1
|
Naganawa S, Ito R, Kawamura M, Taoka T, Yoshida T, Sone M. Direct Visualization of Tracer Permeation into the Endolymph in Human Patients Using MR Imaging. Magn Reson Med Sci 2025; 24:253-261. [PMID: 38569839 PMCID: PMC11996247 DOI: 10.2463/mrms.mp.2024-0011] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/27/2024] [Accepted: 02/25/2024] [Indexed: 04/05/2024] Open
Abstract
PURPOSE The endolymph of the inner ear, vital for balance and hearing, has long been considered impermeable to intravenously administered gadolinium-based contrast agents (GBCAs) due to the tight blood-endolymph barrier. However, anecdotal observations suggested potential GBCA entry in delayed heavily T2-weighted 3D-real inversion recovery (IR) MRI scans. This study systematically investigated GBCA distribution in the endolymph using this 3D-real IR sequence. METHODS Forty-one patients suspected of endolymphatic hydrops (EHs) underwent pre-contrast, 4-h, and 24-h post-contrast 3D-real IR imaging. Signal intensity in cerebrospinal fluid (CSF), perilymph, and endolymph was measured and analyzed for temporal dynamics of GBCA uptake, correlations between compartments, and the influence of age and presence of EH. RESULTS Endolymph showed a delayed peak GBCA uptake at 24h, contrasting with peaks in perilymph and CSF at 4h. Weak to moderate positive correlations between endolymph and CSF contrast effect were observed at both 4 (r = 0.483) and 24h (r = 0.585), suggesting possible inter-compartmental interactions. Neither the presence of EH nor age significantly influenced endolymph enhancement. However, both perilymph and CSF contrast effects significantly correlated with age at both time points. CONCLUSION This study provides the first in vivo systematic confirmation of GBCA entering the endolymph following intravenous administration. Notably, endolymph uptake peaked at 24h, significantly later than perilymph and CSF. The lack of a link between endolymph contrast and both perilymph and age suggests distinct uptake mechanisms. These findings shed light on inner ear fluid dynamics and their potential implications in Ménière's disease and other inner ear disorders.
Collapse
Affiliation(s)
- Shinji Naganawa
- Department of Radiology, Nagoya University Graduate School of Medicine, Nagoya, Aichi, Japan
| | - Rintaro Ito
- Department of Radiology, Nagoya University Graduate School of Medicine, Nagoya, Aichi, Japan
| | - Mariko Kawamura
- Department of Radiology, Nagoya University Graduate School of Medicine, Nagoya, Aichi, Japan
| | - Toshiaki Taoka
- Department of Radiology, Nagoya University Graduate School of Medicine, Nagoya, Aichi, Japan
| | - Tadao Yoshida
- Department of Otorhinolaryngology, Nagoya University Graduate School of Medicine, Nagoya, Aichi, Japan
| | - Michihiko Sone
- Department of Otorhinolaryngology, Nagoya University Graduate School of Medicine, Nagoya, Aichi, Japan
| |
Collapse
|
2
|
Taoka T, Ito R, Nakamichi R, Nakane T, Kawai H, Naganawa S. Interstitial Fluidopathy of the Central Nervous System: An Umbrella Term for Disorders with Impaired Neurofluid Dynamics. Magn Reson Med Sci 2024; 23:1-13. [PMID: 36436975 PMCID: PMC10838724 DOI: 10.2463/mrms.rev.2022-0012] [Citation(s) in RCA: 10] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/17/2022] [Accepted: 08/29/2022] [Indexed: 01/05/2024] Open
Abstract
Interest in interstitial fluid dynamics has increased since the proposal of the glymphatic system hypothesis. Abnormal dynamics of the interstitial fluid have been pointed out to be an important factor in various pathological statuses. In this article, we propose the concept of central nervous system interstitial fluidopathy as a disease or condition in which abnormal interstitial fluid dynamics is one of the important factors for the development of a pathological condition. We discuss the aspects of interstitial fluidopathy in various diseases, including Alzheimer's disease, Parkinson's disease, normal pressure hydrocephalus, and cerebral small vessel disease. We also discuss a method called "diffusion tensor image analysis along the perivascular space" using MR diffusion images, which is used to evaluate the degree of interstitial fluidopathy or the activity of the glymphatic system.
