1
|
LaFontaine PR, Yuan J, Prioli KM, Shah P, Herman JH, Pizzi LT. Economic Analyses of Pathogen-Reduction Technologies in Blood Transfusion: A Systematic Literature Review. APPLIED HEALTH ECONOMICS AND HEALTH POLICY 2021; 19:487-499. [PMID: 33555572 DOI: 10.1007/s40258-020-00612-6] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Accepted: 09/16/2020] [Indexed: 06/12/2023]
Abstract
BACKGROUND Technologies used in the processing of whole blood and blood component products, including pathogen reduction, are continuously being adopted into blood transfusion workflows to improve process efficiencies. However, the economic implications of these technologies are not well understood. With the advent of these new technologies and regulatory guidance on bacterial risk-control strategies, an updated systematic literature review on this topic was warranted. OBJECTIVE The objective of this systematic literature review was to summarize the current literature on the economic analyses of pathogen-reduction technologies (PRTs). METHODS A systematic literature review was conducted using the PRISMA (Preferred Reporting Items for Systematic Reviews and Meta-Analysis) guidelines to identify newly published articles in PubMed, MEDLINE Complete, and EconLit from 1 January 2000 to 17 July 2019 related to economic evaluations of PRTs. Only full-text studies in humans published in English were included in the review. Both budget-impact and cost-effectiveness studies were included; common outcomes included cost, quality-adjusted life-years (QALYs), and incremental cost-effectiveness ratios (ICERs). RESULTS The initial searches identified 433 original abstracts, of which 16 articles were included in the final data extraction and reporting. Seven articles presented cost-effectiveness analyses and nine assessed budget impact. The introduction of PRT increased overall costs, and ICER values ranged widely across cost-effectiveness studies, from below $US150,000/QALY to upwards of $US20,000,000/QALY. This wide range of results was due to a multitude of factors, including comparator selection, target patient population, and scenario analyses included. CONCLUSIONS Overall, the results of economic evaluations of bacterial risk-control strategies, regardless of mechanism, were highly dependent on the current screening protocols in place. The optimization of blood transfusion safety may not result in decisions made at the willingness-to-pay thresholds commonly seen in pharmaceutical evaluations. Given the critical public health role of blood products, and the potential safety benefits introduced by advancements, it is important to continue building this body of evidence with more transparency and data source heterogeneity. This updated literature review provides global context when making local decisions for the coverage of new and emerging bacterial risk-control strategies.
Collapse
Affiliation(s)
- Patrick R LaFontaine
- Center for Health Outcomes, Policy, and Economics, Rutgers University, 160 Frelinghuysen Road, Suite 417, Piscataway, NJ, 08854, USA
| | - Jing Yuan
- Center for Health Outcomes, Policy, and Economics, Rutgers University, 160 Frelinghuysen Road, Suite 417, Piscataway, NJ, 08854, USA
| | - Katherine M Prioli
- Center for Health Outcomes, Policy, and Economics, Rutgers University, 160 Frelinghuysen Road, Piscataway, NJ, 08854, USA
| | - Priti Shah
- Center for Health Outcomes, Policy, and Economics, Rutgers University, 160 Frelinghuysen Road, Piscataway, NJ, 08854, USA
| | - Jay H Herman
- Emeritus Director of Transfusion Medicine, Thomas Jefferson University Hospital, 111 South 11th Street, Philadelphia, PA, 19107, USA
| | - Laura T Pizzi
- Center for Health Outcomes, Policy, and Economics, Rutgers University, 160 Frelinghuysen Road, Piscataway, NJ, 08854, USA.
