1
|
Soleymani S, Naghib SM, Mozafari MR. Circulating Tumor Cells in Cancer Diagnosis, Therapy, and Theranostics Applications: An Overview of Emerging Materials and Technologies. Curr Pharm Des 2025; 31:674-690. [PMID: 39473210 DOI: 10.2174/0113816128328459241009191933] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/20/2024] [Accepted: 09/06/2024] [Indexed: 04/11/2025]
Abstract
In recent years, immunotherapy, namely immune checkpoint inhibitor therapy, has significantly transformed the approach to treating various forms of cancer. Simultaneously, the adoption of clinical oncology has been sluggish due to the exorbitant expense of therapy, the adverse effects experienced by patients, and the inconsistency in treatment response among individuals. As a reaction, individualized methods utilizing predictive biomarkers have arisen as novel strategies for categorizing patients to achieve successful immunotherapy. Recently, the identification and examination of circulating tumor cells (CTCs) have gained attention as predictive indicators for the treatment of cancer patients undergoing chemotherapy and for personalized targeted therapy. CTCs have been found to exhibit immunological checkpoints in several types of solid tumors, which has contributed to our understanding of managing cancer immunotherapy. Circulating tumor cells (CTCs) present in the bloodstream have a crucial function in the formation of metastases. Nevertheless, the practical usefulness of existing CTC tests is mostly restricted by methodological limitations.
Collapse
Affiliation(s)
- Sina Soleymani
- Nanotechnology Department, School of Advanced Technologies, Iran University of Science and Technology, Tehran, Iran
| | - Seyed Morteza Naghib
- Nanotechnology Department, School of Advanced Technologies, Iran University of Science and Technology, Tehran, Iran
| | - M R Mozafari
- Australasian Nanoscience and Nanotechnology Initiative (ANNI), Monash University LPO, Clayton, VIC 3168, Australia
| |
Collapse
|
2
|
Liu C, Cai Y, Mou S. Liquid biopsy in lung cancer: The role of circulating tumor cells in diagnosis, treatment, and prognosis. Biomed Pharmacother 2024; 181:117726. [PMID: 39612860 DOI: 10.1016/j.biopha.2024.117726] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/01/2024] Open
Abstract
Despite numerous therapeutic advancements, such as immune checkpoint inhibitors, lung cancer continues to be the leading cause of cancer-related mortality. Therefore, the identification of cancer at an early stage is becoming a significant subject in contemporary oncology. Despite significant advancements in early detection tactics in recent decades, they continue to provide challenges because of the inconspicuous symptoms observed during the early stages of the primary tumor. Presently, tumor biomarkers and imaging techniques are extensively employed across different forms of cancer. Nevertheless, every approach has its own set of constraints. In certain instances, the detriments outweigh the advantages. Hence, there is an urgent need to enhance early detection methods. Currently, liquid biopsy is considered more flexible and not intrusive method in comparison to conventional test for early detection. Circulating tumor cells (CTCs) are crucial components of liquid biopsy and have a pivotal function in the spread and formation of secondary tumors. These indicators show great promise in the early identification of cancer. This study presents a comprehensive examination of the methodologies employed for the isolation and enrichment of circulating tumor cells (CTCs) in lung cancer. Additionally, it explores the formation of clusters of CTCs, which have a pivotal function in facilitating the effective dissemination of cancer to distant organs. In addition, we discuss the importance of CTCs in the detection, treatment, and prognosis of lung cancer.
Collapse
Affiliation(s)
- Chibo Liu
- Department of Clinical Laboratory, Taizhou Municipal Hospital, Taizhou, Zhejiang, China.
| | - Yanqun Cai
- Department of Clinical Laboratory, Taizhou Municipal Hospital, Taizhou, Zhejiang, China
| | - Sihua Mou
- Department of Clinical Laboratory, Taizhou Municipal Hospital, Taizhou, Zhejiang, China.
| |
Collapse
|
3
|
Ahmed TM, Kawamoto S, Lopez-Ramirez F, Yasrab M, Hruban RH, Fishman EK, Chu LC. Early detection of pancreatic cancer in the era of precision medicine. Abdom Radiol (NY) 2024; 49:3559-3573. [PMID: 38761272 DOI: 10.1007/s00261-024-04358-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/31/2024] [Revised: 04/23/2024] [Accepted: 04/23/2024] [Indexed: 05/20/2024]
Abstract
Pancreatic ductal adenocarcinoma (PDAC) is the third leading cause of cancer-related mortality and it is often diagnosed at advanced stages due to non-specific clinical presentation. Disease detection at localized disease stage followed by surgical resection remains the only potentially curative treatment. In this era of precision medicine, a multifaceted approach to early detection of PDAC includes targeted screening in high-risk populations, serum biomarkers and "liquid biopsies", and artificial intelligence augmented tumor detection from radiologic examinations. In this review, we will review these emerging techniques in the early detection of PDAC.
Collapse
Affiliation(s)
- Taha M Ahmed
- The Russell H. Morgan Department of Radiology and Radiological Science, Johns Hopkins Hospital, Baltimore, MD, USA
| | - Satomi Kawamoto
- The Russell H. Morgan Department of Radiology and Radiological Science, Johns Hopkins Hospital, Baltimore, MD, USA
| | - Felipe Lopez-Ramirez
- The Russell H. Morgan Department of Radiology and Radiological Science, Johns Hopkins Hospital, Baltimore, MD, USA
| | - Mohammad Yasrab
- The Russell H. Morgan Department of Radiology and Radiological Science, Johns Hopkins Hospital, Baltimore, MD, USA
| | - Ralph H Hruban
- Department of Pathology, Sol Goldman Pancreatic Cancer Research Center, Johns Hopkins University School of Medicine, Baltimore, MD, USA
| | - Elliot K Fishman
- The Russell H. Morgan Department of Radiology and Radiological Science, Johns Hopkins Hospital, Baltimore, MD, USA
| | - Linda C Chu
- The Russell H. Morgan Department of Radiology and Radiological Science, Johns Hopkins Hospital, Baltimore, MD, USA.
| |
Collapse
|
4
|
Gu X, Wei S, Lv X. Circulating tumor cells: from new biological insights to clinical practice. Signal Transduct Target Ther 2024; 9:226. [PMID: 39218931 PMCID: PMC11366768 DOI: 10.1038/s41392-024-01938-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/02/2023] [Revised: 05/31/2024] [Accepted: 07/29/2024] [Indexed: 09/04/2024] Open
Abstract
The primary reason for high mortality rates among cancer patients is metastasis, where tumor cells migrate through the bloodstream from the original site to other parts of the body. Recent advancements in technology have significantly enhanced our comprehension of the mechanisms behind the bloodborne spread of circulating tumor cells (CTCs). One critical process, DNA methylation, regulates gene expression and chromosome stability, thus maintaining dynamic equilibrium in the body. Global hypomethylation and locus-specific hypermethylation are examples of changes in DNA methylation patterns that are pivotal to carcinogenesis. This comprehensive review first provides an overview of the various processes that contribute to the formation of CTCs, including epithelial-mesenchymal transition (EMT), immune surveillance, and colonization. We then conduct an in-depth analysis of how modifications in DNA methylation within CTCs impact each of these critical stages during CTC dissemination. Furthermore, we explored potential clinical implications of changes in DNA methylation in CTCs for patients with cancer. By understanding these epigenetic modifications, we can gain insights into the metastatic process and identify new biomarkers for early detection, prognosis, and targeted therapies. This review aims to bridge the gap between basic research and clinical application, highlighting the significance of DNA methylation in the context of cancer metastasis and offering new avenues for improving patient outcomes.
Collapse
Affiliation(s)
- Xuyu Gu
- Department of Oncology, Shanghai Pulmonary Hospital, School of Medicine, Tongji University, Shanghai, China
| | - Shiyou Wei
- Department of Anesthesiology, Shanghai Pulmonary Hospital, School of Medicine, Tongji University, Shanghai, China
| | - Xin Lv
- Department of Anesthesiology, Shanghai Pulmonary Hospital, School of Medicine, Tongji University, Shanghai, China.
| |
Collapse
|
5
|
Zhao Y, Tang X, Lei T, Fu D, Zhang H. Lipocalin-2 promotes breast cancer brain metastasis by enhancing tumor invasion and modulating brain microenvironment. Front Oncol 2024; 14:1448089. [PMID: 39188682 PMCID: PMC11345181 DOI: 10.3389/fonc.2024.1448089] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/13/2024] [Accepted: 07/29/2024] [Indexed: 08/28/2024] Open
Abstract
Breast cancer is the leading cancer diagnosed in women globally, with brain metastasis emerging as a major cause of death, particularly in human epidermal growth factor receptor 2 positive and triple-negative breast cancer subtypes. Comprehensive understanding of the molecular foundations of central nervous system metastases is imperative for the evolution of efficacious treatment strategies. Lipocalin-2 (LCN2), a secreted iron transport protein with multiple functions, has been linked to the progression of breast cancer brain metastasis (BCBM). In primary tumors, LCN2 promotes the proliferation and angiogenesis of breast cancer cells, triggers the epithelial-mesenchymal transition, interacts with matrix metalloproteinase-9, thereby facilitating the reorganization of the extracellular matrix and enhancing cancer cell invasion and migration. In brain microenvironment, LCN2 undermines the blood-brain barrier and facilitates tumor seeding in the brain by modulating the behavior of key cellular components. In summary, this review meticulously examines the fuel role of LCN2 in BCBM cascade, and investigates the potential mechanisms involved. It highlights the potential of LCN2 as both a therapeutic target and biomarker, indicating that interventions targeting LCN2 may offer improved outcomes for patients afflicted with BCBM.
Collapse
Affiliation(s)
- Yang Zhao
- Department of Microbiology and Immunology, School of Medicine, Jinan University, Guangzhou, Guangdong, China
| | - Xiaogen Tang
- Department of Microbiology and Immunology, School of Medicine, Jinan University, Guangzhou, Guangdong, China
| | - Tingting Lei
- Department of Microbiology and Immunology, School of Medicine, Jinan University, Guangzhou, Guangdong, China
| | - Dongwei Fu
- Department of Oncology, The Affiliated Shunde Hospital of Jinan University, Foshan, Guangdong, China
| | - Hongyi Zhang
- Department of Microbiology and Immunology, School of Medicine, Jinan University, Guangzhou, Guangdong, China
| |
Collapse
|
6
|
Tao XY, Li QQ, Zeng Y. Clinical application of liquid biopsy in colorectal cancer: detection, prediction, and treatment monitoring. Mol Cancer 2024; 23:145. [PMID: 39014366 PMCID: PMC11250976 DOI: 10.1186/s12943-024-02063-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/08/2024] [Accepted: 07/09/2024] [Indexed: 07/18/2024] Open
Abstract
Colorectal cancer (CRC) is one of the most prevalent malignancies affecting the gastrointestinal tract and is ranked third among cancers with the highest incidence and second-highest mortality rate worldwide. CRC exhibits a slow progression providing a wide treatment window. The currently employed CRC screening methods have shown great potential to prevent CRC and reduce CRC-related morbidity and mortality. The diagnosis of CRC is achieved by colonoscopy and tissue biopsy, with studies showing that liquid biopsy is more effective in detecting and diagnosing early CRC patients. Increasing number of studies have shown that the tumor components shed into circulating blood can be detected in liquid form, and can be applied in the clinical management of CRC. Analysis of circulating tumor cells (CTCs), circulating tumor DNA (ctDNA), or tumor-associated platelets (TEPs) in the blood can be used for early screening and diagnosis of CRC, aid tumor staging, treatment response monitoring, and prediction of CRC recurrence and metastasis in a minimally invasive manner. This chapter provides an updated review of CTCs, ctDNA, and TEPs as novel biomarkers for CRC, highlighting their strengths and limitations.
Collapse
Affiliation(s)
- Xiang-Yuan Tao
- Translational Medicine Center, Hunan Cancer Hospital, The Affiliated Cancer Hospital of Xiangya School of Medicine, Central South University, Changsha, China
- School of Pharmacy, University of South China, Hengyang, China
| | - Qian-Qian Li
- Translational Medicine Center, Hunan Cancer Hospital, The Affiliated Cancer Hospital of Xiangya School of Medicine, Central South University, Changsha, China
- School of Pharmacy, University of South China, Hengyang, China
| | - Yong Zeng
- Translational Medicine Center, Hunan Cancer Hospital, The Affiliated Cancer Hospital of Xiangya School of Medicine, Central South University, Changsha, China.
- School of Pharmacy, University of South China, Hengyang, China.
| |
Collapse
|
7
|
Mahasa KJ, Ouifki R, de Pillis L, Eladdadi A. A Role of Effector CD 8 + T Cells Against Circulating Tumor Cells Cloaked with Platelets: Insights from a Mathematical Model. Bull Math Biol 2024; 86:89. [PMID: 38884815 DOI: 10.1007/s11538-024-01323-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/18/2024] [Accepted: 05/31/2024] [Indexed: 06/18/2024]
Abstract
Cancer metastasis accounts for a majority of cancer-related deaths worldwide. Metastasis occurs when the primary tumor sheds cells into the blood and lymphatic circulation, thereby becoming circulating tumor cells (CTCs) that transverse through the circulatory system, extravasate the circulation and establish a secondary distant tumor. Accumulating evidence suggests that circulating effector CD 8 + T cells are able to recognize and attack arrested or extravasating CTCs, but this important antitumoral effect remains largely undefined. Recent studies highlighted the supporting role of activated platelets in CTCs's extravasation from the bloodstream, contributing to metastatic progression. In this work, a simple mathematical model describes how the primary tumor, CTCs, activated platelets and effector CD 8 + T cells participate in metastasis. The stability analysis reveals that for early dissemination of CTCs, effector CD 8 + T cells can present or keep secondary metastatic tumor burden at low equilibrium state. In contrast, for late dissemination of CTCs, effector CD 8 + T cells are unlikely to inhibit secondary tumor growth. Moreover, global sensitivity analysis demonstrates that the rate of the primary tumor growth, intravascular CTC proliferation, as well as the CD 8 + T cell proliferation, strongly affects the number of the secondary tumor cells. Additionally, model simulations indicate that an increase in CTC proliferation greatly contributes to tumor metastasis. Our simulations further illustrate that the higher the number of activated platelets on CTCs, the higher the probability of secondary tumor establishment. Intriguingly, from a mathematical immunology perspective, our simulations indicate that if the rate of effector CD 8 + T cell proliferation is high, then the secondary tumor formation can be considerably delayed, providing a window for adjuvant tumor control strategies. Collectively, our results suggest that the earlier the effector CD 8 + T cell response is enhanced the higher is the probability of preventing or delaying secondary tumor metastases.
Collapse
Affiliation(s)
- Khaphetsi Joseph Mahasa
- Department of Mathematics and Computer Science, National University of Lesotho, Roma, Maseru, Lesotho.
| | - Rachid Ouifki
- Department of Mathematics and Applied Mathematics, Mafikeng Campus, North-West University, Private Bag X2046, Mmabatho, 2735, South Africa
| | | | - Amina Eladdadi
- Division of Mathematical Sciences, The National Science Foundation, Alexandria, VA, USA
| |
Collapse
|
8
|
Kotsifaki A, Maroulaki S, Armakolas A. Exploring the Immunological Profile in Breast Cancer: Recent Advances in Diagnosis and Prognosis through Circulating Tumor Cells. Int J Mol Sci 2024; 25:4832. [PMID: 38732051 PMCID: PMC11084220 DOI: 10.3390/ijms25094832] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/15/2024] [Revised: 04/25/2024] [Accepted: 04/25/2024] [Indexed: 05/13/2024] Open
Abstract
This review offers a comprehensive exploration of the intricate immunological landscape of breast cancer (BC), focusing on recent advances in diagnosis and prognosis through the analysis of circulating tumor cells (CTCs). Positioned within the broader context of BC research, it underscores the pivotal role of the immune system in shaping the disease's progression. The primary objective of this investigation is to synthesize current knowledge on the immunological aspects of BC, with a particular emphasis on the diagnostic and prognostic potential offered by CTCs. This review adopts a thorough examination of the relevant literature, incorporating recent breakthroughs in the field. The methodology section succinctly outlines the approach, with a specific focus on CTC analysis and its implications for BC diagnosis and prognosis. Through this review, insights into the dynamic interplay between the immune system and BC are highlighted, with a specific emphasis on the role of CTCs in advancing diagnostic methodologies and refining prognostic assessments. Furthermore, this review presents objective and substantiated results, contributing to a deeper understanding of the immunological complexity in BC. In conclusion, this investigation underscores the significance of exploring the immunological profile of BC patients, providing valuable insights into novel advances in diagnosis and prognosis through the utilization of CTCs. The objective presentation of findings emphasizes the crucial role of the immune system in BC dynamics, thereby opening avenues for enhanced clinical management strategies.
