1
|
Knechtle B, Valero D, Villiger E, Thuany M, Andrade MS, Cuk I, Nikolaidis PT, Rosemann T, Weiss K. Sex difference in IRONMAN age group triathletes. PLoS One 2024; 19:e0311202. [PMID: 39374257 PMCID: PMC11458036 DOI: 10.1371/journal.pone.0311202] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/11/2024] [Accepted: 09/15/2024] [Indexed: 10/09/2024] Open
Abstract
BACKGROUND The sex difference in athletic performance has been thoroughly investigated in single sport disciplines such as swimming, cycling, and running. In contrast, only small samples of long-distance triathlons, such as the IRONMAN® triathlon, have been investigated so far. AIM The aim of the study was to examine potential sex differences in the three split disciplines by age groups in 5-year intervals in a very large data set of IRONMAN® age group triathletes. METHODS Data from 687,696 (553,608 men and 134,088 women) IRONMAN® age group triathletes (in 5-year intervals from 18-24 to 75+ years) finishing successfully between 2002 and 2022 an official IRONMAN® race worldwide were analyzed. The differences in performance between women and men were determined for each split discipline and for the overall race distance. RESULTS Most finishers were in the age group 40-44 years. The fastest women were in the age group 25-29 years, and the fastest men were in the age group 30-34 years. For all split disciplines and overall race time, men were always faster than women in all groups. The performance difference between the sexes was more pronounced in cycling compared to swimming and running. From the age group 35-39 years until 60-64 years, the sex differences were nearly identical in swimming and running. For both women and men, the smallest sex difference was least significant in age group 18-24 years for all split disciplines and increased in a U-shaped manner until age group 70-74 years. For age groups 75 years and older, the sex difference decreased in swimming and cycling but increased in running. Considering the different characteristics of the race courses, the smallest performance gaps between men and women were found in river swimming, flat surface cycling and rolling running courses. CONCLUSIONS The sex difference in the IRONMAN® triathlon was least significant in age group 18-24 years for all split disciplines and increased in a U-shaped manner until age group 70-74 years. For 75 years and older, the sex difference decreased in swimming and cycling but increased in running.
Collapse
Affiliation(s)
- Beat Knechtle
- Medbase St. Gallen Am Vadianplatz, St. Gallen, Switzerland
- Institute of Primary Care, University of Zurich, Zurich, Switzerland
| | - David Valero
- Ultra Sports Science Foundation, Pierre-Benite, France
| | - Elias Villiger
- Institute of Primary Care, University of Zurich, Zurich, Switzerland
| | - Mabliny Thuany
- Department of Physical Education, State University of Para, Pará, Brazil
| | | | - Ivan Cuk
- Faculty of Sport and Physical Education, University of Belgrade, Belgrade, Serbia
| | | | - Thomas Rosemann
- Institute of Primary Care, University of Zurich, Zurich, Switzerland
| | - Katja Weiss
- Institute of Primary Care, University of Zurich, Zurich, Switzerland
| |
Collapse
|
2
|
Tiemeier L, Nikolaidis PT, Chlíbková D, Wilhelm M, Thuany M, Weiss K, Knechtle B. Ultra-Cycling- Past, Present, Future: A Narrative Review. SPORTS MEDICINE - OPEN 2024; 10:48. [PMID: 38679655 PMCID: PMC11056358 DOI: 10.1186/s40798-024-00715-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/19/2023] [Accepted: 04/06/2024] [Indexed: 05/01/2024]
Abstract
BACKGROUND Ultra-endurance events are gaining popularity in multiple exercise disciplines, including cycling. With increasing numbers of ultra-cycling events, aspects influencing participation and performance are of interest to the cycling community. MAIN BODY The aim of this narrative review was, therefore, to assess the types of races offered, the characteristics of the cyclists, the fluid and energy balance during the race, the body mass changes after the race, and the parameters that may enhance performance based on existing literature. A literature search was conducted in PubMed, Scopus, and Google Scholar using the search terms 'ultracycling', 'ultra cycling', 'ultra-cycling', 'ultra-endurance biking', 'ultra-bikers' and 'prolonged cycling'. The search yielded 948 results, of which 111 were relevant for this review. The studies were classified according to their research focus and the results were summarized. The results demonstrated changes in physiological parameters, immunological and oxidative processes, as well as in fluid and energy balance. While the individual race with the most published studies was the Race Across America, most races were conducted in Europe, and a trend for an increase in European participants in international races was observed. Performance seems to be affected by characteristics such as age and sex but not by anthropometric parameters such as skin fold thickness. The optimum age for the top performance was around 40 years. Most participants in ultra-cycling events were male, but the number of female athletes has been increasing over the past years. Female athletes are understudied due to their later entry and less prominent participation in ultra-cycling races. A post-race energy deficit after ultra-cycling events was observed. CONCLUSION Future studies need to investigate the causes for the observed optimum race age around 40 years of age as well as the optimum nutritional supply to close the observed energy gap under consideration of the individual race lengths and conditions. Another research gap to be filled by future studies is the development of strategies to tackle inflammatory processes during the race that may persist in the post-race period.
