1
|
Benton A, Liu B, Gartenhaus LE, Hanna JA. Genomic landscape and preclinical models of angiosarcoma. Mol Oncol 2025; 19:965-983. [PMID: 39367667 PMCID: PMC11977660 DOI: 10.1002/1878-0261.13744] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/01/2024] [Revised: 09/03/2024] [Accepted: 09/24/2024] [Indexed: 10/06/2024] Open
Abstract
Angiosarcoma is a cancer that develops in blood or lymphatic vessels that presents a significant clinical challenge due to its rarity and aggressive features. Clinical outcomes have not improved in decades, highlighting a need for innovative therapeutic strategies to treat the disease. Genetically, angiosarcomas exhibit high heterogeneity and complexity with many recurrent mutations. However, recent studies have identified some common features within anatomic and molecular subgroups. To identify potential therapeutic vulnerabilities, it is essential to understand and integrate the mutational landscape of angiosarcoma with the models that exist to study the disease. In this review, we will summarize the insights gained from reported genomic alterations in molecular and anatomic subtypes of angiosarcoma, discuss several potential actionable targets, and highlight the preclinical disease models available in the field.
Collapse
Affiliation(s)
- Annaleigh Benton
- Department of Biological SciencesPurdue UniversityWest LafayetteINUSA
- Purdue University Institute for Cancer ResearchPurdue UniversityWest LafayetteINUSA
| | - Bozhi Liu
- Department of Biological SciencesPurdue UniversityWest LafayetteINUSA
- Purdue University Institute for Cancer ResearchPurdue UniversityWest LafayetteINUSA
| | - Lauren E. Gartenhaus
- Department of Biological SciencesPurdue UniversityWest LafayetteINUSA
- Purdue University Institute for Cancer ResearchPurdue UniversityWest LafayetteINUSA
| | - Jason A. Hanna
- Department of Biological SciencesPurdue UniversityWest LafayetteINUSA
- Purdue University Institute for Cancer ResearchPurdue UniversityWest LafayetteINUSA
| |
Collapse
|
2
|
Heishima K, Aketa N, Heishima M, Kawachi A. Hemangiosarcoma in dogs as a potential non-rodent animal model for drug discovery research of angiosarcoma in humans. Front Oncol 2023; 13:1250766. [PMID: 38130992 PMCID: PMC10733437 DOI: 10.3389/fonc.2023.1250766] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2023] [Accepted: 11/06/2023] [Indexed: 12/23/2023] Open
Abstract
Since the domestication of dogs 10,000 years ago, they have shared their living environment with humans and have co-evolved. The breeding process that dogs have undergone in only a few centuries has led to a significant accumulation of specific genetic alterations that could induce particular diseases in certain breeds. These canine diseases are similar to what is found in humans with several differences; therefore, comparing such diseases occurring in humans and dogs can help discover novel disease mechanisms, pathways, and causal genetic factors. Human angiosarcoma (AS) and canine hemangiosarcoma (HSA), which are sarcomas originating from endothelium, are examples of diseases shared between humans and dogs. They exhibit similar characteristics and clinical behaviors, although with some critical differences resulting from evolution. In this review, we will describe the similarities and differences in terms of clinical and molecular characteristics between human AS and canine HSA, and discuss how these similarities and differences can be applied to advance the treatment of these diseases.
Collapse
Affiliation(s)
- Kazuki Heishima
- Institute for Advanced Study (GUiAS), Gifu University, Gifu, Japan
- Center for One Medicine Innovative Translational Research (COMIT), Gifu University, Gifu, Japan
| | - Naohiko Aketa
- Clinical and Translational Research Center, Keio University Hospital, Tokyo, Japan
| | | | - Asuka Kawachi
- Division of Cancer RNA Research, National Cancer Center, Tokyo, Japan
- Department of Medical Oncology, National Cancer Center Hospital, Tokyo, Japan
| |
Collapse
|
3
|
Ashton LV, Weishaar KM, Séguin B, MacNeill AL. Oclacitinib and Myxoma Virus Therapy in Dogs with High-Grade Soft Tissue Sarcoma. Biomedicines 2023; 11:2346. [PMID: 37760788 PMCID: PMC10525839 DOI: 10.3390/biomedicines11092346] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/15/2023] [Revised: 08/14/2023] [Accepted: 08/20/2023] [Indexed: 09/29/2023] Open
Abstract
Human rhabdomyosarcomas are rarely cured by surgical resection alone. This is also true for high-grade soft tissue sarcomas in dogs. Dogs with spontaneous sarcoma are good models for clinical responses to new cancer therapies. Strategic combinations of immunotherapy and oncolytic virotherapy (OV) could improve treatment responses in canine and human cancer patients. To develop an appropriate combination of immunotherapy and OV for dogs with soft tissue sarcoma (STS), canine cancer cells were inoculated with myxoma viruses (MYXVs) and gene transcripts were quantified. Next, the cytokine concentrations in the canine cancer cells were altered to evaluate their effect on MYXV replication. These studies indicated that, as in murine and human cells, type I interferons (IFN) play an important role in limiting MYXV replication in canine cancer cells. To reduce type I IFN production during OV, oclacitinib (a JAK1 inhibitor) was administered twice daily to dogs for 14 days starting ~7 days prior to surgery. STS tumors were excised, and MYXV deleted for serp2 (MYXV∆SERP2) was administered at the surgical site at two time points post-operatively to treat any remaining microscopic tumor cells. Tumor regrowth in dogs treated with OV was decreased relative to historical controls. However, regrowth was not further inhibited in patients given combination therapy.
