1
|
Stoian A, Muntean C, Babă DF, Manea A, Dénes L, Simon-Szabó Z, Kosovski IB, Nemes-Nagy E, Gliga FI, Stoian M. Update on Biomarkers of Chronic Inflammatory Processes Underlying Diabetic Neuropathy. Int J Mol Sci 2024; 25:10395. [PMID: 39408723 PMCID: PMC11476795 DOI: 10.3390/ijms251910395] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/16/2024] [Revised: 09/22/2024] [Accepted: 09/24/2024] [Indexed: 10/20/2024] Open
Abstract
There is an increasing prevalence of diabetes mellitus (DM), particularly type 2 DM (T2DM), and its associated complications. T2DM is linked to insulin resistance, chronic inflammation, and oxidative stress, which can lead to both macrovascular and microvascular complications, including peripheral diabetic neuropathy (PDN). Inflammatory processes play a key role in the development and progression of T2DM and its complications, with specific markers like C-reactive protein (CRP), interleukins (ILs), and tumor necrosis factor (TNF)-α being associated with increased risk. Other key inflammatory markers such as nuclear factor kappa B (NF-κB) are activated under hyperglycemic and oxidative stress conditions and contribute to the aggravation of PDN by regulating inflammatory gene expression and enhancing endothelial dysfunction. Other important roles in the inflammatory processes are played by Toll-like receptors (TLRs), caveolin 1 (CAV1), and monocyte chemoattractant protein 1 (MCP1). There is a relationship between vitamin D deficiency and PDN, highlighting the critical role of vitamin D in regulating inflammation and immune responses. The involvement of macrophages in PDN is also suspected, emphasizing their role in chronic inflammation and nerve damage in diabetic patients. Vitamin D supplementation has been found to reduce neuropathy severity, decrease inflammatory markers, and improve glycemic control. These findings suggest that addressing vitamin D deficiency could offer therapeutic benefits for PDN. These molecular pathways are critical in understanding the pathogenesis of DM complications and may offer potential biomarkers or therapeutic targets including anti-inflammatory treatments, vitamin D supplementation, macrophage phenotype modulation, and lifestyle modifications, aimed at reducing inflammation and preventing PDN. Ongoing and more extensive clinical trials with the aim of investigating anti-inflammatory agents, TNF-α inhibitors, and antioxidants are needed to advance deeper into the understanding and treatment of painful diabetic neuropathy.
Collapse
Affiliation(s)
- Adina Stoian
- Department of Pathophysiology, George Emil Palade University of Medicine, Pharmacy, Science and Technology of Targu Mures, 540142 Targu Mures, Romania; (A.S.); (F.I.G.)
| | - Carmen Muntean
- Department of Pediatrics 1, George Emil Palade University of Medicine, Pharmacy, Science and Technology of Targu Mures, 540142 Targu Mures, Romania;
| | - Dragoș-Florin Babă
- Emergency Institute for Cardiovascular Diseases and Transplantation, 540142 Targu Mures, Romania;
- Department of Cell and Molecular Biology, George Emil Palade University of Medicine, Pharmacy, Science and Technology of Targu Mures, 540142 Targu Mures, Romania
| | - Andrei Manea
- Department of Radiology, Mureș County Emergency Hospital, 540136 Targu Mures, Romania;
| | - Lóránd Dénes
- Department of Anatomy and Embryology, Faculty of Medicine, George Emil Palade University of Medicine, Pharmacy, Science and Technology of Targu Mures, 540142 Targu Mures, Romania
| | - Zsuzsánna Simon-Szabó
- Department of Pathophysiology, George Emil Palade University of Medicine, Pharmacy, Science and Technology of Targu Mures, 540142 Targu Mures, Romania; (A.S.); (F.I.G.)
| | - Irina Bianca Kosovski
- Department of Pathophysiology, George Emil Palade University of Medicine, Pharmacy, Science and Technology of Targu Mures, 540142 Targu Mures, Romania; (A.S.); (F.I.G.)
| | - Enikő Nemes-Nagy
- Department of Chemistry and Medical Biochemistry, Faculty of Medicine in English, George Emil Palade University of Medicine, Pharmacy, Science and Technology of Targu Mures, 540142 Targu Mures, Romania;
| | - Florina Ioana Gliga
- Department of Pathophysiology, George Emil Palade University of Medicine, Pharmacy, Science and Technology of Targu Mures, 540142 Targu Mures, Romania; (A.S.); (F.I.G.)