Collapse
Affiliation(s)
- Lucas Tiemeier
- Centre for Rehabilitation & Sports Medicine, Bern University Hospital, Inselspital, University of Bern, Bern, Switzerland
| | | | - Daniela Chlíbková
- Centre of Sports Activities, Brno University of Technology, 61669, Brno, Czech Republic
| | - Matthias Wilhelm
- Centre for Rehabilitation & Sports Medicine, Bern University Hospital, Inselspital, University of Bern, Bern, Switzerland
| | | | - Katja Weiss
- Institute of Primary Care, University of Zurich, Zurich, Switzerland
| | - Beat Knechtle
- Institute of Primary Care, University of Zurich, Zurich, Switzerland.
- Medbase St. Gallen Am Vadianplatz, Vadianstrasse 26, 9001, St. Gallen, Switzerland.
| |
Collapse
|
3
|
Nikolaidis PT, Villiger E, Knechtle B. Participation and Performance Trends in the ITU Duathlon World Championship From 2003 to 2017. J Strength Cond Res 2021; 35:1127-1133. [PMID: 30363036 DOI: 10.1519/jsc.0000000000002851] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
Abstract
ABSTRACT Nikolaidis, PT, Villiger, E, and Knechtle, B. Participation and performance trends in the ITU Duathlon World Championship from 2003 to 2017. J Strength Cond Res 35(4): 1127-1133, 2021-Participation and performance across years have been studied extensively in various endurance and ultra-endurance sports; however, less information exists with regards to duathlon (i.e., Run 1, Bike, and Run 2). The aim of this study was to examine performance and participation trends of duathletes competing either to short (10-km Run 1, 50-km Bike, and 5-km Run 2) or to long distance (10-km Run 1, 150-km Bike, and 30-km Run 2) in the Powerman World Championship "Powerman Zofingen." We analyzed 7,951 finishers (women, n = 1,236, age 36.7 ± 9.1 years; men, n = 6,715, 40.1 ± 10.1 years) competing in "Powerman Zofingen" from 2003 to 2017. Men were faster than women by 8.2% (171 ± 21 minutes vs. 186 ± 21 minutes, p < 0.001, η2 = 0.068) and 7.5% (502 ± 57 minutes vs. 543 ± 64 minutes, p < 0.001, η2 = 0.068) in the short and long distances, respectively. Women were younger than men by 4.6 years (35.0 ± 9.0 years vs. 39.6 ± 10.5 years, p < 0.001, η2 = 0.026) and 1.8 years (38.8 ± 8.7 years vs. 40.6 ± 9.5 years, p < 0.001, η2 = 0.005) in the short and long distances, respectively. An increase of women finishers across years in the long distance was observed (e.g., n = 19 in 2003 and n = 58 in 2017; p < 0.001), whereas no change was shown in short distance and men finishers. The men-to-women ratio (MWR) decreased across years in the long, but not in the short distance. No change of race time across years was observed. The sex difference in race time increased in long distance (p = 0.014), whereas it did not change in the short. Age increased across years in both sexes and distances (p < 0.001). The sex difference in age decreased in the long (p = 0.007), but not in the short distance. In summary, the number of women finishers increased and the MWR decreased in the long distance. The age of the finishers increased across years, and their performance remained unchanged. The increase of the sex difference in race time in the long distance might be attributed to the increased number of women finishers.
