1
|
Lin HF, Jiang RD, Qin RX, Yao B, Zeng WT, Gao Y, Shi AM, Li JM, Liu MQ. Characterization of a SARS-CoV-2 Infection Model in Golden Hamsters with Diabetes Mellitus. Virol Sin 2025:S1995-820X(25)00059-8. [PMID: 40389095 DOI: 10.1016/j.virs.2025.05.001] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/23/2024] [Accepted: 05/12/2025] [Indexed: 05/21/2025] Open
Abstract
Being widespread across the globe, severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) keeps evolving and generating new variants and continuously poses threat to public health, especially to the population with chronic comorbidities. Diabetes mellitus is one of high-risk factors for severe outcome of coronavirus disease 2019 (COVID-19). Establishment of animal models that parallel the clinical and pathological features of COVID-19 complicated with diabetes is thus highly essential. Here, in this study, we constructed leptin receptor gene knockout hamsters with the phenotype of diabetes mellitus (db/db), and revealed that the diabetic hamsters were more susceptible to SARS-CoV-2 and its variants than wild-type hamsters. SARS-CoV-2 and its variants induced a stronger immune cytokine response in the lungs of diabetic hamsters than in wild-type hamsters. Comparative histopathology analyses also showed that infection of SARS-CoV-2 and the variants caused more severe lung tissue injury in diabetic hamsters, and may induce serious complications such as diabetic kidney disease and cardiac lesions. Our findings demonstrated that despite the decreased respiratory pathogenicity, the SARS-CoV-2 variants were still capable of impairing other organs such as kidney and heart in diabetic hamsters, suggesting that the risk of evolving SARS-CoV-2 variants to diabetic patients should never be neglected. This hamster model may help better understand the pathogenesis mechanism of severe COVID-19 in patients with diabetes. It will also aid in development and testing of effective therapeutics and prophylactic treatments against SARS-CoV-2 variants among these high-risk populations.
Collapse
Affiliation(s)
- Hao-Feng Lin
- The First Affiliated Hospital of Guangzhou Medical University, Guangzhou Laboratory Clinical Base, State Key Laboratory of Respiratory Disease, Guangzhou Medical University, Guangzhou 510120, China
| | - Ren-Di Jiang
- State Key Laboratory of Genetic Engineering, Greater Bay Area Institute of Precision Medicine (Guangzhou), School of Life Sciences, Zhongshan Hospital, Fudan University, Shanghai 200433, China
| | - Rui-Xin Qin
- State Key Laboratory of Reproductive Medicine and Offspring Health, Jiangsu Laboratory Animal Center, Jiangsu Animal Experimental Center of Medicine and Pharmacy, Department of Cell Biology, Animal Core facility, Key Laboratory of Model Animal, Collaborative Innovation Center for Cardiovascular Disease Translational Medicine, National Vaccine Innovation Platform, Nanjing Medical University, Nanjing 211166, China
| | - Bing Yao
- Jinling Hospital Department Reproductive Medical Center, Nanjing Medical University, Nanjing 211166, China
| | - Wen-Tao Zeng
- State Key Laboratory of Reproductive Medicine and Offspring Health, Jiangsu Laboratory Animal Center, Jiangsu Animal Experimental Center of Medicine and Pharmacy, Department of Cell Biology, Animal Core facility, Key Laboratory of Model Animal, Collaborative Innovation Center for Cardiovascular Disease Translational Medicine, National Vaccine Innovation Platform, Nanjing Medical University, Nanjing 211166, China
| | - Yun Gao
- State Key Laboratory of Reproductive Medicine and Offspring Health, Jiangsu Laboratory Animal Center, Jiangsu Animal Experimental Center of Medicine and Pharmacy, Department of Cell Biology, Animal Core facility, Key Laboratory of Model Animal, Collaborative Innovation Center for Cardiovascular Disease Translational Medicine, National Vaccine Innovation Platform, Nanjing Medical University, Nanjing 211166, China.
| | - Ai-Min Shi
- State Key Laboratory of Reproductive Medicine and Offspring Health, Jiangsu Laboratory Animal Center, Jiangsu Animal Experimental Center of Medicine and Pharmacy, Department of Cell Biology, Animal Core facility, Key Laboratory of Model Animal, Collaborative Innovation Center for Cardiovascular Disease Translational Medicine, National Vaccine Innovation Platform, Nanjing Medical University, Nanjing 211166, China.