Collapse
Affiliation(s)
| | | | - Athanasios Armakolas
- Physiology Laboratory, Medical School, National and Kapodistrian University of Athens, 11527 Athens, Greece; (A.K.); (S.M.)
| |
Collapse
|
9
|
Malkawi W, Lutfi A, Afghan MK, Shah LM, Costandy L, Ramirez AB, George TC, Toor F, Salem AK, Kasi PM. Circulating tumour cell enumeration, biomarker analyses, and kinetics in patients with colorectal cancer and other GI malignancies. Front Oncol 2023; 13:1305181. [PMID: 38044994 PMCID: PMC10693413 DOI: 10.3389/fonc.2023.1305181] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2023] [Accepted: 11/03/2023] [Indexed: 12/05/2023] Open
Abstract
Objective Most of the work in terms of liquid biopsies in patients with solid tumors is focused on circulating tumor DNA (ctDNA). Our aim was to evaluate the feasibility of using circulating tumor cells (CTCs) in peripheral blood samples from patients with advanced or metastatic gastrointestinal (GI) cancers. Methods In this prospective study, blood samples were collected from each patient in 2 AccuCyte® blood collection tubes and each tube underwent CTC analysis performed utilizing the RareCyte® platform. The results from both tubes were averaged and a total of 150 draws were done, with 281 unique reported results. The cadence of sampling was based on convenience sampling and piggybacked onto days of actual clinical follow-ups and treatment visits. The CTC results were correlated with patient- and tumor-related variables. Results Data from a total of 59 unique patients were included in this study. Patients had a median age of 58 years, with males representing 69% of the study population. More than 57% had received treatment prior to taking blood samples. The type of GI malignancy varied, with more than half the patients having colorectal cancer (CRC, 54%) followed by esophageal/gastric cancer (17%). The least common cancer was cholangiocarcinoma (9%). The greatest number of CTCs were found in patients with colorectal cancer (Mean: 15.8 per 7.5 ml; Median: 7.5 per 7.5 ml). In comparison, patients with pancreatic cancer (PC) had considerably fewer CTCs (Mean: 4.2 per 7.5 ml; Median: 3 per 7.5 ml). Additionally, we found that patients receiving treatment had significantly fewer CTCs than patients who were not receiving treatment (Median 2.7 versus 0.7). CTC numbers showed noteworthy disparities between patients with responding/stable disease in comparison to those with untreated/progressive disease (Median of 2.7 versus 0). When CTCs were present, biomarker analyses of the four markers human epidermal growth factor receptor 2 (HER2)/programmed death-ligand 1 (PD-L1)/Kiel 67 (Ki-67)/epidermal growth factor receptor (EGFR) was feasible. Single cell sequencing confirmed the tumor of origin. Conclusion Our study is one of the first prospective real-time studies evaluating CTCs in patients with GI malignancies. While ctDNA-based analyses are more common in clinical trials and practice, CTC analysis provides complementary information from a liquid biopsy perspective that is of value and worthy of continued research.
Collapse
Affiliation(s)
- Walla Malkawi
- Division of Pharmaceutics and Translational Therapeutics, University of Iowa, Iowa, IA, United States
| | - Areeb Lutfi
- Division of Hematology and Oncology, Weill Cornell Medicine, New York, NY, United States
| | - Maaz Khan Afghan
- Division of Hematology and Oncology, Weill Cornell Medicine, New York, NY, United States
| | - Lamisha Mashiyat Shah
- Division of Hematology and Oncology, Weill Cornell Medicine, New York, NY, United States
| | | | | | | | - Fatima Toor
- Experimental Therapeutics Program, Holden Comprehensive Cancer Center, University of Iowa Hospitals and Clinics, Iowa, IA, United States
- Department of Electrical and Computer Engineering, University of Iowa, Iowa, IA, United States
| | - Aliasger K. Salem
- Division of Pharmaceutics and Translational Therapeutics, University of Iowa, Iowa, IA, United States
- Experimental Therapeutics Program, Holden Comprehensive Cancer Center, University of Iowa Hospitals and Clinics, Iowa, IA, United States
| | - Pashtoon Murtaza Kasi
- Division of Hematology and Oncology, Weill Cornell Medicine, New York, NY, United States
| |
Collapse
|
10
|
Alexandrou G, Mantikas KT, Allsopp R, Yapeter CA, Jahin M, Melnick T, Ali S, Coombes RC, Toumazou C, Shaw JA, Kalofonou M. The Evolution of Affordable Technologies in Liquid Biopsy Diagnostics: The Key to Clinical Implementation. Cancers (Basel) 2023; 15:5434. [PMID: 38001698 PMCID: PMC10670715 DOI: 10.3390/cancers15225434] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/02/2023] [Revised: 11/01/2023] [Accepted: 11/08/2023] [Indexed: 11/26/2023] Open
Abstract
Cancer remains a leading cause of death worldwide, despite many advances in diagnosis and treatment. Precision medicine has been a key area of focus, with research providing insights and progress in helping to lower cancer mortality through better patient stratification for therapies and more precise diagnostic techniques. However, unequal access to cancer care is still a global concern, with many patients having limited access to diagnostic tests and treatment regimens. Noninvasive liquid biopsy (LB) technology can determine tumour-specific molecular alterations in peripheral samples. This allows clinicians to infer knowledge at a DNA or cellular level, which can be used to screen individuals with high cancer risk, personalize treatments, monitor treatment response, and detect metastasis early. As scientific understanding of cancer pathology increases, LB technologies that utilize circulating tumour DNA (ctDNA) and circulating tumour cells (CTCs) have evolved over the course of research. These technologies incorporate tumour-specific markers into molecular testing platforms. For clinical translation and maximum patient benefit at a wider scale, the accuracy, accessibility, and affordability of LB tests need to be prioritized and compared with gold standard methodologies in current use. In this review, we highlight the range of technologies in LB diagnostics and discuss the future prospects of LB through the anticipated evolution of current technologies and the integration of emerging and novel ones. This could potentially allow a more cost-effective model of cancer care to be widely adopted.
Collapse
Affiliation(s)
- George Alexandrou
- Centre For Bio-Inspired Technology, Department of Electrical & Electronic Engineering, Imperial College London, London SW7 2BT, UK; (K.-T.M.); (C.A.Y.); (M.J.); (T.M.); (C.T.)
| | - Katerina-Theresa Mantikas
- Centre For Bio-Inspired Technology, Department of Electrical & Electronic Engineering, Imperial College London, London SW7 2BT, UK; (K.-T.M.); (C.A.Y.); (M.J.); (T.M.); (C.T.)
| | - Rebecca Allsopp
- Leicester Cancer Research Centre, Department of Genetics and Genome Biology, University of Leicester, Leicester LE2 7LX, UK; (R.A.); (J.A.S.)
| | - Calista Adele Yapeter
- Centre For Bio-Inspired Technology, Department of Electrical & Electronic Engineering, Imperial College London, London SW7 2BT, UK; (K.-T.M.); (C.A.Y.); (M.J.); (T.M.); (C.T.)
| | - Myesha Jahin
- Centre For Bio-Inspired Technology, Department of Electrical & Electronic Engineering, Imperial College London, London SW7 2BT, UK; (K.-T.M.); (C.A.Y.); (M.J.); (T.M.); (C.T.)
| | - Taryn Melnick
- Centre For Bio-Inspired Technology, Department of Electrical & Electronic Engineering, Imperial College London, London SW7 2BT, UK; (K.-T.M.); (C.A.Y.); (M.J.); (T.M.); (C.T.)
| | - Simak Ali
- Department of Surgery and Cancer, Imperial College London, London SW7 2AZ, UK; (S.A.); (R.C.C.)
| | - R. Charles Coombes
- Department of Surgery and Cancer, Imperial College London, London SW7 2AZ, UK; (S.A.); (R.C.C.)
| | - Christofer Toumazou
- Centre For Bio-Inspired Technology, Department of Electrical & Electronic Engineering, Imperial College London, London SW7 2BT, UK; (K.-T.M.); (C.A.Y.); (M.J.); (T.M.); (C.T.)
| | - Jacqueline A. Shaw
- Leicester Cancer Research Centre, Department of Genetics and Genome Biology, University of Leicester, Leicester LE2 7LX, UK; (R.A.); (J.A.S.)
| | - Melpomeni Kalofonou
- Centre For Bio-Inspired Technology, Department of Electrical & Electronic Engineering, Imperial College London, London SW7 2BT, UK; (K.-T.M.); (C.A.Y.); (M.J.); (T.M.); (C.T.)
| |
Collapse
|
11
|
Nguyen TNA, Huang PS, Chu PY, Hsieh CH, Wu MH. Recent Progress in Enhanced Cancer Diagnosis, Prognosis, and Monitoring Using a Combined Analysis of the Number of Circulating Tumor Cells (CTCs) and Other Clinical Parameters. Cancers (Basel) 2023; 15:5372. [PMID: 38001632 PMCID: PMC10670359 DOI: 10.3390/cancers15225372] [Citation(s) in RCA: 11] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/04/2023] [Revised: 11/05/2023] [Accepted: 11/09/2023] [Indexed: 11/26/2023] Open
Abstract
Analysis of circulating tumor cells (CTCs) holds promise to diagnose cancer or monitor its development. Among the methods, counting CTC numbers in blood samples could be the simplest way to implement it. Nevertheless, its clinical utility has not yet been fully accepted. The reasons could be due to the rarity and heterogeneity of CTCs in blood samples that could lead to misleading results from assays only based on single CTC counts. To address this issue, a feasible direction is to combine the CTC counts with other clinical data for analysis. Recent studies have demonstrated the use of this new strategy for early detection and prognosis evaluation of cancers, or even for the distinguishment of cancers with different stages. Overall, this approach could pave a new path to improve the technical problems in the clinical applications of CTC counting techniques. In this review, the information relevant to CTCs, including their characteristics, clinical use of CTC counting, and technologies for CTC enrichment, were first introduced. This was followed by discussing the challenges and new perspectives of CTC counting techniques for clinical applications. Finally, the advantages and the recent progress in combining CTC counts with other clinical parameters for clinical applications have been discussed.
Collapse
Affiliation(s)
- Thi Ngoc Anh Nguyen
- Graduate Institute of Biomedical Engineering, Chang Gung University, Taoyuan City 33302, Taiwan; (T.N.A.N.); (P.-S.H.); (P.-Y.C.)
| | - Po-Shuan Huang
- Graduate Institute of Biomedical Engineering, Chang Gung University, Taoyuan City 33302, Taiwan; (T.N.A.N.); (P.-S.H.); (P.-Y.C.)
| | - Po-Yu Chu
- Graduate Institute of Biomedical Engineering, Chang Gung University, Taoyuan City 33302, Taiwan; (T.N.A.N.); (P.-S.H.); (P.-Y.C.)
| | - Chia-Hsun Hsieh
- Division of Hematology-Oncology, Department of Internal Medicine, New Taipei City Municipal TuCheng Hospital, New Taipei City 23652, Taiwan;
- Division of Hematology-Oncology, Department of Internal Medicine, Chang Gung Memorial Hospital at Linkou, Taoyuan City 33302, Taiwan
| | - Min-Hsien Wu
- Graduate Institute of Biomedical Engineering, Chang Gung University, Taoyuan City 33302, Taiwan; (T.N.A.N.); (P.-S.H.); (P.-Y.C.)
- Division of Hematology-Oncology, Department of Internal Medicine, New Taipei City Municipal TuCheng Hospital, New Taipei City 23652, Taiwan;
- Division of Hematology-Oncology, Department of Internal Medicine, Chang Gung Memorial Hospital at Linkou, Taoyuan City 33302, Taiwan
| |
Collapse
|
12
|
Armakolas A, Kotsari M, Koskinas J. Liquid Biopsies, Novel Approaches and Future Directions. Cancers (Basel) 2023; 15:1579. [PMID: 36900369 PMCID: PMC10000663 DOI: 10.3390/cancers15051579] [Citation(s) in RCA: 42] [Impact Index Per Article: 21.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/19/2023] [Revised: 02/22/2023] [Accepted: 03/01/2023] [Indexed: 03/06/2023] Open
Abstract
Cancer is among the leading causes of death worldwide. Early diagnosis and prognosis are vital to improve patients' outcomes. The gold standard of tumor characterization leading to tumor diagnosis and prognosis is tissue biopsy. Amongst the constraints of tissue biopsy collection is the sampling frequency and the incomplete representation of the entire tumor bulk. Liquid biopsy approaches, including the analysis of circulating tumor cells (CTCs), circulating tumor DNA (ctDNA), circulating miRNAs, and tumor-derived extracellular vesicles (EVs), as well as certain protein signatures that are released in the circulation from primary tumors and their metastatic sites, present a promising and more potent candidate for patient diagnosis and follow up monitoring. The minimally invasive nature of liquid biopsies, allowing frequent collection, can be used in the monitoring of therapy response in real time, allowing the development of novel approaches in the therapeutic management of cancer patients. In this review we will describe recent advances in the field of liquid biopsy markers focusing on their advantages and disadvantages.
Collapse
Affiliation(s)
- Athanasios Armakolas
- Physiology Laboratory, Medical School, National and Kapodistrian University of Athens, 115 27 Athens, Greece
- B' Department of Medicine, Hippokration Hospital, National and Kapodistrian University of Athens, 115 27 Athens, Greece
| | - Maria Kotsari
- Physiology Laboratory, Medical School, National and Kapodistrian University of Athens, 115 27 Athens, Greece
| | - John Koskinas
- B' Department of Medicine, Hippokration Hospital, National and Kapodistrian University of Athens, 115 27 Athens, Greece
| |
Collapse
|
13
|
Bray J, Eward W, Breen M. Evaluating the relevance of surgical margins. Part one: The problems with current methodology. Vet Comp Oncol 2023; 21:1-11. [PMID: 36308442 DOI: 10.1111/vco.12865] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/10/2022] [Revised: 10/11/2022] [Accepted: 10/24/2022] [Indexed: 11/28/2022]
Abstract
The goal of cancer surgery is to achieve a "clean" microscopic resection, with no residual tumour remaining in the wound. To achieve that goal, the surgeon typically incorporates a measured buffer of grossly normal tissue about the entire circumference of the tumour. Microscopic analysis of the resection boundaries is then performed to determine if all traces of the tumour have been completely removed. This analysis is thought to provide a surrogate indication as to the likelihood for that tumour to recur after surgery. However, it is recognised that tumour recurrence may not occur even when microscopic evidence of tumour has been identified at the resection margins, and recurrence can also occur when conventional histology has considered the tumour to have been completely removed. The explanations for this dichotomy are numerous and include technical and practical limitations of the processing methodology, and also several surgeon-related and tumour-related reasons. Ultimately, the inability to confidently determine when a tumour has been removed sufficiently to prevent recurrence can impact on the ability to provide owners with confident treatment advice. In this article, the authors describe the challenges with defining the true extent of the tumour margin from the perspective of the surgeon, the pathologist and the tumour. The authors also provide an analysis of why our current efforts to ensure that all traces of the local tumour have been successfully removed may provide an imperfect assessment of the risk of recurrence.
Collapse
Affiliation(s)
| | - Will Eward
- Duke Cancer Center, Durham, North Carolina, USA
| | - Matthew Breen
- College of Veterinary Medicine, North Carolina State University, Raleigh, North Carolina, USA
| |
Collapse
|
14
|
Berta E, Srovnal J, Dytrych P, Bruthans J, Ulrichova J, Prasil P, Vecera L, Gabrhelik T, Tolmaci B, Dusa J, Maca J, Mazancova M, Haiduk F, Kutej M, Ihnat P, Michalek P, Hajduch M. Influence of opioid analgesia type on circulating tumor cells in open colorectal cancer surgery (POACC-1): study protocol for a prospective randomized multicenter controlled trial. BMC Anesthesiol 2023; 23:64. [PMID: 36855089 PMCID: PMC9972763 DOI: 10.1186/s12871-023-02007-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/11/2022] [Accepted: 02/02/2023] [Indexed: 03/02/2023] Open
Abstract
BACKGROUND Opioids and epidural analgesia are a mainstay of perioperative analgesia but their influence on cancer recurrence remains unclear. Based on retrospective data, we found that cancer recurrence following colorectal cancer surgery correlates with the number of circulating tumor cells (CTCs) in the early postoperative period. Also, morphine- but not piritramide-based postoperative analgesia increases the presence of CTCs and shortens cancer-specific survival. The influence of epidural analgesia on CTCs has not been studied yet. METHODS We intend to enroll 120 patients in four centers in this prospective randomized controlled trial. The study protocol has been approved by Ethics Committees in all participating centers. Patients undergoing radical open colorectal cancer surgery are randomized into epidural, morphine, and piritramide groups for perioperative analgesia. The primary outcome is the difference in the number of CTCs in the peripheral blood before surgery, on the second postoperative day, and 2-4 weeks after surgery. The number of CTCs is measured using molecular biology methods. Perioperative care is standardized, and relevant data is recorded. A secondary outcome, if feasible, would be the expression and activity of various receptor subtypes in cancer tissue. We intend to perform a 5-year follow-up with regard to metastasis development. DISCUSSION The mode of perioperative analgesia favorably affecting cancer recurrence would decrease morbidity/mortality. To identify such techniques, trials with long-term follow-up periods seem suboptimal. Given complex oncological therapeutic strategies, such trials likely disable the separation of perioperative analgesia effects from other factors. We believe that early postoperative CTCs presence/dynamics may serve as a sensitive marker of various perioperative interventions´ influences on cancer recurrence. Importantly, it is unbiased to the influence of long-term factors and minimally invasive. Analysis of opioid/cannabinoid receptor subtypes in cancer tissue would improve understanding of underlying mechanisms and promote personalization of treatment. We are not aware of any similar ongoing studies. TRIAL REGISTRATION NUMBER NCT03700411, registration date: October 3, 2018. STUDY STATUS recruiting.
