1
|
Ibrahim E, Mansour YE, Soror S, Haffez H. New Fluorescent Synthetic Retinoids as Potential RAR Agonists with Anticancer, Molecular Docking and ADME Assessments. J Fluoresc 2025:10.1007/s10895-025-04343-6. [PMID: 40410548 DOI: 10.1007/s10895-025-04343-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/08/2025] [Accepted: 04/22/2025] [Indexed: 05/25/2025]
Abstract
Natural and synthetic retinoids are derivatives of vitamin A that mediate different transcriptional activities. Synthesis of fluorescent probes can be a useful tool in cellular imaging and understanding different regulatory signaling pathways. In this study, new fluorescent synthetic retinoid analogues (3a, 3b, 4a, and 4b) were prepared and biologically screened against six different cancer and normal cell lines for assessment of their anticancer and fluorescent activities. A combination of biological assays, such as MTT, flow cytometry, gene and protein expression analysis, DNA fragmentation, and ATPase activity assays, as well as in-silico and ADME studies, was performed. All new compounds showed anti-proliferative activity (2.09-132.70 µM) against different cancer cell types with minimal cytotoxicity (SI > 1), and the Caco-2 cancer cell line was selected for further in vitro investigation. All compounds showed cell cycle arrest at the SubG0-G1 phase with induction of early apoptosis and necrosis. Compound 4b showed a significant apoptotic effect by overexpression of Caspase-3 and Cyt-c genes, followed by compound 3a. All compounds showed anti-inflammatory activity by significantly down-regulating the IL-10 pro-inflammatory marker, while compounds 3b, 4a, and 4b specifically down-regulated IL-6. Retinoic acid receptors (RARs) were suggested as molecular targets confirmed by their overexpression of both gene and protein levels with molecular docking and molecular dynamic simulation studies. All fluorescent compounds showed intracellular fluorescent emission spectra with intracellular lipophilic properties. The new fluorescent synthetic retinoids showed dual activities as anticancer agents with fluorescence properties and can be used as useful probes in a variety of cellular imaging investigations.
Collapse
Affiliation(s)
- Esraa Ibrahim
- Biochemistry and Molecular Biology Department, Faculty of Pharmacy, Helwan University, Cairo, 11795, Egypt
- Center of Scientific Excellence "Helwan Structural Biology Research, (HSBR)", Helwan University, Cairo, 11795, Egypt
| | - Yara E Mansour
- Pharmaceutical Organic Chemistry Department, Faculty of Pharmacy, Helwan University, Cairo, 11795, Egypt
| | - Sameh Soror
- Biochemistry and Molecular Biology Department, Faculty of Pharmacy, Helwan University, Cairo, 11795, Egypt
- Center of Scientific Excellence "Helwan Structural Biology Research, (HSBR)", Helwan University, Cairo, 11795, Egypt
| | - Hesham Haffez
- Biochemistry and Molecular Biology Department, Faculty of Pharmacy, Helwan University, Cairo, 11795, Egypt.
- Center of Scientific Excellence "Helwan Structural Biology Research, (HSBR)", Helwan University, Cairo, 11795, Egypt.
| |
Collapse
|
2
|
Riley WW, Nickerson JG, Mogg TJ, Burton GW. Oxidized β-Carotene Is a Novel Phytochemical Immune Modulator That Supports Animal Health and Performance for Antibiotic-Free Production. Animals (Basel) 2023; 13:ani13020289. [PMID: 36670829 PMCID: PMC9854599 DOI: 10.3390/ani13020289] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/30/2022] [Revised: 01/06/2023] [Accepted: 01/10/2023] [Indexed: 01/18/2023] Open
Abstract
Oxidized β-carotene (OxBC), a phytochemical that occurs naturally in plants, is formed by the spontaneous reaction of β-carotene with ambient oxygen. Synthetic OxBC, obtained by full oxidation of β-carotene with air, shows considerable promise as an in-feed antimicrobial alternative additive that enhances health and performance in livestock. OxBC is predominantly composed of β-carotene-oxygen copolymers that have beneficial immune-modulating effects that occur within the innate immune system by priming it to face microbial challenges and by mitigating the inflammatory response. OxBC does not have any direct anti-bacterial activity. Further, unlike traditional immune stimulants, OxBC modulates but does not stimulate and utilize the animal's energy stores unless directly stress-challenged. These immune effects occur by mechanisms distinct from the provitamin A or antioxidant pathways commonly proposed as explanations for β-carotene's actions. Trials in poultry, swine, and dairy cows with low parts-per-million in-feed OxBC supplementation have shown performance benefits over and above those of feeds containing regular vitamin and mineral premixes. Through its ability to enhance immune function, health, and performance, OxBC has demonstrated utility not only as a viable alternative to in-feed antimicrobials but also in its ability to provide tangible health and performance benefits in applications where antimicrobial usage is precluded.