Collapse
Affiliation(s)
- Pantelis T Nikolaidis
- Exercise Physiology Laboratory, Nikaia, Greece
- Exercise Testing Laboratory, Hellenic Air Force Academy, Acharnes, Greece
| | - Elias Villiger
- Institute of Primary Care, University of Zurich, Zurich, Switzerland ; and
| | - Beat Knechtle
- Institute of Primary Care, University of Zurich, Zurich, Switzerland ; and
- Medbase St. Gallen am Vadianplatz, St. Gallen, Switzerland
| |
Collapse
|
4
|
Sex Differences in Swimming Disciplines-Can Women Outperform Men in Swimming? INTERNATIONAL JOURNAL OF ENVIRONMENTAL RESEARCH AND PUBLIC HEALTH 2020; 17:ijerph17103651. [PMID: 32456109 PMCID: PMC7277665 DOI: 10.3390/ijerph17103651] [Citation(s) in RCA: 24] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Subscribe] [Scholar Register] [Received: 03/25/2020] [Revised: 05/17/2020] [Accepted: 05/19/2020] [Indexed: 11/26/2022]
Abstract
In recent years, the interest of female dominance in long-distance swimming has grown where several newspaper articles have been published speculating about female performance and dominance—especially in open-water ultra-distance swimming. The aim of this narrative review is to review the scientific literature regarding the difference between the sexes for all swimming strokes (i.e., butterfly, backstroke, breaststroke, freestyle and individual medley), different distances (i.e., from sprint to ultra-distances), extreme conditions (i.e., cold water), different ages and swimming integrated in multi-sports disciplines, such as triathlon, in various age groups and over calendar years. The influence of various physiological, psychological, anthropometrical and biomechanical aspects to potentially explain the female dominance was also discussed. The data bases Scopus and PUBMED were searched by April 2020 for the terms ’sex–difference–swimming’. Long-distance open-water swimmers and pool swimmers of different ages and performance levels were mainly investigated. In open-water long-distance swimming events of the ’Triple Crown of Open Water Swimming’ with the ’Catalina Channel Swim’, the ’English Channel Swim’ and the ’Manhattan Island Marathon Swim’, women were about 0.06 km/h faster than men. In master swimmers (i.e., age groups 25–29 to 90–94 years) competing in the FINA (Fédération Internationale de Natation) World Championships in pool swimming in freestyle, backstroke, butterfly, breaststroke, individual medley and in 3000-m open-water swimming, women master swimmers appeared able to achieve similar performances as men in the oldest age groups (i.e., older than 75–80 years). In boys and girls aged 5–18 years—and listed in the all-time top 100 U.S. freestyle swimming performances from 50 m to 1500 m—the five fastest girls were faster than the five fastest boys until the age of ~10 years. After the age of 10 years, and until the age of 17 years, however, boys were increasingly faster than girls. Therefore, women tended to decrease the existing sex differences in specific age groups (i.e., younger than 10 years and older than 75–80 years) and swimming strokes in pool-swimming or even to overperform men in long-distance open-water swimming (distance of ~30 km), especially under extreme weather conditions (water colder than ~20 °C). Two main variables may explain why women can swim faster than men in open-water swimming events: (i) the long distance of around 30 km, (ii) and water colder than ~20 °C. Future studies may investigate more detailed (e.g., anthropometry) the very young (<10 years) and very old (>75–80 years) age groups in swimming
Collapse
|
5
|
Keenan KG, Senefeld JW, Hunter SK. Girls in the boat: Sex differences in rowing performance and participation. PLoS One 2018; 13:e0191504. [PMID: 29352279 PMCID: PMC5774800 DOI: 10.1371/journal.pone.0191504] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/12/2017] [Accepted: 01/06/2018] [Indexed: 12/25/2022] Open
Abstract
Men outperform women in many athletic endeavors due to physiological and anatomical differences (e.g. larger and faster muscle); however, the observed sex differences in elite athletic performance are typically larger than expected, and may reflect sex-related differences in opportunity or incentives. As collegiate rowing in the United States has been largely incentivized for women over the last 20 years, but not men, the purpose of this study was to examine sex differences in elite rowing performance over that timeframe. Finishing times from grand finale races for collegiate championship on-water performances (n = 480) and junior indoor performances (n = 1,280) were compared between men and women across 20 years (1997–2016), weight classes (heavy vs. lightweight) and finishing place. Participation of the numbers of men and women rowers were also quantified across years. Men were faster than women across all finishing places, weight classes and years of competition and performance declined across finishing place for both men and women (P<0.001). Interestingly, the reduction in performance time across finishing place was greater (P<0.001) for collegiate men compared to women in the heavyweight division. This result is opposite to other sports (e.g. running and swimming), and to lightweight rowing in this study, which provides women fewer incentives than in heavyweight rowing. Correspondingly, participation in collegiate rowing has increased by ~113 women per year (P<0.001), with no change (P = 0.899) for collegiate men. These results indicate that increased participation and incentives within collegiate rowing for women vs. men contribute to sex differences in athletic performance.