Collapse
Affiliation(s)
- Emil Berta
- Institute of Molecular and Translational Medicine, Faculty of Medicine and Dentistry, Palacky, University and University Hospital in Olomouc, Olomouc, Czech Republic.,Ringerike Hospital, VVHF, Honefoss, Norway
| | - Josef Srovnal
- Institute of Molecular and Translational Medicine, Faculty of Medicine and Dentistry, Palacky, University and University Hospital in Olomouc, Olomouc, Czech Republic
| | - Petr Dytrych
- Department of Anesthesiology and Intensive Medicine, General University Hospital and First Medical Faculty of the Charles University, Prague, Czech Republic.,1st Department of Surgery - Department of Abdominal, Thoracic Surgery and Traumatology, First Faculty of Medicine, Charles University and General University Hospital, Prague, Czech Republic
| | - Jan Bruthans
- Department of Anesthesiology and Intensive Medicine, General University Hospital and First Medical Faculty of the Charles University, Prague, Czech Republic
| | - Jitka Ulrichova
- Department of Anesthesiology and Intensive Medicine, General University Hospital and First Medical Faculty of the Charles University, Prague, Czech Republic
| | - Petr Prasil
- Department of Anesthesiology, Landesklinikum Amstetten, Amstetten, Austria
| | - Lubomir Vecera
- Department of Anesthesiology and Intensive Medicine, Tomas Bata Regional Hospital in Zlin, Zlin, Czech Republic.,Department of Paediatric Anaesthesiology and Intensive Care Medicine, Medical Faculty of Masaryk University, University Hospital Brno, Brno, Czech Republic
| | - Tomas Gabrhelik
- Department of Anesthesiology and Intensive Medicine, Tomas Bata Regional Hospital in Zlin, Zlin, Czech Republic.,Department of Anesthesiology and Intensive Medicine, Faculty of Medicine and Dentistry, Palacky University and University Hospital in Olomouc, Olomouc, Czech Republic
| | - Benjamin Tolmaci
- Department of Surgery, Tomas Bata Regional Hospital in Zlin, Zlin, Czech Republic.,Department of Oncology, Faculty of Medicine and Dentistry, Palacky University and University Hospital in Olomouc, Olomouc, Czech Republic
| | - Josef Dusa
- Department of Surgery, Tomas Bata Regional Hospital in Zlin, Zlin, Czech Republic
| | - Jan Maca
- Department of Anesthesiology and Intensive Care Medicine, University Hospital Ostrava, Ostrava, Czech Republic.,University of Ostrava, Institute of Physiology and Pathophysiology, Faculty of Medicine, Ostrava, Czech Republic.,Department of Intensive Medicine, University of Ostrava, Department of Emergency Medicine and Forensic Studies, Faculty of Medicine, Ostrava, Czech Republic
| | - Michelle Mazancova
- Department of Anesthesiology and Intensive Care Medicine, University Hospital Ostrava, Ostrava, Czech Republic
| | - Filip Haiduk
- Department of Anesthesiology and Intensive Care Medicine, University Hospital Ostrava, Ostrava, Czech Republic.,Department of Anesthesiology and Intensive Care Medicine, University in Brno, Faculty of Medicine, Masaryk University, Brno, Czech Republic
| | - Martin Kutej
- Department of Anesthesiology and Intensive Care Medicine, University Hospital Ostrava, Ostrava, Czech Republic.,Department of Anesthesiology and Intensive Care Medicine, University in Brno, Faculty of Medicine, Masaryk University, Brno, Czech Republic
| | - Peter Ihnat
- Department of Surgery, University Hospital Ostrava, Ostrava, Czech Republic.,Department of Surgical Studies, Faculty of Medicine, University of Ostrava, Ostrava, Czech Republic
| | - Pavel Michalek
- Department of Anesthesiology and Intensive Medicine, General University Hospital and First Medical Faculty of the Charles University, Prague, Czech Republic.
| | - Marian Hajduch
- Institute of Molecular and Translational Medicine, Faculty of Medicine and Dentistry, Palacky, University and University Hospital in Olomouc, Olomouc, Czech Republic.
| |
Collapse
|
15
|
Clinical Significance of a Circulating Tumor Cell-based Classifier in Stage IB Lung Adenocarcinoma: A Multicenter, Cohort Study. Ann Surg 2023; 277:e439-e448. [PMID: 33630430 PMCID: PMC9831033 DOI: 10.1097/sla.0000000000004780] [Citation(s) in RCA: 10] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/14/2023]
Abstract
OBJECTIVE To investigate the effectiveness of a CTC-based classifier in stratifying stage IB LUAD. SUMMARY OF BACKGROUND DATA Stage IB LUADs have an approximately 70% 5-year survival rate. The clinical application of ACT is controversial due to inconsistent results in a series of trials and few useful guide biomarkers. Thus, there is a pressing need for robust biomarkers to stratify stage IB patients to define which group would most likely benefit from ACT. Methods: Two hundred twelve stage IB LUAD patients were enrolled and were divided into 3 independent cohorts. The aptamer-modified NanoVelcro system was used to enrich the CTCs. RESULTS A cutoff of <4 or >4 CTCs as the optimal prognostic threshold for stage IB LUAD was generated to stratify the patients in a 70-patient cohort into low-risk and high-risk groups. Patients with ≥ 4 CTCs in the training cohort had shorter progression-free survival ( P < 0.0001) and overall survival ( P < 0.0001) than patients with <4 CTCs. CTC number remained the strongest predictor of progression-free survival and overall survival even in a multivariate analysis including other clinicopathological parameters. Furthermore, a nomogram based on the CTC count was developed to predict the 3-year and 5-year survival in the training cohort and performed well in the other 2 validation cohorts (C-index: 0.862, 0.853, and 0.877). CONCLUSION The presence of >4 CTCs can define a high-risk subgroup, providing a new strategy to make optimal clinical decisions for stage IB LUAD.
Collapse
|
16
|
Khristov V, Lin A, Freedman Z, Staub J, Shenoy G, Mrowczynski O, Rizk E, Zacharia B, Connor J. Tumor-Derived Biomarkers in Liquid Biopsy of Glioblastoma. World Neurosurg 2023; 170:182-194. [PMID: 36347463 DOI: 10.1016/j.wneu.2022.11.012] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/13/2022] [Revised: 11/01/2022] [Accepted: 11/02/2022] [Indexed: 11/07/2022]
Abstract
There is a pressing clinical need for minimally invasive liquid biopsies to supplement imaging in the treatment of glioblastoma. Diagnostic imaging is often difficult to interpret and the medical community is divided on distinguishing among complete response, partial response, stable disease, and progressive disease. A minimally invasive liquid biopsy would supplement imaging and clinical findings and has the capacity to be helpful in several ways: 1) diagnosis, 2) selection of patients for specific treatments, 3) tracking of treatment response, and 4) prognostic value. The liquid biome is the combination of biological fluids including blood, urine, and cerebrospinal fluid that contain small amounts of tumor cells, DNA/RNA coding material, peptides, and metabolites. Within the liquid biome, 2 broad categories of biomarkers can exist: tumor-derived, which can be directly traced to the tumor, and tumor-associated, which can be traced back to the response of the body to disease. Although tumor-associated biomarkers are promising liquid biopsy candidates, recent advances in biomarker enrichment and detection have allowed concentration on a new class of biomarker: tumor-derived biomarkers. This review focuses on making the distinction between the 2 biomarker categories and highlights promising new direction.
Collapse
Affiliation(s)
- Vladimir Khristov
- Department of Neurosurgery, Penn State Hershey College of Medicne, Hershey, Pennsylvania, USA.
| | - Andrea Lin
- Department of Neurosurgery, Penn State Hershey College of Medicne, Hershey, Pennsylvania, USA
| | - Zachary Freedman
- Department of Neurosurgery, Penn State Hershey College of Medicne, Hershey, Pennsylvania, USA
| | - Jacob Staub
- Department of Neurosurgery, Penn State Hershey College of Medicne, Hershey, Pennsylvania, USA
| | - Ganesh Shenoy
- Department of Neurosurgery, Penn State Hershey College of Medicne, Hershey, Pennsylvania, USA
| | - Oliver Mrowczynski
- Department of Neurosurgery, Penn State Hershey College of Medicne, Hershey, Pennsylvania, USA
| | - Elias Rizk
- Department of Neurosurgery, Penn State Hershey College of Medicne, Hershey, Pennsylvania, USA
| | - Brad Zacharia
- Department of Neurosurgery, Penn State Hershey College of Medicne, Hershey, Pennsylvania, USA
| | - James Connor
- Department of Neurosurgery, Penn State Hershey College of Medicne, Hershey, Pennsylvania, USA
| |
Collapse
|
17
|
Vasantharajan SS, Barnett E, Gray ES, Rodger EJ, Eccles MR, Pattison S, Munro F, Chatterjee A. Size-Based Method for Enrichment of Circulating Tumor Cells from Blood of Colorectal Cancer Patients. Methods Mol Biol 2023; 2588:231-248. [PMID: 36418692 DOI: 10.1007/978-1-0716-2780-8_15] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/16/2023]
Abstract
Circulating tumor cells (CTCs) are precursors of the metastatic cascade, which is responsible for 90% of all cancer-related deaths. CTCs arise from solid tumors and travel through the bloodstream and lymphatic system. Developments in the isolation and analysis of CTCs promise potential biomarker assays for detection and monitoring of cancer through a minimally invasive procedure. Despite this, the precise role of CTCs in metastasis remains poorly characterized, mainly due to the low density of CTCs (1-10 CTCs per 10 mL of blood) present in patient blood and the lack of robust methods for their isolation in a standard laboratory setting. CellSearch is currently the only FDA-approved CTC enrichment protocol, but limitations of this EpCAM-based method include cost, availability, and the use of a single surface marker for capture. To address these limitations, we have optimized an existing method, MetaCell, which exploits the differences in size of CTCs compared to other blood cells for CTC enrichment from blood. MetaCell contains a membrane with 8 μm pores, and blood is filtered through this kit by capillary action and CTCs, which are typically larger than the pores and remain on top of the membrane, while most leukocytes pass through the pores. The membrane along with these CTCs can be detached and transferred to 6-well plates for culturing or directly used for characterization. Here, we provide a detailed protocol for enrichment of CTCs using the filtration device MetaCell and a procedure for characterization of CTCs by immunohistochemical staining.
Collapse
Affiliation(s)
- Sai Shyam Vasantharajan
- Department of Pathology, Dunedin School of Medicine, University of Otago, Dunedin, New Zealand.
| | - Edward Barnett
- Department of Pathology, Dunedin School of Medicine, University of Otago, Dunedin, New Zealand
| | - Elin S Gray
- Centre for Precision Health, Edith Cowan University, Joondalup, Australia
| | - Euan J Rodger
- Department of Pathology, Dunedin School of Medicine, University of Otago, Dunedin, New Zealand
| | - Michael R Eccles
- Department of Pathology, Dunedin School of Medicine, University of Otago, Dunedin, New Zealand
| | - Sharon Pattison
- Department of Medicine, Dunedin School of Medicine, University of Otago, Dunedin, New Zealand
| | - Fran Munro
- Department of Surgical Sciences, Dunedin School of Medicine, University of Otago, Dunedin, New Zealand
| | - Aniruddha Chatterjee
- Department of Pathology, Dunedin School of Medicine, University of Otago, Dunedin, New Zealand.
- UPES University, School of Health Sciences, Dehradun, India.
| |
Collapse
|
18
|
Geometric tumor embolic budding characterizes inflammatory breast cancer. Breast Cancer Res Treat 2023; 197:461-478. [PMID: 36473978 PMCID: PMC9734724 DOI: 10.1007/s10549-022-06819-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/06/2022] [Accepted: 11/15/2022] [Indexed: 12/12/2022]
Abstract
PURPOSE Inflammatory breast cancer (IBC) is characterized by numerous tumor emboli especially within dermal lymphatics. The explanation remains a mystery. METHODS This study combines experimental studies with two different IBC xenografts with image algorithmic studies utilizing human tissue microarrays (TMAs) of IBC vs non-IBC cases to support a novel hypothesis to explain IBC's sina qua non signature of florid lymphovascular emboli. RESULTS In the human TMAs, compared to tumor features like nuclear grade (size), mitosis and Ki-67 immunoreactivity which show that IBC is only modestly more proliferative with larger nuclei than non-IBC, what really sets IBC apart is the markedly greater number of tumor emboli and distinctly smaller emboli whose numbers indicate geometric or exponential differences between IBC and non-IBC. In the experimental xenograft studies, Mary-X gives rise to tight spheroids in vitro which exhibit dynamic budding into smaller daughter spheroids whereas Karen-X exhibits only loose non-budding aggregates. Furthermore Mary-X emboli also bud dramatically into smaller daughter emboli in vivo. The mechanism that regulates this involves the generation of E-cad/NTF1, a calpain-mediated cleavage 100 kDa product of 120 kDa full length membrane E-cadherin. Inhibiting this calpain-mediated cleavage of E-cadherin by blocking either the calpain site of cleavage (SC) or the site of binding (SB) with specific decapeptides that both penetrate the cell membrane and mimic either the cleavage site or the binding site on E-cadherin, inhibits the generation of E-cad/NTF1 in a dose-dependent manner, reduces spheroid compactness and decreases budding. CONCLUSION Since E-cad/NFT1 retains the p120ctn binding site but loses the α-and β-catenin sites, promoting its 360° distribution around the cell's membrane, the vacilating levels of this molecule trigger budding of both the spheroids as well as the emboli. Recurrent and geometric budding of parental emboli into daughter emboli then would account for the plethora of emboli seen in IBC.
Collapse
|
19
|
Couto-Cunha A, Jerónimo C, Henrique R. Circulating Tumor Cells as Biomarkers for Renal Cell Carcinoma: Ready for Prime Time? Cancers (Basel) 2022; 15:cancers15010287. [PMID: 36612281 PMCID: PMC9818240 DOI: 10.3390/cancers15010287] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/27/2022] [Revised: 12/19/2022] [Accepted: 12/28/2022] [Indexed: 01/03/2023] Open
Abstract
Renal cell carcinoma (RCC) is among the 15 most common cancers worldwide, with rising incidence. In most cases, this is a silent disease until it reaches advance stages, demanding new effective biomarkers in all domains, from detection to post-therapy monitoring. Circulating tumor cells (CTC) have the potential to provide minimally invasive information to guide assessment of the disease's aggressiveness and therapeutic strategy, representing a special pool of neoplastic cells which bear metastatic potential. In some tumor models, CTCs' enumeration has been associated with prognosis, but there is a largely unexplored potential for clinical applicability encompassing screening, diagnosis, early detection of metastases, prognosis, response to therapy and monitoring. Nonetheless, lack of standardization and high cost hinder the translation into clinical practice. Thus, new methods for collection and analysis (genomic, proteomic, transcriptomic, epigenomic and metabolomic) are needed to ascertain the role of CTC as a RCC biomarker. Herein, we provide a critical overview of the most recently published data on the role and clinical potential of CTCs in RCC, addressing their biology and the molecular characterization of this remarkable set of tumor cells. Furthermore, we highlight the existing and emerging techniques for CTC enrichment and detection, exploring clinical applications in RCC. Notwithstanding the notable progress in recent years, the use of CTCs in a routine clinical scenario of RCC patients requires further research and technological development, enabling multimodal analysis to take advantage of the wealth of information they provide.
Collapse
Affiliation(s)
- Anabela Couto-Cunha
- Integrated Master in Medicine, School of Medicine & Biomedical Sciences, University of Porto (ICBAS-UP), Rua Jorge Viterbo Ferreira 228, 4050-313 Porto, Portugal
| | - Carmen Jerónimo
- Department of Pathology and Molecular Immunology, School of Medicine & Biomedical Sciences, University of Porto (ICBAS-UP), Rua Jorge Viterbo Ferreira 228, 4050-313 Porto, Portugal
- Department of Pathology & Cancer Biology & Epigenetics Group—Research Center of IPO Porto (CI-IPOP)/RISE@CI-IPOP (Health Research Network), Portuguese Oncology Institute of Porto (IPO-Porto)/Porto Comprehensive Cancer Centre Raquel Seruca (P.CCC Raquel Seruca), Rua Dr. António Bernardino de Almeida, 4200-072 Porto, Portugal
| | - Rui Henrique
- Department of Pathology and Molecular Immunology, School of Medicine & Biomedical Sciences, University of Porto (ICBAS-UP), Rua Jorge Viterbo Ferreira 228, 4050-313 Porto, Portugal
- Department of Pathology & Cancer Biology & Epigenetics Group—Research Center of IPO Porto (CI-IPOP)/RISE@CI-IPOP (Health Research Network), Portuguese Oncology Institute of Porto (IPO-Porto)/Porto Comprehensive Cancer Centre Raquel Seruca (P.CCC Raquel Seruca), Rua Dr. António Bernardino de Almeida, 4200-072 Porto, Portugal
- Correspondence: or
| |
Collapse
|
20
|
Petrik J, Verbanac D, Fabijanec M, Hulina-Tomašković A, Čeri A, Somborac-Bačura A, Petlevski R, Grdić Rajković M, Rumora L, Krušlin B, Štefanović M, Ljubičić N, Baršić N, Hanžek A, Bočkor L, Ćelap I, Demirović A, Barišić K. Circulating Tumor Cells in Colorectal Cancer: Detection Systems and Clinical Utility. Int J Mol Sci 2022; 23:13582. [PMID: 36362369 PMCID: PMC9654465 DOI: 10.3390/ijms232113582] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/30/2022] [Revised: 10/26/2022] [Accepted: 10/31/2022] [Indexed: 09/29/2023] Open
Abstract
Colorectal cancer (CRC) is the third most common cancer worldwide. The high mortality from CRC is mainly related to metastasis affecting distant organs and their function. Dissemination of tumor cells from the primary tumor and hematogeneous spread are considered crucial in the formation of tumor metastases. The analysis of circulating tumor cells (CTCs) and CTC clusters in the blood can be used for the early detection of invasive cancer. Moreover, CTCs have a prognostic significance in the monitoring of a malignant disease or the response to chemotherapy. This work presents an overview of the research conducted on CTCs with the aim of finding suitable detection systems and assessing the possibility of clinical applications in patients with CRC.