Collapse
Affiliation(s)
- Laura V. Ashton
- Microbiology, Immunology and Pathology, College of Veterinary Medicine and Biomedical Sciences, Colorado State University, Fort Collins, CO 80523, USA;
| | - Kristen M. Weishaar
- Clinical Sciences, College of Veterinary Medicine and Biomedical Sciences, Colorado State University, Fort Collins, CO 80523, USA;
| | - Bernard Séguin
- Central Victoria Veterinary Hospital, Victoria, BC V8X 2R3, Canada;
| | - Amy L. MacNeill
- Microbiology, Immunology and Pathology, College of Veterinary Medicine and Biomedical Sciences, Colorado State University, Fort Collins, CO 80523, USA;
| |
Collapse
|
4
|
Megquier K, Turner-Maier J, Morrill K, Li X, Johnson J, Karlsson EK, London CA, Gardner HL. The genomic landscape of canine osteosarcoma cell lines reveals conserved structural complexity and pathway alterations. PLoS One 2022; 17:e0274383. [PMID: 36099278 PMCID: PMC9469990 DOI: 10.1371/journal.pone.0274383] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/06/2022] [Accepted: 08/25/2022] [Indexed: 01/09/2023] Open
Abstract
The characterization of immortalized canine osteosarcoma (OS) cell lines used for research has historically been based on phenotypic features such as cellular morphology and expression of bone specific markers. With the increasing use of these cell lines to investigate novel therapeutic approaches prior to in vivo translation, a much more detailed understanding regarding the genomic landscape of these lines is required to ensure accurate interpretation of findings. Here we report the first whole genome characterization of eight canine OS cell lines, including single nucleotide variants, copy number variants and other structural variants. Many alterations previously characterized in primary canine OS tissue were observed in these cell lines, including TP53 mutations, MYC copy number gains, loss of CDKN2A, PTEN, DLG2, MAGI2, and RB1 and structural variants involving SETD2, DLG2 and DMD. These data provide a new framework for understanding how best to incorporate in vitro findings generated using these cell lines into the design of future clinical studies involving dogs with spontaneous OS.
Collapse
Affiliation(s)
- Kate Megquier
- Broad Institute of MIT and Harvard, Cambridge, Massachusetts, United States of America
| | - Jason Turner-Maier
- Broad Institute of MIT and Harvard, Cambridge, Massachusetts, United States of America
| | - Kathleen Morrill
- Broad Institute of MIT and Harvard, Cambridge, Massachusetts, United States of America
- University of Massachusetts Chan Medical School, Worcester, Massachusetts, United States of America
| | - Xue Li
- Broad Institute of MIT and Harvard, Cambridge, Massachusetts, United States of America
- University of Massachusetts Chan Medical School, Worcester, Massachusetts, United States of America
| | - Jeremy Johnson
- Broad Institute of MIT and Harvard, Cambridge, Massachusetts, United States of America
| | - Elinor K. Karlsson
- Broad Institute of MIT and Harvard, Cambridge, Massachusetts, United States of America
- University of Massachusetts Chan Medical School, Worcester, Massachusetts, United States of America
| | - Cheryl A. London
- Cummings School of Veterinary Medicine at Tufts University, North Grafton, Massachusetts, United States of America
| | - Heather L. Gardner
- Cummings School of Veterinary Medicine at Tufts University, North Grafton, Massachusetts, United States of America
| |
Collapse
|
5
|
Nowak Ł, Krajewski W, Małkiewicz B, Szydełko T, Pawlak A. Characteristics and Applications of Canine In Vitro Models of Bladder Cancer in Veterinary Medicine: An Up-to-Date Mini Review. Animals (Basel) 2022; 12:ani12040516. [PMID: 35203224 PMCID: PMC8868259 DOI: 10.3390/ani12040516] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/07/2022] [Revised: 02/03/2022] [Accepted: 02/17/2022] [Indexed: 11/16/2022] Open
Abstract
Simple Summary Bladder cancer (BC) in dogs is often lethal at the time of diagnosis. Therefore, there is a constant need for novel research on improvements of its characterization and treatment. Due to high cost and limited number of available dog patients, in vitro models of canine BC have been increasingly used for the last 25 years. In the present article, we present existing in vitro models of canine BC, including available simple (two-dimensional) and more complex (three-dimensional) models. Abstract Bladder cancer (BC) constitutes approximately 2% of all spontaneously occurring cancers in dogs. It is characterized by a devastating clinical course in most cases, which emphasizes a constant need for the development of novel methods of disease characterization and treatment. Over the past years, advances in cell engineering have resulted in the development of various canine in vitro models of BC, emerging as complements for in vivo research. In this article, we aimed to review the available data on existing in vitro models of canine BC, focusing primarily on their characteristics, applications in veterinary medicine, as well as advantages and disadvantages. The most commonly used in vitro models of canine BC comprise immortalized cell lines grown as adherent monolayers. They provide an unlimited supply of research material, however, they do not faithfully reflect the conditions prevailing in vivo, since the spatial cellular interactions are lost. The importance of the three-dimensional (3D) features of solid tumors in relation to carcinogenesis or drug response process has resulted in the development of the first canine 3D models of BC available for in vitro research. So far, results obtained with in vitro and in vivo research should be interpreted together. With the constantly growing complexity of in vitro models of BC cancer, animal-based research might be reduced in the future.
Collapse
Affiliation(s)
- Łukasz Nowak
- University Center of Excellence in Urology, Department of Minimally Invasive and Robotic Urology, Wroclaw Medical University, 50-556 Wroclaw, Poland; (W.K.); (B.M.); (T.S.)
