1
|
Shariatpanahi S, Rashidi A, Soroush MR, Poorfarzam S, Faghihzadeh E, Yaraee R, Ghazanfari T. High-titer rheumatologic markers in serum of veterans with severe pulmonary complications 25-30 years after sulfur mustard exposure. Int Immunopharmacol 2025; 146:113875. [PMID: 39709907 DOI: 10.1016/j.intimp.2024.113875] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/25/2024] [Revised: 11/23/2024] [Accepted: 12/14/2024] [Indexed: 12/24/2024]
Abstract
Sulfur mustard (SM), known as the "king of toxic agents," continues to pose a potential danger due to its ability to cause widespread damage, including ongoing corrosive effects. We aimed to determine the rheumatologic markers in SM veterans suffering from severe pulmonary manifestations. The serologic markers, including ANA, anti-DNA, rheumatoid factor (RF), and CRP, between SM-exposed veterans (n = 229) with severe problems and not-SM-exposed residents with no pulmonary disease history (n = 63), 25-30 years after SM exposure were compared. Moreover, SM-exposed veterans were divided into subgroups, including bronchiolitis obliterans, chronic bronchitis, and asthma, based on specialists' diagnoses, and all the data were compared among these clinical subgroups. Autoantibodies were assessed by standard indirect immunofluorescence and/or ELISA. The levels of serum hs-CRP were determined using an immunoturbidometry technique in both the patient and control groups. Statistical analysis was performed using SPSS software. Patients had significantly elevated ANA (P = 0.000), anti-DNA (P = 0.024), RF (P = 0.000), and CRP (P = 0.000) levels compared to the matched control group. These results indicate a possible autoimmune circumstance in this population and suggest the need to follow up the autoimmunity-related markers in all SM-exposed individuals, since they might be a valuable prognostic biomarker for stratifying patients for the future risk of autoimmunity development.
Collapse
Affiliation(s)
| | - Azadeh Rashidi
- Immunoregulation Research Center, Shahed University, Tehran, Iran
| | | | | | - Elham Faghihzadeh
- Department of Epidemiology and Biostatistics, School of Medicine, Zanjan University, Tehran, Iran
| | - Roya Yaraee
- Department of Immunology, Shahed University, Tehran, Iran
| | - Tooba Ghazanfari
- Immunoregulation Research Center, Shahed University, Tehran, Iran.
| |
Collapse
|
2
|
Swami D, Yadav R, Bhaskar ASB, Soni A, Nagar DP, Acharya J, Karade HN, Singh KP, Kumar P. Comparative evaluation of antidotal efficacy of 2-PAM and HNK-102 oximes during inhalation of sarin vapor in Swiss albino mice. Inhal Toxicol 2018; 30:287-298. [PMID: 30375901 DOI: 10.1080/08958378.2018.1520369] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/04/2023]
Abstract
Efficacy of two oximes treatments evaluated during inhalation of sarin vapor (LCt50, 755.9 mg/min/m3) in simulated real scenario in vivo. Majority of mice either became moribund or died within 1-2 min during exposure to multifold-lethal concentrations of sarin vapor. Protection indices were determined by exposing to sarin vapor in two sessions, 1 min exposure followed by treatments with or without HNK-102 (56.56 mg/kg, im) or 2-PAM (30 mg/kg, im) and atropine (10 mg/kg, ip), and again exposed for remaining 14 min. Protection offered by HNK-102 was found to be four folds higher compared to 2-PAM in the same toxic environment. Secondly, sub-lethal concentration of sarin vapor (0.8 × LCt50 or 605 mg/min/m3), 24 h post investigations revealed that the oximes could not reactivate brain and serum acetylcholinesterase (AChE) activity. The treatments prevented increase in protein concentration (p < .05) and macrophages infiltration compared to sarin alone group in broncho-alveolar lavage fluid. Lung histopathology showed intense peribronchial infiltration and edema with desquamating epithelial lining and mild to moderate alveolar septal infiltration in sarin and atropine groups, respectively. Noticeable peeling-off observed in epithelial lining and sporadic mild infiltration of epithelial cells at bronchiolar region in 2-PAM and HNK-102 groups, respectively. The oximes failed to reactivate AChE activity; however, the mice survived up to 6.0 × LCt50, proved involvement of non-AChE targets in sarin toxicity. Atropine alone treatment was found to be either ineffective or increased the toxicity. HNK-102, exhibited better survivability with lung protection, can be considered as a better replacement for 2-PAM to treat sarin inhalation induced poisoning.