Collapse
Affiliation(s)
- József Petrik
- Department of Medical Biochemistry and Hematology, Faculty of Pharmacy and Biochemistry, University of Zagreb, Ante Kovačića 1, 10000 Zagreb, Croatia
| | - Donatella Verbanac
- Department of Medical Biochemistry and Hematology, Faculty of Pharmacy and Biochemistry, University of Zagreb, Ante Kovačića 1, 10000 Zagreb, Croatia
| | - Marija Fabijanec
- Department of Medical Biochemistry and Hematology, Faculty of Pharmacy and Biochemistry, University of Zagreb, Ante Kovačića 1, 10000 Zagreb, Croatia
| | - Andrea Hulina-Tomašković
- Department of Medical Biochemistry and Hematology, Faculty of Pharmacy and Biochemistry, University of Zagreb, Ante Kovačića 1, 10000 Zagreb, Croatia
| | - Andrea Čeri
- Department of Medical Biochemistry and Hematology, Faculty of Pharmacy and Biochemistry, University of Zagreb, Ante Kovačića 1, 10000 Zagreb, Croatia
| | - Anita Somborac-Bačura
- Department of Medical Biochemistry and Hematology, Faculty of Pharmacy and Biochemistry, University of Zagreb, Ante Kovačića 1, 10000 Zagreb, Croatia
| | - Roberta Petlevski
- Department of Medical Biochemistry and Hematology, Faculty of Pharmacy and Biochemistry, University of Zagreb, Ante Kovačića 1, 10000 Zagreb, Croatia
| | - Marija Grdić Rajković
- Department of Medical Biochemistry and Hematology, Faculty of Pharmacy and Biochemistry, University of Zagreb, Ante Kovačića 1, 10000 Zagreb, Croatia
| | - Lada Rumora
- Department of Medical Biochemistry and Hematology, Faculty of Pharmacy and Biochemistry, University of Zagreb, Ante Kovačića 1, 10000 Zagreb, Croatia
| | - Božo Krušlin
- School of Medicine, University of Zagreb, Šalata 3, 10000 Zagreb, Croatia
- Department of Pathology and Cytology “Ljudevit Jurak”, University Hospital Centre “Sestre milosrdnice”, University of Zagreb, Vinogradska 29, 10000 Zagreb, Croatia
| | - Mario Štefanović
- Department of Medical Biochemistry and Hematology, Faculty of Pharmacy and Biochemistry, University of Zagreb, Ante Kovačića 1, 10000 Zagreb, Croatia
- Department of Clinical Chemistry, University Hospital Centre “Sestre milosrdnice”, University of Zagreb, Vinogradska 29, 10000 Zagreb, Croatia
| | - Neven Ljubičić
- School of Medicine, University of Zagreb, Šalata 3, 10000 Zagreb, Croatia
- Department of Internal Medicine, University Hospital Centre “Sestre milosrdnice”, Division of Gastroenterology and Hepatology, University of Zagreb, Vinogradska 29, 10000 Zagreb, Croatia
- School of Dental Medicine, University of Zagreb, Gundulićeva 5, 10000 Zagreb, Croatia
| | - Neven Baršić
- School of Medicine, University of Zagreb, Šalata 3, 10000 Zagreb, Croatia
- Department of Internal Medicine, University Hospital Centre “Sestre milosrdnice”, Division of Gastroenterology and Hepatology, University of Zagreb, Vinogradska 29, 10000 Zagreb, Croatia
| | - Antonija Hanžek
- UPR CHROME, University of Nimes, 7 Place Gabriel Peri, 30000 Nîmes, France
| | - Luka Bočkor
- Centre for Applied Bioanthropology, Institute for Anthropological Research, Ljudevita Gaja 32, 10000 Zagreb, Croatia
| | - Ivana Ćelap
- Department of Medical Biochemistry and Hematology, Faculty of Pharmacy and Biochemistry, University of Zagreb, Ante Kovačića 1, 10000 Zagreb, Croatia
| | - Alma Demirović
- Department of Pathology and Cytology “Ljudevit Jurak”, University Hospital Centre “Sestre milosrdnice”, University of Zagreb, Vinogradska 29, 10000 Zagreb, Croatia
- School of Dental Medicine, University of Zagreb, Gundulićeva 5, 10000 Zagreb, Croatia
| | - Karmela Barišić
- Department of Medical Biochemistry and Hematology, Faculty of Pharmacy and Biochemistry, University of Zagreb, Ante Kovačića 1, 10000 Zagreb, Croatia
| |
Collapse
|
21
|
Sattar RSA, Verma R, Nimisha, Kumar A, Dar GM, Apurva, Sharma AK, Kumari I, Ahmad E, Ali A, Mahajan B, Saluja SS. Diagnostic and prognostic biomarkers in colorectal cancer and the potential role of exosomes in drug delivery. Cell Signal 2022; 99:110413. [PMID: 35907519 DOI: 10.1016/j.cellsig.2022.110413] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/14/2022] [Revised: 07/13/2022] [Accepted: 07/15/2022] [Indexed: 11/03/2022]
Abstract
Colorectal cancer (CRC) is the third most common cancer with the second most frequent cause of death worldwide. One fourth to one fifth of the CRC cases are detected at advance stage. Early detection of colorectal cancer might help in decreasing mortality and morbidity worldwide. CRC being a heterogeneous disease, new non-invasive approaches are needed to complement and improve the screening and management of CRC. Reliable and early detectable biomarkers would improve diagnosis, prognosis, therapeutic responses, and will enable the prediction of drug response and recurrence risk. Over the past decades molecular research has demonstrated the potentials of CTCs, ctDNAs, circulating mRNAs, ncRNAs, and exosomes as tumor biomarkers. Non-invasive screening approaches using fecal samples for identification of altered gut microbes in CRC is also gaining attention. Exosomes can be potential candidates that can be employed in the drug delivery system. Further, the integration of in vitro, in vivo and in silico models that involve CRC biomarkers will help to understand the interactions occurring at the cellular level. This review summarizes recent update on CRC biomarkers and their application along with the nanoparticles followed by the application of organoid culture in CRC.
Collapse
Affiliation(s)
- Real Sumayya Abdul Sattar
- Central Molecular Laboratory, Govind Ballabh Pant Institute of Postgraduate Medical Education and Research (GIPMER), New Delhi, India
| | - Renu Verma
- Central Molecular Laboratory, Govind Ballabh Pant Institute of Postgraduate Medical Education and Research (GIPMER), New Delhi, India
| | - Nimisha
- Central Molecular Laboratory, Govind Ballabh Pant Institute of Postgraduate Medical Education and Research (GIPMER), New Delhi, India
| | - Arun Kumar
- Central Molecular Laboratory, Govind Ballabh Pant Institute of Postgraduate Medical Education and Research (GIPMER), New Delhi, India
| | - Ghulam Mehdi Dar
- Central Molecular Laboratory, Govind Ballabh Pant Institute of Postgraduate Medical Education and Research (GIPMER), New Delhi, India
| | - Apurva
- Central Molecular Laboratory, Govind Ballabh Pant Institute of Postgraduate Medical Education and Research (GIPMER), New Delhi, India
| | - Abhay Kumar Sharma
- Central Molecular Laboratory, Govind Ballabh Pant Institute of Postgraduate Medical Education and Research (GIPMER), New Delhi, India
| | - Indu Kumari
- Central Molecular Laboratory, Govind Ballabh Pant Institute of Postgraduate Medical Education and Research (GIPMER), New Delhi, India
| | - Ejaj Ahmad
- Central Molecular Laboratory, Govind Ballabh Pant Institute of Postgraduate Medical Education and Research (GIPMER), New Delhi, India
| | - Asgar Ali
- Central Molecular Laboratory, Govind Ballabh Pant Institute of Postgraduate Medical Education and Research (GIPMER), New Delhi, India
| | - Bhawna Mahajan
- Central Molecular Laboratory, Govind Ballabh Pant Institute of Postgraduate Medical Education and Research (GIPMER), New Delhi, India; Department of Biochemistry, Govind Ballabh Pant Institute of Postgraduate Medical Education and Research (GIPMER), New Delhi, India
| | - Sundeep Singh Saluja
- Central Molecular Laboratory, Govind Ballabh Pant Institute of Postgraduate Medical Education and Research (GIPMER), New Delhi, India; Department of GI Surgery, Govind Ballabh Pant Institute of Postgraduate Medical Education and Research (GIPMER), New Delhi, India.
| |
Collapse
|
22
|
Buszka K, Ntzifa A, Owecka B, Kamińska P, Kolecka-Bednarczyk A, Zabel M, Nowicki M, Lianidou E, Budna-Tukan J. Liquid Biopsy Analysis as a Tool for TKI-Based Treatment in Non-Small Cell Lung Cancer. Cells 2022; 11:2871. [PMID: 36139444 PMCID: PMC9497234 DOI: 10.3390/cells11182871] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/11/2022] [Revised: 09/07/2022] [Accepted: 09/09/2022] [Indexed: 12/03/2022] Open
Abstract
The treatment of non-small cell lung cancer (NSCLC) has recently evolved with the introduction of targeted therapy based on the use of tyrosine kinase inhibitors (TKIs) in patients with certain gene alterations, including EGFR, ALK, ROS1, BRAF, and MET genes. Molecular targeted therapy based on TKIs has improved clinical outcomes in a large number of NSCLC patients with advanced disease, enabling significantly longer progression-free survival (PFS). Liquid biopsy is an increasingly popular diagnostic tool for treating TKI-based NSCLC. The studies presented in this article show that detection and analysis based on liquid biopsy elements such as circulating tumor cells (CTCs), cell-free DNA (cfDNA), exosomes, and/or tumor-educated platelets (TEPs) can contribute to the appropriate selection and monitoring of targeted therapy in NSCLC patients as complementary to invasive tissue biopsy. The detection of these elements, combined with their molecular analysis (using, e.g., digital PCR (dPCR), next generation sequencing (NGS), shallow whole genome sequencing (sWGS)), enables the detection of mutations, which are required for the TKI treatment. Despite such promising results obtained by many research teams, it is still necessary to carry out prospective studies on a larger group of patients in order to validate these methods before their application in clinical practice.
Collapse
Affiliation(s)
- Karolina Buszka
- Department of Histology and Embryology, Poznan University of Medical Sciences, 60-781 Poznan, Poland
- Doctoral School, Poznan University of Medical Sciences, 60-812 Poznan, Poland
| | - Aliki Ntzifa
- Analysis of Circulating Tumor Cells Lab, Lab of Analytical Chemistry, Department of Chemistry, National and Kapodistrian University of Athens, 15771 Athens, Greece
| | - Barbara Owecka
- Department of Histology and Embryology, Poznan University of Medical Sciences, 60-781 Poznan, Poland
| | - Paula Kamińska
- Department of Histology and Embryology, Poznan University of Medical Sciences, 60-781 Poznan, Poland
- Doctoral School, Poznan University of Medical Sciences, 60-812 Poznan, Poland
| | - Agata Kolecka-Bednarczyk
- Department of Immunology, Chair of Pathomorphology and Clinical Immunology, Poznan University of Medical Sciences, 60-806 Poznan, Poland
| | - Maciej Zabel
- Division of Anatomy and Histology, University of Zielona Góra, 65-046 Zielona Góra, Poland
| | - Michał Nowicki
- Department of Histology and Embryology, Poznan University of Medical Sciences, 60-781 Poznan, Poland
| | - Evi Lianidou
- Analysis of Circulating Tumor Cells Lab, Lab of Analytical Chemistry, Department of Chemistry, National and Kapodistrian University of Athens, 15771 Athens, Greece
| | - Joanna Budna-Tukan
- Department of Histology and Embryology, Poznan University of Medical Sciences, 60-781 Poznan, Poland
| |
Collapse
|
23
|
Vasantharajan SS, Barnett E, Gray ES, McCall JL, Rodger EJ, Eccles MR, Munro F, Pattison S, Chatterjee A. Assessment of a Size-Based Method for Enriching Circulating Tumour Cells in Colorectal Cancer. Cancers (Basel) 2022; 14:3446. [PMID: 35884509 PMCID: PMC9319975 DOI: 10.3390/cancers14143446] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/01/2022] [Revised: 07/01/2022] [Accepted: 07/12/2022] [Indexed: 12/07/2022] Open
Abstract
Circulating tumour cells (CTC) from solid tumours are a prerequisite for metastasis. Isolating CTCs and understanding their biology is essential for developing new clinical tests and precision oncology. Currently, CellSearch is the only FDA (U.S. Food and Drug Administration)-approved method for CTC enrichment but possesses several drawbacks owing to a reliance on the epithelial cell adhesion molecule (EpCAM) and a resource-intensive nature. Addressing these shortcomings, we optimised an existing size-based method, MetaCell, to enrich CTCs from blood of colorectal cancer (CRC) patients. We evaluated the ability of MetaCell to enrich CTCs by spiking blood with CRC cell lines and assessing the cell recovery rates and WBC depletion via immunostaining and gene expression. We then applied MetaCell to samples from 17 CRC patients and seven controls. Recovery rates were >85% in cell lines, with >95% depletion in WBCs. MetaCell yielded CTCs and CTC clusters in 52.9% and 23.5% of the patients, respectively, without false positives in control patients. CTCs and cluster detection did not correlate with histopathological parameters. Overall, we demonstrated that the MetaCell platform enriched CRC cells with high recovery rates and high purity. Our pilot study also demonstrated the ability of MetaCell to detect CTCs in CRC patients.
Collapse
Affiliation(s)
- Sai Shyam Vasantharajan
- Department of Pathology, Dunedin School of Medicine, University of Otago, Dunedin 9016, New Zealand; (S.S.V.); (E.B.); (E.J.R.); (M.R.E.)
| | - Edward Barnett
- Department of Pathology, Dunedin School of Medicine, University of Otago, Dunedin 9016, New Zealand; (S.S.V.); (E.B.); (E.J.R.); (M.R.E.)
| | - Elin S. Gray
- Centre for Precision Health and School of Medical and Health Sciences, Edith Cowan University, Joondalup, WA 6027, Australia;
| | - John L. McCall
- Department of Surgical Sciences, Dunedin School of Medicine, University of Otago, Dunedin 9054, New Zealand; (J.L.M.); (F.M.)
| | - Euan J. Rodger
- Department of Pathology, Dunedin School of Medicine, University of Otago, Dunedin 9016, New Zealand; (S.S.V.); (E.B.); (E.J.R.); (M.R.E.)
| | - Michael R. Eccles
- Department of Pathology, Dunedin School of Medicine, University of Otago, Dunedin 9016, New Zealand; (S.S.V.); (E.B.); (E.J.R.); (M.R.E.)
| | - Fran Munro
- Department of Surgical Sciences, Dunedin School of Medicine, University of Otago, Dunedin 9054, New Zealand; (J.L.M.); (F.M.)
| | - Sharon Pattison
- Department of Medicine, Dunedin School of Medicine, University of Otago, Dunedin 9054, New Zealand
| | - Aniruddha Chatterjee
- Department of Pathology, Dunedin School of Medicine, University of Otago, Dunedin 9016, New Zealand; (S.S.V.); (E.B.); (E.J.R.); (M.R.E.)
- School of Health Sciences and Technology, UPES University, Dehradun 248007, India
| |
Collapse
|
24
|
Qayyumi B, Bharde A, Aland G, D'Souza A, Jayant S, Singh N, Tripathi S, Badave R, Kale N, Singh B, Arora S, Gore I, Singh A, Vasudevan A, Prabhash K, Khandare J, Chaturvedi P. Circulating tumor cells as a predictor for poor prognostic factors and overall survival in treatment naïve oral squamous cell carcinoma patients. Oral Surg Oral Med Oral Pathol Oral Radiol 2022; 134:73-83. [PMID: 35595620 DOI: 10.1016/j.oooo.2022.02.018] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/22/2021] [Revised: 01/10/2022] [Accepted: 02/28/2022] [Indexed: 12/24/2022]
Abstract
OBJECTIVE The aim of this study was to investigate the presence of circulating tumor cells (CTCs) and their correlation with prognostic factors and clinical outcomes in treatment-naive patients with oral squamous cell carcinoma. STUDY DESIGN CTCs were isolated using OncoDiscover technique from presurgically obtained peripheral blood of 152 patients with treatment naïve oral squamous cell carcinoma. Sensitivity analysis was performed by including 40 healthy controls. CTCs cutoff values for clinicopathologic factors were obtained from receiver operating characteristic curves. Multivariate models determined the significance of CTC as independent variables. Kaplan-Meier analysis differentiated in overall survival between CTC values corresponding to the stage. RESULTS Sensitivity, specificity, and accuracy of CTC detection were 94.32%, 98%, and 95.17%, respectively. Platform differentiated true positives at >3.5 CTCs (P < .00001). CTCs above 20.5 were suggestive of nodal metastasis (P < .0001) with a linear trend for detecting occult metastasis (P = .061). Early and advanced stages could be differentiated by >13.5 CTCs (P < .0001). Elevated CTCs were significantly associated with extranodal extension (>21.45 CTCs, P = .025), perineural invasion (>19.35 CTCs, P = .049), and depth of invasion (>12.5 CTCs, P = .0038). Median survival was reduced by 19 months when CTCs were >13. CONCLUSIONS Preoperative CTC levels demonstrated a strong correlation with adverse clinicopathology factors and suggested its role as a sensitive prognostic marker to predict survival outcome and disease progress.