- Correspondence: (Ł.N.); (A.P.)
| | - Wojciech Krajewski
- University Center of Excellence in Urology, Department of Minimally Invasive and Robotic Urology, Wroclaw Medical University, 50-556 Wroclaw, Poland; (W.K.); (B.M.); (T.S.)
| | - Bartosz Małkiewicz
- University Center of Excellence in Urology, Department of Minimally Invasive and Robotic Urology, Wroclaw Medical University, 50-556 Wroclaw, Poland; (W.K.); (B.M.); (T.S.)
| | - Tomasz Szydełko
- University Center of Excellence in Urology, Department of Minimally Invasive and Robotic Urology, Wroclaw Medical University, 50-556 Wroclaw, Poland; (W.K.); (B.M.); (T.S.)
| | - Aleksandra Pawlak
- Department of Pharmacology and Toxicology, Faculty of Veterinary Medicine, Wroclaw University of Environmental and Life Sciences, 50-375 Wroclaw, Poland
- Correspondence: (Ł.N.); (A.P.)
| |
Collapse
|
6
|
Yu H, Bruneau RC, Brennan G, Rothenburg S. Battle Royale: Innate Recognition of Poxviruses and Viral Immune Evasion. Biomedicines 2021; 9:biomedicines9070765. [PMID: 34356829 PMCID: PMC8301327 DOI: 10.3390/biomedicines9070765] [Citation(s) in RCA: 66] [Impact Index Per Article: 16.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/21/2021] [Revised: 06/25/2021] [Accepted: 06/26/2021] [Indexed: 12/17/2022] Open
Abstract
Host pattern recognition receptors (PRRs) sense pathogen-associated molecular patterns (PAMPs), which are molecular signatures shared by different pathogens. Recognition of PAMPs by PRRs initiate innate immune responses via diverse signaling pathways. Over recent decades, advances in our knowledge of innate immune sensing have enhanced our understanding of the host immune response to poxviruses. Multiple PRR families have been implicated in poxvirus detection, mediating the initiation of signaling cascades, activation of transcription factors, and, ultimately, the expression of antiviral effectors. To counteract the host immune defense, poxviruses have evolved a variety of immunomodulators that have diverse strategies to disrupt or circumvent host antiviral responses triggered by PRRs. These interactions influence the outcomes of poxvirus infections. This review focuses on our current knowledge of the roles of PRRs in the recognition of poxviruses, their elicited antiviral effector functions, and how poxviral immunomodulators antagonize PRR-mediated host immune responses.
Collapse
|
7
|
Valdivia G, Alonso-Diez Á, Pérez-Alenza D, Peña L. From Conventional to Precision Therapy in Canine Mammary Cancer: A Comprehensive Review. Front Vet Sci 2021; 8:623800. [PMID: 33681329 PMCID: PMC7925635 DOI: 10.3389/fvets.2021.623800] [Citation(s) in RCA: 66] [Impact Index Per Article: 16.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/30/2020] [Accepted: 01/11/2021] [Indexed: 12/16/2022] Open
Abstract
Canine mammary tumors (CMTs) are the most common neoplasm in intact female dogs. Canine mammary cancer (CMC) represents 50% of CMTs, and besides surgery, which is the elective treatment, additional targeted and non-targeted therapies could offer benefits in terms of survival to these patients. Also, CMC is considered a good spontaneous intermediate animal model for the research of human breast cancer (HBC), and therefore, the study of new treatments for CMC is a promising field in comparative oncology. Dogs with CMC have a comparable disease, an intact immune system, and a much shorter life span, which allows the achievement of results in a relatively short time. Besides conventional chemotherapy, innovative therapies have a large niche of opportunities. In this article, a comprehensive review of the current research in adjuvant therapies for CMC is conducted to gather available information and evaluate the perspectives. Firstly, updates are provided on the clinical-pathological approach and the use of conventional therapies, to delve later into precision therapies against therapeutic targets such as hormone receptors, tyrosine kinase receptors, p53 tumor suppressor gene, cyclooxygenases, the signaling pathways involved in epithelial-mesenchymal transition, and immunotherapy in different approaches. A comparison of the different investigations on targeted therapies in HBC is also carried out. In the last years, the increasing number of basic research studies of new promising therapeutic agents on CMC cell lines and CMC mouse xenografts is outstanding. As the main conclusion of this review, the lack of effort to bring the in vitro studies into the field of applied clinical research emerges. There is a great need for well-planned large prospective randomized clinical trials in dogs with CMC to obtain valid results for both species, humans and dogs, on the use of new therapies. Following the One Health concept, human and veterinary oncology will have to join forces to take advantage of both the economic and technological resources that are invested in HBC research, together with the innumerable advantages of dogs with CMC as a spontaneous animal model.
Collapse
Affiliation(s)
- Guillermo Valdivia
- Department Animal Medicine, Surgery and Pathology, Veterinary School, Complutense University of Madrid, Madrid, Spain
- Mammary Oncology Unit, Complutense Veterinary Teaching Hospital, Complutense University of Madrid, Madrid, Spain
| | - Ángela Alonso-Diez
- Department Animal Medicine, Surgery and Pathology, Veterinary School, Complutense University of Madrid, Madrid, Spain
- Mammary Oncology Unit, Complutense Veterinary Teaching Hospital, Complutense University of Madrid, Madrid, Spain
| | - Dolores Pérez-Alenza
- Department Animal Medicine, Surgery and Pathology, Veterinary School, Complutense University of Madrid, Madrid, Spain
- Mammary Oncology Unit, Complutense Veterinary Teaching Hospital, Complutense University of Madrid, Madrid, Spain
| | - Laura Peña
- Department Animal Medicine, Surgery and Pathology, Veterinary School, Complutense University of Madrid, Madrid, Spain
- Mammary Oncology Unit, Complutense Veterinary Teaching Hospital, Complutense University of Madrid, Madrid, Spain
| |
Collapse
|
8
|
Ashton LV, Graham B, Afzali MF, Gustafson D, MacNeill AL. Treatment of an Alveolar Rhabdomyosarcoma Allograft with Recombinant Myxoma Virus and Oclacitinib. Oncolytic Virother 2020; 9:17-29. [PMID: 32548076 PMCID: PMC7266523 DOI: 10.2147/ov.s252727] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/25/2022] Open
Abstract
Purpose Rhabdomyosarcomas (RMS) are difficult tumors to treat with conventional therapies. Publications indicate that oncolytic virotherapy (OV) could benefit cancer patients with tumors that are refractory to conventional treatments. It is believed that the efficacy of OV can be enhanced when used in combination with other treatments. This study evaluated the response of mice with aggressive alveolar RMS (ARMS) allografts to treatment with an OV [recombinant myxoma virus (MYXVΔserp2)] in combination with a Janus kinase (JAK) inhibitor (oclacitinib). Oclacitinib is known to inhibit JAK1 and JAK2 cell signaling pathways, which should limit the antiviral Type I interferon response. However, oclacitinib does not inhibit immune pathways that promote antigen presentation, which help stimulate an anti-cancer immune response. Materials and Methods To determine if MYXVΔserp2 and oclacitinib could improve outcomes in animals with ARMS, nude mice were inoculated subcutaneously with murine ARMS cells to establish tumors. Immune responses, tumor growth, and clinical signs in mice treated with combination therapy were compared to mice given placebo therapy and mice treated with OV alone. Results Combination therapy was safe; no viral DNA was detected in off-target organs, only within tumors. As predicted, viral DNA was detected in tumors of mice given oclacitinib and MYXVΔserp2 for a longer time period than mice treated with OV alone. Although tumor growth rates and median survival times were not significantly different between groups, clinical signs were less severe in mice treated with OV. Conclusion Our data indicate that MYXVΔserp2 treatment benefits mice with ARMS by reducing clinical signs of disease and improving quality of life.