Collapse
Affiliation(s)
- Toshiaki Taoka
- Department of Innovative Biomedical Visualization (iBMV), Nagoya University, Nagoya, Aichi, Japan
- Department of Radiology, Nagoya University, Nagoya, Aichi, Japan
| | - Rintaro Ito
- Department of Innovative Biomedical Visualization (iBMV), Nagoya University, Nagoya, Aichi, Japan
- Department of Radiology, Nagoya University, Nagoya, Aichi, Japan
| | - Rei Nakamichi
- Department of Radiology, Nagoya University, Nagoya, Aichi, Japan
| | - Toshiki Nakane
- Department of Radiology, Nagoya University, Nagoya, Aichi, Japan
| | - Hisashi Kawai
- Department of Radiology, Aichi Medical University, Nagakute, Aichi, Japan
| | - Shinji Naganawa
- Department of Radiology, Nagoya University, Nagoya, Aichi, Japan
| |
Collapse
|
3
|
Fujima N, Kamagata K, Ueda D, Fujita S, Fushimi Y, Yanagawa M, Ito R, Tsuboyama T, Kawamura M, Nakaura T, Yamada A, Nozaki T, Fujioka T, Matsui Y, Hirata K, Tatsugami F, Naganawa S. Current State of Artificial Intelligence in Clinical Applications for Head and Neck MR Imaging. Magn Reson Med Sci 2023; 22:401-414. [PMID: 37532584 PMCID: PMC10552661 DOI: 10.2463/mrms.rev.2023-0047] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/28/2023] [Accepted: 07/09/2023] [Indexed: 08/04/2023] Open
Abstract
Due primarily to the excellent soft tissue contrast depictions provided by MRI, the widespread application of head and neck MRI in clinical practice serves to assess various diseases. Artificial intelligence (AI)-based methodologies, particularly deep learning analyses using convolutional neural networks, have recently gained global recognition and have been extensively investigated in clinical research for their applicability across a range of categories within medical imaging, including head and neck MRI. Analytical approaches using AI have shown potential for addressing the clinical limitations associated with head and neck MRI. In this review, we focus primarily on the technical advancements in deep-learning-based methodologies and their clinical utility within the field of head and neck MRI, encompassing aspects such as image acquisition and reconstruction, lesion segmentation, disease classification and diagnosis, and prognostic prediction for patients presenting with head and neck diseases. We then discuss the limitations of current deep-learning-based approaches and offer insights regarding future challenges in this field.
Collapse
Affiliation(s)
- Noriyuki Fujima
- Department of Diagnostic and Interventional Radiology, Hokkaido University Hospital, Sapporo, Hokkaido, Japan
| | - Koji Kamagata
- Department of Radiology, Juntendo University Graduate School of Medicine, Tokyo, Japan
| | - Daiju Ueda
- Department of Diagnostic and Interventional Radiology, Graduate School of Medicine, Osaka Metropolitan University, Osaka, Osaka, Japan
| | - Shohei Fujita
- Department of Radiology, University of Tokyo, Tokyo, Japan
| | - Yasutaka Fushimi
- Department of Diagnostic Imaging and Nuclear Medicine, Kyoto University Graduate School of Medicine, Kyoto, Kyoto, Japan
| | - Masahiro Yanagawa
- Department of Radiology, Osaka University Graduate School of Medicine, Suita, Osaka, Japan
| | - Rintaro Ito
- Department of Radiology, Nagoya University Graduate School of Medicine, Nagoya, Aichi, Japan
| | - Takahiro Tsuboyama
- Department of Radiology, Osaka University Graduate School of Medicine, Suita, Osaka, Japan
| | - Mariko Kawamura
- Department of Radiology, Nagoya University Graduate School of Medicine, Nagoya, Aichi, Japan
| | - Takeshi Nakaura
- Department of Diagnostic Radiology, Kumamoto University Graduate School of Medicine, Kumamoto, Kumamoto, Japan
| | - Akira Yamada
- Department of Radiology, Shinshu University School of Medicine, Matsumoto, Nagano, Japan
| | - Taiki Nozaki
- Department of Radiology, Keio University School of Medicine, Tokyo, Japan
| | - Tomoyuki Fujioka
- Department of Diagnostic Radiology, Tokyo Medical and Dental University, Tokyo, Japan
| | - Yusuke Matsui
- Department of Radiology, Faculty of Medicine, Dentistry and Pharmaceutical Sciences, Okayama University, Okayama, Okayama, Japan
| | - Kenji Hirata
- Department of Diagnostic Imaging, Graduate School of Medicine, Hokkaido University, Sapporo, Hokkaido, Japan
| | - Fuminari Tatsugami
- Department of Diagnostic Radiology, Hiroshima University, Hiroshima, Hiroshima, Japan
| | - Shinji Naganawa
- Department of Radiology, Nagoya University Graduate School of Medicine, Nagoya, Aichi, Japan