Collapse
Affiliation(s)
- Burhanuddin Qayyumi
- Department of Head and Neck Surgical Oncology, Tata Memorial Hospital, Mumbai, India; Homi Bhabha National Institute, Mumbai, India
| | - Atul Bharde
- Department of Microbiology, Savitribai Phule Pune University, Pune, India
| | | | - Alain D'Souza
- Actorius Innovations and Research Pvt. Ltd., Pune, India
| | - Sreeja Jayant
- Actorius Innovations and Research Pvt. Ltd., Pune, India
| | - Nitin Singh
- Actorius Innovations and Research Pvt. Ltd., Pune, India
| | - Swati Tripathi
- Actorius Innovations and Research Pvt. Ltd., Pune, India
| | - Reecha Badave
- Actorius Innovations and Research Pvt. Ltd., Pune, India
| | - Narendra Kale
- Actorius Innovations and Research Pvt. Ltd., Pune, India
| | - Balram Singh
- Actorius Innovations and Research Pvt. Ltd., Pune, India
| | - Smriti Arora
- Actorius Innovations and Research Pvt. Ltd., Pune, India
| | - Isha Gore
- Actorius Innovations and Research Pvt. Ltd., Pune, India
| | - Arjun Singh
- Department of Head and Neck Surgical Oncology, Tata Memorial Hospital, Mumbai, India; Homi Bhabha National Institute, Mumbai, India
| | | | - Kumar Prabhash
- Department of Head and Neck Surgical Oncology, Tata Memorial Hospital, Mumbai, India; Homi Bhabha National Institute, Mumbai, India
| | - Jayant Khandare
- Actorius Innovations and Research Pvt. Ltd., Pune, India; Actorius Innovations and Research Co, Simi Valley, CA, USA; OneCell Diagnostics Inc, Cupertino, CA, USA; OneCell Diagnostics Pvt. Ltd., Pune, India.
| | - Pankaj Chaturvedi
- Department of Head and Neck Surgical Oncology, Tata Memorial Hospital, Mumbai, India; Homi Bhabha National Institute, Mumbai, India.
| |
Collapse
|
25
|
Jiang TT, Li HP, Li YC. [A Rare Case of Extremely High Counts of EpCAM + Circulating Tumor Cells and Circulating Tumor Microemboli Detected in a Patient with Small Cell Lung Cancer]. SICHUAN DA XUE XUE BAO. YI XUE BAN = JOURNAL OF SICHUAN UNIVERSITY. MEDICAL SCIENCE EDITION 2022; 53:711-715. [PMID: 35871746 PMCID: PMC10409470 DOI: 10.12182/20220760107] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Subscribe] [Scholar Register] [Indexed: 08/31/2023]
Abstract
A 77-year-old man was admitted at our hospital due to "generalized increase in the number of masses and enlargement of the masses observed for one month". Combined assessment of the imaging (computed tomography and magnetic resonance imaging) findings and results of lung centesis biopsy and liquid biopsy suggest that the patient had small cell lung cancer of the left upper lobe, with right hilar, mediastinal, bilateral axillary, abdominal and retroperitoneal lymph node metastases, as well as widespread subcutaneous soft tissue, liver, bilateral adrenal, bilateral kidneys and multiple brain metastases (extensive stage). In order to obtain an evaluation of the development of the disease as soon as possible, the circulating tumor cells (CTCs) and circulating tumor microemboli (CTM) in 6 mL peripheral blood were examined by subtraction enrichment-immunostaining fluorescence in situ hybridization (SE-iFISH) technology. A total of 919 epithelial cell adhesion molecule (EpCAM)-positive CTCs and 61 EpCAM-positive CTM were identified. Among them, there were 14 haploid CTCs (1.52%), 788 diploid CTCs (85.75%), 44 triploid CTCs (4.79%), 70 tetraploid CTCs (7.62%) and 3 pentaploid or higher-fold polyploid CTCs (0.33%). Herein, we reported a rare case with extremely high accounts of CTCs and CTM and positive findings for tumor markers, which was identified for the first time. The examination of CTCs by SE-iFISH contributed to the diagnosis, prognosis and treatment evaluation of cancer and facilitated the formulation of precise and individualized therapeutic regime.
Collapse
Affiliation(s)
- Ting-Ting Jiang
- Department of Head and Neck Oncology, West China Hospital, Sichuan University, Chengdu 610041, China
- Laboratory of Single Cell Research and Liquid Biopsy, West China Hospital, Sichuan University, Chengdu 610041, China
| | - He-Pei Li
- Department of Head and Neck Oncology, West China Hospital, Sichuan University, Chengdu 610041, China
- Laboratory of Single Cell Research and Liquid Biopsy, West China Hospital, Sichuan University, Chengdu 610041, China
| | - Yan-Chu Li
- Department of Head and Neck Oncology, West China Hospital, Sichuan University, Chengdu 610041, China
| |
Collapse
|
26
|
Staudte S, Klinghammer K, Jurmeister PS, Jank P, Blohmer JU, Liebs S, Rhein P, Hauser AE, Tinhofer I. Multiparametric Phenotyping of Circulating Tumor Cells for Analysis of Therapeutic Targets, Oncogenic Signaling Pathways and DNA Repair Markers. Cancers (Basel) 2022; 14:cancers14112810. [PMID: 35681790 PMCID: PMC9179910 DOI: 10.3390/cancers14112810] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/09/2022] [Revised: 06/01/2022] [Accepted: 06/02/2022] [Indexed: 01/02/2023] Open
Abstract
Simple Summary Detection of circulating tumor cells (CTCs) has been established as an independent prognostic marker in solid cancer. In order to expand the clinical utility of this blood–based minimally invasive biomarker we established a protocol allowing multiparametric phenotyping of CTCs to analyze the expression levels of therapeutic target proteins. By applying this assay, we demonstrated intratumoral heterogeneity of PD–L1 expression in CTCs from head and neck cancer patients, an observation previously reported in tumor tissue specimens. We further verified the feasibility of applying the protocol to analyze the activation status of important oncogenic pathways and the extent of DNA repair following radiation. These promising preliminary results warrant further study and may lead to the implementation of this assay in clinical routine for improved treatment selection and monitoring. Abstract Detection of circulating tumor cells (CTCs) has been established as an independent prognostic marker in solid cancer. Multiparametric phenotyping of CTCs could expand the area of application for this liquid biomarker. We evaluated the Amnis® brand ImageStream®X MkII (ISX) (Luminex, Austin, TX, USA) imaging flow cytometer for its suitability for protein expression analysis and monitoring of treatment effects in CTCs. This was carried out using blood samples from patients with head and neck squamous cell carcinoma (n = 16) and breast cancer (n = 8). A protocol for negative enrichment and staining of CTCs was established, allowing quantitative analysis of the therapeutic targets PD–L1 and phosphorylated EGFR (phospho–EGFR), and the treatment response marker γH2AX as an indicator of radiation–induced DNA damage. Spiking experiments revealed a sensitivity of 73% and a specificity of 100% at a cut–off value of ≥3 CTCs, and thus confirmed the suitability of the ISX-based protocol to detect phospho–EGFR and γH2AX foci in CTCs. Analysis of PD–L1/–L2 in both spiked and patient blood samples further showed that assessment of heterogeneity in protein expression within the CTC population was possible. Further validation of the diagnostic potential of this ISX protocol for multiparametric CTC analysis in larger clinical cohorts is warranted.
Collapse
Affiliation(s)
- Stephanie Staudte
- Department of Radiooncology and Radiotherapy, Charité University Hospital, 10117 Berlin, Germany;
- German Cancer Consortium (DKTK) Partner Site, and German Cancer Research Center (DKFZ), 69120 Heidelberg, Germany
- Correspondence:
| | - Konrad Klinghammer
- Department of Hematology and Oncology, Charité University Hospital, 10117 Berlin, Germany;
- Charité Comprehensive Cancer Center (CCCC), Charité University Hospital, 10117 Berlin, Germany;
| | - Philipp Sebastian Jurmeister
- Institute of Pathology, Charité University Hospital, 10117 Berlin, Germany;
- Institute of Pathology, Ludwig Maximilians University Hospital Munich, 80337 Munich, Germany
| | - Paul Jank
- Institute of Pathology, Philipps-University Marburg and University-Hospital Marburg (UKGM), 35039 Marburg, Germany;
| | - Jens-Uwe Blohmer
- Breast Cancer Center, Charité University Hospital, 10117 Berlin, Germany;
| | - Sandra Liebs
- Charité Comprehensive Cancer Center (CCCC), Charité University Hospital, 10117 Berlin, Germany;
| | - Peter Rhein
- Luminex B.V., A DiaSorin Company, 5215 MV‘s-Hertogenbosch, The Netherlands;
| | - Anja E. Hauser
- Department of Rheumatology and Clinical Immunology, Charité University Hospital, 10117 Berlin, Germany;
- Deutsches Rheuma-Forschungszentrum (DRFZ), Leibniz Association, 10117 Berlin, Germany
| | - Ingeborg Tinhofer
- Department of Radiooncology and Radiotherapy, Charité University Hospital, 10117 Berlin, Germany;
- German Cancer Consortium (DKTK) Partner Site, and German Cancer Research Center (DKFZ), 69120 Heidelberg, Germany
| |
Collapse
|
27
|
De Renzi G, De Marco G, De Meo M, Del Rosso E, Gazzaniga P, Nicolazzo C. In vitro cultures of circulating tumor cells: a potential tool to unravel drug sensitivity. CANCER DRUG RESISTANCE (ALHAMBRA, CALIF.) 2022; 5:245-260. [PMID: 35582538 PMCID: PMC8992597 DOI: 10.20517/cdr.2021.121] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 11/15/2021] [Revised: 02/17/2022] [Accepted: 02/22/2022] [Indexed: 12/13/2022]
Abstract
Since taking part as leading actors in driving the metastatic process, circulating tumor cells (CTCs) have displayed a wide range of potential applications in the cancer-related research field. Besides their well-proved prognostic value, the role of CTCs in both predictive and diagnostics terms might be extremely informative about cancer properties and therefore highly helpful in the clinical decision-making process. Unfortunately, CTCs are scarcely released in the blood circulation and their counts vary a lot among different types of cancer, therefore CTC detection and consequent characterization are still highly challenging. In this context, in vitro CTC cultures could potentially offer a great opportunity to expand the number of tumor cells isolated at different stages of the disease and thus simplify the analysis of their biological and molecular features, allowing a deeper comprehension of the nature of neoplastic diseases. The aim of this review is to highlight the main attempts to establish in vitro CTC cultures from patients harboring different tumor types in order to highlight how powerful this practice could be, especially in optimizing the therapeutic strategies available in clinical practice and potentially preventing or contrasting the development of treatment resistance.
Collapse
Affiliation(s)
- Gianluigi De Renzi
- Cancer Liquid Biopsy Unit, Department of Molecular Medicine, Sapienza University of Rome, Rome 00161, Italy
| | - Giulia De Marco
- Cancer Liquid Biopsy Unit, Department of Molecular Medicine, Sapienza University of Rome, Rome 00161, Italy
| | - Michela De Meo
- Cancer Liquid Biopsy Unit, Department of Molecular Medicine, Sapienza University of Rome, Rome 00161, Italy
| | - Eleonora Del Rosso
- Cancer Liquid Biopsy Unit, Department of Molecular Medicine, Sapienza University of Rome, Rome 00161, Italy
| | - Paola Gazzaniga
- Cancer Liquid Biopsy Unit, Department of Molecular Medicine, Sapienza University of Rome, Rome 00161, Italy
| | - Chiara Nicolazzo
- Cancer Liquid Biopsy Unit, Department of Molecular Medicine, Sapienza University of Rome, Rome 00161, Italy
| |
Collapse
|
28
|
Dotse E, Lim KH, Wang M, Wijanarko KJ, Chow KT. An Immunological Perspective of Circulating Tumor Cells as Diagnostic Biomarkers and Therapeutic Targets. Life (Basel) 2022; 12:323. [PMID: 35207611 PMCID: PMC8878951 DOI: 10.3390/life12020323] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/26/2022] [Revised: 02/10/2022] [Accepted: 02/14/2022] [Indexed: 11/19/2022] Open
Abstract
Immune modulation is a hallmark of cancer. Cancer-immune interaction shapes the course of disease progression at every step of tumorigenesis, including metastasis, of which circulating tumor cells (CTCs) are regarded as an indicator. These CTCs are a heterogeneous population of tumor cells that have disseminated from the tumor into circulation. They have been increasingly studied in recent years due to their importance in diagnosis, prognosis, and monitoring of treatment response. Ample evidence demonstrates that CTCs interact with immune cells in circulation, where they must evade immune surveillance or modulate immune response. The interaction between CTCs and the immune system is emerging as a critical point by which CTCs facilitate metastatic progression. Understanding the complex crosstalk between the two may provide a basis for devising new diagnostic and treatment strategies. In this review, we will discuss the current understanding of CTCs and the complex immune-CTC interactions. We also present novel options in clinical interventions, targeting the immune-CTC interfaces, and provide some suggestions on future research directions.
Collapse
Affiliation(s)
- Eunice Dotse
- Department of Biomedical Sciences, City University of Hong Kong, Hong Kong 999077, China; (E.D.); (K.H.L.); (M.W.)
| | - King H. Lim
- Department of Biomedical Sciences, City University of Hong Kong, Hong Kong 999077, China; (E.D.); (K.H.L.); (M.W.)
| | - Meijun Wang
- Department of Biomedical Sciences, City University of Hong Kong, Hong Kong 999077, China; (E.D.); (K.H.L.); (M.W.)
| | - Kevin Julio Wijanarko
- Department of Paediatrics, University of Melbourne, Parkville, VIC 3010, Australia;
- Murdoch Children’s Research Institute, Royal Children’s Hospital, Parkville, VIC 3052, Australia
| | - Kwan T. Chow
- Department of Biomedical Sciences, City University of Hong Kong, Hong Kong 999077, China; (E.D.); (K.H.L.); (M.W.)
| |
Collapse
|
29
|
Yang G, Xie J, Zhang S, Gu W, Yuan J, Wang R, Guo C, Ye L, Peng B, Yao X, Yang B. Clinical Significance of Mesenchymal Circulating Tumor Cells in Patients With Oligometastatic Hormone-Sensitive Prostate Cancer Who Underwent Cytoreductive Radical Prostatectomy. Front Oncol 2022; 11:812549. [PMID: 35127528 PMCID: PMC8810514 DOI: 10.3389/fonc.2021.812549] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/10/2021] [Accepted: 12/15/2021] [Indexed: 12/30/2022] Open
Abstract
PurposeGrowing evidence shows that circulating tumor cells (CTCs) become more aggressive after the epithelial–mesenchymal transition (EMT), though the clinical significance of CTCs undergoing EMT in oligometastatic hormone-sensitive prostate cancer (omHSPC) patients has not yet been reported. Accordingly, the aim of this study was to detect the CTC level and investigate the clinical significance of mesenchymal CTCs in omHSPC patients who underwent cytoreductive radical prostatectomy (CRP).Materials and MethodsBlood samples were drawn from 54 omHSPC patients who underwent CRP. The CanPatrol CTC enrichment technique was applied to isolate and identify different phenotypes of CTCs, which were classified as epithelial (E-CTCs), mesenchymal (M-CTCs), or biphenotypic epithelial/mesenchymal (Bi-CTCs). Univariable and multivariable Cox regression analyses were employed to investigate potential prognostic factors for metastatic castration-resistant prostate cancer (mCRPC)-free survival and cancer-specific survival (CSS). The prognostic value of CTCs for CSS and mCRPC-free survival was assessed using time-dependent receiver operating characteristic (ROC) curves and Kaplan–Meier analysis.ResultsCTCs were detected in 51 of 54 patients (94%). E-CTC, M-CTC, and Bi-CTC detection rates were 56%, 67%, and 85%, respectively. A positive correlation was found between the M-CTC count and number of bone metastases (p = 0.012). Time-dependent ROC analysis showed that the M-CTC count had higher predictive power than E-CTC or Bi-CTC for mCRPC-free survival (3-year area under the curve [AUC] values: 0.64, 0.60, and 0.61) and CSS (3-year AUC: 0.86, 0.58, and 0.67). Additionally, time-dependent ROC analysis revealed total CTCs (T-CTCs) ≥5 and M-CTCs ≥2 to be the cutoff points with optimal specificity and sensitivity. Based on multivariable Cox regression, T-CTC and M-CTC counts were both independently associated with CSS and mCRPC-free survival (all p < 0.05), though E-CTCs and Bi-CTCs had no significant prognostic value (all p > 0.05). Patients with T-CTC ≥5 or M-CTC ≥2 had significantly worse mCRPC-free survival and CSS than those with T-CTC<5 or M-CTC<2 (all p < 0.05) after CRP.ConclusionCTC quantification and phenotype characterization provide prognostic information, and M-CTCs can be used as a novel biomarker for omHSPC patients who undergo CRP. The results need to be validated in prospective studies.