Collapse
Affiliation(s)
- Laura V Ashton
- Department of Microbiology, Immunology, and Pathology, College of Veterinary Medicine and Biomedical Sciences, Colorado State University, Fort Collins, CO, USA
| | - Barbara Graham
- Department of Microbiology, Immunology, and Pathology, College of Veterinary Medicine and Biomedical Sciences, Colorado State University, Fort Collins, CO, USA
| | - Maryam F Afzali
- Department of Microbiology, Immunology, and Pathology, College of Veterinary Medicine and Biomedical Sciences, Colorado State University, Fort Collins, CO, USA
| | - Daniel Gustafson
- Departiment of Clinical Sciences, College of Veterinary Medicine and Biomedical Sciences, Colorado State University, Fort Collins, CO, USA
| | - Amy L MacNeill
- Department of Microbiology, Immunology, and Pathology, College of Veterinary Medicine and Biomedical Sciences, Colorado State University, Fort Collins, CO, USA
| |
Collapse
|
9
|
Ashton LV, Quackenbush SL, Castle J, Wilson G, McCoy J, Jordan M, MacNeill AL. Recombinant Myxoma Virus Expressing Walleye Dermal Sarcoma Virus orfC Is Attenuated in Rabbits. Viruses 2020; 12:v12050517. [PMID: 32397134 PMCID: PMC7290507 DOI: 10.3390/v12050517] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/07/2020] [Revised: 05/04/2020] [Accepted: 05/06/2020] [Indexed: 01/09/2023] Open
Abstract
The poxvirus, myxoma virus (MYXV) has shown efficacy as an oncolytic virus (OV) in some cancer models. However, MYXV replication within murine cancer models and spontaneous canine sarcomas is short-lived. In mice, successful treatment of tumors requires frequent injections with MYXV. We hypothesize that treatment of cancer with a recombinant MYXV that promotes apoptosis could improve the efficacy of MYXV. The orfC gene of walleye dermal sarcoma virus (WDSV), which induces apoptosis, was recombined into the MYXV genome (MYXVorfC). A marked increase in apoptosis was observed in cells infected with MYXVorfC. To ensure that expression of WDSV orfC by MYXV does not potentiate the pathogenesis of MYXV, we evaluated the effects of MYXVorfC inoculation in the only known host of MYXV, New Zealand white rabbits. Virus dissemination in rabbit tissues was similar for MYXVorfC and MYXV. Virus titers recovered from tissues were lower in MYXVorfC-infected rabbits as compared to MYXV-infected rabbits. Importantly, rabbits infected with MYXVorfC had a delayed onset of clinical signs and a longer median survival time than rabbits infected with MYXV. This study indicates that MYXVorfC is attenuated and suggests that MYXVorfC will be safe to use as an OV therapy in future studies.
Collapse
Affiliation(s)
- Laura V. Ashton
- Department of Microbiology, Immunology, and Pathology, Colorado State University, Fort Collins, CO 80523, USA; (L.V.A.); (S.L.Q.); (G.W.); (J.M.); (M.J.)
| | - Sandra L. Quackenbush
- Department of Microbiology, Immunology, and Pathology, Colorado State University, Fort Collins, CO 80523, USA; (L.V.A.); (S.L.Q.); (G.W.); (J.M.); (M.J.)
| | - Jake Castle
- Department of Clinical Sciences, Colorado State University, Fort Collins, CO 80523, USA;
| | - Garin Wilson
- Department of Microbiology, Immunology, and Pathology, Colorado State University, Fort Collins, CO 80523, USA; (L.V.A.); (S.L.Q.); (G.W.); (J.M.); (M.J.)
| | - Jasmine McCoy
- Department of Microbiology, Immunology, and Pathology, Colorado State University, Fort Collins, CO 80523, USA; (L.V.A.); (S.L.Q.); (G.W.); (J.M.); (M.J.)
| | - Mariah Jordan
- Department of Microbiology, Immunology, and Pathology, Colorado State University, Fort Collins, CO 80523, USA; (L.V.A.); (S.L.Q.); (G.W.); (J.M.); (M.J.)
| | - Amy L. MacNeill
- Department of Microbiology, Immunology, and Pathology, Colorado State University, Fort Collins, CO 80523, USA; (L.V.A.); (S.L.Q.); (G.W.); (J.M.); (M.J.)