| | - Jian-Min Li
- State Key Laboratory of Reproductive Medicine and Offspring Health, Jiangsu Laboratory Animal Center, Jiangsu Animal Experimental Center of Medicine and Pharmacy, Department of Cell Biology, Animal Core facility, Key Laboratory of Model Animal, Collaborative Innovation Center for Cardiovascular Disease Translational Medicine, National Vaccine Innovation Platform, Nanjing Medical University, Nanjing 211166, China.
| | - Mei-Qin Liu
- The First Affiliated Hospital of Guangzhou Medical University, Guangzhou Laboratory Clinical Base, State Key Laboratory of Respiratory Disease, Guangzhou Medical University, Guangzhou 510120, China.
| |
Collapse
|
2
|
Jiang RD, Luo YZ, Lin HF, Zheng XS, Zeng WT, Liu MQ, Deng HH, Wang Q, Lai YN, Chen Y, Guo ZS, Zeng Y, Gong QC, Qiu C, Dong M, Wang X, Wang ZY, Ji LN, Hou PP, Li Q, Shen XR, Li B, Gao Y, Zhang AH, Jiang TT, Shi AM, Zhou P, Lin XH, Deng ZQ, Li JM, Shi ZL. Impaired inflammatory resolution with severe SARS-CoV-2 infection in leptin knock out obese hamster. iScience 2025; 28:111837. [PMID: 39981511 PMCID: PMC11841202 DOI: 10.1016/j.isci.2025.111837] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/12/2024] [Revised: 09/28/2024] [Accepted: 12/13/2024] [Indexed: 02/22/2025] Open
Abstract
Comorbidities, such as obesity, increase the risk of severe COVID-19. However, the mechanisms underlying severe illnesses in individuals with obesity are poorly understood. Here, we used gene-edited leptin knock out (Leptin -/-) obese hamsters to establish a severe infection model. This model exhibits robust viral replication, severe lung lesions, pronounced clinical symptoms, and fatal infection, mirroring severe COVID-19 in patients with obesity. Using single-cell transcriptomics on lung tissues pre- and post-infection, we found that monocyte-derived alveolar macrophages (MD-AM) play a key role in lung hyper-inflammation, including two unique MD-AM cell fate branches specific to Leptin -/- hamsters. Notably, reduced Trem2-dependent efferocytosis pathways in Leptin -/- hamsters indicated weakened inflammation resolution, consistent with the scRNA-seq data from patients with obesity. In summary, our study highlights the obesity-associated mechanisms underlying severe SARS-CoV-2 infections and establishes a reliable preclinical animal model for developing obesity-specific therapeutics for critical COVID-19.
Collapse
Affiliation(s)
- Ren-Di Jiang
- State Key Laboratory of Genetic Engineering, Greater Bay Area Institute of Precision Medicine (Guangzhou), School of Life Sciences, Zhongshan Hospital, Fudan University, Shanghai, China
| | - Yun-Zhe Luo
- BGI Research, Beijing, China
- College of Life Sciences, University of Chinese Academy of Sciences, Beijing, China
| | - Hao-Feng Lin
- Wuhan Institute of Virology, Chinese Academy of Sciences, Wuhan, China
- The First Affiliated Hospital of Guangzhou Medical University, State Key Laboratory of Respiratory Disease, Guangzhou Medical University, Guangzhou, China
| | - Xiao-Shuang Zheng
- The First Affiliated Hospital of Guangzhou Medical University, State Key Laboratory of Respiratory Disease, Guangzhou Medical University, Guangzhou, China
| | - Wen-Tao Zeng
- State Key Laboratory of Reproductive Medicine and Offspring Health, Jiangsu Animal Experimental Center of Medicine and Pharmacy, Animal Core facility, Key Laboratory of Model Animal, Department of Cell Biology, Collaborative Innovation Center for Cardiovascular Disease Translational Medicine, Nanjing Medical University, Nanjing, China
| | - Mei-Qin Liu
- The First Affiliated Hospital of Guangzhou Medical University, State Key Laboratory of Respiratory Disease, Guangzhou Medical University, Guangzhou, China
| | - Hao-Hao Deng
- BGI Research, Beijing, China
- Shenzhen Key Laboratory of Unknown Pathogen Identification, BGI-Shenzhen, Shenzhen, China
| | - Qi Wang
- Wuhan Institute of Virology, Chinese Academy of Sciences, Wuhan, China
- College of Life Sciences, University of Chinese Academy of Sciences, Beijing, China