| |
Collapse
|
4
|
Richmond SB, Rane S, Hanson MR, Albayram M, Iliff JJ, Kernagis D, Rosenberg JT, Seidler RD. Quantification approaches for magnetic resonance imaging following intravenous gadolinium injection: A window into brain-wide glymphatic function. Eur J Neurosci 2023; 57:1689-1704. [PMID: 36965006 DOI: 10.1111/ejn.15974] [Citation(s) in RCA: 10] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/30/2022] [Revised: 03/20/2023] [Accepted: 03/21/2023] [Indexed: 03/27/2023]
Abstract
The glymphatic system is a brain-wide network of perivascular pathways along which cerebrospinal fluid and interstitial fluid rapidly exchange, facilitating solute and waste clearance from the brain parenchyma. The characterization of this exchange process in humans has relied primarily upon serial magnetic resonance imaging following intrathecal gadolinium-based contrast agent injection. However, less invasive approaches are needed. Here, we administered a gadolinium-based contrast agent intravenously in eight healthy participants and acquired magnetic resonance imaging scans prior to and 30, 90, 180, and 360 min post contrast injection. Using a region-of-interest approach, we observed that peripheral tissues and blood vessels exhibited high enhancement at 30 min after contrast administration, likely reflecting vascular and peripheral interstitial distribution of the gadolinium-based contrast agent. Ventricular, grey matter and white matter enhancement peaked at 90 min, declining thereafter. Using k-means clustering, we identify distinct distribution volumes reflecting the leptomeningeal perivascular network, superficial grey matter and deep grey/white matter that exhibit a sequential enhancement pattern consistent with parenchymal contrast enhancement via the subarachnoid cerebrospinal fluid compartment. We also outline the importance of correcting for (otherwise automatic) autoscaling of signal intensities, which could potentially lead to misinterpretation of gadolinium-based contrast agent distribution kinetics. In summary, we visualize and quantify delayed tissue enhancement following intravenous administration of gadolinium-based contrast agent in healthy human participants.
Collapse
Affiliation(s)
- Sutton B Richmond
- Department of Applied Physiology and Kinesiology, University of Florida, Gainesville, Florida, USA
| | - Swati Rane
- Department of Radiology, University of Washington School of Medicine, Seattle, Washington, USA
| | - Moriah R Hanson
- Department of Applied Physiology and Kinesiology, University of Florida, Gainesville, Florida, USA
| | - Mehmet Albayram
- Department of Radiology, Division of Neuroradiology, University of Florida, Gainesville, Florida, USA
| | - Jeffrey J Iliff
- Department of Psychiatry and Behavioral Sciences, University of Washington School of Medicine, Seattle, Washington, USA
- Department of Neurology, University of Washington School of Medicine, Seattle, Washington, USA
- VISN 20 Mental Illness Research, Education and Clinical Center (MIRECC), VA Puget Sound Health Care System, Seattle, Washington, USA
| | - Dawn Kernagis
- Department of Neurosurgery, University of North Carolina, Chapel Hill, North Carolina, USA
| | - Jens T Rosenberg
- Advanced Magnetic Resonance Imaging and Spectroscopy Facility, McKnight Brain Institute, University of Florida, Gainesville, Florida, USA
| | - Rachael D Seidler
- Department of Applied Physiology and Kinesiology, University of Florida, Gainesville, Florida, USA
- Norman Fixel Institute for Neurological Diseases, University of Florida, Gainesville, Florida, USA
| |
Collapse
|
5
|
Lee MK, Cho SJ, Bae YJ, Kim JM. MRI-Based Demonstration of the Normal Glymphatic System in a Human Population: A Systematic Review. Front Neurol 2022; 13:827398. [PMID: 35693018 PMCID: PMC9174517 DOI: 10.3389/fneur.2022.827398] [Citation(s) in RCA: 16] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/02/2021] [Accepted: 04/27/2022] [Indexed: 11/23/2022] Open
Abstract
