1
|
Amadori M, Listorti V, Razzuoli E. Reappraisal of PRRS Immune Control Strategies: The Way Forward. Pathogens 2021; 10:pathogens10091073. [PMID: 34578106 PMCID: PMC8469074 DOI: 10.3390/pathogens10091073] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/12/2021] [Revised: 08/06/2021] [Accepted: 08/14/2021] [Indexed: 11/16/2022] Open
Abstract
The control of porcine reproductive and respiratory syndrome (PRRS) is still a major issue worldwide in the pig farming sector. Despite extensive research efforts and the practical experience gained so far, the syndrome still severely affects farmed pigs worldwide and challenges established beliefs in veterinary virology and immunology. The clinical and economic repercussions of PRRS are based on concomitant, additive features of the virus pathogenicity, host susceptibility, and the influence of environmental, microbial, and non-microbial stressors. This makes a case for integrated, multi-disciplinary research efforts, in which the three types of contributing factors are critically evaluated toward the development of successful disease control strategies. These efforts could be significantly eased by the definition of reliable markers of disease risk and virus pathogenicity. As for the host's susceptibility to PRRSV infection and disease onset, the roles of both the innate and adaptive immune responses are still ill-defined. In particular, the overt discrepancy between passive and active immunity and the uncertain role of adaptive immunity vis-à-vis established PRRSV infection should prompt the scientific community to develop novel research schemes, in which apparently divergent and contradictory findings could be reconciled and eventually brought into a satisfactory conceptual framework.
Collapse
Affiliation(s)
- Massimo Amadori
- Italian Network of Veterinary Immunology, 25125 Brescia, Italy
- Correspondence:
| | - Valeria Listorti
- Istituto Zooprofilattico Sperimentale del Piemonte, Liguria e Valle d’Aosta, 16129 Genoa, Italy; (V.L.); (E.R.)
| | - Elisabetta Razzuoli
- Istituto Zooprofilattico Sperimentale del Piemonte, Liguria e Valle d’Aosta, 16129 Genoa, Italy; (V.L.); (E.R.)
| |
Collapse
|
2
|
Woonwong Y, Kedkovid R, Arunorat J, Sirisereewan C, Nedumpun T, Poonsuk K, Panyasing Y, Poolperm P, Boonsoongnern A, Thanawongnuwech R. Oral fluid samples used for PRRSV acclimatization program and sow performance monitoring in endemic PRRS-positive farms. Trop Anim Health Prod 2018; 50:291-298. [PMID: 28980168 DOI: 10.1007/s11250-017-1428-z] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/01/2017] [Accepted: 09/20/2017] [Indexed: 12/18/2022]
Abstract
An effective gilt acclimatization program is one of the most important management strategies for controlling porcine reproductive and respiratory syndrome virus (PRRSV) infection. Recently, oral fluid samples have been used as alternative diagnostic samples for various swine diseases. This study utilized oral fluids for PRRSV monitoring during the gilt acclimatization period in PRRSV endemic farms. The study was performed in two selected commercial breeding herds (farm A and farm B). PRRSV RNA and PRRSV-specific antibodies were monitored using oral fluid and serum samples. Sow performance parameters related to PRRSV infection were recorded and assessed. After PRRSV exposure during acclimatization, viral RNA was demonstrated in oral fluids from 1 to 10 weeks post-exposure (WPE). PRRSV RNA was detected in serum at 1 and 4 WPE in farm A and at 1, 4, 8, and 12 WPE in farm B. Prolonged viremia of gilts from farm B was possibly due to re-infection (within the herd) and later, reproductive problems were found in the breeding herd. The correlation of PRRSV RNA concentration in oral fluids and serum was evident. The S/P ratio values of PRRSV antibodies in oral fluid samples were higher and had similar patterns of antibody responses to the serum samples. The results suggest that the use of oral fluid samples for PRRSV monitoring during gilt acclimatization in endemic farms is effective, convenient, practical, and economical and would be most beneficial when used with other parameters.