- Correspondence: ; Tel.: +1-970-297-5112
| |
Collapse
|
10
|
Rahman MM, McFadden G. Oncolytic Virotherapy with Myxoma Virus. J Clin Med 2020; 9:jcm9010171. [PMID: 31936317 PMCID: PMC7020043 DOI: 10.3390/jcm9010171] [Citation(s) in RCA: 54] [Impact Index Per Article: 10.8] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/11/2019] [Revised: 12/25/2019] [Accepted: 01/03/2020] [Indexed: 02/07/2023] Open
Abstract
Oncolytic viruses are one of the most promising novel therapeutics for malignant cancers. They selectively infect and kill cancer cells while sparing the normal counterparts, expose cancer- specific antigens and activate the host immune system against both viral and tumor determinants. Oncolytic viruses can be used as monotherapy or combined with existing cancer therapies to become more potent. Among the many types of oncolytic viruses that have been developed thus far, members of poxviruses are the most promising candidates against diverse cancer types. This review summarizes recent advances that are made with oncolytic myxoma virus (MYXV), a member of the Leporipoxvirus genus. Unlike other oncolytic viruses, MYXV infects only rabbits in nature and causes no harm to humans or any other non-leporid animals. However, MYXV can selectively infect and kill cancer cells originating from human, mouse and other host species. This selective cancer tropism and safety profile have led to the testing of MYXV in various types of preclinical cancer models. The next stage will be successful GMP manufacturing and clinical trials that will bring MYXV from bench to bedside for the treatment of currently intractable malignancies.
Collapse
|
11
|
Withers SS, Sparger EE, Boudreaux B, Mason NJ. Utilizing Microbes to Treat Naturally Occurring Cancer in Veterinary Species. CURRENT CLINICAL MICROBIOLOGY REPORTS 2019. [DOI: 10.1007/s40588-019-00130-7] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
|
12
|
MacNeill AL. The potential of the combined use of targeted type I interferon pathway inhibitors and oncolytic viruses to treat sarcomas. Vet Comp Oncol 2019; 18:36-42. [PMID: 31618515 DOI: 10.1111/vco.12547] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/08/2019] [Revised: 09/27/2019] [Accepted: 10/02/2019] [Indexed: 01/17/2023]
Abstract
Replicating oncolytic viruses (OVs) are appealing, new, FDA-approved, therapeutic options for humans with head and neck cancers and melanomas. These treatments are not yet available for veterinary patients, but recent clinical trials have shown several OVs to be safe in dogs and cats. Specific viruses being used to treat sarcomas in dogs include modified canine adenovirus 2, myxoma virus, vesicular stomatitis virus and reovirus. In cats with vaccine-associated sarcomas, poxviruses have been injected postoperatively and a reduced rate of tumour recurrence was documented. To date, the response rates of canine and feline patients to OV therapy have been variable (as they are in people). Optimal methods of OV administration and dosing schedules continue to be evaluated. One way to improve outcomes of OV therapy in veterinary patients may be to use OVs in combination with other immunomodulatory therapies. This review discusses the potential utility of concurrent therapy with an OV and an inhibitor of the type I interferon pathway.
Collapse
Affiliation(s)
- Amy L MacNeill
- Colorado State University, College of Veterinary Medicine and Biomedical Sciences, Department of Microbiology, Immunology, and Pathology, Gillette, Colorodo
| |
Collapse
|
13
|
Conrad SJ, Liu J. Poxviruses as Gene Therapy Vectors: Generating Poxviral Vectors Expressing Therapeutic Transgenes. Methods Mol Biol 2019; 1937:189-209. [PMID: 30706397 DOI: 10.1007/978-1-4939-9065-8_11] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
Treatments with poxvirus vectors can have long-lasting immunological impact in the host, and thus they have been extensively studied to treat diseases and for vaccine development. More importantly, the oncolytic properties of poxviruses have led to their development as cancer therapeutics. Two poxviruses, vaccinia virus (VACV) and myxoma virus (MYXV), have been extensively studied as virotherapeutics with promising results. Vaccinia virus vectors have advanced to the clinic and have been tested as oncolytic therapeutics for several cancer types with successes in phase I/II clinical trials. In addition to oncolytic applications, MYXV has been explored for additional applications including immunotherapeutics, purging of cancer progenitor cells, and treatments for graft-versus-host diseases. These novel therapeutic applications have encouraged its advancement into clinical trials. To meet the demands of different treatment needs, VACV and MYXV can be genetically engineered to express therapeutic transgenes. The engineering process used in poxvirus vectors can be very different from that of other DNA virus vectors (e.g., the herpesviruses). This chapter is intended to serve as a guide to those wishing to engineer poxvirus vectors for therapeutic transgene expression and to produce viral preparations for preclinical studies.
Collapse
Affiliation(s)
- Steven J Conrad
- Department of Microbiology and Immunology, University of Arkansas for Medical Sciences (UAMS), Little Rock, AR, USA
| | - Jia Liu
- Department of Microbiology and Immunology, University of Arkansas for Medical Sciences (UAMS), Little Rock, AR, USA. .,The Center for Microbial Pathogenesis and Host Inflammatory Responses, University of Arkansas for Medical Sciences, Little Rock, AR, USA.
| |
Collapse
|
14
|
Sánchez D, Cesarman-Maus G, Amador-Molina A, Lizano M. Oncolytic Viruses for Canine Cancer Treatment. Cancers (Basel) 2018; 10:cancers10110404. [PMID: 30373251 PMCID: PMC6266482 DOI: 10.3390/cancers10110404] [Citation(s) in RCA: 34] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/19/2018] [Revised: 10/16/2018] [Accepted: 10/23/2018] [Indexed: 12/17/2022] Open
Abstract
Oncolytic virotherapy has been investigated for several decades and is emerging as a plausible biological therapy with several ongoing clinical trials and two viruses are now approved for cancer treatment in humans. The direct cytotoxicity and immune-stimulatory effects make oncolytic viruses an interesting strategy for cancer treatment. In this review, we summarize the results of in vitro and in vivo published studies of oncolytic viruses in different phases of evaluation in dogs, using PubMed and Google scholar as search platforms, without time restrictions (to date). Natural and genetically modified oncolytic viruses were evaluated with some encouraging results. The most studied viruses to date are the reovirus, myxoma virus, and vaccinia, tested mostly in solid tumors such as osteosarcomas, mammary gland tumors, soft tissue sarcomas, and mastocytomas. Although the results are promising, there are issues that need addressing such as ensuring tumor specificity, developing optimal dosing, circumventing preexisting antibodies from previous exposure or the development of antibodies during treatment, and assuring a reasonable safety profile, all of which are required in order to make this approach a successful therapy in dogs.