Background The glymphatic system has been described as one that facilitates the exchange between the cerebrospinal fluid (CSF) and interstitial fluid, and many recent studies have demonstrated glymphatic flow based on magnetic resonance imaging (MRI). We aim to systematically review the studies demonstrating a normal glymphatic flow in a human population using MRI and to propose a detailed glymphatic imaging protocol. Methods We searched the MEDLINE and EMBASE databases to identify studies with human participants involving MRI-based demonstrations of the normal glymphatic flow. We extracted data on the imaging sequence, imaging protocol, and the targeted anatomical structures on each study. Results According to contrast-enhanced MRI studies, peak enhancement was sequentially detected first in the CSF space, followed by the brain parenchyma, the meningeal lymphatic vessel (MLV), and, finally, the cervical lymph nodes, corresponding with glymphatic flow and explaining the drainage into the MLV. Non-contrast flow-sensitive MRI studies revealed similar glymphatic inflow from the CSF space to the brain parenchyma and efflux of exchanged fluid from the brain parenchyma to the MLV. Conclusion We may recommend T1-weighted contrast-enhanced MRI for visualizing glymphatic flow. Our result can increase understanding of the glymphatic system and may lay the groundwork for establishing central nervous system fluid dynamic theories and developing standardized imaging protocols.
Collapse
Affiliation(s)
- Min Kyoung Lee
- Department of Radiology, College of Medicine, Yeouido St. Mary's Hospital, The Catholic University of Korea, Soeul, South Korea
| | - Se Jin Cho
- Department of Radiology, Seoul National University Bundang Hospital, Seoul National University College of Medicine, Seongnam, South Korea
| | - Yun Jung Bae
- Department of Radiology, Seoul National University Bundang Hospital, Seoul National University College of Medicine, Seongnam, South Korea
- *Correspondence: Yun Jung Bae
| | - Jong-Min Kim
- Department of Neurology, Seoul National University Bundang Hospital, Seoul National University College of Medicine, Seongnam, South Korea
- Jong-Min Kim
| |
Collapse
|
6
|
Kikuta J, Kamagata K, Taoka T, Takabayashi K, Uchida W, Saito Y, Andica C, Wada A, Kawamura K, Akiba C, Nakajima M, Miyajima M, Naganawa S, Aoki S. Water Diffusivity Changes Along the Perivascular Space After Lumboperitoneal Shunt Surgery in Idiopathic Normal Pressure Hydrocephalus. Front Neurol 2022; 13:843883. [PMID: 35295837 PMCID: PMC8918529 DOI: 10.3389/fneur.2022.843883] [Citation(s) in RCA: 15] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/27/2021] [Accepted: 01/27/2022] [Indexed: 12/19/2022] Open
Abstract
Background The aim of this study was to evaluate the water diffusivity changes along the perivascular space after lumboperitoneal shunt (LPS) surgery in idiopathic normal pressure hydrocephalus. Methods Nine patients diagnosed with idiopathic normal pressure hydrocephalus (iNPH; three men and six women, mean age ± SD = 75.22 ± 5.12 years) according to the guidelines for iNPH in Japan were included in the study. Post-LPS surgery, six patients with iNPH who exhibited improvement in symptoms were defined as responder subjects, while three patients with iNPH who did not were defined as non-responder subjects. We calculated the mean analysis along the perivascular space (ALPS) index of the left and right hemispheres and compared the differences between pre- and post-LPS surgery mean ALPS indices in iNPH patients. In the responder or non-responder subjects, the mean ALPS indices in the pre- and post-operative iNPH groups were compared using Wilcoxon signed-rank tests. Next, correlation analyses between pre- and post-operation changes in the mean ALPS index and clinical characteristics were conducted. Results The mean ALPS index of the post-operative iNPH group was significantly higher than that of the pre-operative iNPH group (p = 0.021). In responder subjects, the mean ALPS index of the post-operative iNPH group was significantly higher than that of the pre-operative iNPH group (p = 0.046). On the other hand, in the non-responder subjects, the mean ALPS index of the post-operative iNPH group was not significantly different compared to the pre-operative iNPH group (p = 0.285). The mean ALPS index change was not significantly correlated with changes in the Mini-Mental State Examination (MMSE) score (r = −0.218, p = 0.574), Frontal Assessment Battery (FAB) score (r = 0.185, p = 0.634), Trail Making Test A (TMTA) score (r = 0.250, p = 0.516), and Evans' index (r = 0.109, p = 0.780). In responder subjects, the mean ALPS index change was significantly correlated with Evans' index in pre-operative patients with iNPH (r = 0.841, p = 0.036). Conclusion This study demonstrates the improved water diffusivity along perivascular space in patients with iNPH after LPS surgery. This could be indicative of glymphatic function recovery following LPS surgery.
