omics data. Mol Psychiatry 2022; 27:95-112. [PMID: 33686213 DOI: 10.1038/s41380-021-01037-w] [Citation(s) in RCA: 14] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/04/2020] [Revised: 01/08/2021] [Accepted: 01/22/2021] [Indexed: 01/31/2023]
Abstract
Alternative splicing of schizophrenia risk genes, such as DRD2, GRM3, and DISC1, has been extensively described. Nevertheless, the alternative splicing characteristics of the growing number of schizophrenia risk genes identified through genetic analyses remain relatively opaque. Recently, transcriptomic analyses in human brains based on short-read RNA-sequencing have discovered many "local splicing" events (e.g., exon skipping junctions) associated with genetic risk of schizophrenia, and further molecular characterizations have identified novel spliced isoforms, such as AS3MTd2d3 and ZNF804AE3E4. In addition, long-read sequencing analyses of schizophrenia risk genes (e.g., CACNA1C and NRXN1) have revealed multiple previously unannotated brain-abundant isoforms with therapeutic potentials, and functional analyses of KCNH2-3.1 and Ube3a1 have provided examples for investigating such spliced isoforms in vitro and in vivo. These findings suggest that alternative splicing may be an essential molecular mechanism underlying genetic risk of schizophrenia, however, the incomplete annotations of human brain transcriptomes might have limited our understanding of schizophrenia pathogenesis, and further efforts to elucidate these transcriptional characteristics are urgently needed to gain insights into the illness-correlated brain physiology and pathology as well as to translate genetic discoveries into novel therapeutic targets.
Collapse
Affiliation(s)
- Chu-Yi Zhang
- Key Laboratory of Animal Models and Human Disease Mechanisms of the Chinese Academy of Sciences and Yunnan Province, Kunming Institute of Zoology, Chinese Academy of Sciences, Kunming, Yunnan, China.,Kunming College of Life Science, University of Chinese Academy of Sciences, Kunming, Yunnan, China
| | - Xiao Xiao
- Key Laboratory of Animal Models and Human Disease Mechanisms of the Chinese Academy of Sciences and Yunnan Province, Kunming Institute of Zoology, Chinese Academy of Sciences, Kunming, Yunnan, China.,KIZ-CUHK Joint Laboratory of Bioresources and Molecular Research in Common Diseases, Kunming Institute of Zoology, Chinese Academy of Sciences, Kunming, Yunnan, China
| | - Zhuohua Zhang
- Institute of Molecular Precision Medicine and Hunan Key Laboratory of Molecular Precision Medicine, Xiangya Hospital, Central South University, Changsha, Hunan, China.,Center for Medical Genetics and Hunan Key Laboratory of Medical Genetics, School of Life Sciences, Central South University, Changsha, Hunan, China
| | - Zhonghua Hu
- Institute of Molecular Precision Medicine and Hunan Key Laboratory of Molecular Precision Medicine, Xiangya Hospital, Central South University, Changsha, Hunan, China. .,Center for Medical Genetics and Hunan Key Laboratory of Medical Genetics, School of Life Sciences, Central South University, Changsha, Hunan, China. .,Department of Critical Care Medicine, Xiangya Hospital, Central South University, Changsha, Hunan, China. .,National Clinical Research Center for Geriatric Disorders, Xiangya Hospital, Central South University, Changsha, Hunan, China. .,Hunan Key Laboratory of Animal Models for Human Diseases, School of Life Sciences, Central South University, Changsha, Hunan, China. .,Eye Center of Xiangya Hospital and Hunan Key Laboratory of Ophthalmology, Central South University, Changsha, Hunan, China. .,National Clinical Research Center on Mental Disorders, Changsha, Hunan, China.
| | - Ming Li
- Key Laboratory of Animal Models and Human Disease Mechanisms of the Chinese Academy of Sciences and Yunnan Province, Kunming Institute of Zoology, Chinese Academy of Sciences, Kunming, Yunnan, China. .,Kunming College of Life Science, University of Chinese Academy of Sciences, Kunming, Yunnan, China. .,KIZ-CUHK Joint Laboratory of Bioresources and Molecular Research in Common Diseases, Kunming Institute of Zoology, Chinese Academy of Sciences, Kunming, Yunnan, China.