Collapse
Affiliation(s)
- Diana Sánchez
- Unidad de Investigación Biomédica en Cáncer, Instituto Nacional de Cancerología-Instituto de Investigaciones Biomédicas, Universidad Nacional Autónoma de México, Mexico City 14080, Mexico.
| | - Gabriela Cesarman-Maus
- Department of Hematology, Instituto Nacional de Cancerología, Mexico City 14080, Mexico.
| | - Alfredo Amador-Molina
- Unidad de Investigación Biomédica en Cáncer, Instituto Nacional de Cancerología-Instituto de Investigaciones Biomédicas, Universidad Nacional Autónoma de México, Mexico City 14080, Mexico.
| | - Marcela Lizano
- Unidad de Investigación Biomédica en Cáncer, Instituto Nacional de Cancerología-Instituto de Investigaciones Biomédicas, Universidad Nacional Autónoma de México, Mexico City 14080, Mexico.
| |
Collapse
|
15
|
MacNeill AL, Weishaar KM, Séguin B, Powers BE. Safety of an Oncolytic Myxoma Virus in Dogs with Soft Tissue Sarcoma. Viruses 2018; 10:v10080398. [PMID: 30060548 PMCID: PMC6115854 DOI: 10.3390/v10080398] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/16/2018] [Revised: 07/25/2018] [Accepted: 07/27/2018] [Indexed: 12/21/2022] Open
Abstract
Many oncolytic viruses that are efficacious in murine cancer models are ineffective in humans. The outcomes of oncolytic virus treatment in dogs with spontaneous tumors may better predict human cancer response and improve treatment options for dogs with cancer. The objectives of this study were to evaluate the safety of treatment with myxoma virus lacking the serp2 gene (MYXVΔserp2) and determine its immunogenicity in dogs. To achieve these objectives, dogs with spontaneous soft tissue sarcomas were treated with MYXVΔserp2 intratumorally (n = 5) or post-operatively (n = 5). In dogs treated intratumorally, clinical scores were recorded and tumor biopsies and swabs (from the mouth and virus injection site) were analyzed for viral DNA at multiple time-points. In all dogs, blood, urine, and feces were frequently collected to evaluate organ function, virus distribution, and immune response. No detrimental effects of MYXVΔserp2 treatment were observed in any canine cancer patients. No clinically significant changes in complete blood profiles, serum chemistry analyses, or urinalyses were measured. Viral DNA was isolated from one tumor swab, but viral dissemination was not observed. Anti-MYXV antibodies were occasionally detected. These findings provide needed safety information to advance clinical trials using MYXVΔserp2 to treat patients with cancer.
Collapse
Affiliation(s)
- Amy L MacNeill
- Department of Microbiology, Immunology and Pathology, College of Veterinary Medicine and Biomedical Sciences, Colorado State University, Fort Collins, CO 80523, USA.
| | - Kristen M Weishaar
- Department of Clinical Sciences, College of Veterinary Medicine and Biomedical Sciences, Colorado State University, Fort Collins, CO 80523, USA.
| | - Bernard Séguin
- Department of Clinical Sciences, College of Veterinary Medicine and Biomedical Sciences, Colorado State University, Fort Collins, CO 80523, USA.
| | - Barbara E Powers
- Veterinary Diagnostic Laboratories, Colorado State University, Fort Collins, CO 80523, USA.
| |
Collapse
|
16
|
Identification of host DEAD-box RNA helicases that regulate cellular tropism of oncolytic Myxoma virus in human cancer cells. Sci Rep 2017; 7:15710. [PMID: 29146961 PMCID: PMC5691082 DOI: 10.1038/s41598-017-15941-1] [Citation(s) in RCA: 39] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/29/2017] [Accepted: 11/06/2017] [Indexed: 12/28/2022] Open
Abstract
Myxoma virus (MYXV), a Leporipoxvirus, is being developed as an oncolytic virotherapeutic for the treatment of a variety of human cancers. MYXV tropism for human cancer cells is largely mediated by intracellular signaling networks that regulate viral replication or innate antiviral response pathways. Thus, MYXV is fully or partially permissive for the majority of human cancer cells that harbor defects in antiviral signaling, but a minority are nonpermissive because the virus infection aborts before its completion. To identify host factors relevant for MYXV tropism in human cancer cells, we performed a small interfering RNA (siRNA) library screen targeting the 58 human DEAD-box RNA helicases in two permissive human cancer cells (HeLa and A549), one semi-permissive (786-0), and one nonpermissive cell line (PANC-1). Five host RNA helicases (DDX3X, DDX5, DHX9, DHX37, DDX52) were inhibitory for optimal replication and thus classified as anti-viral, while three other cellular RNA helicases (DHX29, DHX35, RIG-I) were identified as pro-viral or pro-cellular because knockdown consistently reduced MYXV replication and/or required metabolic functions of permissive cancer cells. These findings suggest that replication of MYXV, and likely all poxviruses, is dramatically regulated positively and negatively by multiple host DEAD-box RNA helicases.