| |
Collapse
|
2
|
D’Alessandro A, Thomas KA, Stefanoni D, Gamboni F, Shea SM, Reisz JA, Spinella PC. Metabolic phenotypes of standard and cold-stored platelets. Transfusion 2020; 60 Suppl 3:S96-S106. [PMID: 31880330 PMCID: PMC7971209 DOI: 10.1111/trf.15651] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/12/2019] [Revised: 12/10/2019] [Accepted: 12/10/2019] [Indexed: 12/18/2022]
Abstract
BACKGROUND Conventional platelet (PLT) storage at room temperature under continuous agitation results in a limited shelf life (5 days) and an increased risk of bacterial contamination. However, both of these aspects can be ameliorated by cold storage. Preliminary work has suggested that PLTs can be cold stored for up to 3 weeks, while preserving their metabolic activity longer than in PLTs stored at room temperature. As such, in the present study, we hypothesized that the metabolic phenotypes of PLTs stored at 4°C for 3 weeks could be comparable to that of room temperature-stored PLTs at 22°C for 5 days. STUDY DESIGN AND METHODS Metabolomics analyses were performed on nine apheresis PLT concentrates stored either at room temperature (22°C) for 5 days or refrigerated conditions (4°C) for up to 3 weeks. RESULTS Refrigeration did not impact the rate of decline in glutamine or the intracellular levels of Krebs cycle metabolites upstream to fumarate and malate. It did, however, decrease oxidant stress (to glutathione and purines) and slowed down the activation of the pentose phosphate pathway, glycolysis, and fatty acid metabolism (acyl-carnitines). CONCLUSION The overall metabolic phenotypes of 4°C PLTs at Storage Day 10 are comparable to PLTs stored at 22°C at the end of their 5-day shelf life, while additional changes in glycolysis, purine, and fatty acid metabolism are noted by Day 21.
Collapse
Affiliation(s)
- Angelo D’Alessandro
- Department of Biochemistry and Molecular Genetics, University of Colorado Denver – Anschutz Medical Campus, Aurora, Colorado
| | - Kimberly A. Thomas
- Department of Pediatrics, Division of Critical Care, Washington University School of Medicine, St. Louis, Missouri
| | - Davide Stefanoni
- Department of Biochemistry and Molecular Genetics, University of Colorado Denver – Anschutz Medical Campus, Aurora, Colorado
| | - Fabia Gamboni
- Department of Biochemistry and Molecular Genetics, University of Colorado Denver – Anschutz Medical Campus, Aurora, Colorado
| | - Susan M. Shea
- Department of Pediatrics, Division of Critical Care, Washington University School of Medicine, St. Louis, Missouri
| | - Julie A. Reisz
- Department of Biochemistry and Molecular Genetics, University of Colorado Denver – Anschutz Medical Campus, Aurora, Colorado
| | - Philip C. Spinella
- Department of Pediatrics, Division of Critical Care, Washington University School of Medicine, St. Louis, Missouri
| |
Collapse
|
3
|
Abstract
Allogeneic platelets collected for transfusion treated with pathogen reduction technology (PRT), which has been available in some countries for more than a decade, are now increasingly available in the United States (US). The implementation of PRT-treated platelets, also known as pathogen-reduced platelets (PRPs), has been spurred by the need to further decrease the risk of sepsis associated with bacterial contamination coupled with the potential of this technology to reduce the risk of infections due to already recognized, new, and emerging infectious agents. This article will review available PRP products, examine their benefits, highlight unresolved questions surrounding this technology, and summarize pivotal research studies that have compared transfusion outcomes (largely in adult patients) for PRPs with non-PRT-treated conventional platelets (CPs). In addition, studies describing the use of PRPs in pediatric patients and work done on the association between PRPs and HLA alloimmunization are discussed. As new data emerge, it is critical to re-evaluate the risks and benefits of existing PRPs and newer technologies and reassess the financial implications of adopting PRPs to guide our decision-making process for the implementation of transfusing PRPs.