| | - Ya-Na Lai
- State Key Laboratory of Reproductive Medicine and Offspring Health, Jiangsu Animal Experimental Center of Medicine and Pharmacy, Animal Core facility, Key Laboratory of Model Animal, Department of Cell Biology, Collaborative Innovation Center for Cardiovascular Disease Translational Medicine, Nanjing Medical University, Nanjing, China
| | - Ying Chen
- Wuhan Institute of Virology, Chinese Academy of Sciences, Wuhan, China
| | - Zi-Shuo Guo
- Wuhan Institute of Virology, Chinese Academy of Sciences, Wuhan, China
- College of Life Sciences, University of Chinese Academy of Sciences, Beijing, China
| | - Ya Zeng
- BGI Research, Beijing, China
- College of Life Sciences, University of Chinese Academy of Sciences, Beijing, China
| | - Qian-Chun Gong
- State Key Laboratory of Genetic Engineering, Greater Bay Area Institute of Precision Medicine (Guangzhou), School of Life Sciences, Zhongshan Hospital, Fudan University, Shanghai, China
| | - Chen Qiu
- State Key Laboratory of Reproductive Medicine and Offspring Health, Jiangsu Animal Experimental Center of Medicine and Pharmacy, Animal Core facility, Key Laboratory of Model Animal, Department of Cell Biology, Collaborative Innovation Center for Cardiovascular Disease Translational Medicine, Nanjing Medical University, Nanjing, China
| | - Mei Dong
- State Key Laboratory of Reproductive Medicine and Offspring Health, Jiangsu Animal Experimental Center of Medicine and Pharmacy, Animal Core facility, Key Laboratory of Model Animal, Department of Cell Biology, Collaborative Innovation Center for Cardiovascular Disease Translational Medicine, Nanjing Medical University, Nanjing, China
| | - Xi Wang
- Wuhan Institute of Virology, Chinese Academy of Sciences, Wuhan, China
- College of Life Sciences, University of Chinese Academy of Sciences, Beijing, China
| | - Zi-Yi Wang
- National Engineering Research Center of Neuromodulation, School of Aerospace Engineering, Tsinghua University, Beijing, China
| | - Li-Na Ji
- School of Life Sciences, Inner Mongolia University, Hohhot, China
- Joint Laboratory for Lung Development and Related Diseases of West China Second University Hospital, Sichuan University and School of Life Sciences of Fudan University, Chengdu, China
| | - Pan-Pan Hou
- Guangzhou National Laboratory, Guangzhou, China
| | - Qian Li
- The First Affiliated Hospital of Guangzhou Medical University, State Key Laboratory of Respiratory Disease, Guangzhou Medical University, Guangzhou, China
| | - Xu-Rui Shen
- Guangzhou National Laboratory, Guangzhou, China
| | - Bei Li
- Wuhan Institute of Virology, Chinese Academy of Sciences, Wuhan, China
| | - Yun Gao
- State Key Laboratory of Reproductive Medicine and Offspring Health, Jiangsu Animal Experimental Center of Medicine and Pharmacy, Animal Core facility, Key Laboratory of Model Animal, Department of Cell Biology, Collaborative Innovation Center for Cardiovascular Disease Translational Medicine, Nanjing Medical University, Nanjing, China
| | - Ai-Hua Zhang
- State Key Laboratory of Reproductive Medicine and Offspring Health, Jiangsu Animal Experimental Center of Medicine and Pharmacy, Animal Core facility, Key Laboratory of Model Animal, Department of Cell Biology, Collaborative Innovation Center for Cardiovascular Disease Translational Medicine, Nanjing Medical University, Nanjing, China
| | - Ting-Ting Jiang
- Wuhan Institute of Virology, Chinese Academy of Sciences, Wuhan, China
| | - Ai-Min Shi
- State Key Laboratory of Reproductive Medicine and Offspring Health, Jiangsu Animal Experimental Center of Medicine and Pharmacy, Animal Core facility, Key Laboratory of Model Animal, Department of Cell Biology, Collaborative Innovation Center for Cardiovascular Disease Translational Medicine, Nanjing Medical University, Nanjing, China
| | - Peng Zhou
- The First Affiliated Hospital of Guangzhou Medical University, State Key Laboratory of Respiratory Disease, Guangzhou Medical University, Guangzhou, China
- Guangzhou National Laboratory, Guangzhou, China