| |
Collapse
|
27
|
Chromosome Genome Assembly of Cromileptes altivelis Reveals Loss of Genome Fragment in Cromileptes Compared with Epinephelus Species. Genes (Basel) 2021; 12:genes12121873. [PMID: 34946822 PMCID: PMC8701792 DOI: 10.3390/genes12121873] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/29/2021] [Revised: 11/21/2021] [Accepted: 11/22/2021] [Indexed: 11/30/2022] Open
Abstract
The humpback grouper (Cromileptes altivelis), an Epinephelidae species, is patchily distributed in the reef habitats of Western Pacific water. This grouper possesses a remarkably different body shape and notably low growth rate compared with closely related grouper species. For promoting further research of the grouper, in the present study, a high-quality chromosome-level genome of humpback grouper was assembled using PacBio sequencing and high-throughput chromatin conformation capture (Hi-C) technology. The assembled genome was 1.013 Gb in size with 283 contigs, of which, a total of 143 contigs with 1.011 Gb in size were correctly anchored into 24 chromosomes. Moreover, a total of 26,037 protein-coding genes were predicted, of them, 25,243 (96.95%) genes could be functionally annotated. The high-quality chromosome-level genome assembly will provide pivotal genomic information for future research of the speciation, evolution and molecular-assisted breeding in humpback groupers. In addition, phylogenetic analysis based on shared single-copy orthologues of the grouper species showed that the humpback grouper is included in the Epinephelus genus and clustered with the giant grouper in one clade with a divergence time of 9.86 Myr. In addition, based on the results of collinearity analysis, a gap in chromosome 6 of the humpback grouper was detected; the missed genes were mainly associated with immunity, substance metabolism and the MAPK signal pathway. The loss of the parts of genes involved in these biological processes might affect the disease resistance, stress tolerance and growth traits in humpback groupers. The present research will provide new insight into the evolution and origin of the humpback grouper.
Collapse
|
28
|
Yang Y, Wang T, Chen J, Wu L, Wu X, Zhang W, Luo J, Xia J, Meng Z, Liu X. Whole-genome sequencing of brown-marbled grouper (Epinephelus fuscoguttatus) provides insights into adaptive evolution and growth differences. Mol Ecol Resour 2021; 22:711-723. [PMID: 34455708 DOI: 10.1111/1755-0998.13494] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/23/2020] [Revised: 07/29/2021] [Accepted: 08/23/2021] [Indexed: 11/27/2022]
Abstract
The brown-marbled grouper (Epinephelus fuscoguttatus) is an important species of fish in the coral reef ecosystem and marine aquaculture industry. In this study, a high-quality chromosome-level genome of brown-marbled grouper was assembled using Oxford Nanopore technology and Hi-C technology. The GC content and heterozygosity were approximately 42% and 0.35%, respectively. A total of 230 contigs with a total length of 1047 Mb and contig N50 of 13.8 Mb were assembled, and 228 contigs (99.13%) were anchored into 24 chromosomes. A total of 24,005 protein-coding genes were predicted, among which 23,862 (99.4%) predicted genes were annotated. Phylogenetic analysis showed that brown-marbled grouper and humpback grouper were clustered into one clade that separated approximately 11-23 million years ago. Collinearity analyses showed that there was no obvious duplication of large fragments between chromosomes in the brown-marbled grouper. Genomes of the humpback grouper and giant grouper showed a high collinearity with that of the brown-marbled grouper. A total of 305 expanded gene families were detected in the brown-marbled grouper genome, which is mainly involved in disease resistance. In addition, a genetic linkage map with 3061.88 cM was constructed. Based on the physical and genetic map, one growth-related quantitative trait loci was detected in 32,332,447 bp of chromosome 20, and meox1 and etv4 were considered candidate growth-related genes. This study provides pivotal genetic resources for further evolutionary analyses and artificial breeding of groupers.