Collapse
|
3
|
Kinh LV, Riley WW, Nickerson JG, Huyen LTT, Burton GW. Effect of Oxidized β-Carotene on Swine Growth Performance under Commercial Production Conditions in Vietnam. Animals (Basel) 2022; 12:ani12223200. [PMID: 36428426 PMCID: PMC9686531 DOI: 10.3390/ani12223200] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/05/2022] [Revised: 11/11/2022] [Accepted: 11/16/2022] [Indexed: 11/23/2022] Open
Abstract
The effects of oxidized β-carotene (OxBC) were determined upon the growth performance of swine through their full growth cycle under commercial production conditions in Vietnam. Five hundred 28-day-old-weaned barrows and gilts were used in a 140-day complete wean-to-finish feeding trial. Animals were randomized by weight, and each pen contained 20 pigs with the same ratio of barrows to gilts. There were five dietary treatment groups with five replicate pens per treatment: Control basal diet, no antibiotics or OxBC; Basal diet with antibiotics; no OxBC; Basal diet supplemented with 2, 4, or 8 mg OxBC/kg of diet, no antibiotics. Growth performance parameters were calculated for each production stage (Starter: Days 1−28, Grower: Days 29−84, Finisher: Days 85−140) and for the overall study (Days 1−140). OxBC and antibiotics each improved growth rate, feed efficiency, and body weight compared to the unsupplemented control (p < 0.001). Animals receiving 4 and 8 mg/kg OxBC performed better than animals on antibiotics (p < 0.001). In Starter pigs, OxBC reduced the occurrence of diarrhea dose-dependently (2, 4, and 8 mg/kg) and more so than did antibiotics (p < 0.001). These findings support the concept that oxidized β-carotene can facilitate swine growth and health in the absence of in-feed antibiotics.
Collapse
Affiliation(s)
- La Van Kinh
- Institute of Animal Sciences for Southern Vietnam, Di An 75309, Binh Duong, Vietnam
| | | | | | - La Thi Thanh Huyen
- Institute of Animal Sciences for Southern Vietnam, Di An 75309, Binh Duong, Vietnam
| | | |
Collapse
|
4
|
Schmiedeskamp A, Schreiner M, Baldermann S. Impact of Cultivar Selection and Thermal Processing by Air Drying, Air Frying, and Deep Frying on the Carotenoid Content and Stability and Antioxidant Capacity in Carrots ( Daucus carota L.). JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2022; 70:1629-1639. [PMID: 35090124 DOI: 10.1021/acs.jafc.1c05718] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/14/2023]
Abstract
Epidemiological data suggest that consuming diets rich in carotenoids can reduce the risk of developing several non-communicable diseases. Thus, we investigated the extent to which carotenoid contents of foods can be increased by the choice of food matrices with naturally high carotenoid contents and thermal processing methods that maintain their stability. For this purpose, carotenoids of 15 carrot (Daucus carota L.) cultivars of different colors were assessed with UHPLC-DAD-ToF-MS. Additionally, the processing effects of air drying, air frying, and deep frying on carotenoid stability were applied. Cultivar selection accounted for up to 12.9-fold differences in total carotenoid content in differently colored carrots and a 2.2-fold difference between orange carrot cultivars. Air frying for 18 and 25 min and deep frying for 10 min led to a significant decrease in total carotenoid contents. TEAC assay of lipophilic extracts showed a correlation between carotenoid content and antioxidant capacity in untreated carrots.