Collapse
Affiliation(s)
- Yonlayong Woonwong
- Graduate Program in Veterinary Pathobiology, Faculty of Veterinary Science, Chulalongkorn University, Pathumwan, Bangkok, 10330, Thailand
| | - Roongtham Kedkovid
- Graduate Program in Veterinary Pathobiology, Faculty of Veterinary Science, Chulalongkorn University, Pathumwan, Bangkok, 10330, Thailand
| | - Jirapat Arunorat
- Graduate Program in Veterinary Pathobiology, Faculty of Veterinary Science, Chulalongkorn University, Pathumwan, Bangkok, 10330, Thailand
| | - Chaitawat Sirisereewan
- Graduate Program in Veterinary Pathobiology, Faculty of Veterinary Science, Chulalongkorn University, Pathumwan, Bangkok, 10330, Thailand
| | - Teerawut Nedumpun
- Inter-Department of Medical Microbiology, Graduate School, Chulalongkorn University, Pathumwan, Bangkok, 10330, Thailand
| | - Korakrit Poonsuk
- Department of Veterinary Diagnostic and Production Animal Medicine, College of Veterinary Medicine, Iowa State University, Ames, IA, 50011, USA
| | - Yaowalak Panyasing
- Department of Veterinary Pathology, Faculty of Veterinary Science, Chulalongkorn University, Pathumwan, Bangkok, 10330, Thailand
| | - Pariwat Poolperm
- Department of Farm Resources and Production Medicine, Faculty of Veterinary Medicine, Kasetsart University, Kamphaeng Saen, Nakhon Pathom, 73140, Thailand
| | - Alongkot Boonsoongnern
- Department of Farm Resources and Production Medicine, Faculty of Veterinary Medicine, Kasetsart University, Kamphaeng Saen, Nakhon Pathom, 73140, Thailand.
| | - Roongroje Thanawongnuwech
- Department of Veterinary Pathology, Faculty of Veterinary Science, Chulalongkorn University, Pathumwan, Bangkok, 10330, Thailand.
| |
Collapse
|
3
|
Perez AM, Davies PR, Goodell CK, Holtkamp DJ, Mondaca-Fernández E, Poljak Z, Tousignant SJ, Valdes-Donoso P, Zimmerman JJ, Morrison RB. Lessons learned and knowledge gaps about the epidemiology and control of porcine reproductive and respiratory syndrome virus in North America. J Am Vet Med Assoc 2016; 246:1304-17. [PMID: 26043128 DOI: 10.2460/javma.246.12.1304] [Citation(s) in RCA: 40] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
|
4
|
Loving CL, Osorio FA, Murtaugh MP, Zuckermann FA. Innate and adaptive immunity against Porcine Reproductive and Respiratory Syndrome Virus. Vet Immunol Immunopathol 2015. [PMID: 26209116 PMCID: PMC7112826 DOI: 10.1016/j.vetimm.2015.07.003] [Citation(s) in RCA: 151] [Impact Index Per Article: 15.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Abstract
Many highly effective vaccines have been produced against viruses whose virulent infection elicits strong and durable protective immunity. In these cases, characterization of immune effector mechanisms and identification of protective epitopes/immunogens has been informative for the development of successful vaccine programs. Diseases in which the immune system does not rapidly clear the acute infection and/or convalescent immunity does not provide highly effective protection against secondary challenge pose a major hurdle for clinicians and scientists. Porcine reproductive and respiratory syndrome virus (PRRSV) falls primarily into this category, though not entirely. PRRSV causes a prolonged infection, though the host eventually clears the virus. Neutralizing antibodies can provide passive protection when present prior to challenge, though infection can be controlled in the absence of detectable neutralizing antibodies. In addition, primed pigs (through natural exposure or vaccination with a modified-live vaccine) show some protection against secondary challenge. While peripheral PRRSV-specific T cell responses have been examined, their direct contribution to antibody-mediated immunity and viral clearance have not been fully elucidated. The innate immune response following PRRSV infection, particularly the antiviral type I interferon response, is meager, but when provided exogenously, IFN-α enhances PRRSV immunity and viral control. Overall, the quality of immunity induced by natural PRRSV infection is not ideal for informing vaccine development programs. The epitopes necessary for protection may be identified through natural exposure or modified-live vaccines and subsequently applied to vaccine delivery platforms to accelerate induction of protective immunity following vaccination. Collectively, further work to identify protective B and T cell epitopes and mechanisms by which PRRSV eludes innate immunity will enhance our ability to develop more effective methods to control and eliminate PRRS disease.
Collapse
Affiliation(s)
- Crystal L Loving
- USDA-ARS-National Animal Disease Center, Ames, IA, United States.