Collapse
Affiliation(s)
- Yang Yang
- State Key Laboratory of Biocontrol, Life Sciences School, Sun Yat-sen University, Guangzhou, China
| | - Tong Wang
- State Key Laboratory of Biocontrol, Life Sciences School, Sun Yat-sen University, Guangzhou, China
| | - Jingfang Chen
- State Key Laboratory of Biocontrol, Life Sciences School, Sun Yat-sen University, Guangzhou, China
| | - Lina Wu
- State Key Laboratory of Biocontrol, Life Sciences School, Sun Yat-sen University, Guangzhou, China
| | - Xi Wu
- State Key Laboratory of Biocontrol, Life Sciences School, Sun Yat-sen University, Guangzhou, China
| | - Weiwei Zhang
- State Key Laboratory of Marine Resource Utilization in South China Sea, Key Laboratory of Tropical Biological Resources of Education, Marine Sciences College of Hainan University, Haikou, China
| | - Jian Luo
- State Key Laboratory of Marine Resource Utilization in South China Sea, Key Laboratory of Tropical Biological Resources of Education, Marine Sciences College of Hainan University, Haikou, China
| | - Junhong Xia
- State Key Laboratory of Biocontrol, Life Sciences School, Sun Yat-sen University, Guangzhou, China.,Southern Laboratory of Ocean Science and Engineering, Zhuhai, China
| | - Zining Meng
- State Key Laboratory of Biocontrol, Life Sciences School, Sun Yat-sen University, Guangzhou, China.,Southern Laboratory of Ocean Science and Engineering, Zhuhai, China
| | - Xiaochun Liu
- State Key Laboratory of Biocontrol, Life Sciences School, Sun Yat-sen University, Guangzhou, China.,Southern Laboratory of Ocean Science and Engineering, Zhuhai, China
| |
Collapse
|
29
|
Liu HL, Yeh IJ, Phan NN, Wu YH, Yen MC, Hung JH, Chiao CC, Chen CF, Sun Z, Jiang JZ, Hsu HP, Wang CY, Lai MD. Gene signatures of SARS-CoV/SARS-CoV-2-infected ferret lungs in short- and long-term models. INFECTION, GENETICS AND EVOLUTION : JOURNAL OF MOLECULAR EPIDEMIOLOGY AND EVOLUTIONARY GENETICS IN INFECTIOUS DISEASES 2020; 85:104438. [PMID: 32615317 PMCID: PMC7832673 DOI: 10.1016/j.meegid.2020.104438] [Citation(s) in RCA: 47] [Impact Index Per Article: 9.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 05/16/2020] [Revised: 06/11/2020] [Accepted: 06/19/2020] [Indexed: 12/12/2022]
Abstract
Coronaviruses (CoVs) consist of six strains, and the severe acute respiratory syndrome coronavirus (SARS-CoV), newly found coronavirus (SARS-CoV-2) has rapidly spread leading to a global outbreak. The ferret (Mustela putorius furo) serves as a useful animal model for studying SARS-CoV/SARS-CoV-2 infection and developing therapeutic strategies. A holistic approach for distinguishing differences in gene signatures during disease progression is lacking. The present study discovered gene expression profiles of short-term (3 days) and long-term (14 days) ferret models after SARS-CoV/SARS-CoV-2 infection using a bioinformatics approach. Through Gene Ontology (GO) and MetaCore analyses, we found that the development of stemness signaling was related to short-term SARS-CoV/SARS-CoV-2 infection. In contrast, pathways involving extracellular matrix and immune responses were associated with long-term SARS-CoV/SARS-CoV-2 infection. Some highly expressed genes in both short- and long-term models played a crucial role in the progression of SARS-CoV/SARS-CoV-2 infection, including DPP4, BMP2, NFIA, AXIN2, DAAM1, ZNF608, ME1, MGLL, LGR4, ABHD6, and ACADM. Meanwhile, we revealed that metabolic, glucocorticoid, and reactive oxygen species-associated networks were enriched in both short- and long-term infection models. The present study showed alterations in gene expressions from short-term to long-term SARS-CoV/SARS-CoV-2 infection. The current result provides an explanation of the pathophysiology for post-infectious sequelae and potential targets for treatment.