Collapse
Affiliation(s)
- Amy Schmiedeskamp
- Leibniz Institute of Vegetable and Ornamental Crops, Theodor-Echtermeyer-Weg 1, 14979 Grossbeeren, Germany
- NutriAct─Competence Cluster Nutrition Research Berlin-Potsdam, 14558 Nuthetal, Germany
- University of Potsdam, Institute of Nutritional Science, Department of Food Chemistry, Arthur-Scheunert-Allee 114-116, 14558 Nuthetal, Germany
| | - Monika Schreiner
- Leibniz Institute of Vegetable and Ornamental Crops, Theodor-Echtermeyer-Weg 1, 14979 Grossbeeren, Germany
- NutriAct─Competence Cluster Nutrition Research Berlin-Potsdam, 14558 Nuthetal, Germany
| | - Susanne Baldermann
- Leibniz Institute of Vegetable and Ornamental Crops, Theodor-Echtermeyer-Weg 1, 14979 Grossbeeren, Germany
- NutriAct─Competence Cluster Nutrition Research Berlin-Potsdam, 14558 Nuthetal, Germany
- University of Bayreuth, Faculty of Life Sciences: Food, Nutrition and Health, Food Metabolome, Fritz-Hornschuch-Straße 13, 95326 Kulmbach, Germany
| |
Collapse
|
5
|
Zhao J, Zhang W, Wu T, Wang H, Mao J, Liu J, Zhou Z, Lin X, Yan H, Wang Q. Efferocytosis in the Central Nervous System. Front Cell Dev Biol 2021; 9:773344. [PMID: 34926460 PMCID: PMC8678611 DOI: 10.3389/fcell.2021.773344] [Citation(s) in RCA: 30] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/09/2021] [Accepted: 10/25/2021] [Indexed: 11/23/2022] Open
Abstract
The effective clearance of apoptotic cells is essential for maintaining central nervous system (CNS) homeostasis and restoring homeostasis after injury. In most cases of physiological apoptotic cell death, efferocytosis prevents inflammation and other pathological conditions. When apoptotic cells are not effectively cleared, destruction of the integrity of the apoptotic cell membrane integrity, leakage of intracellular contents, and secondary necrosis may occur. Efferocytosis is the mechanism by which efferocytes quickly remove apoptotic cells from tissues before they undergo secondary necrosis. Cells with efferocytosis functions, mainly microglia, help to eliminate apoptotic cells from the CNS. Here, we discuss the impacts of efferocytosis on homeostasis, the mechanism of efferocytosis, the associations of efferocytosis failure and CNS diseases, and the current clinical applications of efferocytosis. We also identify efferocytosis as a novel potential target for exploring the causes and treatments of CNS diseases.
Collapse
Affiliation(s)
- Jiayi Zhao
- Department of Anesthesia, Zhejiang Hospital, Hangzhou, China
| | - Weiqi Zhang
- The First Affiliated Hospital, Wenzhou Medical University, Wenzhou, China
| | - Tingting Wu
- The First Affiliated Hospital, Wenzhou Medical University, Wenzhou, China
| | - Hongyi Wang
- The First Affiliated Hospital, Wenzhou Medical University, Wenzhou, China
| | - Jialiang Mao
- The First Affiliated Hospital, Wenzhou Medical University, Wenzhou, China
| | - Jian Liu
- The First Affiliated Hospital, Wenzhou Medical University, Wenzhou, China
| | - Ziheng Zhou
- The First Affiliated Hospital, Wenzhou Medical University, Wenzhou, China
| | - Xianfeng Lin
- Department of Orthopaedic Surgery, Sir Run Run Shaw Hospital, Zhejiang University School of Medicine, Hangzhou, China
| | - Huige Yan
- Department of Orthopaedic Surgery, Sir Run Run Shaw Hospital, Zhejiang University School of Medicine, Hangzhou, China
| | - Qingqing Wang
- Department of Orthopaedic Surgery, Sir Run Run Shaw Hospital, Zhejiang University School of Medicine, Hangzhou, China
| |
Collapse
|
6
|
Khan UM, Sevindik M, Zarrabi A, Nami M, Ozdemir B, Kaplan DN, Selamoglu Z, Hasan M, Kumar M, Alshehri MM, Sharifi-Rad J. Lycopene: Food Sources, Biological Activities, and Human Health Benefits. OXIDATIVE MEDICINE AND CELLULAR LONGEVITY 2021; 2021:2713511. [PMID: 34840666 PMCID: PMC8626194 DOI: 10.1155/2021/2713511] [Citation(s) in RCA: 96] [Impact Index Per Article: 24.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 08/16/2021] [Accepted: 10/28/2021] [Indexed: 11/29/2022]
Abstract
As an antioxidant, lycopene has acquired importance as it prevents autoxidation of fats and related products. Tomatoes are an important agricultural product that is a great source of lycopene. It contains many vitamins and minerals, fiber, and carbohydrates and is associated with various positive effects on health. The antioxidant potential of tomatoes is substantially explained with lycopene compounds. Diet is a major risk factor for heart diseases which is shown as the most important cause of death in the world. It has been observed that the lycopene taken in the diet has positive effects in many stages of atherosclerosis. The serum lipid levels, endothelial dysfunction, inflammation, blood pressure, and antioxidative potential are mainly affected by lycopene. These natural antioxidants, which can also enhance the nutritional value of foods, may lead to new ways if used in food preservation. In this review study, the antioxidant potential and cardiovascular protection mechanism of lycopene are discussed.