| | - Mircea Stoian
- Department of Anesthesiology and Intensive Care, George Emil Palade University of Medicine, Pharmacy, Sciences and Technology of Targu Mures, 540142 Targu Mures, Romania;
| |
Collapse
|
2
|
Muntean C, Starcea IM, Banescu C. Diabetic kidney disease in pediatric patients: A current review. World J Diabetes 2022; 13:587-599. [PMID: 36159227 PMCID: PMC9412860 DOI: 10.4239/wjd.v13.i8.587] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/27/2022] [Revised: 06/13/2022] [Accepted: 07/11/2022] [Indexed: 02/05/2023] Open
Abstract
In the last decades, a significant increase in the incidence of diabetic kidney disease (DKD) was observed concomitant with rising diabetes mellitus (DM) incidence. Kidney disease associated with DM in children and adolescents is represented by persistent albuminuria, arterial hypertension, progressive decline in estimated glomerular filtration rate to end-stage renal disease and increased cardiovascular and all-cause morbidity and mortality of these conditions. In medical practice, the common and still the "gold standard" marker for prediction and detection of diabetic kidney involvement in pediatric diabetes is represented by microalbuminuria screening even if it has low specificity to detect early stages of DKD. There are some known limitations in albuminuria value as a predictor biomarker for DKD, as not all diabetic children with microalbuminuria or macroalbuminuria will develop end-stage renal disease. As tubular damage occurs before the glomerular injury, tubular biomarkers are superior to the glomerular ones. Therefore, they may serve for early detection of DKD in both type 1 DM and type 2 DM. Conventional and new biomarkers to identify diabetic children and adolescents at risk of renal complications at an early stage as well as renoprotective strategies are necessary to delay the progression of kidney disease to end-stage kidney disease. New biomarkers and therapeutic strategies are discussed as timely diagnosis and therapy are critical in the pediatric diabetic population.
Collapse
Affiliation(s)
- Carmen Muntean
- Department of Pediatrics I, “George Emil Palade” University of Medicine, Pharmacy, Sciences and Technology of Târgu Mures, Târgu Mures 540142, Romania
| | - Iuliana Magdalena Starcea
- Department of IVth Pediatrics, University of Medicine and Pharmacy “Grigore T. Popa”, Iasi 700115, Romania
| | - Claudia Banescu
- Center for Advanced Medical and Pharmaceutical Research, University of Medicine, Pharmacy, Sciences and Technology of Târgu Mureș, Mureș, Târgu Mures 540142, Romania
| |
Collapse
|
3
|
Otelea MR, Nartea R, Popescu FG, Covaleov A, Mitoiu BI, Nica AS. The Pathological Links between Adiposity and the Carpal Tunnel Syndrome. Curr Issues Mol Biol 2022; 44:2646-2663. [PMID: 35735622 PMCID: PMC9221759 DOI: 10.3390/cimb44060181] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/06/2022] [Revised: 06/01/2022] [Accepted: 06/06/2022] [Indexed: 11/16/2022] Open
Abstract
An association between obesity and carpal tunnel syndrome is found in many epidemiological studies. Therefore, there is a need to evaluate the physiopathological links that could explain the association between these two entities. Ectopic adipose tissue is responsible for metabolic syndrome and inflammation, and is a major risk factor for diabetes and cardiovascular diseases. Taking these elements into consideration, we conducted an extensive literature revision of the subject, considering as ectopic fat-related mechanisms the following: (a) the direct compression and the association with the metabolic syndrome of the fat deposition around the wrist, (b) the insulin resistance, dyslipidemia, inflammatory, and oxidative mechanisms related to the central deposition of the fat, (c) the impaired muscle contraction and metabolism related to myosteatosis. Each section presents the cellular pathways which are modified by the ectopic deposition of the adipose tissue and the impact in the pathogeny of the carpal tunnel syndrome. In conclusion, the experimental and clinical data support the epidemiological findings. Efforts to reduce the obesity epidemics will improve not only cardio-metabolic health but will reduce the burden of the disability-free life expectancy due to the carpal tunnel syndrome.
Collapse
Affiliation(s)
- Marina Ruxandra Otelea
- Clinical Department 5, Carol Davila University of Medicine and Pharmacy, 050474 Bucharest, Romania;
| | - Roxana Nartea
- Clinical Department 9, Carol Davila University of Medicine and Pharmacy, 050474 Bucharest, Romania; (A.C.); (B.I.M.); (A.S.N.)