Collapse
Affiliation(s)
- Hsin-Liang Liu
- Department of Emergency Medicine, Kaohsiung Medical University Hospital, Kaohsiung Medical University, Kaohsiung 80708, Taiwan
| | - I-Jeng Yeh
- Department of Emergency Medicine, Kaohsiung Medical University Hospital, Kaohsiung Medical University, Kaohsiung 80708, Taiwan,Graduate Institute of Clinical Medicine, College of Medicine, Kaohsiung Medical University, Kaohsiung 80708, Taiwan
| | - Nam Nhut Phan
- NTT Institute of Hi-Technology, Nguyen Tat Thanh University, Ho Chi Minh City, Viet Nam
| | - Yen-Hung Wu
- Department of Emergency Medicine, Kaohsiung Medical University Hospital, Kaohsiung Medical University, Kaohsiung 80708, Taiwan,Graduate Institute of Clinical Medicine, College of Medicine, Kaohsiung Medical University, Kaohsiung 80708, Taiwan
| | - Meng-Chi Yen
- Department of Emergency Medicine, Kaohsiung Medical University Hospital, Kaohsiung Medical University, Kaohsiung 80708, Taiwan,Graduate Institute of Clinical Medicine, College of Medicine, Kaohsiung Medical University, Kaohsiung 80708, Taiwan
| | - Jui-Hsiang Hung
- Department of Biotechnology, Chia Nan University of Pharmacy and Science, Tainan 71710, Taiwan
| | - Chung-Chieh Chiao
- School of Chinese Medicine for Post-Baccalaureate, I-Shou University, Kaohsiung 82445, Taiwan
| | - Chien-Fu Chen
- School of Chinese Medicine for Post-Baccalaureate, I-Shou University, Kaohsiung 82445, Taiwan
| | - Zhengda Sun
- Kaiser Permanente, Northern California Regional Laboratories, The Permanente Medical Group, 1725 Eastshore Hwy, Berkeley, CA 94710, USA
| | - Jia-Zhen Jiang
- Emergency Department, Huashan Hospital North, Fudan University, Shanghai 201508, People's Republic of China
| | - Hui-Ping Hsu
- Department of Surgery, National Cheng Kung University Hospital, College of Medicine, National Cheng Kung University, Tainan 70101, Taiwan; Department of Biostatistics, Vanderbilt University Medical Center, Nashville, TN 37232, USA.
| | - Chih-Yang Wang
- Ph.D. Program for Cancer Molecular Biology and Drug Discovery, College of Medical Science and Technology, Taipei Medical University, Taipei 11031, Taiwan; Graduate Institute of Cancer Biology and Drug Discovery, College of Medical Science and Technology, Taipei Medical University, Taipei 11031, Taiwan.
| | - Ming-Derg Lai
- Department of Biochemistry and Molecular Biology, National Cheng Kung University, Tainan 70101, Taiwan; Institute of Basic Medical Sciences, College of Medicine, National Cheng Kung University, Tainan 70101, Taiwan.