Collapse
Affiliation(s)
- Wen Lu
- Section of Transfusion Medicine, Robert Tomsich Pathology & Laboratory Medicine Institute, Cleveland Clinic, Cleveland, OH, USA
| | - Mark Fung
- Department of Pathology and Laboratory Medicine, University of Vermont Medical Center, Burlington, VT, USA
| |
Collapse
|
4
|
Domanović D, Ushiro-Lumb I, Compernolle V, Brusin S, Funk M, Gallian P, Georgsen J, Janssen M, Jimenez-Marco T, Knutson F, Liumbruno GM, Mali P, Marano G, Maryuningsih Y, Niederhauser C, Politis C, Pupella S, Rautmann G, Saadat K, Sandid I, Sousa AP, Vaglio S, Velati C, Verdun N, Vesga M, Rebulla P. Pathogen reduction of blood components during outbreaks of infectious diseases in the European Union: an expert opinion from the European Centre for Disease Prevention and Control consultation meeting. BLOOD TRANSFUSION = TRASFUSIONE DEL SANGUE 2019; 17:433-448. [PMID: 31846608 PMCID: PMC6917531 DOI: 10.2450/2019.0288-19] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Subscribe] [Scholar Register] [Received: 11/16/2019] [Accepted: 11/21/2019] [Indexed: 12/13/2022]
Abstract
Pathogen reduction (PR) of selected blood components is a technology that has been adopted in practice in various ways. Although they offer great advantages in improving the safety of the blood supply, these technologies have limitations which hinder their broader use, e.g. increased costs. In this context, the European Centre for Disease Prevention and Control (ECDC), in co-operation with the Italian National Blood Centre, organised an expert consultation meeting to discuss the potential role of pathogen reduction technologies (PRT) as a blood safety intervention during outbreaks of infectious diseases for which (in most cases) laboratory screening of blood donations is not available. The meeting brought together 26 experts and representatives of national competent authorities for blood from thirteen European Union and European Economic Area (EU/EEA) Member States (MS), Switzerland, the World Health Organization, the European Directorate for the Quality of Medicines and Health Care of the Council of Europe, the US Food and Drug Administration, and the ECDC. During the meeting, the current use of PRTs in the EU/EEA MS and Switzerland was verified, with particular reference to emerging infectious diseases (see Appendix). In this article, we also present expert discussions and a common view on the potential use of PRT as a part of both preparedness and response to threats posed to blood safety by outbreaks of infectious disease.
Collapse
Affiliation(s)
- Dragoslav Domanović
- European Centre for Disease Prevention and Control (ECDC), Stockholm, Sweden
| | - Ines Ushiro-Lumb
- National Transfusion Microbiology Reference Laboratory, NHS Blood and Transplant and Public Health England, London, England
| | | | - Sergio Brusin
- European Centre for Disease Prevention and Control (ECDC), Stockholm, Sweden
| | - Markus Funk
- Pharmacovigilance II, Paul-Ehrlich-Institut Federal Institute for Vaccines and Biomedicines, Langen, Germany
| | - Pierre Gallian
- Etablissement Français du Sang Provence Alpes Côte d’Azur et Corse, Marseille, France
| | - Jørgen Georgsen
- South Danish Transfusion Service, Department of Clinical Immunology, Odense University Hospital, Odense, Denmark
| | - Mart Janssen
- Department of Donor Medicine Research, Transfusion Technology Assessment, Sanquin Research, Amsterdam, The Netherlands
| | | | - Folke Knutson
- Clinical Immunology and Transfusion Medicine IGP, Uppsala University, Uppsala, Sweden
| | | | - Polonca Mali
- Blood Transfusion Center of Slovenia, Ljubljana, Slovenia
| | - Giuseppe Marano
- Italian National Blood Centre, National Institute of Health, Rome
| | | | - Christoph Niederhauser
- Interregional Blood Transfusion Swiss Red Cross, Laboratory Diagnostics, Bern, Switzerland