Collapse
|
17
|
Kinn VG, Hilgenberg VA, MacNeill AL. Myxoma virus therapy for human embryonal rhabdomyosarcoma in a nude mouse model. Oncolytic Virother 2016; 5:59-71. [PMID: 27579297 PMCID: PMC4996258 DOI: 10.2147/ov.s108831] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/23/2023] Open
Abstract
Rhabdomyosarcoma (RMS) is a devastating tumor of young people that is difficult to cure. To determine if oncolytic virus therapy can improve outcomes in individuals with RMS, myxoma virus expressing a red fluorescent protein (MYXV-red) was evaluated for antitumoral effects using a murine model of RMS. Fluorescent protein was expressed in four RMS cell lines inoculated with MYXV-red, indicating that these cells were semipermissive to MYXV infection. MYXV-red replication and cytopathic effects were further evaluated using human embryonal RMS (CCL-136) cells. Logarithmic growth of MYXV-red and significant cell death were observed 72 hours after inoculation with MYXV. The oncolytic effects of MYXV-red were then studied in nude mice that were injected subcutaneously with CCL-136 cells to establish RMS xenografts. Once tumors measured 5 mm in diameter, mice were treated with multiple intratumoral injections of MXYV-red or saline. The average final tumor volume and rate of tumor growth were significantly decreased, and median survival time was significantly increased in MYXV-red-treated mice (P-values =0.0416, 0.0037, and 0.0004, respectively). Histologic sections of MYXV-red-treated tumors showed increased inflammation compared to saline-treated tumors (P-value =0.0002). In conclusion, MXYV-red treatment of RMS tumors was successful in individual mice as it resulted in decreased tumor burden in eight of eleven mice with nearly complete tumor remission in five of eleven mice. These data hold promise that MYXV-red treatment may be beneficial for people suffering from RMS. To our knowledge, this is the first report of successful treatment of RMS tumors using an oncolytic poxvirus.
Collapse
Affiliation(s)
- Veronica G Kinn
- Department of Microbiology, Immunology and Pathology, College of Veterinary Medicine and Biomedical Sciences, Colorado State University, Fort Collins, CO, USA
| | - Valerie A Hilgenberg
- Department of Microbiology, Immunology and Pathology, College of Veterinary Medicine and Biomedical Sciences, Colorado State University, Fort Collins, CO, USA
| | - Amy L MacNeill
- Department of Microbiology, Immunology and Pathology, College of Veterinary Medicine and Biomedical Sciences, Colorado State University, Fort Collins, CO, USA
| |
Collapse
|
18
|
Newcastle Disease Virus: Potential Therapeutic Application for Human and Canine Lymphoma. Viruses 2015; 8:v8010003. [PMID: 26703717 PMCID: PMC4728563 DOI: 10.3390/v8010003] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/01/2015] [Revised: 11/17/2015] [Accepted: 11/24/2015] [Indexed: 12/11/2022] Open
Abstract
Research on oncolytic viruses has mostly been directed towards the treatment of solid tumors, which has yielded limited information regarding their activity in hematological cancer. It has also been directed towards the treatment of humans, yet veterinary medicine may also benefit. Several strains of the Newcastle disease virus (NDV) have been used as oncolytics in vitro and in a number of in vivo experiments. We studied the cytolytic effect of NDV-MLS, a low virulence attenuated lentogenic strain, on a human large B-cell lymphoma cell line (SU-DHL-4), as well as on primary canine-derived B-cell lymphoma cells, and compared them to healthy peripheral blood mononuclear cells (PBMC) from both humans and dogs. NDV-MLS reduced cell survival in both human (42% ± 5%) and dog (34% ± 12%) lymphoma cells as compared to untreated controls. No significant effect on PBMC was seen. Cell death involved apoptosis as documented by flow-cytometry. NDV-MLS infections of malignant lymphoma tumors in vivo in dogs were confirmed by electron microscopy. Early (24 h) biodistribution of intravenous injection of 1 × 1012 TCID50 (tissue culture infective dose) in a dog with T-cell lymphoma showed viral localization only in the kidney, the salivary gland, the lung and the stomach by immunohistochemistry and/or endpoint PCR. We conclude that NDV-MLS may be a promising agent for the treatment of lymphomas. Future research is needed to elucidate the optimal therapeutic regimen and establish appropriate biosafety measures.
Collapse
|
19
|
MacNeill AL. On the potential of oncolytic virotherapy for the treatment of canine cancers. Oncolytic Virother 2015; 4:95-107. [PMID: 27512674 PMCID: PMC4918385 DOI: 10.2147/ov.s66358] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022] Open
Abstract
Over 6 million dogs are diagnosed with cancer in the USA each year. Treatment options for many of these patients are limited. It is important that the veterinary and scientific communities begin to explore novel treatment protocols for dogs with cancer. Oncolytic viral therapy is a promising treatment option that may prove to be relatively inexpensive and effective against several types of cancer. The efficacy of oncolytic virus therapies has been clearly demonstrated in murine cancer models, but the positive outcomes observed in mice are not always seen in human cancer patients. These therapies should be thoroughly evaluated in dogs with spontaneously arising cancers to provide needed information about the potential effectiveness of virus treatment for human cancers and to promote the health of our companion animals. This article provides a review of the results of oncolytic virus treatment of canine cancers.
Collapse
Affiliation(s)
- Amy L MacNeill
- Department of Microbiology, Immunology, and Pathology, College of Veterinary Medicine and Biomedical Sciences, Colorado State University, Fort Collins, CO, USA
| |
Collapse
|
20
|
Igase M, Hwang CC, Coffey M, Okuda M, Noguchi S, Mizuno T. The oncolytic effects of reovirus in canine solid tumor cell lines. J Vet Med Sci 2015; 77:541-8. [PMID: 25648933 PMCID: PMC4478733 DOI: 10.1292/jvms.14-0570] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022] Open
Abstract
Oncolytic virotherapy is a new strategy for cancer treatment for humans and
dogs. Reovirus has been proven to be a potent oncolytic virus in human medicine. Our
laboratory has previously reported that canine mast cell tumor and canine lymphoma were
susceptible to reovirus. In this study, canine solid tumor cell lines (mammary gland
tumor, osteosarcoma and malignant melanoma) were tested to determine their susceptibility
towards reovirus. We demonstrated that reovirus induces more than 50% cell death in three
canine mammary gland tumors and one canine malignant melanoma cell line. The
reovirus-induced cell death occurred via the activation of caspase 3. Ras activation has
been shown to be one of the important mechanisms of reovirus-susceptibility in human
cancers. However, Ras activation was not related to the reovirus-susceptibility in canine
solid tumor cell lines, which was similar to reports in canine mast cell tumor and canine
lymphoma. The results of this study highly suggest that canine mammary gland tumor and
canine malignant melanoma are also potential candidates for reovirus therapy in veterinary
oncology.