| |
Collapse
|
30
|
Liu W, Li W, Cai X, Yang Z, Li H, Su X, Song M, Zhou DS, Li X, Zhang C, Shao M, Zhang L, Yang Y, Zhang Y, Zhao J, Chang H, Yao YG, Fang Y, Lv L, Li M, Xiao X. Identification of a functional human-unique 351-bp Alu insertion polymorphism associated with major depressive disorder in the 1p31.1 GWAS risk loci. Neuropsychopharmacology 2020; 45:1196-1206. [PMID: 32193514 PMCID: PMC7235090 DOI: 10.1038/s41386-020-0659-2] [Citation(s) in RCA: 17] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/02/2020] [Revised: 02/16/2020] [Accepted: 03/11/2020] [Indexed: 12/28/2022]
Abstract
Genome-wide association studies (GWAS) have reported substantial single-nucleotide polymorphisms (SNPs) associated with major depressive disorder (MDD), but the underlying functional variations in the GWAS risk loci are unclear. Here we show that the European MDD genome-wide risk-associated allele of rs12129573 at 1p31.1 is associated with MDD in Han Chinese, and this SNP is in strong linkage disequilibrium (LD) with a human-unique Alu insertion polymorphism (rs70959274) in the 5' flanking region of a long non-coding RNA (lncRNA) LINC01360 (Long Intergenic Non-Protein Coding RNA 1360), which is preferably expressed in human testis in the currently available expression datasets. The risk allele at rs12129573 is almost completely linked with the absence of this Alu insertion. The Alu insertion polymorphism (rs70959274) is significantly associated with a lower RNA level of LINC01360 and acts as a transcription silencer likely through modulating the methylation of its internal CpG sites. Luciferase assays confirm that the presence of Alu insertion at rs70959274 suppresses transcriptional activities in human cells, and deletion of the Alu insertion through CRISPR/Cas9-directed genome editing increases RNA expression of LINC01360. Deletion of the Alu insertion in human cells also leads to dysregulation of gene expression, biological processes and pathways relevant to MDD, such as the alterations of mRNA levels of DRD2 and FLOT1, transcription of genes involved in synaptic transmission, neurogenesis, learning or memory, and the PI3K-Akt signaling pathway. In summary, we identify a human-unique DNA repetitive polymorphism in robust LD with the MDD risk-associated SNP at the prominent 1p31.1 GWAS loci, and offer insights into the molecular basis of the illness.
Collapse
Affiliation(s)
- Weipeng Liu
- 0000000119573309grid.9227.eKey Laboratory of Animal Models and Human Disease Mechanisms of the Chinese Academy of Sciences and Yunnan Province, Kunming Institute of Zoology, Chinese Academy of Sciences, Kunming, Yunnan China ,Kunming College of Life Science, University of Chinese Academy of Sciences, Kunming, Yunnan China
| | - Wenqiang Li
- 0000 0004 1808 322Xgrid.412990.7Henan Mental Hospital, The Second Affiliated Hospital of Xinxiang Medical University, Xinxiang, Henan China ,0000 0004 1808 322Xgrid.412990.7Henan Key Lab of Biological Psychiatry, International Joint Research Laboratory for Psychiatry and Neuroscience of Henan, Xinxiang Medical University, Xinxiang, Henan China
| | - Xin Cai
- 0000000119573309grid.9227.eKey Laboratory of Animal Models and Human Disease Mechanisms of the Chinese Academy of Sciences and Yunnan Province, Kunming Institute of Zoology, Chinese Academy of Sciences, Kunming, Yunnan China ,Kunming College of Life Science, University of Chinese Academy of Sciences, Kunming, Yunnan China
| | - Zhihui Yang
- 0000000119573309grid.9227.eKey Laboratory of Animal Models and Human Disease Mechanisms of the Chinese Academy of Sciences and Yunnan Province, Kunming Institute of Zoology, Chinese Academy of Sciences, Kunming, Yunnan China ,Kunming College of Life Science, University of Chinese Academy of Sciences, Kunming, Yunnan China
| | - Huijuan Li
- 0000000119573309grid.9227.eKey Laboratory of Animal Models and Human Disease Mechanisms of the Chinese Academy of Sciences and Yunnan Province, Kunming Institute of Zoology, Chinese Academy of Sciences, Kunming, Yunnan China ,Kunming College of Life Science, University of Chinese Academy of Sciences, Kunming, Yunnan China
| | - Xi Su
- 0000 0004 1808 322Xgrid.412990.7Henan Mental Hospital, The Second Affiliated Hospital of Xinxiang Medical University, Xinxiang, Henan China ,0000 0004 1808 322Xgrid.412990.7Henan Key Lab of Biological Psychiatry, International Joint Research Laboratory for Psychiatry and Neuroscience of Henan, Xinxiang Medical University, Xinxiang, Henan China