Collapse
Affiliation(s)
- Usman Mir Khan
- National Institute of Food Science and Technology, University of Agriculture, Faisalabad, Pakistan
| | - Mustafa Sevindik
- Bahçe Vocational High School, Osmaniye Korkut Ata University, 80500 Osmaniye, Turkey
| | - Ali Zarrabi
- Department of Biomedical Engineering, Faculty of Engineering and Natural Sciences, Istinye University, 34396 Sariyer, Istanbul, Turkey
| | - Mohammad Nami
- Department of Neuroscience, School of Advanced Medical Sciences and Technologies, Shiraz University of Medical Sciences, Shiraz, Iran
| | - Betul Ozdemir
- Department of Cardiology, Faculty of Medicine, Nigde Ömer Halisdemir University, Nigde, Turkey
| | - Dilara Nur Kaplan
- Department of Nutrition and Dietetics, Faculty of Health Sciences, Karabuk University, Karabuk 78050, Turkey
| | - Zeliha Selamoglu
- Department of Medical Biology, Faculty of Medicine, Nigde Ömer Halisdemir University, Nigde 51240, Turkey
| | - Muzaffar Hasan
- Agro Produce Processing Division, ICAR-Central Institute of Agricultural Engineering, Bhopal 462038, India
| | - Manoj Kumar
- Chemical and Biochemical Processing Division, ICAR-Central Institute for Research on Cotton Technology, Mumbai 400019, India
| | - Mohammed M. Alshehri
- Pharmaceutical Care Department, Ministry of National Guard-Health Affairs, Riyadh, Saudi Arabia
| | - Javad Sharifi-Rad
- Phytochemistry Research Center, Shahid Beheshti University of Medical Sciences, Tehran, Iran
- Facultad de Medicina, Universidad del Azuay, Cuenca, Ecuador
| |
Collapse
|
7
|
Mogg TJ, Burton GW. The β-carotene–oxygen copolymer: its relationship to apocarotenoids and β-carotene function. CAN J CHEM 2021. [DOI: 10.1139/cjc-2021-0006] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/22/2023]
Abstract
β-carotene spontaneously copolymerizes with molecular oxygen to form a β-carotene–oxygen copolymer compound (“copolymer”) as the main product, together with small amounts of many apocarotenoids. Both the addition and scission products are interpreted as being formed during progression through successive free radical β-carotene–oxygen adduct intermediates. The product mixture from full oxidation of β-carotene, lacking both vitamin A and β-carotene, has immunological activities, some of which are derived from the copolymer. However, the copolymer’s chemical makeup is unknown. A chemical breakdown study shows the compound to be moderately stable but nevertheless the latent source of many small apocarotenoids. GC–MS analysis with mass-spectral library matching identified a minimum of 45 structures, while more than 90 others remain unassigned. Newly identified products include various small keto carboxylic acids and dicarboxylic acids, several of which are central metabolic intermediates. Also present are glyoxal and methyl glyoxal dialdehydes, recently reported as β-carotene metabolites in plants. Although both compounds at higher concentrations are known to be toxic, at low concentration, methyl glyoxal has been reported to be potentially capable of activating an immune response against microbial infection. In plants, advantage is taken of the electrophilic reactivity of specific apocarotenoids derived from β-carotene oxidation to activate protective defenses. Given the copolymer occurs naturally and is a major product of non-enzymatic β-carotene oxidation in stored plants, by partially sequestering apocarotenoid metabolites, the copolymer may serve to limit potential toxicity and maintain low cellular apocarotenoid concentrations for signaling purposes. In animals, the copolymer may serve as a systemic source of apocarotenoids.
Collapse
Affiliation(s)
- Trevor J. Mogg
- Avivagen Inc., 100 Sussex Drive, Ottawa, ON K1A 0R6, Canada
- Avivagen Inc., 100 Sussex Drive, Ottawa, ON K1A 0R6, Canada
| | - Graham W. Burton
- Avivagen Inc., 100 Sussex Drive, Ottawa, ON K1A 0R6, Canada
- Avivagen Inc., 100 Sussex Drive, Ottawa, ON K1A 0R6, Canada
| |
Collapse
|
8
|
McDougall S. Evaluation of fully oxidised β-carotene as a feed ingredient to reduce bacterial infection and somatic cell counts in pasture-fed cows with subclinical mastitis. N Z Vet J 2021; 69:285-293. [PMID: 33944703 DOI: 10.1080/00480169.2021.1924091] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/21/2022]
Abstract
AIMS To assess the effect of oral supplementation with fully oxidised β-carotene (OxBC) on bacteriological cure, the incidence of clinical mastitis, and somatic cell counts (SCC) in pasture-fed cows with subclinical intramammary infection. METHODS Cows from four dairy herds were enrolled in early lactation if they had quarter-level SCC >200,000 cells/mL and they had a recognised bacterial intramammary pathogen in one or more quarters. They were randomly assigned to be individually fed from Day 0, for a mean of 40 days, with 0.5 kg of a cereal-based supplementary feed that either contained 300 mg of OxBC (treatment; n = 129 quarters) or did not (control; n = 135 quarters). Quarter-milk samples were collected on Days 21 and 42 for microbiology and SCC assessment. Bacteriological cure was defined as having occurred when the bacteria present on Day 0 were not isolated from samples collected on Days 21 or 42. A new intramammary infection was defined as a bacterial species isolated either on Day 21 or 42 differing from that isolated on Day 0. Clinical mastitis was diagnosed and recorded by herdowners up to Day 42. RESULTS The bacteriological cure rate was greater for quarters from cows in the treatment group (13.9 (95% CI = 4.1-23.7)%) than for cows in the control group (6.9 (95% CI = 4.8-9.1)%; p = 0.02). The percentage of quarters that developed a new intramammary infection at Day 21 or 42 was greater for cows in the treatment group (17.9 (95% CI = 6.7-29.1)%) than for cows in the control group (13.0 (95% CI = 4.3-21.8)%; p < 0.01). The prevalence of quarters that were infected on Day 42 was less in cows in the treatment group (79.9 (95% CI = 62.3-97.6)%) than the control group (88.2 (95% CI = 78.4-97.9)%; p = 0.009). The incidence of quarters diagnosed with clinical mastitis by Day 42 was lower in cows from the treatment group (1/129 (0.78 (95% CI = 0.02-4.24)%)) than in cows from the control group (6/135 (4.44 (95% CI = 1.65-9.42)%; p = 0.03)). Mean quarter-level SCC was not statistically different between treatment groups (p = 0.34). CONCLUSIONS AND CLINICAL RELEVANCE Feeding 300 mg/cow/day of OxBC resulted in a higher bacteriological cure rate, a lower prevalence of intramammary infection, and a lower incidence of clinical mastitis compared to untreated controls. However new intramammary infections increased in treated cows, and the magnitude of the increased bacteriological cure was low, resulting in 80% of cows remaining infected at Day 42. Therefore treatment with OxBC should be considered as an adjunct to other mastitis control measures.
Collapse
|
9
|
Burton GW, Mogg TJ, Riley WW, Nickerson JG. β-Carotene oxidation products - Function and safety. Food Chem Toxicol 2021; 152:112207. [PMID: 33891992 DOI: 10.1016/j.fct.2021.112207] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/19/2021] [Accepted: 04/09/2021] [Indexed: 10/21/2022]
Abstract
β-Carotene oxidation products have newly discovered bioactivity in plants and animals. Synthetic fully oxidized β-carotene (OxBC) has application in supporting livestock health, with potential human applications. The safety of synthetic OxBC has been evaluated. An Ames test showed weak-to-moderate mutagenicity in only one cell line at high concentrations. A mouse micronucleus assay established a non-toxic dose of 1800 mg/kg body weight, and no bone marrow micronuclei were induced. Plant sources of β-carotene inevitably contain varying levels of natural OxBC. Vegetable powders and dried forages can be especially rich. Intakes of natural OxBC for humans and livestock alike have been estimated. The exposure range for humans (1-22 mg/serving) is comparable to the safe intake of β-carotene (<15 mg/d). In livestock, OxBC in alfalfa can contribute ~550-850 mg/head/d for dairy cattle but in forage-deficient poultry feed much less (~1 ppm). Livestock intake of supplemental synthetic OxBC is comparable to OxBC potentially available from traditional plant sources. Human intake of synthetic OxBC in meat from livestock fed OxBC is similar to a single serving of food made with carrot powder. It is concluded that consumption of synthetic OxBC at levels comparable to natural OxBC is safe for humans and animals.
Collapse
Affiliation(s)
- Graham W Burton
- Avivagen Inc., 100 Sussex Drive, Ottawa, Ontario, K1A 0R6, Canada.
| | - Trevor J Mogg
- Avivagen Inc., 100 Sussex Drive, Ottawa, Ontario, K1A 0R6, Canada
| | | | | |
Collapse
|
10
|
Riley WW, Nickerson JG, Burton GW. Effect of oxidized β-carotene on the growth and feed efficiency of broilers. Poult Sci 2021; 100:101088. [PMID: 33845401 PMCID: PMC8044430 DOI: 10.1016/j.psj.2021.101088] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/23/2020] [Revised: 02/15/2021] [Accepted: 02/26/2021] [Indexed: 11/22/2022] Open
Abstract
Fully oxidized β-carotene (OxBC) containing β-carotene-oxygen copolymers is proposed as an alternative to antimicrobial growth promoters. Two trials were conducted to determine the efficacy of OxBC in enhancing growth and feed intake (FI) in male and female Ross × Ross 308 broilers in Ontario, Canada, and in Ross 308 male broilers in the United Kingdom. In the first trial, 0, 1, 2, or 5 ppm OxBC were added to diets in a 20% cornstarch premix, whereas in the second trial, 0, 2, or 5 ppm OxBC were added in a 1% cornstarch or 1% corncob grits premix. In trial 1, 2, and 5 ppm OxBC improved bird final body weights (BW) compared with the unsupplemented, nonmedicated (no bacitracin methylene disalicylate included), negative control birds after 39 d of feeding under commercial conditions (P < 0.05). All levels of OxBC improved feed conversion (FCR) during the finisher period (P < 0.05), whereas 2 and 5 ppm OxBC enhanced FCR relative to the negative control group during the full production cycle (P < 0.05). Average daily FI was not affected by OxBC, whereas 2 and 5 ppm OxBC increased broiler average daily gain (ADG) (P < 0.05). Oxidized β-carotene did not affect bird mortality. The optimal OxBC dose was 2 ppm under the conditions used. In trial 2, 2 or 5 ppm OxBC on cornstarch and 5 ppm OxBC on corncob grits improved ADG, BW, and FI when fed for 35 d, as compared with the negative, nonmedicated control (P < 0.05). Feed conversion was not improved in the OxBC groups compared with the control group (P > 0.05). There were no differences among the 3 OxBC groups (P > 0.05). When birds were fed 2 ppm OxBC on corncob grits, the overall ADG, BW, and FI were lower than the respective control values (P < 0.001). Overall bird mortality was higher than expected for all groups, including the control group, but no dose effect was evident. Cornstarch was the preferred carrier for OxBC, and 2 ppm OxBC was the optimal dose under the conditions used.