Collapse
Affiliation(s)
- Guanjie Yang
- Department of Urology, Shanghai Tenth People’s Hospital, Tongji University School of Medicine, Shanghai, China
| | - Jun Xie
- Shanghai Clinical College, Anhui Medical University, Shanghai, China
| | - Shun Zhang
- Department of Urology, Affiliated Drum Tower Hospital, Medical School of Nanjing University, Nanjing, China
| | - Wenyu Gu
- Department of Urology, Shanghai Tenth People’s Hospital, Tongji University School of Medicine, Shanghai, China
| | - Jing Yuan
- Department of Urology, Shanghai Tenth People’s Hospital, Tongji University School of Medicine, Shanghai, China
| | - Ruiliang Wang
- Department of Urology, Shanghai Tenth People’s Hospital, Tongji University School of Medicine, Shanghai, China
| | - Changcheng Guo
- Department of Urology, Shanghai Tenth People’s Hospital, Tongji University School of Medicine, Shanghai, China
| | - Lin Ye
- Department of Urology, Shanghai Tenth People’s Hospital, Tongji University School of Medicine, Shanghai, China
| | - Bo Peng
- Department of Urology, Shanghai Tenth People’s Hospital, Tongji University School of Medicine, Shanghai, China
- Shanghai Clinical College, Anhui Medical University, Shanghai, China
| | - Xudong Yao
- Department of Urology, Shanghai Tenth People’s Hospital, Tongji University School of Medicine, Shanghai, China
- Shanghai Clinical College, Anhui Medical University, Shanghai, China
- *Correspondence: Xudong Yao, ; Bin Yang,
| | - Bin Yang
- Department of Urology, Shanghai Tenth People’s Hospital, Tongji University School of Medicine, Shanghai, China
- *Correspondence: Xudong Yao, ; Bin Yang,
| |
Collapse
|
30
|
Schreyer D, Neoptolemos JP, Barry ST, Bailey P. Deconstructing Pancreatic Cancer Using Next Generation-Omic Technologies-From Discovery to Knowledge-Guided Platforms for Better Patient Management. Front Cell Dev Biol 2022; 9:795735. [PMID: 35096825 PMCID: PMC8793685 DOI: 10.3389/fcell.2021.795735] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/15/2021] [Accepted: 12/03/2021] [Indexed: 12/12/2022] Open
Abstract
Comprehensive molecular landscaping studies reveal a potentially brighter future for pancreatic ductal adenocarcinoma (PDAC) patients. Blood-borne biomarkers obtained from minimally invasive "liquid biopsies" are now being trialled for early disease detection and to track responses to therapy. Integrated genomic and transcriptomic studies using resectable tumour material have defined intrinsic patient subtypes and actionable genomic segments that promise a shift towards genome-guided patient management. Multimodal mapping of PDAC using spatially resolved single cell transcriptomics and imaging techniques has identified new potentially therapeutically actionable cellular targets and is providing new insights into PDAC tumour heterogeneity. Despite these rapid advances, defining biomarkers for patient selection remain limited. This review examines the current PDAC cancer biomarker ecosystem (identified in tumour and blood) and explores how advances in single cell sequencing and spatially resolved imaging modalities are being used to uncover new targets for therapeutic intervention and are transforming our understanding of this difficult to treat disease.
Collapse
Affiliation(s)
- Daniel Schreyer
- Institute of Cancer Sciences, University of Glasgow, Scotland, United Kingdom
| | - John P. Neoptolemos
- Department of General, Visceral, and Transplantation Surgery, Heidelberg University Hospital, Heidelberg, Germany
| | - Simon T. Barry
- Bioscience, Oncology R&D, AstraZeneca, Cambridge, United Kingdom
| | - Peter Bailey
- Institute of Cancer Sciences, University of Glasgow, Scotland, United Kingdom
- Department of General, Visceral, and Transplantation Surgery, Heidelberg University Hospital, Heidelberg, Germany
- Section Surgical Research, University Clinic Heidelberg, Heidelberg, Germany
| |
Collapse
|
31
|
Zhang Z, Wuethrich A, Wang J, Korbie D, Lin LL, Trau M. Dynamic Monitoring of EMT in CTCs as an Indicator of Cancer Metastasis. Anal Chem 2021; 93:16787-16795. [PMID: 34889595 DOI: 10.1021/acs.analchem.1c03167] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
Abstract
Epithelial to mesenchymal transition (EMT) results in the genesis of circulating tumor cells (CTCs) from tumor sites and promotes the metastatic capability of CTCs in circulation. In this study, we develop a multiplex surface-enhanced Raman scattering nanotechnology for comprehensive characterization of EMT-associated phenotypes in CTCs, to monitor cancer metastasis. We observe the downregulation of the CTC marker (EpCAM) and the epithelial marker (E-cadherin), as well as the upregulation of a mesenchymal marker (N-cadherin) and a stem cell marker (ABCB5) during the transforming growth factor-β-induced EMT process in breast cancer cell line models. Additionally, we also find changes in the heterogeneity levels of these selected markers in cells. With this method, we successfully detect the presence of disease in samples from breast cancer patients and characterize EMT-associated phenotypes in their CTCs. Overall, this approach and findings provide a new means for monitoring the EMT process in cancer, insights into the detailed mechanistic progress of the diseases, and have potential for detecting the early occurrence of cancer metastasis.
Collapse
Affiliation(s)
- Zhen Zhang
- Centre for Personalized Nanomedicine, Australian Institute for Bioengineering and Nanotechnology (AIBN), The University of Queensland, Brisbane, QLD 4072, Australia
| | - Alain Wuethrich
- Centre for Personalized Nanomedicine, Australian Institute for Bioengineering and Nanotechnology (AIBN), The University of Queensland, Brisbane, QLD 4072, Australia
| | - Jing Wang
- Centre for Personalized Nanomedicine, Australian Institute for Bioengineering and Nanotechnology (AIBN), The University of Queensland, Brisbane, QLD 4072, Australia
| | - Darren Korbie
- Centre for Personalized Nanomedicine, Australian Institute for Bioengineering and Nanotechnology (AIBN), The University of Queensland, Brisbane, QLD 4072, Australia
| | - Lynlee L Lin
- Centre for Personalized Nanomedicine, Australian Institute for Bioengineering and Nanotechnology (AIBN), The University of Queensland, Brisbane, QLD 4072, Australia.,Dermatology Research Centre, University of Queensland Diamantina Institute, University of Queensland, Brisbane, QLD 4102, Australia
| | - Matt Trau
- Centre for Personalized Nanomedicine, Australian Institute for Bioengineering and Nanotechnology (AIBN), The University of Queensland, Brisbane, QLD 4072, Australia.,School of Chemistry and Molecular Biosciences, The University of Queensland, Brisbane, QLD 4072, Australia
| |
Collapse
|
32
|
Asensio AF, Corte-Rodríguez M, Bettmer J, Sierra LM, Montes-Bayón M, Blanco-González E. Targeting HER2 protein in individual cells using ICP-MS detection and its potential as prognostic and predictive breast cancer biomarker. Talanta 2021; 235:122773. [PMID: 34517630 DOI: 10.1016/j.talanta.2021.122773] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/28/2021] [Revised: 07/29/2021] [Accepted: 07/31/2021] [Indexed: 10/20/2022]
Abstract
The human epidermal growth factor receptor 2 (HER2) is a transmembrane protein that has become one of the most specific prognostic and predictive biomarker of breast cancer. Its early detection is key for optimizing the patient clinical outcome. This work is focused on the detection of HER2 in individual cells using an antibody containing lutetium (Lu) as reporter group that is monitored by introducing the individual cells into the inductively coupled plasma mass spectrometer (ICP-MS). This Lu-containing antibody probe is used to label different breast cancer cell lines considered HER2 negative (MDA-MB-231) and positive (SKBR-3 and BT-474). Optimizations regarding the amount of the probe necessary to ensure complete labelling reactions are conducted in the different cell models. Concentrations in the range of 0.006 fg Lu/cell and 0.030 fg Lu/cell could be found in the HER2 negative and HER2 positive cells, respectively. In addition, the selectivity of the labelling reaction is tested by using two different metal-containing antibody probes for HER2 (containing Lu) and for transferrin receptor 1 (containing Nd), respectively, within the same cell population. Finally, the methodology is applied to the targeting of HER2 positive cells in complex cell mixtures containing variable amounts of BT-474 and MDA-MB-231 cells. The obtained results showed the excellent capabilities of the proposed strategy to discriminate among cell populations. This finding could help for scoring HER2 positive tumors improving existing technologies.
Collapse
Affiliation(s)
- A Fernández Asensio
- Department of Physical and Analytical Chemistry, Faculty of Chemistry, University of Oviedo, Instituto de Investigación Sanitaria del Principado de Asturias (ISPA), C/ Julián Clavería 8, 33006, Oviedo, Spain; Department of Functional Biology (Genetic Area), Faculty of Medicine, University of Oviedo, Instituto Universitario de Oncología del Principado de Asturias (IUOPA) and Instituto de Investigación Sanitaria del Principado de Asturias (ISPA), C/ Julián Clavería 8, 33006, Oviedo, Spain
| | - M Corte-Rodríguez
- Department of Physical and Analytical Chemistry, Faculty of Chemistry, University of Oviedo, Instituto de Investigación Sanitaria del Principado de Asturias (ISPA), C/ Julián Clavería 8, 33006, Oviedo, Spain
| | - J Bettmer
- Department of Physical and Analytical Chemistry, Faculty of Chemistry, University of Oviedo, Instituto de Investigación Sanitaria del Principado de Asturias (ISPA), C/ Julián Clavería 8, 33006, Oviedo, Spain
| | - L M Sierra
- Department of Functional Biology (Genetic Area), Faculty of Medicine, University of Oviedo, Instituto Universitario de Oncología del Principado de Asturias (IUOPA) and Instituto de Investigación Sanitaria del Principado de Asturias (ISPA), C/ Julián Clavería 8, 33006, Oviedo, Spain
| | - M Montes-Bayón
- Department of Physical and Analytical Chemistry, Faculty of Chemistry, University of Oviedo, Instituto de Investigación Sanitaria del Principado de Asturias (ISPA), C/ Julián Clavería 8, 33006, Oviedo, Spain.
| | - E Blanco-González
- Department of Physical and Analytical Chemistry, Faculty of Chemistry, University of Oviedo, Instituto de Investigación Sanitaria del Principado de Asturias (ISPA), C/ Julián Clavería 8, 33006, Oviedo, Spain.
| |
Collapse
|
33
|
Kataki A, Giannakoulis VG, Derventzi A, Papiris K, Koniaris E, Konstadoulakis M. Membranous CD44v6 is upregulated as an early event in colorectal cancer: Downregulation is associated with circulating tumor cells and poor prognosis. Oncol Lett 2021; 22:820. [PMID: 34691247 PMCID: PMC8527563 DOI: 10.3892/ol.2021.13081] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/14/2020] [Accepted: 07/01/2021] [Indexed: 01/30/2023] Open
Abstract
Previous studies have reported that CD44 variant 6 (CD44v6) and metastasis-associated protein 1 (MTA1) are contributing factors to cancer progression. The present study aimed to evaluate the expression profiles for associations with patients' demographic data, clinicopathological characteristics, the presence of partial epithelial-to-mesenchymal transition (pEMT), metastatic potential based on the presence of CK20+ CEA+ CXCR4+ circulating tumor cells (CTCs) and prognosis (median follow-up, 45 months). Thus, frozen tissue samples from 31 patients with stage I–III colorectal cancer (CRC), 15 benign colorectal polyps and seven normal colorectal tissues were analyzed to detect membranous (m)CD44v6 and MTA1 expression via flow cytometry. The results demonstrated that the mCD44v6 and MTA1 expression profiles were significantly correlated (rs=+0.786, P<0.001). Notably, MTA1 expression was not associated with any of the clinicopathological characteristics assessed. The percentage of mCD44v6-positive cells within tumors was higher in the right-sided cancer lesions (P=0.014), suggesting that proximal and distal CRCs are distinct clinicopathological entities. Furthermore, downregulated mCD44v6 expression was significantly associated with the presence of CTCs (P=0.017). This association was stronger for pEMT (co-expression of N- and E-cadherin mRNAs) primary lesions (P=0.009). In addition, patients with CRC with low levels of mCD44v6 had unfavorable survival outcomes (P=0.037). Taken together, these results suggest that targeted analysis of membranous CD44v6 as opposed to membranous-cytoplasmic expression is important in determining the prognosis of patients with CRC. Furthermore, downregulated mCD44v6 expression in malignancies presenting CTCs reinforces the importance of tumor-stroma reciprocal influence during the metastatic process and encourages the assessment of relevant therapeutic strategies.
Collapse
Affiliation(s)
- Agapi Kataki
- First Department of Propaedeutic Surgery, Hippokration General Hospital of Athens, Athens 11527, Greece
| | - Vassilis G Giannakoulis
- First Department of Propaedeutic Surgery, Hippokration General Hospital of Athens, Athens 11527, Greece
| | - Anastasia Derventzi
- First Department of Propaedeutic Surgery, Hippokration General Hospital of Athens, Athens 11527, Greece
| | - Konstantinos Papiris
- Department of Endoscopy, Hippokration General Hospital of Athens, Athens 11527, Greece
| | - Eythimios Koniaris
- Department of Pathology, Hippokration General Hospital of Athens, Athens 11527, Greece
| | - Manousos Konstadoulakis
- Second Surgery Clinic, Aretaieio Hospital, Athens Medical School, National and Kapodistrian University of Athens, Athens 11528, Greece
| |
Collapse
|
34
|
Shabalina EY, Skorova EY, Chudakova DA, Anikin VB, Reshetov IV, Mynbaev OA, Petersen EV. The matrix-dependent 3D spheroid model of the migration of non-small cell lung cancer: a step towards a rapid automated screening. Front Mol Biosci 2021; 8:610407. [PMID: 34422897 PMCID: PMC8378843 DOI: 10.3389/fmolb.2021.610407] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/25/2020] [Accepted: 02/11/2021] [Indexed: 12/03/2022] Open
Abstract
In vitro 3D cell culture systems utilizing multicellular tumor spheroids (MCTS) are widely used in translational oncology, including for studying cell migration and in personalized therapy. However, early stages of cellular migration from MCTS and cross-talk between spheroids are overlooked, which was addressed in the current study. Here, we investigated cell migration from MCTS derived from human non-small cell lung cancer (NSCLC) cell line A549 cultured on different substrates, collagen gel or plastic, at different time points. We found that migration starts at 4–16 h time points after the seeding and its speed is substrate-dependent. We also demonstrated that co-culture of two NSCLC-derived MCTS on collagen gel, but not on plastic, facilitates cell migration compared with single MTCS. This finding should be considered when designing MCTS-based functional assays for personalized therapeutic approach and drug screenings. Overall, our work characterizes the in vitro 3D cell culture model resembling NSCLC cell migration from the clusters of CTCs into surgical wound, and describes microscopy-based tools and approaches for image data analysis with a potential for further automation. These tools and approaches also might be used to predict patterns of CTCs migration based on ex vivo analysis of patient biopsy in a 3D culture system.
Collapse
Affiliation(s)
- Evgenya Y Shabalina
- Moscow Institute of Physics and Technology, Institutskiy Pereulok, Dolgoprudny, Russia
| | - Ekaterina Yu Skorova
- Moscow Institute of Physics and Technology, Institutskiy Pereulok, Dolgoprudny, Russia
| | - D A Chudakova
- School of Biological Sciences, University of Auckland, Auckland, New Zealand
| | - V B Anikin
- Brunel University London, Uxbridge, United Kingdom.,First Moscow State Medical University, Moscow, Russia
| | - I V Reshetov
- Moscow Institute of Physics and Technology, Institutskiy Pereulok, Dolgoprudny, Russia.,First Moscow State Medical University, Moscow, Russia
| | - O A Mynbaev
- Moscow Institute of Physics and Technology, Institutskiy Pereulok, Dolgoprudny, Russia
| | - E V Petersen
- Moscow Institute of Physics and Technology, Institutskiy Pereulok, Dolgoprudny, Russia
| |
Collapse
|
35
|
Morphological features of breast cancer circulating tumor cells in blood after physical and biological type of isolation. Radiol Oncol 2021; 55:292-304. [PMID: 34384011 PMCID: PMC8366726 DOI: 10.2478/raon-2021-0033] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/05/2021] [Accepted: 07/09/2021] [Indexed: 01/13/2023] Open
Abstract
BACKGROUND Circulating tumor cells (CTCs) have become an important biomarker in breast cancer. Different isolation tech-niques based on their biological or physical features were established. Currently, the most widely used methods for visualization after their separation are based on immunofluorescent staining, which does not provide the information on the morphology. MATERIALS AND METHODS The aim of this study was to evaluate how two different separation techniques affect cell morphology and to analyse cell morphology with techniques used in routine cytopathological laboratory. A direct side-by-side comparison of physical (Parsortix®) and biological (MACS®) separation technique was performed. RESULTS In the preclinical setting, both isolation techniques retained the viability and antigenic characteristics of MCF7 breast cancer cells. Some signs of degeneration such as cell swelling, cytoplasmic blebs, villous projections and vacuolization were observed. In metastatic breast cancer patient cohort, morphological features of isolated CTCs were dependent on the separation technique. After physical separation, CTCs with preserved cell morphology were detected. After biological separation the majority of the isolated CTCs were so degenerated that their identity was difficult to confirm. CONCLUSIONS Taken together, physical separation is a suitable technique for detection of CTCs with preserved cell morphology for the use in a routine cytopathological laboratory.