| | - Meng Song
- 0000 0004 1808 322Xgrid.412990.7Henan Mental Hospital, The Second Affiliated Hospital of Xinxiang Medical University, Xinxiang, Henan China ,0000 0004 1808 322Xgrid.412990.7Henan Key Lab of Biological Psychiatry, International Joint Research Laboratory for Psychiatry and Neuroscience of Henan, Xinxiang Medical University, Xinxiang, Henan China
| | - Dong-Sheng Zhou
- 0000 0004 1782 599Xgrid.452715.0Department of Psychiatry, Ningbo Kangning Hospital, Ningbo, Zhejiang, China
| | - Xingxing Li
- 0000 0004 1782 599Xgrid.452715.0Department of Psychiatry, Ningbo Kangning Hospital, Ningbo, Zhejiang, China
| | - Chen Zhang
- 0000 0004 0368 8293grid.16821.3cShanghai Mental Health Center, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Minglong Shao
- 0000 0004 1808 322Xgrid.412990.7Henan Mental Hospital, The Second Affiliated Hospital of Xinxiang Medical University, Xinxiang, Henan China ,0000 0004 1808 322Xgrid.412990.7Henan Key Lab of Biological Psychiatry, International Joint Research Laboratory for Psychiatry and Neuroscience of Henan, Xinxiang Medical University, Xinxiang, Henan China
| | - Luwen Zhang
- 0000 0004 1808 322Xgrid.412990.7Henan Mental Hospital, The Second Affiliated Hospital of Xinxiang Medical University, Xinxiang, Henan China ,0000 0004 1808 322Xgrid.412990.7Henan Key Lab of Biological Psychiatry, International Joint Research Laboratory for Psychiatry and Neuroscience of Henan, Xinxiang Medical University, Xinxiang, Henan China
| | - Yongfeng Yang
- 0000 0004 1808 322Xgrid.412990.7Henan Mental Hospital, The Second Affiliated Hospital of Xinxiang Medical University, Xinxiang, Henan China ,0000 0004 1808 322Xgrid.412990.7Henan Key Lab of Biological Psychiatry, International Joint Research Laboratory for Psychiatry and Neuroscience of Henan, Xinxiang Medical University, Xinxiang, Henan China
| | - Yan Zhang
- 0000 0004 1808 322Xgrid.412990.7Henan Mental Hospital, The Second Affiliated Hospital of Xinxiang Medical University, Xinxiang, Henan China ,0000 0004 1808 322Xgrid.412990.7Henan Key Lab of Biological Psychiatry, International Joint Research Laboratory for Psychiatry and Neuroscience of Henan, Xinxiang Medical University, Xinxiang, Henan China
| | - Jingyuan Zhao
- 0000 0004 1808 322Xgrid.412990.7Henan Mental Hospital, The Second Affiliated Hospital of Xinxiang Medical University, Xinxiang, Henan China ,0000 0004 1808 322Xgrid.412990.7Henan Key Lab of Biological Psychiatry, International Joint Research Laboratory for Psychiatry and Neuroscience of Henan, Xinxiang Medical University, Xinxiang, Henan China
| | - Hong Chang
- 0000000119573309grid.9227.eKey Laboratory of Animal Models and Human Disease Mechanisms of the Chinese Academy of Sciences and Yunnan Province, Kunming Institute of Zoology, Chinese Academy of Sciences, Kunming, Yunnan China
| | - Yong-Gang Yao
- 0000000119573309grid.9227.eKey Laboratory of Animal Models and Human Disease Mechanisms of the Chinese Academy of Sciences and Yunnan Province, Kunming Institute of Zoology, Chinese Academy of Sciences, Kunming, Yunnan China ,Kunming College of Life Science, University of Chinese Academy of Sciences, Kunming, Yunnan China ,0000000119573309grid.9227.eCAS Center for Excellence in Brain Science and Intelligence Technology, Chinese Academy of Sciences, Shanghai, China ,0000000119573309grid.9227.eKIZ/CUHK Joint Laboratory of Bioresources and Molecular Research in Common Diseases, Kunming Institute of Zoology, Chinese Academy of Sciences, Kunming, Yunnan China
| | - Yiru Fang
- 0000 0004 0368 8293grid.16821.3cShanghai Mental Health Center, Shanghai Jiao Tong University School of Medicine, Shanghai, China ,0000000119573309grid.9227.eCAS Center for Excellence in Brain Science and Intelligence Technology, Chinese Academy of Sciences, Shanghai, China
| | - Luxian Lv
- Henan Mental Hospital, The Second Affiliated Hospital of Xinxiang Medical University, Xinxiang, Henan, China. .,Henan Key Lab of Biological Psychiatry, International Joint Research Laboratory for Psychiatry and Neuroscience of Henan, Xinxiang Medical University, Xinxiang, Henan, China. .,Henan Province People's Hospital, Zhengzhou, Henan, China.