Collapse
Affiliation(s)
- Devyani Swami
- a Pharmacology and Toxicology Division , Defence Research & Development Establishment , Gwalior , India
| | - Ruchi Yadav
- a Pharmacology and Toxicology Division , Defence Research & Development Establishment , Gwalior , India
| | - A S B Bhaskar
- a Pharmacology and Toxicology Division , Defence Research & Development Establishment , Gwalior , India
| | - A Soni
- a Pharmacology and Toxicology Division , Defence Research & Development Establishment , Gwalior , India
| | - D P Nagar
- a Pharmacology and Toxicology Division , Defence Research & Development Establishment , Gwalior , India
| | - J Acharya
- b Process Technology Development Division , Defence Research & Development Establishment , Gwalior , India
| | - H N Karade
- b Process Technology Development Division , Defence Research & Development Establishment , Gwalior , India
| | - K P Singh
- a Pharmacology and Toxicology Division , Defence Research & Development Establishment , Gwalior , India
| | - Pravin Kumar
- a Pharmacology and Toxicology Division , Defence Research & Development Establishment , Gwalior , India
| |
Collapse
|
3
|
Beigi Harchegani A, Khor A, Tahmasbpour E, Ghatrehsamani M, Bakhtiari Kaboutaraki H, Shahriary A. Role of oxidative stress and antioxidant therapy in acute and chronic phases of sulfur mustard injuries: a review. Cutan Ocul Toxicol 2018; 38:9-17. [DOI: 10.1080/15569527.2018.1495230] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/29/2022]
Affiliation(s)
- Asghar Beigi Harchegani
- Chemical Injuries Research Center, Systems biology and poisonings institute, Baqiyatallah University of Medical Sciences, Tehran, Iran
| | - Abolfazl Khor
- Chemical Injuries Research Center, Systems biology and poisonings institute, Baqiyatallah University of Medical Sciences, Tehran, Iran
| | - Eisa Tahmasbpour
- Laboratory of Regenerative Medicine & Biomedical Innovations, Pasteur Institute of Iran, Tehran, Iran
| | - Mahdi Ghatrehsamani
- Cellular and Molecular Research Center, Shahrekord University of Medical Sciences, Shahrekord, Iran
| | - Hamid Bakhtiari Kaboutaraki
- Chemical Injuries Research Center, Systems biology and poisonings institute, Baqiyatallah University of Medical Sciences, Tehran, Iran
| | - Alireza Shahriary
- Chemical Injuries Research Center, Systems biology and poisonings institute, Baqiyatallah University of Medical Sciences, Tehran, Iran
| |
Collapse
|
4
|
Advanced biotherapy for the treatment of sulfur mustard poisoning. Chem Biol Interact 2018; 286:111-118. [DOI: 10.1016/j.cbi.2018.03.011] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/01/2017] [Revised: 02/09/2018] [Accepted: 03/19/2018] [Indexed: 01/09/2023]
|
5
|
Jost P, Fikrova P, Svobodova H, Pejchal J, Stetina R. Protective potential of different compounds and their combinations with MESNA against sulfur mustard-induced cytotoxicity and genotoxicity. Toxicol Lett 2017; 275:92-100. [PMID: 28495614 DOI: 10.1016/j.toxlet.2017.05.010] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/27/2017] [Revised: 04/11/2017] [Accepted: 05/05/2017] [Indexed: 12/01/2022]
Abstract
The purpose of this study was to evaluate the efficacy of potential candidate molecules or their combinations against strong alkylation agent sulfur mustard (SM) on the human lung alveolar epithelial cell line A-549. Candidate molecules were chosen on the basis of their previously observed protective effects in vitro. The tested compounds, including antioxidants, sulfhydryl or other sulfur-containing molecules, nitrogen-containing molecules, PARP inhibitors and a NO synthase inhibitor, were applicated 30min before SM treatment. The efficiency of candidate molecules to protect cells against DNA damage and cell death induced by SM was determined using single-cell gel electrophoresis (comet assay) and 3-(4,5-dimethylthiazol-2-yl)-2,5-diphenyltetrazolium bromide (MTT) reduction by viable cells. The damage of DNA was assessed 1 and 24h after dose 50μM SM. Cell survival was assessed 24 and 72h after the exposure. To achieve maximal cytoprotection, combinations of selected compounds with sodium 2-mercaptoethane sulphonate (MESNA) were tested. We found significant protective effects by several drugs used individually and also in combination with MESNA. High protection was achieved by sodium thiosulphate, which was further potentiated when combined with MESNA. Most of the selected compounds or mixture provided only moderate genoptotection without having any effect towards cell viability.
Collapse
Affiliation(s)
- Petr Jost
- Department of Toxicology and Military Pharmacy, Faculty of Military Health Sciences, University of Defense, Trebesska 1575, 500 01 Hradec Kralove, Czech Republic; Biomedical Research Center, University Hospital Hradec Kralove, Sokolska 581, 500 05, Hradec Kralove, Czech Republic.