Collapse
|
36
|
Ray SK, Mukherjee S. Consequences of Extracellular Matrix Remodeling in Headway and Metastasis of Cancer along with Novel Immunotherapies: A Great Promise for Future Endeavor. Anticancer Agents Med Chem 2021; 22:1257-1271. [PMID: 34254930 DOI: 10.2174/1871520621666210712090017] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/08/2021] [Revised: 05/23/2021] [Accepted: 05/30/2021] [Indexed: 12/12/2022]
Abstract
Tissues are progressively molded by bidirectional correspondence between denizen cells and extracellular matrix (ECM) via cell-matrix connections along with ECM remodeling. The composition and association of ECM are spatiotemporally directed to control cell conduct and differentiation; however, dysregulation of ECM dynamics prompts the development of diseases, for example, cancer. Emerging information demonstrates that hypoxia may have decisive roles in metastasis. In addition, the sprawling nature of neoplastic cells and chaotic angiogenesis are increasingly influencing microcirculation as well as altering the concentration of oxygen. In various regions of the tumor microenvironment, hypoxia, an essential player in the multistep phase of cancer metastasis, is necessary. Hypoxia can be turned into an advantage for selective cancer therapy because it is much more severe in tumors than in normal tissues. Cellular matrix gives signaling cues that control cell behavior and organize cells' elements in tissue development and homeostasis. The interplay between intrinsic factors of cancer cells themselves, including their genotype and signaling networks, and extrinsic factors of tumor stroma, for example, ECM and ECM remodeling, together decide the destiny and behavior of tumor cells. Tumor matrix encourages the development, endurance, and invasion of neoplastic and immune cell activities to drive metastasis and debilitate treatment. Incipient evidence recommends essential parts of tumor ECM segments and their remodeling in controlling each progression of the cancer-immunity cycle. Scientists have discovered that tumor matrix dynamics as well as matrix remodeling in perspective to anti-tumor immune reactions are especially important for matrix-based biomarkers recognition and followed by immunotherapy and targeting specific drugs.
Collapse
Affiliation(s)
- Suman Kumar Ray
- Department of Applied Sciences, Indira Gandhi Technological and Medical Sciences University, India
| | - Sukhes Mukherjee
- Department of Biochemistry. All India Institute of Medical Sciences Bhopal, Madhya pradesh-462020, India
| |
Collapse
|
37
|
Theil G, Lindner C, Bialek J, Fornara P. Association of Circulating Tumor Cells with Inflammatory and Biomarkers in the Blood of Patients with Metastatic Castration-Resistant Prostate Cancer. Life (Basel) 2021; 11:664. [PMID: 34357036 PMCID: PMC8307979 DOI: 10.3390/life11070664] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/25/2021] [Revised: 06/30/2021] [Accepted: 07/04/2021] [Indexed: 12/09/2022] Open
Abstract
The identification of specific biomarkers that recognize the functional drivers of heterogeneity in prostate cancer (PCa) and personalized treatment remain challenging in systemic medicine. Liquid biopsy allows for the detection and analysis of personalized predictive biomarkers in single blood samples and specifies the current stage of cancer. The aim of our preliminary study was to investigate the association between an elevated circulating tumor cell (CTC) count and the levels of inflammatory factors (IL-6 and IL-8) and biomarkers (DKK-1, PSA, sHER2, and CD44) in patients with metastasized castration-resistant PCa (mCPRC) under chemotherapy and those with localized PCa. Such an association could be used as a component of cancer progression monitoring. We compared the sensitivity and specificity of two CTC isolation platforms. Twenty-eight patients (12 mCRPC and 16 localized PCa patients) were enrolled. Over the study period, the CTC detection rates were 84% with CellCollector® and 73.5% with CellSearch® System in mCPRC patients. The CTC counts determined by the CellSearch® System (CTC_CS) were correlated significantly with the DKK-1, sHER-2, and PSA concentrations in mCRPC patients. The CTC counts captured by CellCollector® demonstrated no significant association with the concentrations of the tested blood-based biomarkers. The CTC_CS count (AUC = 0.9 (95% CI: 0.72-1.0)) and the PSA level (AUC = 0.95 (95% CI: 0.83-1.0)) presented approximately the same sensitivity and specificity for the overall survival of mCRPC patients. For better personalized characterization, further research on CTC phenotyping and their interactions with tumor-associated blood-released factors is needed.
Collapse
Affiliation(s)
- Gerit Theil
- Medical Faculty of Martin Luther University Halle-Wittenberg, University Clinic and Outpatient Clinic for Urology, 06120 Halle (Saale), Germany; (C.L.); (J.B.); (P.F.)
| | | | | | | |
Collapse
|
38
|
Vasseur A, Kiavue N, Bidard F, Pierga J, Cabel L. Clinical utility of circulating tumor cells: an update. Mol Oncol 2021; 15:1647-1666. [PMID: 33289351 PMCID: PMC8169442 DOI: 10.1002/1878-0261.12869] [Citation(s) in RCA: 92] [Impact Index Per Article: 23.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/18/2020] [Revised: 11/21/2020] [Accepted: 11/30/2020] [Indexed: 12/12/2022] Open
Abstract
The prognostic role of circulating tumor cells (CTCs) has been clearly demonstrated in many types of cancer. However, their roles in diagnostic and treatment strategies remain to be defined. In this review, we present an overview of the current clinical validity of CTCs in nonmetastatic and metastatic cancer, and the main studies or concepts investigating the clinical utility of CTCs. In particular, we focus on breast, lung, colorectal, and prostate cancer. Two major topics concerning the clinical utility of CTC are discussed: treatment based on CTC count or CTC variations, and treatment based on the molecular characteristics of CTCs. Although some of these studies are inconclusive, many are still ongoing, and their results could help to define the role of CTCs in the management of cancers. A summary of published or ongoing phase II-III trials is also presented.
Collapse
Affiliation(s)
- Antoine Vasseur
- Department of Medical OncologyParis and Saint‐Cloud Institut CurieFrance
| | - Nicolas Kiavue
- Department of Medical OncologyParis and Saint‐Cloud Institut CurieFrance
| | - François‐Clément Bidard
- Department of Medical OncologyParis and Saint‐Cloud Institut CurieFrance
- UVSQParis‐Saclay UniversityFrance
- Circulating Tumor Biomarkers laboratoryInserm CIC‐BT 1428Institut CurieParisFrance
| | - Jean‐Yves Pierga
- Department of Medical OncologyParis and Saint‐Cloud Institut CurieFrance
- Circulating Tumor Biomarkers laboratoryInserm CIC‐BT 1428Institut CurieParisFrance
- Paris UniversityFrance
| | - Luc Cabel
- Department of Medical OncologyParis and Saint‐Cloud Institut CurieFrance
- Circulating Tumor Biomarkers laboratoryInserm CIC‐BT 1428Institut CurieParisFrance
| |
Collapse
|
39
|
Gao Y, Fan WH, Song Z, Lou H, Kang X. Comparison of circulating tumor cell (CTC) detection rates with epithelial cell adhesion molecule (EpCAM) and cell surface vimentin (CSV) antibodies in different solid tumors: a retrospective study. PeerJ 2021; 9:e10777. [PMID: 33717672 PMCID: PMC7934682 DOI: 10.7717/peerj.10777] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/07/2020] [Accepted: 12/22/2020] [Indexed: 12/17/2022] Open
Abstract
Purpose Status of epithelial-mesenchymal transition (EMT) varies from tumors to tumors. Epithelial cell adhesion molecule (EpCAM) and cell surface vimentin (CSV) are the most common used targets for isolating epithelial and mesenchymal CTCs, respectively. This study aimed to identify a suitable CTC capturing antibody for CTC enrichment in each solid tumor by comparing CTC detection rates with EpCAM and CSV antibodies in different solid tumors. Methods Treatment-naive patients with confirmed cancer diagnosis and healthy people who have performed CTC detection between April 2017 and May 2018 were included in this study. CTC detection was performed with CytoSorter® CTC system using either EpCAM or CSV antibody. In total, 853 CTC results from 690 cancer patients and 72 healthy people were collected for analysis. The performance of CTC capturing antibody was determined by the CTC detection rate. Results EpCAM has the highest CTC detection rate of 84.09% in CRC, followed by BCa (78.32%). CTC detection rates with EpCAM antibody are less than 40% in HCC (25%), PDAC (32.5%) and OC (33.33%). CSV has the highest CTC detection rate of 90% in sarcoma, followed by BC (85.71%), UC (84.62%), OC (83.33%) and BCa (81.82%). CTC detection rates with CSV antibody are over 60% in all 14 solid tumors. Except for CRC, CSV has better performances than EpCAM in most solid tumors regarding the CTC detection rates. Conclusion EpCAM can be used as a target to isolate CTCs in CRC, LC, GC, BCa, EC, HNSCC, CC and PCa, especially in CRC, while CSV can be used in most solid tumors for isolating CTCs.
Collapse
Affiliation(s)
- Yang Gao
- Key Laboratory for Biomechanics and Mechanobiology of Ministry of Education, School of Biological Science and Medical Engineering, Beihang University, Beijing, China.,Beijing Advanced Innovation Center for Biomedical Engineering, Beijing Polytechnic University, Beijing, China
| | | | - Zhengbo Song
- Department of Medical Oncology, Zhejiang Cancer Hospital, Hangzhou, China
| | - Haizhou Lou
- Department of Oncology, Sir Run Run Shaw Hospital, Zhejiang University School of Medicine, Hangzhou, China
| | - Xixong Kang
- Key Laboratory for Biomechanics and Mechanobiology of Ministry of Education, School of Biological Science and Medical Engineering, Beihang University, Beijing, China.,Beijing Advanced Innovation Center for Biomedical Engineering, Beijing Polytechnic University, Beijing, China
| |
Collapse
|
40
|
Pązik M, Michalska K, Żebrowska-Nawrocka M, Zawadzka I, Łochowski M, Balcerczak E. Clinical significance of HRAS and KRAS genes expression in patients with non-small-cell lung cancer - preliminary findings. BMC Cancer 2021; 21:130. [PMID: 33549031 PMCID: PMC7866659 DOI: 10.1186/s12885-021-07858-w] [Citation(s) in RCA: 18] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/22/2020] [Accepted: 01/31/2021] [Indexed: 02/06/2023] Open
Abstract
Background The RAS family protooncogenes, including KRAS, NRAS and HRAS, encode proteins responsible for the regulation of growth, differentiation and survival of many cell types. The HRAS and KRAS oncogene mutations are well defined, however, the clinical significance of RAS expressions in non–small-cell lung cancer (NSCLC) is still uncertain. Methods A total of 39 whole blood samples of NSCLC (the investigated group), collected at three points of time: at the time of diagnosis, 100 days and 1 year after the surgery as well as 35 tissue samples obtained during the surgery were included in this study. HRAS and KRAS genes mRNA expression were assessed using quantitative real-time polymerase chain reaction techniques. Results Increased relative HRAS mRNA level in blood was found significantly more frequently in the group of smokers (p = 0.008). Patients with squamous cell carcinoma subtypes of NSCLC were more likely to show an overexpression of HRAS gene in blood, but not statistically significant (p = 0.065). In tumor tissue overexpression of HRAS gene was associated with adenocarcinoma subtype (p = 0.049). No statistically significant associations were found for the expression of KRAS with any clinicopathological parameters, except the age of patients, within the study. There were no differences between the relative HRAS and KRAS genes expression levels in blood samples taken from the same patients during the 3 observation points, as well as between blood collected from patients before surgery and tissue samples obtained during operation. Conclusion The potential associations between high HRAS expression levels, age, smoking status and histological type of cancer were observed, which emphasizes the need for further study of the RAS family. Therefore, subsequent research involving larger numbers of patients and a longer follow-up, as well as multicenter study are necessary to confirm our findings. Supplementary Information The online version contains supplementary material available at 10.1186/s12885-021-07858-w.
Collapse
Affiliation(s)
- Milena Pązik
- Laboratory of Molecular Diagnostics and Pharmacogenomics, Department of Pharmaceutical Biochemistry and Molecular Diagnostics, Cathedral of Laboratory and Molecular Diagnostics, Medical University of Lodz, Muszynskiego 1, 90-151, Lodz, Poland.
| | - Katarzyna Michalska
- Laboratory of Molecular Diagnostics and Pharmacogenomics, Department of Pharmaceutical Biochemistry and Molecular Diagnostics, Cathedral of Laboratory and Molecular Diagnostics, Medical University of Lodz, Muszynskiego 1, 90-151, Lodz, Poland
| | - Marta Żebrowska-Nawrocka
- Laboratory of Molecular Diagnostics and Pharmacogenomics, Department of Pharmaceutical Biochemistry and Molecular Diagnostics, Cathedral of Laboratory and Molecular Diagnostics, Medical University of Lodz, Muszynskiego 1, 90-151, Lodz, Poland
| | - Izabela Zawadzka
- Laboratory of Molecular Diagnostics and Pharmacogenomics, Department of Pharmaceutical Biochemistry and Molecular Diagnostics, Cathedral of Laboratory and Molecular Diagnostics, Medical University of Lodz, Muszynskiego 1, 90-151, Lodz, Poland
| | - Mariusz Łochowski
- Department of Thoracic Surgery, Memorial Copernicus Hospital, Medical University of Lodz, Lodz, Poland
| | - Ewa Balcerczak
- Laboratory of Molecular Diagnostics and Pharmacogenomics, Department of Pharmaceutical Biochemistry and Molecular Diagnostics, Cathedral of Laboratory and Molecular Diagnostics, Medical University of Lodz, Muszynskiego 1, 90-151, Lodz, Poland
| |
Collapse
|
41
|
Vasantharajan SS, Eccles MR, Rodger EJ, Pattison S, McCall JL, Gray ES, Calapre L, Chatterjee A. The Epigenetic landscape of Circulating tumour cells. Biochim Biophys Acta Rev Cancer 2021; 1875:188514. [PMID: 33497709 DOI: 10.1016/j.bbcan.2021.188514] [Citation(s) in RCA: 17] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/13/2020] [Revised: 01/18/2021] [Accepted: 01/18/2021] [Indexed: 12/31/2022]
Abstract
Cancer metastasis is the main reason for the high mortality in patients, contributing to 90% of cancer-related deaths. Biomarkers for early detection and therapeutic monitoring are essential to improve cancer outcomes. Circulating tumour cells (CTCs) arise from solid tumours and are capable of metastatic dissemination via the bloodstream or lymphatic system. Thus, CTCs can potentially be developed as a minimally invasive biomarker for early detection and therapeutic monitoring. Despite its clinical potential, research on CTCs remains limited, and this is likely due to their low numbers, short half-life, and the lack of robust methods for their isolation. There is also a need for molecular characterisation of CTCs to identify tumour-specific features, such as epigenetic signatures of metastasis. This review provides an overview of the epigenetic landscape of CTCs. We discuss the role of epigenetic modifications in CTC dissemination,metastatic tumour formation and progression and highlight its clinical implications.
Collapse
Affiliation(s)
| | - Michael R Eccles
- Department of Pathology, Otago Medical School-Dunedin Campus, New Zealand; Maurice Wilkins Centre for Molecular Biodiscovery, Level 2, 3A Symonds Street, Auckland 1010, New Zealand.
| | - Euan J Rodger
- Department of Pathology, Otago Medical School-Dunedin Campus, New Zealand.
| | - Sharon Pattison
- Department of Medicine, Otago Medical School-Dunedin Campus, New Zealand.
| | - John L McCall
- Department of Surgical Sciences, Otago Medical School-Dunedin Campus, New Zealand.
| | - Elin S Gray
- Centre for Precision Health, Edith Cowan University, Joondalup, Western Australia, Australia.
| | - Leslie Calapre
- Centre for Precision Health, Edith Cowan University, Joondalup, Western Australia, Australia.
| | - Aniruddha Chatterjee
- Department of Pathology, Otago Medical School-Dunedin Campus, New Zealand; Maurice Wilkins Centre for Molecular Biodiscovery, Level 2, 3A Symonds Street, Auckland 1010, New Zealand.
| |
Collapse
|
42
|
Singh B, Arora S, D'Souza A, Kale N, Aland G, Bharde A, Quadir M, Calderón M, Chaturvedi P, Khandare J. Chemo-specific designs for the enumeration of circulating tumor cells: advances in liquid biopsy. J Mater Chem B 2021; 9:2946-2978. [PMID: 33480960 DOI: 10.1039/d0tb02574g] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Abstract
Advanced materials and chemo-specific designs at the nano/micrometer-scale have ensured revolutionary progress in next-generation clinically relevant technologies. For example, isolating a rare population of cells, like circulating tumor cells (CTCs) from the blood amongst billions of other blood cells, is one of the most complex scientific challenges in cancer diagnostics. The chemical tunability for achieving this degree of exceptional specificity for extra-cellular biomarker interactions demands the utility of advanced entities and multistep reactions both in solution and in the insoluble state. Thus, this review delineates the chemo-specific substrates, chemical methods, and structure-activity relationships (SARs) of chemical platforms used for isolation and enumeration of CTCs in advancing the relevance of liquid biopsy in cancer diagnostics and disease management. We highlight the synthesis of cell-specific, tumor biomarker-based, chemo-specific substrates utilizing functionalized linkers through chemistry-based conjugation strategies. The capacity of these nano/micro substrates to enhance the cell interaction specificity and efficiency with the targeted tumor cells is detailed. Furthermore, this review accounts for the importance of CTC capture and other downstream processes involving genotypic and phenotypic CTC analysis in real-time for the detection of the early onset of metastases progression and chemotherapy treatment response, and for monitoring progression free-survival (PFS), disease-free survival (DFS), and eventually overall survival (OS) in cancer patients.