| | - Xin-Hua Lin
- State Key Laboratory of Genetic Engineering, Greater Bay Area Institute of Precision Medicine (Guangzhou), School of Life Sciences, Zhongshan Hospital, Fudan University, Shanghai, China
- School of Life Sciences, Inner Mongolia University, Hohhot, China
- Shanghai Key Laboratory of Lung Inflammation and Injury, Shanghai, China
- Joint Laboratory for Lung Development and Related Diseases of West China Second University Hospital, Sichuan University and School of Life Sciences of Fudan University, Chengdu, China
| | - Zi-Qing Deng
- BGI Research, Beijing, China
- Shenzhen Key Laboratory of Unknown Pathogen Identification, BGI-Shenzhen, Shenzhen, China
| | - Jian-Min Li
- State Key Laboratory of Reproductive Medicine and Offspring Health, Jiangsu Animal Experimental Center of Medicine and Pharmacy, Animal Core facility, Key Laboratory of Model Animal, Department of Cell Biology, Collaborative Innovation Center for Cardiovascular Disease Translational Medicine, Nanjing Medical University, Nanjing, China
| | - Zheng-Li Shi
- Wuhan Institute of Virology, Chinese Academy of Sciences, Wuhan, China
- Guangzhou National Laboratory, Guangzhou, China
| |
Collapse
|
3
|
Zheng HY, Song TZ, Zheng YT. Immunobiology of COVID-19: Mechanistic and therapeutic insights from animal models. Zool Res 2024; 45:747-766. [PMID: 38894519 PMCID: PMC11298684 DOI: 10.24272/j.issn.2095-8137.2024.062] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/23/2024] [Accepted: 04/22/2024] [Indexed: 06/21/2024] Open
Abstract
The distribution of the immune system throughout the body complicates in vitro assessments of coronavirus disease 2019 (COVID-19) immunobiology, often resulting in a lack of reproducibility when extrapolated to the whole organism. Consequently, developing animal models is imperative for a comprehensive understanding of the pathology and immunology of severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) infection. This review summarizes current progress related to COVID-19 animal models, including non-human primates (NHPs), mice, and hamsters, with a focus on their roles in exploring the mechanisms of immunopathology, immune protection, and long-term effects of SARS-CoV-2 infection, as well as their application in immunoprevention and immunotherapy of SARS-CoV-2 infection. Differences among these animal models and their specific applications are also highlighted, as no single model can fully encapsulate all aspects of COVID-19. To effectively address the challenges posed by COVID-19, it is essential to select appropriate animal models that can accurately replicate both fatal and non-fatal infections with varying courses and severities. Optimizing animal model libraries and associated research tools is key to resolving the global COVID-19 pandemic, serving as a robust resource for future emerging infectious diseases.
Collapse
Affiliation(s)
- Hong-Yi Zheng
- State Key Laboratory of Genetic Evolution & Animal Models, KIZ-CUHK Joint Laboratory of Bioresources and Molecular Research in Common Diseases, Center for Biosafety Mega-Science, Kunming Institute of Zoology, Chinese Academy of Sciences, Kunming, Yunnan 650223, China
| | - Tian-Zhang Song
- State Key Laboratory of Genetic Evolution & Animal Models, KIZ-CUHK Joint Laboratory of Bioresources and Molecular Research in Common Diseases, Center for Biosafety Mega-Science, Kunming Institute of Zoology, Chinese Academy of Sciences, Kunming, Yunnan 650223, China
| | - Yong-Tang Zheng
- State Key Laboratory of Genetic Evolution & Animal Models, KIZ-CUHK Joint Laboratory of Bioresources and Molecular Research in Common Diseases, Center for Biosafety Mega-Science, Kunming Institute of Zoology, Chinese Academy of Sciences, Kunming, Yunnan 650223, China
- National Resource Center for Non-Human Primates, National Research Facility for Phenotypic & Genetic Analysis of Model Animals (Primate Facility), Kunming Institute of Zoology, Chinese Academy of Sciences, Kunming, Yunnan 650107, China. E-mail:
| |
Collapse
|