Collapse
Affiliation(s)
- W W Riley
- International School, Jinan University, Guangzhou, China
| | | | - G W Burton
- Avivagen, Inc., Ottawa, Ontario, Canada.
| |
Collapse
|
11
|
Effects of maternal supplementation with fully oxidised β-carotene on the reproductive performance and immune response of sows, as well as the growth performance of nursing piglets. Br J Nutr 2020; 125:62-70. [PMID: 32792028 DOI: 10.1017/s0007114520002652] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/17/2023]
Abstract
The present study was conducted to evaluate the impact of dietary fully oxidised β-carotene (OxBC, C40H60O15) supplementation during the perinatal period on immune status and productivity in a sow model. At day 85 of pregnancy, 150 sows were allocated to one of three dietary treatments with fifty sows per treatment. The three experimental diets were supplemented with 0, 4 or 8 mg/kg OxBC in the basal diet. The feeding trial was conducted from gestation day 85 until day 21 of lactation. Dietary OxBC supplementation greatly enhanced colostrum IgM, IgA and IgG levels, and the IgM and IgG content of 14-d milk. Dietary OxBC supplementation decreased the TNF-α and IL-8 levels in colostrum, as well as the TNF-α and IL-18 levels in 14-d milk. There was also a tendency towards an increase in the soluble CD14 level in 14-d milk. Although dietary treatments did not affect average daily feed intake nor backfat thickness loss during lactation, dietary OxBC supplementation tended to enhance litter weight and individual piglet weight at weaning. There was a trend towards increased lactose concentration in 14-d milk with increasing dietary OxBC. It is concluded that dietary supplementation with OxBC during the perinatal period enhances the lactose concentration of sow milk and the immune status of sows, which is reflected by improved cytokine status and immunoglobulin concentrations in colostrum and milk, and thus tending to increase litter weight and individual piglet weight at weaning. The results also provide a scientific nutritional reference for perinatal mothers due to the biological similarity between pigs and humans.
Collapse
|
12
|
Masood N, Dubey V, Luqman S. Activation of Caspase-3 by Terpenoids and Flavonoids in Different Types of Cancer Cells. Curr Top Med Chem 2020; 20:1876-1887. [PMID: 32648841 DOI: 10.2174/1568026620666200710101859] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/22/2019] [Revised: 01/30/2020] [Accepted: 03/03/2020] [Indexed: 01/02/2023]
Abstract
BACKGROUND Caspase-3 is accountable for the execution of apoptosis. Recently, it has gained attention as a promising target for the discovery of natural products as anticancer agents. METHODS We examined the efficacy of two different sets of natural products (terpenoids and flavonoids) towards caspase-3 activity adopting in silico, cell-free and cell-based activity and real-time gene expression analysis. RESULTS It was observed that terpenes activate caspase-3 activity in both the cell-free and cell-based systems, which was supported by the gene expression analysis, binding energy and activation constant. Flavonoids' action, however, was limited to the cell-based system and transcriptional regulation suggesting their indirect association, which enhanced the enzyme activity and up-regulated the expression of mRNA levels in the cells. Among the tested natural products, (+) carvone was observed to be the best activator of caspase-3 in K562 (34.4 μM), WRL-68 (22.3 μM), HeLa (18.7 μM), MCF-7 (39.4 μM) and MDA-MB-231 cell lines (45.1 μM). CONCLUSION Overall, terpenoids have a persistent activation of caspase-3 in all the investigated systems, while flavonoids circuitously affect the enzyme activity.