Collapse
Affiliation(s)
- Junko Kikuta
- Department of Radiology, Juntendo University Graduate School of Medicine, Bunkyo-ku, Japan
- *Correspondence: Junko Kikuta
| | - Koji Kamagata
- Department of Radiology, Juntendo University Graduate School of Medicine, Bunkyo-ku, Japan
| | - Toshiaki Taoka
- Department of Innovative Biomedical Visualization, Graduate School of Medicine, Nagoya University, Nagoya, Japan
| | - Kaito Takabayashi
- Department of Radiology, Juntendo University Graduate School of Medicine, Bunkyo-ku, Japan
| | - Wataru Uchida
- Department of Radiology, Juntendo University Graduate School of Medicine, Bunkyo-ku, Japan
| | - Yuya Saito
- Department of Radiology, Juntendo University Graduate School of Medicine, Bunkyo-ku, Japan
| | - Christina Andica
- Department of Radiology, Juntendo University Graduate School of Medicine, Bunkyo-ku, Japan
| | - Akihiko Wada
- Department of Radiology, Juntendo University Graduate School of Medicine, Bunkyo-ku, Japan
| | - Kaito Kawamura
- Department of Neurosurgery, Juntendo University Faculty of Medicine, Bunkyo-ku, Japan
| | - Chihiro Akiba
- Department of Neurosurgery, Juntendo Tokyo Koto Geriatric Medical Center, Koto-ku, Japan
| | - Madoka Nakajima
- Department of Neurosurgery, Juntendo University Faculty of Medicine, Bunkyo-ku, Japan
| | - Masakazu Miyajima
- Department of Neurosurgery, Juntendo Tokyo Koto Geriatric Medical Center, Koto-ku, Japan
| | - Shinji Naganawa
- Department of Radiology, Nagoya University Graduate School of Medicine, Nagoya, Japan
| | - Shigeki Aoki
- Department of Radiology, Juntendo University Graduate School of Medicine, Bunkyo-ku, Japan
| |
Collapse
|
7
|
Taoka T, Ito R, Nakamichi R, Kamagata K, Sakai M, Kawai H, Nakane T, Abe T, Ichikawa K, Kikuta J, Aoki S, Naganawa S. Reproducibility of diffusion tensor image analysis along the perivascular space (DTI-ALPS) for evaluating interstitial fluid diffusivity and glymphatic function: CHanges in Alps index on Multiple conditiON acquIsition eXperiment (CHAMONIX) study. Jpn J Radiol 2022; 40:147-158. [PMID: 34390452 PMCID: PMC8803717 DOI: 10.1007/s11604-021-01187-5] [Citation(s) in RCA: 137] [Impact Index Per Article: 45.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/12/2021] [Accepted: 07/29/2021] [Indexed: 02/08/2023]
Abstract
PURPOSE The diffusion tensor image analysis along the perivascular space (DTI-ALPS) method was developed to evaluate the brain's glymphatic function or interstitial fluid dynamics. This study aimed to evaluate the reproducibility of the DTI-ALPS method and the effect of modifications in the imaging method and data evaluation. MATERIALS AND METHODS Seven healthy volunteers were enrolled in this study. Image acquisition was performed for this test-retest study using a fixed imaging sequence and modified imaging methods which included the placement of region of interest (ROI), imaging plane, head position, averaging, number of motion-proving gradients, echo time (TE), and a different scanner. The ALPS-index values were evaluated for the change of conditions listed above. RESULTS This test-retest study by a fixed imaging sequence showed very high reproducibility (intraclass coefficient = 0.828) for the ALPS-index value. The bilateral ROI placement showed higher reproducibility. The number of averaging and the difference of the scanner did not influence the ALPS-index values. However, modification of the imaging plane and head position impaired reproducibility, and the number of motion-proving gradients affected the ALPS-index value. The ALPS-index values from 12-axis DTI and 3-axis diffusion-weighted image (DWI) showed good correlation (r = 0.86). Also, a shorter TE resulted in a larger value of the ALPS-index. CONCLUSION ALPS index was robust under the fixed imaging method even when different scanners were used. ALPS index was influenced by the imaging plane, the number of motion-proving gradient axes, and TE in the imaging sequence. These factors should be uniformed in the planning ALPS method studies. The possibility to develop a 3-axis DWI-ALPS method using three axes of the motion-proving gradient was also suggested.