Collapse
Affiliation(s)
- Kevin G. Keenan
- Department of Kinesiology University of Wisconsin–Milwaukee, WI, United States of America
- Center for Aging and Translational Research University of Wisconsin–Milwaukee, WI, United States of America
- * E-mail:
| | - Jonathon W. Senefeld
- Department of Physical Therapy Marquette University, Milwaukee, WI, United States of America
| | - Sandra K. Hunter
- Department of Physical Therapy Marquette University, Milwaukee, WI, United States of America
| |
Collapse
|
6
|
Knechtle B, Zingg MA, Rosemann T, Stiefel M, Rüst CA. What predicts performance in ultra-triathlon races? - a comparison between Ironman distance triathlon and ultra-triathlon. Open Access J Sports Med 2015; 6:149-59. [PMID: 26056498 PMCID: PMC4445872 DOI: 10.2147/oajsm.s79273] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/02/2023] Open
Abstract
Objective This narrative review summarizes recent intentions to find potential predictor variables for ultra-triathlon race performance (ie, triathlon races longer than the Ironman distance covering 3.8 km swimming, 180 km cycling, and 42.195 km running). Results from studies on ultra-triathletes were compared to results on studies on Ironman triathletes. Methods A literature search was performed in PubMed using the terms “ultra”, “triathlon”, and “performance” for the aspects of “ultra-triathlon”, and “Ironman”, “triathlon”, and “performance” for the aspects of “Ironman triathlon”. All resulting papers were searched for related citations. Results for ultra-triathlons were compared to results for Ironman-distance triathlons to find potential differences. Results Athletes competing in Ironman and ultra-triathlon differed in anthropometric and training characteristics, where both Ironmen and ultra-triathletes profited from low body fat, but ultra-triathletes relied more on training volume, whereas speed during training was related to Ironman race time. The most important predictive variables for a fast race time in an ultra-triathlon from Double Iron (ie, 7.6 km swimming, 360 km cycling, and 84.4 km running) and longer were male sex, low body fat, age of 35–40 years, extensive previous experience, a fast time in cycling and running but not in swimming, and origins in Central Europe. Conclusion Any athlete intending to compete in an ultra-triathlon should be aware that low body fat and high training volumes are highly predictive for overall race time. Little is known about the physiological characteristics of these athletes and about female ultra-triathletes. Future studies need to investigate anthropometric and training characteristics of female ultra-triathletes and what motivates women to compete in these races. Future studies need to correlate physiological characteristics such as maximum oxygen uptake (VO2max) with ultra-triathlon race performance in order to investigate whether these characteristics are also predictive for ultra-triathlon race performance.
Collapse
Affiliation(s)
- Beat Knechtle
- Institute of Primary Care, University of Zurich, Zurich, Switzerland ; Gesundheitszentrum St Gallen, St Gallen, Switzerland
| | | | - Thomas Rosemann
- Institute of Primary Care, University of Zurich, Zurich, Switzerland
| | - Michael Stiefel
- Institute of Primary Care, University of Zurich, Zurich, Switzerland
| | | |
Collapse
|
7
|
Zingg MA, Rüst CA, Rosemann T, Lepers R, Knechtle B. Analysis of sex differences in open-water ultra-distance swimming performances in the FINA World Cup races in 5 km, 10 km and 25 km from 2000 to 2012. BMC Sports Sci Med Rehabil 2014; 6:7. [PMID: 24559049 PMCID: PMC3948019 DOI: 10.1186/2052-1847-6-7] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/23/2013] [Accepted: 02/18/2014] [Indexed: 11/29/2022]
Abstract
BACKGROUND The present study investigated the changes in swimming speeds and sex differences for elite male and female swimmers competing in 5 km, 10 km and 25 km open-water FINA World Cup races held between 2000 and 2012. METHODS The changes in swimming speeds and sex differences across years were analysed using linear, non-linear, and multi-level regression analyses for the annual fastest and the annual ten fastest competitors. RESULTS For the annual fastest, swimming speed remained stable for men and women in 5 km (5.50 ± 0.21 and 5.08 ± 0.19 km/h, respectively), in 10 km (5.38 ± 0.21 and 5.05 ± 0.26 km/h, respectively) and in 25 km (5.03 ± 0.32 and 4.58 ± 0.27 