Collapse
Affiliation(s)
- Nusrat Masood
- Molecular Bioprospection Department of Biotechnology Division, CSIR-Central Institute of Medicinal and Aromatic Plants, Lucknow-226015, Uttar Pradesh, India
| | - Vijaya Dubey
- Molecular Bioprospection Department of Biotechnology Division, CSIR-Central Institute of Medicinal and Aromatic Plants, Lucknow-226015, Uttar Pradesh, India
| | - Suaib Luqman
- Molecular Bioprospection Department of Biotechnology Division, CSIR-Central Institute of Medicinal and Aromatic Plants, Lucknow-226015, Uttar Pradesh, India
| |
Collapse
|
13
|
Kang M, Oh JY, Cha SY, Kim WI, Cho HS, Jang HK. Efficacy of polymers from spontaneous carotenoid oxidation in reducing necrotic enteritis in broilers. Poult Sci 2018; 97:3058-3062. [DOI: 10.3382/ps/pey180] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/04/2017] [Accepted: 04/13/2018] [Indexed: 11/20/2022] Open
|
14
|
Bassel LL, Caswell JL. Bovine neutrophils in health and disease. Cell Tissue Res 2018; 371:617-637. [PMID: 29445861 DOI: 10.1007/s00441-018-2789-y] [Citation(s) in RCA: 41] [Impact Index Per Article: 5.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2017] [Accepted: 01/04/2018] [Indexed: 12/23/2022]
Abstract
Bovine neutrophils have similarities to those of other species with respect to mechanisms of their activation and migration into tissue, modulation of immune responses and the balance between microbial killing and host tissue damage. However, bovine neutrophils have biochemical and functional differences from those of other species, which may yield insights about the comparative biology of neutrophils. Neutrophils play protective and harmful roles in the infectious diseases of cattle that occur at times of transition: respiratory disease in beef calves recently arrived to feedlots and mastitis and other diseases of postparturient dairy cows. An important research focus is the mechanisms by which risk factors for these diseases affect neutrophil function and thereby lead to disease and the prospect of genetic or pharmacologic improvement of disease resistance. Further, in keeping with the One Health paradigm, cattle can be considered a model for studying the role of neutrophils in naturally occurring diseases caused by host-adapted pathogens and are thus an intermediary between studies of mouse models and investigations of human disease. Finally, the study of bovine neutrophils is important for agriculture, to understand the pathogenesis of these production-limiting diseases and to develop novel methods of disease prevention that improve animal health and reduce the reliance on antimicrobial use.
Collapse
Affiliation(s)
- Laura L Bassel
- Department of Pathobiology, University of Guelph, Guelph, ON, N1G2W1, Canada.
| | - Jeff L Caswell
- Department of Pathobiology, University of Guelph, Guelph, ON, N1G2W1, Canada
| |
Collapse
|
15
|
Abstract
This review based on translational research predicts that the transcription factor p53 is the key effector of all anti-acne therapies. All-trans retinoic acid (ATRA) and isotretinoin (13-cis retinoic acid) enhance p53 expression. Tetracyclines and macrolides via inhibiting p450 enzymes attenuate ATRA degradation, thereby increase p53. Benzoyl peroxide and hydrogen peroxide elicit oxidative stress, which upregulates p53. Azelaic acid leads to mitochondrial damage associated with increased release of reactive oxygen species inducing p53. p53 inhibits the expression of androgen receptor and IGF-1 receptor, and induces the expression of IGF binding protein 3. p53 induces FoxO1, FoxO3, p21 and sestrin 1, sestrin 2, and tumour necrosis factor-related apoptosis-inducing ligand (TRAIL), the key inducer of isotretinoin-mediated sebocyte apoptosis explaining isotretinoin's sebum-suppressive effect. Anti-androgens attenuate the expression of miRNA-125b, a key negative regulator of p53. It can thus be concluded that all anti-acne therapies have a common mode of action, i.e., upregulation of the guardian of the genome p53. Immortalized p53-inactivated sebocyte cultures are unfortunate models for studying acne pathogenesis and treatment.
Collapse
Affiliation(s)
- Bodo C Melnik
- Department of Dermatology, Environmental Medicine and Health Theory, University of Osnabrück, Am Finkenhügel 7a, 49076, Osnabrück, Germany.