Collapse
Affiliation(s)
- Toshiaki Taoka
- Department of Innovative Biomedical Visualization (iBMV), Nagoya University, 65 Tsurumai-cho, Showa-ku, Nagoya, Aichi, 466-8550, Japan.
- Department of Radiology, Nagoya University, Nagoya, Aichi, Japan.
| | - Rintaro Ito
- Department of Innovative Biomedical Visualization (iBMV), Nagoya University, 65 Tsurumai-cho, Showa-ku, Nagoya, Aichi, 466-8550, Japan
- Department of Radiology, Nagoya University, Nagoya, Aichi, Japan
| | - Rei Nakamichi
- Department of Radiology, Nagoya University, Nagoya, Aichi, Japan
| | - Koji Kamagata
- Department of Radiology, Juntendo University School of Medicine, Tokyo, Japan
| | - Mayuko Sakai
- Canon Medical Systems Corporation, Otawara, Japan
| | - Hisashi Kawai
- Department of Radiology, Aichi Medical University, Nagakute, Japan
| | - Toshiki Nakane
- Department of Radiology, Nagoya University, Nagoya, Aichi, Japan
| | - Takashi Abe
- Department of Radiology, Nagoya University, Nagoya, Aichi, Japan
| | - Kazushige Ichikawa
- Department of Radiological Technology, Nagoya University Hospital, Nagoya, Aichi, Japan
| | - Junko Kikuta
- Department of Radiology, Juntendo University School of Medicine, Tokyo, Japan
| | - Shigeki Aoki
- Department of Radiology, Juntendo University School of Medicine, Tokyo, Japan
| | - Shinji Naganawa
- Department of Radiology, Nagoya University, Nagoya, Aichi, Japan
| |
Collapse
|
8
|
Chen W, Geng Y, Niu Y, Lin N, Wang X, Sha Y. Inner ear MRI enhancement based on 3D-real IR sequence in patients with Meniere's disease after intravenous gadolinium injection: comparison of different doses used and exploration of a appropriate dose. Clin Otolaryngol 2022; 47:717-723. [PMID: 35034431 DOI: 10.1111/coa.13912] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/27/2021] [Revised: 12/25/2021] [Accepted: 01/09/2022] [Indexed: 12/01/2022]
Abstract
OBJECTIVES Three-dimensional inversion-recovery sequence with real reconstruction (3D-real IR) magnetic resonance imaging (MRI) can detect endolymphatic hydrops of the inner ear. We aimed to explore a appropriate dose for intravenous gadolinium injection. DESIGN Observational prospective study. SETTING Tertiary referral center. PARTICIPANTS We collected 90 unilateral definite Meniere's disease patients. MAIN OUTCOME MEASURES All enrolled patients were divided into three groups randomly (patients in group A, B and C received gadolinium injection in 1/1.5/2 times doses, respectively). After 4 hours, inner ear MRI scans were applied. RESULTS The signal intensities of B-affected ears and C-affected ears were significantly higher than A-affected ears (p < 0.05), however, no difference was found between B-affected ears and C-affected ears (p=0.267). The same conditions also appeared in the three unaffected-ear groups. Moreover, the signal intensities of affected-ear in group A, B and C were significantly higher than that of the corresponding unaffected-ear groups (p < 0.05). Besides, the subjective visual evaluation scores of group B and C were significantly better than that of group A (p < 0.05). CONCLUSIONS Intravenous injection of gadolinium in a single dose may be unbefitting for the inner ear imaging based on 3D-real IR MRI, both the applications of gadolinium in 1.5 times and double doses can have a good perilymphatic enhancement effect of inner ear. In order to minimize the use of dose for avoiding or mitigating the adverse reactions and renal damage, 1.5 times dose may be preferred in clinical practice.