km/h, respectively). In the annual ten fastest, swimming speed remained constant in 5 km in women (5.02 ± 0.19 km/h) but decreased significantly and linearly in men from 5.42 ± 0.03 km/h to 5.39 ± 0.02 km/h. In 10 km, swimming speed increased significantly and linearly in women from 4.75 ± 0.01 km/h to 5.74 ± 0.01 km/h but remained stable in men at 5.36 ± 0.21 km/h. In 25 km, swimming speed decreased significantly and linearly in women from 4.60 ± 0.06 km/h to 4.44 ± 0.08 km/h but remained unchanged at 4.93 ± 0.34 km/h in men. For the annual fastest, the sex difference in swimming speed remained unchanged in 5 km (7.6 ± 3.0%), 10 km (6.1 ± 2.5%) and 25 km (9.0 ± 3.7%). For the annual ten fastest, the sex difference remained stable in 5 km at 7.6 ± 0.6%, decreased significantly and linearly in 10 km from 7.7 ± 0.7% to 1.2 ± 0.3% and increased significantly and linearly from 4.7 ± 1.4% to 9.6 ± 1.5% in 25 km. CONCLUSIONS To summarize, elite female open-water ultra-distance swimmers improved in 10 km but impaired in 25 km leading to a linear decrease in sex difference in 10 km and a linear increase in sex difference in 25 km. The linear changes in sex differences suggest that women will improve in the near future in 10 km, but not in 25 km.
Collapse
Affiliation(s)
- Matthias Alexander Zingg
- Institute of General Practice and for Health Services Research, University of Zurich, Zurich, Switzerland
| | - Christoph Alexander Rüst
- Institute of General Practice and for Health Services Research, University of Zurich, Zurich, Switzerland
| | - Thomas Rosemann
- Institute of General Practice and for Health Services Research, University of Zurich, Zurich, Switzerland
| | - Romuald Lepers
- INSERM U1093, Faculty of Sport Sciences, University of Burgundy, Dijon, France
| | - Beat Knechtle
- Institute of General Practice and for Health Services Research, University of Zurich, Zurich, Switzerland
- Gesundheitszentrum St. Gallen, Vadianstrasse 26, 9001 St. Gallen, Switzerland
| |
Collapse
|
8
|
Changes in transition times in 'Ironman Hawaii' between 1998 and 2013. BMC Sports Sci Med Rehabil 2014; 6:37. [PMID: 26019873 PMCID: PMC4445532 DOI: 10.1186/2052-1847-6-37] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/13/2014] [Accepted: 10/03/2014] [Indexed: 11/10/2022]
Abstract
BACKGROUND Recent findings showed that elite Ironman triathletes competing in 'Ironman Hawaii' improved both split and overall race times. The present study investigated whether elite athletes also improved in transition time (i.e. time needed between disciplines for changing clothes and equipment). METHODS Changes in split times, overall race times and transition times (i.e. expressed in absolute and relative terms) in the annual fastest competing in 'Ironman Hawaii' were investigated using linear, non-linear and multi-level regression analyses. To detect a potential difference in transition times between different race distances, we compared transition times in 'Ironman Hawaii' to transition times in the World Championships 'Ironman 70.3' covering the half distance of the Ironman distance triathlon. RESULTS In 'Ironman Hawaii', transition times remained unchanged for the annual fastest women but increased linearly for the annual fastest men. For the annual ten fastest, transition times increased linearly for women and men in both absolute and relative terms. The sex difference in transition times remained unchanged for the annual fastest, but decreased linearly for the annual ten fastest. In 'Ironman 70.3', transition times remained unchanged for the annual fastest. For the annual ten fastest, transition times decreased linearly for both women and men in absolute and relative terms. The sex difference in transition times remained unchanged for both the annual fastest and the annual ten fastest. Transition times were faster in 'Ironman 70.3' for women in 2011 and for men in 2006, 2007, and 2010-2013. In relative terms, transition times were faster in 'Ironman 70.3'compared to 'Ironman Hawaii' during 2006-2013. The sex difference in transition times remained unchanged. CONCLUSIONS In 'Ironman Hawaii', transition times increased for both women and men whereas the sex difference decreased. In 'Ironman 70.3', transition times decreased for both women and men whereas the sex difference remained unchanged. Generally, transition times were slower in 'Ironman Hawaii' compared to 'Ironman 70.3'.
Collapse
|