| | - Ming Li
- Key Laboratory of Animal Models and Human Disease Mechanisms of the Chinese Academy of Sciences and Yunnan Province, Kunming Institute of Zoology, Chinese Academy of Sciences, Kunming, Yunnan, China. .,CAS Center for Excellence in Brain Science and Intelligence Technology, Chinese Academy of Sciences, Shanghai, China. .,KIZ/CUHK Joint Laboratory of Bioresources and Molecular Research in Common Diseases, Kunming Institute of Zoology, Chinese Academy of Sciences, Kunming, Yunnan, China.
| | - Xiao Xiao
- Key Laboratory of Animal Models and Human Disease Mechanisms of the Chinese Academy of Sciences and Yunnan Province, Kunming Institute of Zoology, Chinese Academy of Sciences, Kunming, Yunnan, China. .,KIZ/CUHK Joint Laboratory of Bioresources and Molecular Research in Common Diseases, Kunming Institute of Zoology, Chinese Academy of Sciences, Kunming, Yunnan, China.
| |
Collapse
|
31
|
Li HJ, Qu N, Hui L, Cai X, Zhang CY, Zhong BL, Zhang SF, Chen J, Xia B, Wang L, Jia QF, Li W, Chang H, Xiao X, Li M, Li Y. Further confirmation of netrin 1 receptor (DCC) as a depression risk gene via integrations of multi-omics data. Transl Psychiatry 2020; 10:98. [PMID: 32184385 PMCID: PMC7078234 DOI: 10.1038/s41398-020-0777-y] [Citation(s) in RCA: 22] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/26/2019] [Revised: 02/21/2020] [Accepted: 03/03/2020] [Indexed: 12/15/2022] Open
Abstract
Genome-wide association studies (GWAS) of major depression and its relevant biological phenotypes have been extensively conducted in large samples, and transcriptome-wide analyses in the tissues of brain regions relevant to pathogenesis of depression, e.g., dorsolateral prefrontal cortex (DLPFC), have also been widely performed recently. Integrating these multi-omics data will enable unveiling of depression risk genes and even underlying pathological mechanisms. Here, we employ summary data-based Mendelian randomization (SMR) and integrative risk gene selector (iRIGS) approaches to integrate multi-omics data from GWAS, DLPFC expression quantitative trait loci (eQTL) analyses and enhancer-promoter physical link studies to prioritize high-confidence risk genes for depression, followed by independent replications across distinct populations. These integrative analyses identify multiple high-confidence depression risk genes, and numerous lines of evidence supporting pivotal roles of the netrin 1 receptor (DCC) gene in this illness across different populations. Our subsequent explorative analyses further suggest that DCC significantly predicts neuroticism, well-being spectrum, cognitive function and putamen structure in general populations. Gene expression correlation and pathway analyses in DLPFC further show that DCC potentially participates in the biological processes and pathways underlying synaptic plasticity, axon guidance, circadian entrainment, as well as learning and long-term potentiation. These results are in agreement with the recent findings of this gene in neurodevelopment and psychiatric disorders, and we thus further confirm that DCC is an important susceptibility gene for depression, and might be a potential target for new antidepressants.