Collapse
Affiliation(s)
- Balram Singh
- Actorius Innovations and Research Pvt. Ltd, Pune, 411057, India.
| | | | | | | | | | | | | | | | | | | |
Collapse
|
43
|
Tinganelli W, Durante M. Tumor Hypoxia and Circulating Tumor Cells. Int J Mol Sci 2020; 21:ijms21249592. [PMID: 33339353 PMCID: PMC7766826 DOI: 10.3390/ijms21249592] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/28/2020] [Revised: 12/11/2020] [Accepted: 12/14/2020] [Indexed: 12/12/2022] Open
Abstract
Circulating tumor cells (CTCs) are a rare tumor cell subpopulation induced and selected by the tumor microenvironment's extreme conditions. Under hypoxia and starvation, these aggressive and invasive cells are able to invade the lymphatic and circulatory systems. Escaping from the primary tumor, CTCs enter into the bloodstream to form metastatic deposits or re-establish themselves in cancer's primary site. Although radiotherapy is widely used to cure solid malignancies, it can promote metastasis. Radiation can disrupt the primary tumor vasculature, increasing the dissemination of CTCs. Radiation also induces epithelial-mesenchymal transition (EMT) and eliminates suppressive signaling, causing the proliferation of existent, but previously dormant, disseminated tumor cells (DTCs). In this review, we collect the results and evidence underlying the molecular mechanisms of CTCs and DTCs and the effects of radiation and hypoxia in developing these cells.
Collapse
Affiliation(s)
- Walter Tinganelli
- Biophysics Department, GSI Helmholtzzentrum für Schwerionenforschung GmbH, 64291 Darmstadt, Germany;
| | - Marco Durante
- Biophysics Department, GSI Helmholtzzentrum für Schwerionenforschung GmbH, 64291 Darmstadt, Germany;
- Institut für Festkörperphysik, Technische Universität Darmstadt, 64291 Darmstadt, Germany
- Correspondence:
| |
Collapse
|
44
|
Aoun F, Mjaess G, Nemr E, Albisinni S, Roumeguere T. Can the success with immunotherapy in metastatic urothelial bladder carcinoma be replicated in the neoadjuvant setting? Immunotherapy 2020; 12:1209-1212. [DOI: 10.2217/imt-2020-0244] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2022] Open
Affiliation(s)
- Fouad Aoun
- Department of Urology, Institut Jules Bordet, Brussels, Belgium
- Department of Urology, Hotel-Dieu de France, University of Saint Joseph, Beirut, Lebanon
| | - Georges Mjaess
- Department of Urology, Hotel-Dieu de France, University of Saint Joseph, Beirut, Lebanon
| | - Elie Nemr
- Department of Urology, Hotel-Dieu de France, University of Saint Joseph, Beirut, Lebanon
| | - Simone Albisinni
- Department of Urology, University Clinics of Brussels, Erasme Hospital, Université Libre de Bruxelles, Brussels, Belgium
| | - Thierry Roumeguere
- Department of Urology, Institut Jules Bordet, Brussels, Belgium
- Department of Urology, University Clinics of Brussels, Erasme Hospital, Université Libre de Bruxelles, Brussels, Belgium
| |
Collapse
|
45
|
Albisinni S, Aoun F, Diamand R, Mjaess G, Esperto F, Martinez Chanza N, Roumeguère T, De Nunzio C. Systematic review of neoadjuvant therapy by immune checkpoint inhibitors before radical cystectomy: where do we stand? MINERVA UROL NEFROL 2020; 72:663-672. [DOI: 10.23736/s0393-2249.20.03833-3] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/26/2022]
|
46
|
Sistigu A, Musella M, Galassi C, Vitale I, De Maria R. Tuning Cancer Fate: Tumor Microenvironment's Role in Cancer Stem Cell Quiescence and Reawakening. Front Immunol 2020; 11:2166. [PMID: 33193295 PMCID: PMC7609361 DOI: 10.3389/fimmu.2020.02166] [Citation(s) in RCA: 63] [Impact Index Per Article: 12.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/15/2020] [Accepted: 08/10/2020] [Indexed: 12/12/2022] Open
Abstract
Cancer cell dormancy is a common feature of human tumors and represents a major clinical barrier to the long-term efficacy of anticancer therapies. Dormant cancer cells, either in primary tumors or disseminated in secondary organs, may reawaken and relapse into a more aggressive disease. The mechanisms underpinning dormancy entry and exit strongly resemble those governing cancer cell stemness and include intrinsic and contextual cues. Cellular and molecular components of the tumor microenvironment persistently interact with cancer cells. This dialog is highly dynamic, as it evolves over time and space, strongly cooperates with intrinsic cell nets, and governs cancer cell features (like quiescence and stemness) and fate (survival and outgrowth). Therefore, there is a need for deeper insight into the biology of dormant cancer (stem) cells and the mechanisms regulating the equilibrium quiescence-versus-proliferation are vital in our pursuit of new therapeutic opportunities to prevent cancer from recurring. Here, we review and discuss microenvironmental regulations of cancer dormancy and its parallels with cancer stemness, and offer insights into the therapeutic strategies adopted to prevent a lethal recurrence, by either eradicating resident dormant cancer (stem) cells or maintaining them in a dormant state.
Collapse
Affiliation(s)
- Antonella Sistigu
- Istituto di Patologia Generale, Università Cattolica del Sacro Cuore, Rome, Italy.,Tumor Immunology and Immunotherapy Unit, IRCCS Regina Elena National Cancer Institute, Rome, Italy
| | - Martina Musella
- Istituto di Patologia Generale, Università Cattolica del Sacro Cuore, Rome, Italy
| | - Claudia Galassi
- Istituto di Patologia Generale, Università Cattolica del Sacro Cuore, Rome, Italy
| | - Ilio Vitale
- IIGM - Italian Institute for Genomic Medicine, c/o IRCSS Candiolo (TO), Candiolo, Italy.,Candiolo Cancer Institute, FPO - IRCCS, Candiolo, Italy
| | - Ruggero De Maria
- Istituto di Patologia Generale, Università Cattolica del Sacro Cuore, Rome, Italy.,Fondazione Policlinico Universitario "A. Gemelli" - IRCCS, Rome, Italy
| |
Collapse
|
47
|
Kyriazi AA, Papiris E, Kitsos Kalyvianakis K, Sakellaris G, Baritaki S. Dual Effects of Non-Coding RNAs (ncRNAs) in Cancer Stem Cell Biology. Int J Mol Sci 2020; 21:ijms21186658. [PMID: 32932969 PMCID: PMC7556003 DOI: 10.3390/ijms21186658] [Citation(s) in RCA: 16] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/03/2020] [Revised: 09/04/2020] [Accepted: 09/07/2020] [Indexed: 12/12/2022] Open
Abstract
The identification of cancer stem cells (CSCs) as initiators of carcinogenesis has revolutionized the era of cancer research and our perception for the disease treatment options. Additional CSC features, including self-renewal and migratory and invasive capabilities, have further justified these cells as putative diagnostic, prognostic, and therapeutic targets. Given the CSC plasticity, the identification of CSC-related biomarkers has been a serious burden in CSC characterization and therapeutic targeting. Over the past decades, a compelling amount of evidence has demonstrated critical regulatory functions of non-coding RNAs (ncRNAs) on the exclusive features of CSCs. We now know that ncRNAs may interfere with signaling pathways, vital for CSC phenotype maintenance, such as Notch, Wnt, and Hedgehog. Here, we discuss the multifaceted contribution of microRNAs (miRNAs), long non-coding RNAs (lncRNAs) and circular RNAs (circRNAs), as representative ncRNA classes, in sustaining the CSC-like traits, as well as the underlying molecular mechanisms of their action in various CSC types. We further discuss the use of CSC-related ncRNAs as putative biomarkers of high diagnostic, prognostic, and therapeutic value.
Collapse
Affiliation(s)
- Athina A. Kyriazi
- Laboratory of Experimental Oncology, Division of Surgery, School of Medicine, University of Crete, 71500 Heraklion, Greece; (A.A.K.); (E.P.); (K.K.K.)
| | - Efstathios Papiris
- Laboratory of Experimental Oncology, Division of Surgery, School of Medicine, University of Crete, 71500 Heraklion, Greece; (A.A.K.); (E.P.); (K.K.K.)
| | - Konstantinos Kitsos Kalyvianakis
- Laboratory of Experimental Oncology, Division of Surgery, School of Medicine, University of Crete, 71500 Heraklion, Greece; (A.A.K.); (E.P.); (K.K.K.)
| | - George Sakellaris
- Surgery Unit, University General Hospital, 71500 Heraklion (PAGNH), Greece;
| | - Stavroula Baritaki
- Laboratory of Experimental Oncology, Division of Surgery, School of Medicine, University of Crete, 71500 Heraklion, Greece; (A.A.K.); (E.P.); (K.K.K.)
- Correspondence: ; Tel.: +30-2810394727
| |
Collapse
|
48
|
Mentis AFA, Grivas PD, Dardiotis E, Romas NA, Papavassiliou AG. Circulating tumor cells as Trojan Horse for understanding, preventing, and treating cancer: a critical appraisal. Cell Mol Life Sci 2020; 77:3671-3690. [PMID: 32333084 PMCID: PMC11104835 DOI: 10.1007/s00018-020-03529-4] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/08/2020] [Revised: 03/29/2020] [Accepted: 04/15/2020] [Indexed: 02/06/2023]
Abstract
Circulating tumor cells (CTCs) are regarded as harbingers of metastases. Their ability to predict response to therapy, relapse, and resistance to treatment has proposed their value as putative diagnostic and prognostic indicators. CTCs represent one of the zeniths of cancer evolution in terms of cell survival; however, the triggers of CTC generation, the identification of potentially metastatic CTCs, and the mechanisms contributing to their heterogeneity and aggressiveness represent issues not yet fully deciphered. Thus, prior to enabling liquid biopsy applications to reach clinical prime time, understanding how the above mechanistic information can be applied to improve treatment decisions is a key challenge. Here, we provide our perspective on how CTCs can provide mechanistic insights into tumor pathogenesis, as well as on CTC clinical value. In doing so, we aim to (a) describe how CTCs disseminate from the primary tumor, and their link to epithelial-mesenchymal transition (EMT); (b) trace the route of CTCs through the circulation, focusing on tumor self-seeding and the possibility of tertiary metastasis; (c) describe possible mechanisms underlying the enhanced metastatic potential of CTCs; (d) discuss how CTC could provide further information on the tissue of origin, especially in cancer of unknown primary origin. We also provide a comprehensive review of meta-analyses assessing the prognostic significance of CTCs, to highlight the emerging role of CTCs in clinical oncology. We also explore how cell-free circulating tumor DNA (ctDNA) analysis, using a combination of genomic and phylogenetic analysis, can offer insights into CTC biology, including our understanding of CTC heterogeneity and tumor evolution. Last, we discuss emerging technologies, such as high-throughput quantitative imaging, radiogenomics, machine learning approaches, and the emerging breath biopsy. These technologies could compliment CTC and ctDNA analyses, and they collectively represent major future steps in cancer detection, monitoring, and management.
Collapse
Affiliation(s)
- Alexios-Fotios A Mentis
- Public Health Laboratories, Hellenic Pasteur Institute, Athens, Greece
- Department of Microbiology, University Hospital of Thessaly, Larissa, Greece
| | - Petros D Grivas
- Division of Oncology, Department of Medicine, University of Washington School of Medicine, Fred Hutchinson Cancer Research Center, Seattle, WA, USA
| | | | - Nicholas A Romas
- Department of Urology, Columbia University Medical Center, Vagelos College of Physicians and Surgeons, New York, NY, USA
| | - Athanasios G Papavassiliou
- Department of Biological Chemistry, Medical School, National and Kapodistrian University of Athens, 75 M. Asias Street-Bldg. 16, 11527, Athens, Greece.
| |
Collapse
|
49
|
Zhuyan J, Chen M, Zhu T, Bao X, Zhen T, Xing K, Wang Q, Zhu S. Critical steps to tumor metastasis: alterations of tumor microenvironment and extracellular matrix in the formation of pre-metastatic and metastatic niche. Cell Biosci 2020; 10:89. [PMID: 32742634 PMCID: PMC7388444 DOI: 10.1186/s13578-020-00453-9] [Citation(s) in RCA: 44] [Impact Index Per Article: 8.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/09/2019] [Accepted: 07/21/2020] [Indexed: 02/07/2023] Open
Abstract
For decades, cancer metastasis has been a heated topic for its high mortality. Previous research has shown that pre-metastatic niche and metastatic niche are the 2 crucial steps in cancer metastasis, assisting cancerous cells' infiltration, survival, and colonization at target sites. More recent studies have unraveled details about the specific mechanisms related to the modification of pro-invasion environments. Here, we will review literatures on extracellular matrix (ECM) alterations, general cancer metastasis, organ specificity, pre-metastatic niche, metastatic niche, colony formation and impact on the course of metastasis. Respectively, the metastatic mechanisms like effect of hypoxia or inflammation on pre-metastatic niche construction, as well as the interaction between cancer cells and local milieu will be discussed. Based on the evidences of metastatic niches, we revisit and discussed the "Seed and Soil" hypothesis by Paget. This review will seek to provide insight into the mechanism of metastatic organ specificity which pre-metastatic niche and metastatic niche might suggest from an evolutionary aspect.
Collapse
Affiliation(s)
- Jianan Zhuyan
- School of Life Sciences, Fudan University, 2005 Songhu Road, Shanghai, 200438 China
- Shanghai Starriver Bilingual School, Shanghai, 201100 China
| | - Mingyu Chen
- Department of Neurosurgery, Huashan Hospital, Shanghai, 200040 China
| | - Tianhao Zhu
- Shanghai Starriver Bilingual School, Shanghai, 201100 China
| | - Xunxia Bao
- School of Medical Instrument and Food Engineering, University of Shanghai for Science and Technology, Shanghai, 200093 China
| | - Timing Zhen
- School of Medical Instrument and Food Engineering, University of Shanghai for Science and Technology, Shanghai, 200093 China
| | - Kaichen Xing
- School of Medical Instrument and Food Engineering, University of Shanghai for Science and Technology, Shanghai, 200093 China
| | - Qiubo Wang
- Department of Clinical Laboratory, Wuxi 9th Affiliated Hospital of Soochow University, No.999 Liangxi Road, Wuxi, China
| | - Sibo Zhu
- School of Life Sciences, Fudan University, 2005 Songhu Road, Shanghai, 200438 China
| |
Collapse
|
50
|
Rao V, Arakeri G, Subash A, Bagadia RK, Thakur S, Kudpaje AS, Nayar R, Patil S, Paiva Fonseca F, Gomez RS, Brennan PA. Circulating tumour cells in head and neck cancers: Biological insights. J Oral Pathol Med 2020; 49:842-848. [PMID: 32526815 DOI: 10.1111/jop.13075] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022]
Abstract
Tumour metastasis is one of the leading cause of cancer-related mortality. Circulating tumour cells (CTCs) have been implicated in loco-regional and distant metastasis and its role is being extensively studied in various malignancies, including those from the head and neck region. The main challenge in understanding their significance lies in the rarity of these cells in the blood. However, newer technologies have attempted to overcome these pitfalls. This review explores the evolution of CTC research and other related areas, including its biological significance, sustainability within the circulating vascular environment and possible clinical implications.
Collapse
Affiliation(s)
- Vishal Rao
- Department of Head and Neck Surgical Oncology & Robotic Surgery, HCG Cancer Hospital, Bengaluru, India
| | - Gururaj Arakeri
- Department of Head and Neck Surgical Oncology & Robotic Surgery, HCG Cancer Hospital, Bengaluru, India.,Department of Oral and maxillofacial Surgery, Navodaya Dental College and Hospital, Raichur, India
| | - Anand Subash
- Department of Head and Neck Surgical Oncology & Robotic Surgery, HCG Cancer Hospital, Bengaluru, India
| | - Ritvi K Bagadia
- Department of Head and Neck Surgical Oncology & Robotic Surgery, HCG Cancer Hospital, Bengaluru, India
| | - Shalini Thakur
- Department of Head and Neck Surgical Oncology & Robotic Surgery, HCG Cancer Hospital, Bengaluru, India
| | - Akshay S Kudpaje
- Department of Head and Neck Surgical Oncology & Robotic Surgery, HCG Cancer Hospital, Bengaluru, India
| | - Ravi Nayar
- Department of Head and Neck Surgical Oncology & Robotic Surgery, HCG Cancer Hospital, Bengaluru, India
| | - Shekar Patil
- Department of Medical Oncology, HCG Cancer Hospital, Bengaluru, India
| | - Felipe Paiva Fonseca
- Department of Oral Surgery and Pathology, School of Dentistry, Universidade Federal de Minas Gerais, Belo Horizonte, Brazil
| | - Ricardo S Gomez
- Department of Oral Surgery and Pathology, School of Dentistry, Universidade Federal de Minas Gerais, Belo Horizonte, Brazil
| | - Peter A Brennan
- Department of Oral & Maxillofacial Surgery, Queen Alexandra Hospital, Portsmouth, UK
| |
Collapse
|