| | - Constantina Politis
- Hellenic Coordinating Hemovigilance Center, Hellenic National Public Health Organization, Athens, Greece
| | | | - Guy Rautmann
- European Directorate for the Quality of Medicines and HealthCare, Strasbourg, France
| | - Karmin Saadat
- Austrian Agency for Health and Food Safety, Wien, Austria
| | - Imad Sandid
- French National Agency for Medicines and Health Products Safety (ANSM), Saint Denis, France
| | - Ana P. Sousa
- Portuguese Blood and Transplantation Center, Lisbon, Portugal
| | - Stefania Vaglio
- Italian National Blood Centre, National Institute of Health, Rome
| | - Claudio Velati
- Italian National Blood Centre, National Institute of Health, Rome
| | - Nicole Verdun
- Office of Blood Research and Review, Center for Biologics Evaluation and Research, FDA, Silver Spring, United States of America
| | - Miguel Vesga
- Basque Center for Transfusion and Human Tissues/Spanish Scientific Committee for Transfusion Safety, Galdakao, Spain
| | - Paolo Rebulla
- IRCCS Foundation Ca’ Granda Maggiore Policlinico Hospital, Milan, Italy
| |
Collapse
|
5
|
Atreya C, Glynn S, Busch M, Kleinman S, Snyder E, Rutter S, AuBuchon J, Flegel W, Reeve D, Devine D, Cohn C, Custer B, Goodrich R, Benjamin RJ, Razatos A, Cancelas J, Wagner S, Maclean M, Gelderman M, Cap A, Ness P. Proceedings of the Food and Drug Administration public workshop on pathogen reduction technologies for blood safety 2018 (Commentary, p. 3026). Transfusion 2019; 59:3002-3025. [PMID: 31144334 PMCID: PMC6726584 DOI: 10.1111/trf.15344] [Citation(s) in RCA: 23] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/23/2019] [Revised: 05/06/2019] [Accepted: 05/06/2019] [Indexed: 12/13/2022]
Affiliation(s)
- Chintamani Atreya
- US Food and Drug Administration, Center for Biologics Evaluation and ResearchOffice of Blood Research and ReviewSilver SpringMaryland
| | - Simone Glynn
- National Heart Lung and Blood InstituteBethesdaMarylandUSA
| | | | | | - Edward Snyder
- Blood BankYale‐New Haven HospitalNew HavenConnecticut
| | - Sara Rutter
- Department of Pathology and Laboratory MedicineYale School of MedicineNew HavenConnecticut
| | - James AuBuchon
- Department of PathologyDartmouth‐Hitchcock Medical CenterLebanonNew Hampshire
| | - Willy Flegel
- Department of Transfusion MedicineNIH Clinical CenterBethesdaMaryland
| | - David Reeve
- Blood ComponentsAmerican Red CrossRockvilleMaryland
| | - Dana Devine
- Department of Lab Medicine and PathologyUniversity of Minnesota Medical CenterMinneapolisMinnesota
| | - Claudia Cohn
- Department of Lab Medicine and PathologyUniversity of Minnesota Medical CenterMinneapolisMinnesota
| | - Brian Custer
- Vitalant Research InstituteSan FranciscoCalifornia
| | - Raymond Goodrich
- Department of Microbiology, Immunology and PathologyColorado State UniversityFort CollinsColorado
| | | | | | - Jose Cancelas
- Hoxworth Blood CenterUniversity of Cincinnati HealthCincinnatiOhio
| | | | - Michelle Maclean
- The Robertson Trust Laboratory for Electronic Sterilisation Technologies (ROLEST)University of StrathclydeGlasgowScotland
| | - Monique Gelderman
- Department of HematologyCenter for Biologics Evaluation and Research, US Food and Drug AdministrationSilver SpringMaryland
| | - Andrew Cap
- U.S. Army Institute of Surgical ResearchSan AntonioTexas
| | - Paul Ness
- Blood BankJohns Hopkins HospitalBaltimoreMaryland
| |
Collapse
|
6
|
Cost of pathogen reduction for platelets: reply to Cicchetti et al. Blood Transfus 2018; 16: 483-9. BLOOD TRANSFUSION = TRASFUSIONE DEL SANGUE 2018; 17:84. [PMID: 30418132 DOI: 10.2450/2018.0193-18] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Subscribe] [Scholar Register] [Received: 09/28/2018] [Accepted: 10/15/2018] [Indexed: 11/21/2022]
|