Collapse
Affiliation(s)
- Hui-Juan Li
- Key Laboratory of Animal Models and Human Disease Mechanisms of the Chinese Academy of Sciences and Yunnan Province, Kunming Institute of Zoology, Chinese Academy of Sciences, Kunming, Yunnan, China
- Kunming College of Life Science, University of Chinese Academy of Sciences, Kunming, Yunnan, China
| | - Na Qu
- Affiliated Wuhan Mental Health Center, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, China
- Research Center for Psychological and Health Sciences, China University of Geosciences, Wuhan, Hubei, China
| | - Li Hui
- Suzhou Guangji Hospital, The Affiliated Guangji Hospital of Soochow University, Suzhou, Jiangsu, China
| | - Xin Cai
- Key Laboratory of Animal Models and Human Disease Mechanisms of the Chinese Academy of Sciences and Yunnan Province, Kunming Institute of Zoology, Chinese Academy of Sciences, Kunming, Yunnan, China
- Kunming College of Life Science, University of Chinese Academy of Sciences, Kunming, Yunnan, China
| | - Chu-Yi Zhang
- Key Laboratory of Animal Models and Human Disease Mechanisms of the Chinese Academy of Sciences and Yunnan Province, Kunming Institute of Zoology, Chinese Academy of Sciences, Kunming, Yunnan, China
- Kunming College of Life Science, University of Chinese Academy of Sciences, Kunming, Yunnan, China
| | - Bao-Liang Zhong
- Affiliated Wuhan Mental Health Center, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, China
- Research Center for Psychological and Health Sciences, China University of Geosciences, Wuhan, Hubei, China
| | - Shu-Fang Zhang
- Affiliated Wuhan Mental Health Center, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, China
- Research Center for Psychological and Health Sciences, China University of Geosciences, Wuhan, Hubei, China
| | - Jing Chen
- Affiliated Wuhan Mental Health Center, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, China
- Research Center for Psychological and Health Sciences, China University of Geosciences, Wuhan, Hubei, China
| | - Bin Xia
- Affiliated Wuhan Mental Health Center, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, China
- Research Center for Psychological and Health Sciences, China University of Geosciences, Wuhan, Hubei, China
| | - Lu Wang
- Key Laboratory of Animal Models and Human Disease Mechanisms of the Chinese Academy of Sciences and Yunnan Province, Kunming Institute of Zoology, Chinese Academy of Sciences, Kunming, Yunnan, China
| | - Qiu-Fang Jia
- Suzhou Guangji Hospital, The Affiliated Guangji Hospital of Soochow University, Suzhou, Jiangsu, China
| | - Wei Li
- Department of Blood Transfusion, The Second Affiliated Hospital of Kunming Medical University, Kunming, Yunnan, China
| | - Hong Chang
- Key Laboratory of Animal Models and Human Disease Mechanisms of the Chinese Academy of Sciences and Yunnan Province, Kunming Institute of Zoology, Chinese Academy of Sciences, Kunming, Yunnan, China
| | - Xiao Xiao
- Key Laboratory of Animal Models and Human Disease Mechanisms of the Chinese Academy of Sciences and Yunnan Province, Kunming Institute of Zoology, Chinese Academy of Sciences, Kunming, Yunnan, China.
| | - Ming Li
- Key Laboratory of Animal Models and Human Disease Mechanisms of the Chinese Academy of Sciences and Yunnan Province, Kunming Institute of Zoology, Chinese Academy of Sciences, Kunming, Yunnan, China.
| | - Yi Li
- Affiliated Wuhan Mental Health Center, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, China.
- Research Center for Psychological and Health Sciences, China University of Geosciences, Wuhan, Hubei, China.
| |
Collapse
|