| | - Fernando A Osorio
- Nebraska Center for Virology and School of Veterinary & Biomedical Sciences, University of Nebraska-Lincoln, United States
| | - Michael P Murtaugh
- Department of Veterinary and Biomedical Sciences, University of Minnesota, St. Paul, MN, United States
| | - Federico A Zuckermann
- Department of Pathobiology, College of Veterinary Medicine, University of Illinois, Urbana-Champaign, IL, United States
| |
Collapse
|
5
|
Jeong J, Aly SS, Cano JP, Polson D, Kass PH, Perez AM. Stochastic model of porcine reproductive and respiratory syndrome virus control strategies on a swine farm in the United States. Am J Vet Res 2014; 75:260-7. [PMID: 24564311 DOI: 10.2460/ajvr.75.3.260] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
Abstract
OBJECTIVE To use mathematical modeling to assess the effectiveness of control strategies for porcine reproductive and respiratory syndrome (PRRS) virus on a swine farm. SAMPLE A hypothetical small, medium, or large farrow-to-weaning swine farm in the Midwestern United States. PROCEDURES Stochastic models were formulated to simulate an outbreak of PRRS on a farm. Control strategies assessed in those models included none (baseline) and various combinations of mass immunization, herd closure, and gilt acclimatization. Nine different models resulting from the combination of low, moderate, or high PRRS virus virulence and small, medium, or large herd size were simulated. A stabilized status, the outcome of interest, was defined as the absence of positive PCR assay results for PRRS virus in 3-week-old piglets. For each scenario, the percentage of simulations with a stabilized status was used as a proxy for the probability of disease control. RESULTS Increasing PRRS virus virulence and herd size were negatively associated with the probability of achieving a stabilized status. Repeated mass immunization with herd closure or gilt acclimitization was a better alternative than was single mass immunization for disease control within a farm. CONCLUSIONS AND CLINICAL RELEVANCE Repeated mass immunization with a PRRS modified-live virus vaccine with herd closure or gilt acclimitization was the scenario most likely to achieve a stabilized status. Estimation of the cost of various PRRS control strategies is necessary.
Collapse
Affiliation(s)
- Jaewoon Jeong
- Graduate Group in Epidemiology, School of Veterinary Medicine, University of California-Davis, Davis, CA 95616
| | | | | | | | | | | |
Collapse
|
6
|
Trang NT, Hirai T, Yamamoto T, Matsuda M, Okumura N, Giang NTH, Lan NT, Yamaguchi R. Detection of porcine reproductive and respiratory syndrome virus in oral fluid from naturally infected pigs in a breeding herd. J Vet Sci 2014; 15:361-7. [PMID: 24690609 PMCID: PMC4178137 DOI: 10.4142/jvs.2014.15.3.361] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/03/2014] [Accepted: 04/01/2014] [Indexed: 12/04/2022] Open
Abstract
The objectives of the present study were to evaluate the anatomic localization of porcine reproductive and respiratory syndrome virus (PRRSV) in naturally infected pigs and to determine whether oral fluid could be used to detect the virus in infected animals. Two sows, seven 2-month-old grower pigs, and 70 6-month-old gilts were included in this study. PRRSV in sera and oral fluid were identified by nested reverse transcription PCR (nRT-PCR) while lung, tonsil, and tissue associated with oral cavity were subjected to nRT-PCR, immunohistochemistry, and in situ hybridization. In sows, PRRSV was identified in oral fluid and tonsils. PRRSV was also detected in oral fluid, tonsils, salivary glands, oral mucosa, and lungs of all seven grower pigs. However, viremia was observed in only two grower pigs. Double staining revealed that PRRSV was distributed in macrophages within and adjacent to the tonsillar crypt epithelium. In gilts, the North American type PRRSV field strain was detected 3 to 8 weeks after introducing these animals onto the farm. These results confirm previous findings that PRRSV primarily replicates in tonsils and is then shed into oral fluid. Therefore, oral fluid sampling may be effective for the surveillance of PRRSV in breeding herds.
Collapse
Affiliation(s)
- Nguyen Thi Trang
- Department of Veterinary Pathology, Faculty of Agriculture, University of Miyazaki, Miyazaki 889-2192, Japan
| | | | | | | | | | | | | | | |
Collapse
|
7
|
Effect of the host cell line on the vaccine efficacy of an attenuated porcine reproductive and respiratory syndrome virus. Vet Immunol Immunopathol 2012; 148:116-25. [DOI: 10.1016/j.vetimm.2012.05.008] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/18/2011] [Revised: 04/17/2012] [Accepted: 05/04/2012] [Indexed: 12/12/2022]
|
8
|
[Endemic viral diseases: a serious economic problem in the Japanese pig industry]. Uirusu 2009; 59:167-77. [PMID: 20218325 DOI: 10.2222/jsv.59.167] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/19/2022]
Abstract
As of February 2009, the Japanese pig industry included 6,890 farms housing a total of 9,899,000 pigs, and produces approximately half of the pig meat consumed in the Japanese domestic market. Although the number of pigs has not substantially changed over the past 20 years, the number of farms has decreased by 86%, indicating the rapid progression of scale expansion in Japan. Against this background, two emerging viral diseases first noted in the 1990s, porcine reproductive and respiratory syndrome (PRRS) and porcine circovirus associated diseases (PCVAD), are now endemic in many farms and causing serious economic losses. This review provides a brief overview of clinical aspects of these two endemic viral diseases and describes the current status of control efforts.
Collapse
|