| | - Petra Fikrova
- Department of Research and Development, University Hospital Hradec Kralove, Sokolska 581, 500 05 Hradec Kralove, Czech Republic
| | - Hana Svobodova
- Department of Toxicology and Military Pharmacy, Faculty of Military Health Sciences, University of Defense, Trebesska 1575, 500 01 Hradec Kralove, Czech Republic
| | - Jaroslav Pejchal
- Department of Toxicology and Military Pharmacy, Faculty of Military Health Sciences, University of Defense, Trebesska 1575, 500 01 Hradec Kralove, Czech Republic
| | - Rudolf Stetina
- Department of Toxicology and Military Pharmacy, Faculty of Military Health Sciences, University of Defense, Trebesska 1575, 500 01 Hradec Kralove, Czech Republic; Department of Biological and Medical Science, Faculty of Pharmacy in Hradec Kralove, Charles University in Prague, Heyrovskeho 1203, 500 05 Hradec Kralove, Czech Republic
| |
Collapse
|
6
|
Khan F, Niaz K, Ismail Hassan F, Abdollahi M. An evidence-based review of the genotoxic and reproductive effects of sulfur mustard. Arch Toxicol 2016; 91:1143-1156. [PMID: 28032143 DOI: 10.1007/s00204-016-1911-8] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/25/2016] [Accepted: 12/07/2016] [Indexed: 01/18/2023]
Abstract
Sulfur mustard (SM) is a chemical warfare agent which is cytotoxic in nature, and at the molecular level, SM acts as DNA alkylating agent leading to genotoxic and reproductive effects. Mostly, the exposed areas of the body are the main targets for SM; however, it also adversely affects various tissues of the body and ultimately exhibits long-term complications including genotoxic and reproductive effects, even in the next generations. The effect of SM on reproductive system is the reason behind male infertility. The chronic genotoxic and reproductive complications of SM have been observed in the next generation, such as reproductive hormones disturbances, testicular atrophy, deficiency of sperm cells, retarded growth of sperm and male infertility. SM exerts toxic effects through various mechanisms causing reproductive dysfunction. The key mechanisms include DNA alkylation, production of reactive oxygen species (ROS) and nicotinamide adenine dinucleotide (NAD) depletion. However, the exact molecular mechanism of such long-term effects of SM is still unclear. In general, DNA damage, cell death and defects in the cell membrane are frequently observed in SM-exposed individuals. SM can activate various cellular and molecular mechanisms related to oxidative stress (OS) and inflammatory responses throughout the reproductive system, which can cause decreased spermatogenesis and impaired sperm quality via damage to tissue function and structure. Moreover, the toxic effects of SM on the reproductive system as well as the occurrence of male infertility among exposed war troopers in the late exposure phase is still uncertain. The chronic effects of SM exposure in parents can cause congenital defects in their children. In this review, we aimed to investigate chronic genotoxic and reproductive effects of SM and their molecular mechanisms in the next generations.
Collapse
Affiliation(s)
- Fazlullah Khan
- International Campus, Tehran University of Medical Sciences (IC-TUMS), Tehran, Iran
- Toxicology and Diseases Group, Pharmaceutical Sciences Research Center, Tehran University of Medical Sciences, Tehran, Iran
- Department of Toxicology and Pharmacology, Faculty of Pharmacy and Pharmaceutical Sciences Research Center, Tehran University of Medical Sciences, Tehran, 1417614411, Iran
| | - Kamal Niaz
- International Campus, Tehran University of Medical Sciences (IC-TUMS), Tehran, Iran
- Toxicology and Diseases Group, Pharmaceutical Sciences Research Center, Tehran University of Medical Sciences, Tehran, Iran
- Department of Toxicology and Pharmacology, Faculty of Pharmacy and Pharmaceutical Sciences Research Center, Tehran University of Medical Sciences, Tehran, 1417614411, Iran
| | - Fatima Ismail Hassan
- International Campus, Tehran University of Medical Sciences (IC-TUMS), Tehran, Iran
- Toxicology and Diseases Group, Pharmaceutical Sciences Research Center, Tehran University of Medical Sciences, Tehran, Iran
- Department of Toxicology and Pharmacology, Faculty of Pharmacy and Pharmaceutical Sciences Research Center, Tehran University of Medical Sciences, Tehran, 1417614411, Iran
| | - Mohammad Abdollahi
- International Campus, Tehran University of Medical Sciences (IC-TUMS), Tehran, Iran.
- Toxicology and Diseases Group, Pharmaceutical Sciences Research Center, Tehran University of Medical Sciences, Tehran, Iran.
- Department of Toxicology and Pharmacology, Faculty of Pharmacy and Pharmaceutical Sciences Research Center, Tehran University of Medical Sciences, Tehran, 1417614411, Iran.
| |
Collapse
|
7
|
Marzony ET, Ghanei M, Panahi Y. Relationship of oxidative stress with male infertility in sulfur mustard-exposed injuries. ASIAN PACIFIC JOURNAL OF REPRODUCTION 2016. [DOI: 10.1016/j.apjr.2015.12.001] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/27/2022] Open
|
8
|
Tahmasbpour E, Reza Emami S, Ghanei M, Panahi Y. Role of oxidative stress in sulfur mustard-induced pulmonary injury and antioxidant protection. Inhal Toxicol 2015; 27:659-72. [DOI: 10.3109/08958378.2015.1092184] [Citation(s) in RCA: 31] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
|