Collapse
Affiliation(s)
- Wei Chen
- Shanghai Institute of Medical Imaging, Fudan University, Shanghai, China.,Department of Interventional Radiology, Zhongshan Hospital of Fudan University, Shanghai, China.,Department of Radiology, ENT Hospital of Fudan University, Eye &, Shanghai, China
| | - Yue Geng
- Department of Radiology, ENT Hospital of Fudan University, Eye &, Shanghai, China
| | - Yue Niu
- Department of Radiology, ENT Hospital of Fudan University, Eye &, Shanghai, China
| | - Naier Lin
- Department of Radiology, ENT Hospital of Fudan University, Eye &, Shanghai, China
| | - Xiaolin Wang
- Shanghai Institute of Medical Imaging, Fudan University, Shanghai, China.,Department of Interventional Radiology, Zhongshan Hospital of Fudan University, Shanghai, China
| | - Yan Sha
- Shanghai Institute of Medical Imaging, Fudan University, Shanghai, China.,Department of Radiology, ENT Hospital of Fudan University, Eye &, Shanghai, China
| |
Collapse
|
9
|
Naganawa S, Ito R, Nakamichi R, Kawamura M, Taoka T, Yoshida T, Sone M. Relationship between Time-dependent Signal Changes in Parasagittal Perivenous Cysts and Leakage of Gadolinium-based Contrast Agents into the Subarachnoid Space. Magn Reson Med Sci 2021; 20:378-384. [PMID: 33441494 PMCID: PMC8922354 DOI: 10.2463/mrms.mp.2020-0138] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022] Open
Abstract
Purpose To investigate the association between signal changes over time in perivenous cystic structures near the superior sagittal sinus and leakage of a gadolinium-based contrast agent (GBCA) into the subarachnoid space in patients with suspected endolymphatic hydrops. Methods Fifty-one cystic structures in 27 cases were evaluated. The signal intensity of the cystic structures was measured on 3D real inversion recovery (3D-real IR) images obtained at pre-, and at 10 min, 4 hrs and 24 hrs post-intravenous administration (IV) of GBCA. Signal enhancement of the cystic structures from the pre-contrast images at each time point was compared in subjects with leakage (positive) versus those without leakage (negative) using an ANOVA. Fisher’s exact probability test was used to compare the maximum contrast-enhanced time point between positive and negative groups. We used 5% as a threshold to determine statistical significance. Results In leakage positive subjects, mean signal enhancement of the cysts was significantly greater at 4 and 24 hrs compared to 10 min. However, although there was a trend of an increase from 4 to 24 hrs, the difference was not significant. In the leakage negative group, mean signal enhancement of the cysts was significantly higher at 4 hrs compared to 10 min and 24 hrs. There was no significant difference between 10 min and 24 hrs. In the positive group, the maximum signal increase was found in 10/38 and 28/38 cysts at 4 and 24 hrs after IV-GBCA, respectively. In the leakage negative group, the maximum signal increase was found in 10/13 and 3/13 cysts at 4 and 24 hrs, respectively (P = 0.0019). Conclusion There was an association between signal changes over time after IV-GBCA in perivenous cystic structures and leakage of GBCA. Further research to clarify the impact of cystic structures on the function of the waste clearance system of the brain is warranted.