Collapse
Affiliation(s)
- Masaya Igase
- Laboratory of Molecular Diagnostics and Therapeutics, Joint Faculty of Veterinary Medicine, Yamaguchi University, Yamaguchi 753-8515, Japan
| | | | | | | | | | | |
Collapse
|
21
|
Autio K, Knuuttila A, Kipar A, Ahonen M, Parviainen S, Diaconu I, Kanerva A, Hakonen T, Vähä-Koskela M, Hemminki A. Anti-tumour activity of oncolytic Western Reserve vaccinia viruses in canine tumour cell lines, xenografts, and fresh tumour biopsies. Vet Comp Oncol 2014; 14:395-408. [PMID: 25302859 DOI: 10.1111/vco.12119] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/28/2014] [Revised: 08/29/2014] [Accepted: 09/09/2014] [Indexed: 12/13/2022]
Abstract
Cancer is one of the most common reasons for death in dogs. One promising approach is oncolytic virotherapy. We assessed the oncolytic effect of genetically modified vaccinia viruses in canine cancer cells, in freshly excised tumour biopsies, and in mice harbouring canine tumour xenografts. Tumour transduction efficacy was assessed using virus expressing luciferase or fluorescent marker genes and oncolysis was quantified by a colorimetric cell viability assay. Oncolytic efficacy in vivo was evaluated in a nude mouse xenograft model. Vaccinia virus was shown to infect most tested canine cancer cell lines and primary surgical tumour tissues. Virus infection significantly reduced tumour growth in the xenograft model. Oncolytic vaccinia virus has antitumour effects against canine cancer cells and experimental tumours and is able to replicate in freshly excised patient tumour tissue. Our results suggest that oncolytic vaccinia virus may offer an effective treatment option for otherwise incurable canine tumours.
Collapse
Affiliation(s)
- K Autio
- Department of Equine and Small Animal Medicine, Faculty of Veterinary Medicine, University of Helsinki, Helsinki, Finland.,Cancer Gene Therapy Group, Department of Pathology and Transplantation Laboratory, Haartman Institute, University of Helsinki, Helsinki, Finland
| | - A Knuuttila
- Finnish Centre for Laboratory Animal Pathology and Department of Veterinary Biosciences, Faculty of Veterinary Medicine, University of Helsinki, Helsinki, Finland
| | - A Kipar
- Finnish Centre for Laboratory Animal Pathology and Department of Veterinary Biosciences, Faculty of Veterinary Medicine, University of Helsinki, Helsinki, Finland
| | - M Ahonen
- Cancer Gene Therapy Group, Department of Pathology and Transplantation Laboratory, Haartman Institute, University of Helsinki, Helsinki, Finland
| | - S Parviainen
- Cancer Gene Therapy Group, Department of Pathology and Transplantation Laboratory, Haartman Institute, University of Helsinki, Helsinki, Finland
| | - I Diaconu
- Cancer Gene Therapy Group, Department of Pathology and Transplantation Laboratory, Haartman Institute, University of Helsinki, Helsinki, Finland
| | - A Kanerva
- Cancer Gene Therapy Group, Department of Pathology and Transplantation Laboratory, Haartman Institute, University of Helsinki, Helsinki, Finland.,Department of Obstetrics and Gynecology, Helsinki University Central Hospital, University of Helsinki, Helsinki, Finland
| | - T Hakonen
- Oncos Therapeutics Ltd, Helsinki, Finland
| | - M Vähä-Koskela
- Cancer Gene Therapy Group, Department of Pathology and Transplantation Laboratory, Haartman Institute, University of Helsinki, Helsinki, Finland
| | - A Hemminki
- Cancer Gene Therapy Group, Department of Pathology and Transplantation Laboratory, Haartman Institute, University of Helsinki, Helsinki, Finland.,TILT Biotherapeutics Ltd, Helsinki, Finland
| |
Collapse
|
22
|
Gentschev I, Patil SS, Petrov I, Cappello J, Adelfinger M, Szalay AA. Oncolytic virotherapy of canine and feline cancer. Viruses 2014; 6:2122-37. [PMID: 24841386 PMCID: PMC4036544 DOI: 10.3390/v6052122] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/05/2014] [Revised: 04/22/2014] [Accepted: 04/30/2014] [Indexed: 12/13/2022] Open
Abstract
Cancer is the leading cause of disease-related death in companion animals such as dogs and cats. Despite recent progress in the diagnosis and treatment of advanced canine and feline cancer, overall patient treatment outcome has not been substantially improved. Virotherapy using oncolytic viruses is one promising new strategy for cancer therapy. Oncolytic viruses (OVs) preferentially infect and lyse cancer cells, without causing excessive damage to surrounding healthy tissue, and initiate tumor-specific immunity. The current review describes the use of different oncolytic viruses for cancer therapy and their application to canine and feline cancer.
Collapse
Affiliation(s)
- Ivaylo Gentschev
- Department of Biochemistry, University of Wuerzburg, Wuerzburg D-97074, Germany.
| | - Sandeep S Patil
- Department of Biochemistry, University of Wuerzburg, Wuerzburg D-97074, Germany.
| | - Ivan Petrov
- Department of Biochemistry, University of Wuerzburg, Wuerzburg D-97074, Germany.
| | - Joseph Cappello
- Genelux Corporation, San Diego Science Center, San Diego, CA 92109, USA.
| | - Marion Adelfinger
- Department of Biochemistry, University of Wuerzburg, Wuerzburg D-97074, Germany.
| | - Aladar A Szalay
- Department of Biochemistry, University of Wuerzburg, Wuerzburg D-97074, Germany.
| |
Collapse
|