| |
Collapse
|
16
|
Burton GW, Daroszewski J, Mogg TJ, Nikiforov GB, Nickerson JG. Discovery and Characterization of Carotenoid-Oxygen Copolymers in Fruits and Vegetables with Potential Health Benefits. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2016; 64:3767-77. [PMID: 27111491 DOI: 10.1021/acs.jafc.6b00503] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/27/2023]
Abstract
We reported previously that the spontaneous oxidation of β-carotene and other carotenoids proceeds predominantly by formation of carotenoid-oxygen copolymers and that β-carotene copolymers exhibit immunological activity, including priming innate immune function and limiting inflammatory processes. Oxidative loss of carotenoids in fruits and vegetables occurs during processing. Here we report evidence for the occurrence of associated analogous copolymer compounds. Geronic acid, an indirect, low molecular weight marker of β-carotene oxidation at ∼2% of β-carotene copolymers, is found to occur in common fresh or dried foods, including carrots, tomatoes, sweet potatoes, paprika, rosehips, seaweeds, and alfalfa, at levels encompassing an approximately thousand-fold range, from low ng/g in fresh foods to μg/g in dried foods. Copolymers isolated from several dried foods reach mg/g levels: comparable to initial carotenoid levels. In vivo biological activity of supplemental β-carotene copolymers has been previously documented at μg/g levels, suggesting that some foods could have related activity.
Collapse
Affiliation(s)
- Graham W Burton
- Avivagen Inc. , 100 Sussex Drive, Ottawa, Ontario K1A 0R6, Canada
| | | | - Trevor J Mogg
- Avivagen Inc. , 100 Sussex Drive, Ottawa, Ontario K1A 0R6, Canada
| | | | - James G Nickerson
- Avivagen Inc. , 550 University Avenue, Charlottetown, Prince Edward Island C1A 4P3, Canada
| |
Collapse
|
17
|
Federico ML, Schmidt MA. Modern Breeding and Biotechnological Approaches to Enhance Carotenoid Accumulation in Seeds. Subcell Biochem 2016; 79:345-58. [PMID: 27485229 DOI: 10.1007/978-3-319-39126-7_13] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/29/2023]
Abstract
There is an increasing demand for carotenoids, which are fundamental components of the human diet, for example as precursors of vitamin A. Carotenoids are also potent antioxidants and their health benefits are becoming increasingly evident. Protective effects against prostate cancer and age-related macular degeneration have been proposed for lycopene and lutein/zeaxanthin, respectively. Additionally, β-carotene, astaxanthin and canthaxanthin are high-value carotenoids used by the food industry as feed supplements and colorants. The production and consumption of these carotenoids from natural sources, especially from seeds, constitutes an important step towards fortifying the diet of malnourished people in developing nations. Therefore, attempts to metabolically manipulate β-carotene production in plants have received global attention, especially after the generation of Golden Rice (Oryza sativa). The endosperms of Golden Rice seeds synthesize and accumulate large quantities of β-carotene (provitamin A), yielding a characteristic yellow color in the polished grains. Classical breeding efforts have also focused in the development of cultivars with elevated seed carotenoid content, with maize and other cereals leading the way. In this communication we will summarize transgenic efforts and modern breeding strategies to fortify various crop seeds with nutraceutical carotenoids.
Collapse
Affiliation(s)
- M L Federico
- Genomics and Bioinformatics Unit, Agriaquaculture Nutritional Genomic Center (CGNA), Temuco, Chile
| | - M A Schmidt
- Bio5 Institute and Plant Sciences Department, University of Arizona, Tucson, AZ, 85718, USA.
| |
Collapse
|
18
|
Johnston JB, Nickerson JG, Daroszewski J, Mogg TJ, Burton GW. Biologically active polymers from spontaneous carotenoid oxidation: a new frontier in carotenoid activity. PLoS One 2014; 9:e111346. [PMID: 25360750 PMCID: PMC4216090 DOI: 10.1371/journal.pone.0111346] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/29/2014] [Accepted: 10/01/2014] [Indexed: 12/21/2022] Open
Abstract
In animals carotenoids show biological activity unrelated to vitamin A that has been considered to arise directly from the behavior of the parent compound, particularly as an antioxidant. However, the very property that confers antioxidant activity on some carotenoids in plants also confers susceptibility to oxidative transformation. As an alternative, it has been suggested that carotenoid oxidative breakdown or metabolic products could be the actual agents of activity in animals. However, an important and neglected aspect of the behavior of the highly unsaturated carotenoids is their potential to undergo addition of oxygen to form copolymers. Recently we reported that spontaneous oxidation of ß-carotene transforms it into a product dominated by ß-carotene-oxygen copolymers. We now report that the polymeric product is biologically active. Results suggest an overall ability to prime innate immune function to more rapidly respond to subsequent microbial challenges. An underlying structural resemblance to sporopollenin, found in the outer shell of spores and pollen, may allow the polymer to modulate innate immune responses through interactions with the pattern recognition receptor system. Oxygen copolymer formation appears common to all carotenoids, is anticipated to be widespread, and the products may contribute to the health benefits of carotenoid-rich fruits and vegetables.
Collapse
Affiliation(s)
- James B. Johnston
- National Research Council of Canada, Charlottetown, Prince Edward Island, Canada
| | | | | | | | | |
Collapse
|