Collapse
Affiliation(s)
- Shinji Naganawa
- Department of Radiology, Nagoya University Graduate School of Medicine
| | - Rintaro Ito
- Department of Radiology, Nagoya University Graduate School of Medicine
| | - Rei Nakamichi
- Department of Radiology, Nagoya University Graduate School of Medicine
| | - Mariko Kawamura
- Department of Radiology, Nagoya University Graduate School of Medicine
| | - Toshiaki Taoka
- Department of Radiology, Nagoya University Graduate School of Medicine
| | - Tadao Yoshida
- Department of Otorhinolaryngology, Nagoya University Graduate School of Medicine
| | - Michihiko Sone
- Department of Otorhinolaryngology, Nagoya University Graduate School of Medicine
| |
Collapse
|
10
|
Taoka T, Naganawa S. Imaging for central nervous system (CNS) interstitial fluidopathy: disorders with impaired interstitial fluid dynamics. Jpn J Radiol 2021; 39:1-14. [PMID: 32653987 PMCID: PMC7813706 DOI: 10.1007/s11604-020-01017-0] [Citation(s) in RCA: 55] [Impact Index Per Article: 13.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/19/2020] [Accepted: 07/02/2020] [Indexed: 02/07/2023]
Abstract
After the introduction of the glymphatic system hypothesis, an increasing number of studies on cerebrospinal fluid and interstitial fluid dynamics within the brain have been investigated and reported. A series of diseases are known which develop due to abnormality of the glymphatic system including Alzheimer's disease, traumatic brain injury, stroke, or other disorders. These diseases or disorders share the characteristics of the glymphatic system dysfunction or other mechanisms related to the interstitial fluid dynamics. In this review article, we propose "Central Nervous System (CNS) Interstitial Fluidopathy" as a new concept encompassing diseases whose pathologies are majorly associated with abnormal interstitial fluid dynamics. Categorizing these diseases or disorders as "CNS interstitial fluidopathies," will promote the understanding of their mechanisms and the development of potential imaging methods for the evaluation of the disease as well as clinical methods for disease treatment or prevention. In other words, having a viewpoint of the dynamics of interstitial fluid appears relevant for understanding CNS diseases or disorders, and it would be possible to develop novel common treatment methods or medications for "CNS interstitial fluidopathies."
Collapse
Affiliation(s)
- Toshiaki Taoka
- Department of Innovative Biomedical Visualization (iBMV), Nagoya University Graduate School of Medicine, 65 Tsurumai-cho, Showa-ku, Nagoya, Aichi, 466-8550, Japan. .,Department of Radiology, Nagoya University Graduate School of Medicine, Nagoya, Japan.
| | - Shinji Naganawa
- Department of Radiology, Nagoya University Graduate School of Medicine, Nagoya, Japan
| |
Collapse
|
11
|
Naganawa S, Taoka T. The Glymphatic System: A Review of the Challenges in Visualizing its Structure and Function with MR Imaging. Magn Reson Med Sci 2020; 21:182-194. [PMID: 33250472 PMCID: PMC9199971 DOI: 10.2463/mrms.rev.2020-0122] [Citation(s) in RCA: 54] [Impact Index Per Article: 10.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/03/2022] Open
Abstract
The central nervous system (CNS) was previously thought to be the only organ system lacking lymphatic vessels to remove waste products from the interstitial space. Recently, based on the results from animal experiments, the glymphatic system was hypothesized. In this hypothesis, cerebrospinal fluid (CSF) enters the periarterial spaces, enters the interstitial space of the brain parenchyma via aquaporin-4 (AQP4) channels in the astrocyte end feet, and then exits through the perivenous space, thereby clearing waste products. From the perivenous space, the interstitial fluid drains into the subarachnoid space and meningeal lymphatics of the parasagittal dura. It has been reported that the glymphatic system is particularly active during sleep. Impairment of glymphatic system function might be a cause of various neurodegenerative diseases such as Alzheimer’s disease, normal pressure hydrocephalus, glaucoma, and others. Meningeal lymphatics regulate immunity in the CNS. Many researchers have attempted to visualize the function and structure of the glymphatic system and meningeal lymphatics in vivo using MR imaging. In this review, we aim to summarize these in vivo MR imaging studies and discuss the significance, current limitations, and future directions. We also discuss the significance of the perivenous cyst formation along the superior sagittal sinus, which is recently discovered in the downstream of the glymphatic system.
Collapse
Affiliation(s)
- Shinji Naganawa
- Department of Radiology, Nagoya University Graduate School of Medicine
| | - Toshiaki Taoka
- Department of Radiology, Nagoya University Graduate School of Medicine
- Department of Innovative Biomedical Visualization (iBMV), Nagoya University Graduate School of Medicine
| |
Collapse
|