- National Institute for Rehabilitation, Physical Medicine and Balneoclimatology, 030079 Bucharest, Romania
- Correspondence:
| | - Florina Georgeta Popescu
- Department V, Internal Medicine, Victor Babeş University of Medicine and Pharmacy, 300041 Timisoara, Romania;
- Emergency Municipal Hospital, 300254 Timisoara, Romania
| | - Anatoli Covaleov
- Clinical Department 9, Carol Davila University of Medicine and Pharmacy, 050474 Bucharest, Romania; (A.C.); (B.I.M.); (A.S.N.)
| | - Brindusa Ilinca Mitoiu
- Clinical Department 9, Carol Davila University of Medicine and Pharmacy, 050474 Bucharest, Romania; (A.C.); (B.I.M.); (A.S.N.)
| | - Adriana Sarah Nica
- Clinical Department 9, Carol Davila University of Medicine and Pharmacy, 050474 Bucharest, Romania; (A.C.); (B.I.M.); (A.S.N.)
- National Institute for Rehabilitation, Physical Medicine and Balneoclimatology, 030079 Bucharest, Romania
| |
Collapse
|
4
|
ElHajj Chehadeh S, Sayed NS, Abdelsamad HS, Almahmeed W, Khandoker AH, Jelinek HF, Alsafar HS. Genetic Variants and Their Associations to Type 2 Diabetes Mellitus Complications in the United Arab Emirates. Front Endocrinol (Lausanne) 2022; 12:751885. [PMID: 35069435 PMCID: PMC8772337 DOI: 10.3389/fendo.2021.751885] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/02/2021] [Accepted: 11/22/2021] [Indexed: 11/13/2022] Open
Abstract
Aim Type 2 Diabetes Mellitus (T2DM) is associated with microvascular complications, including diabetic retinopathy (DR), diabetic nephropathy (DNp), and diabetic peripheral neuropathy (DPN). In this study, we investigated genetic variations and Single Nucleotide Polymorphisms (SNPs) associated with DR, DNp, DPN and their combinations among T2DM patients of Arab origin from the United Arab Emirates, to establish the role of genes in the progression of microvascular diabetes complications. Methods A total of 158 Emirati patients with T2DM were recruited in this study. The study population was divided into 8 groups based on the presence of single, dual, or all three complications. SNPs were selected for association analyses through a search of publicly available databases, specifically genome-wide association study (GWAS) catalog, infinome genome interpretation platform, and GWAS Central database. A multivariate logistic regression analysis and association test were performed to evaluate the association between 83 SNPs and DR, DNp, DPN, and their combinations. Results Eighty-three SNPs were identified as being associated with T2DM and 18 SNPs had significant associations to one or more diabetes complications. The most strongly significant association for DR was rs3024997 SNP in the VEGFA gene. The top-ranked SNP for DPN was rs4496877 in the NOS3 gene. A trend towards association was detected at rs833068 and rs3024998 in the VEGFA gene with DR and rs743507 and rs1808593 in the NOS3 gene with DNp. For dual complications, the rs833061, rs833068 and rs3024997 in the VEGFA gene and the rs4149263 SNP in the ABCA1 gene were also with borderline association with DR/DNp and DPN/DNp, respectively. Diabetic with all of the complications was significantly associated with rs2230806 in the ABCA1 gene. In addition, the highly associated SNPs rs3024997 of the VEGFA gene and rs4496877 of the NOS3 gene were linked to DR and DPN after adjusting for the effects of other associated markers, respectively. Conclusions The present study reports associations of different genetic polymorphisms with microvascular complications and their combinations in Emirati T2DM patients, reporting new associations, and corroborating previous findings. Of interest is that some SNPs/genes were only present if multiple comorbidities were present and not associated with any single complication.
Collapse
Affiliation(s)
| | - Noura S. Sayed
- Khalifa University Center of Biotechnology, Abu Dhabi, United Arab Emirates
| | - Hanin S. Abdelsamad
- Biomedical Engineering Department, Khalifa University of Science and Technology, Abu Dhabi, United Arab Emirates
- College of Medicine and Health Sciences, Khalifa University of Science and Technology, Abu Dhabi, United Arab Emirates
| | - Wael Almahmeed
- Institute of Cardiac Science, Sheikh Khalifa Medical City, Abu Dhabi, United Arab Emirates
- Heart and Vascular Institute, Cleveland Clinic, Abu Dhabi, United Arab Emirates
| | - Ahsan H. Khandoker
- Biomedical Engineering Department, Khalifa University of Science and Technology, Abu Dhabi, United Arab Emirates
- Healthcare Engineering Innovation Center (HEIC), Khalifa University of Science and Technology, Abu Dhabi, United Arab Emirates
| | - Herbert F. Jelinek
- Khalifa University Center of Biotechnology, Abu Dhabi, United Arab Emirates
- Biomedical Engineering Department, Khalifa University of Science and Technology, Abu Dhabi, United Arab Emirates
- Healthcare Engineering Innovation Center (HEIC), Khalifa University of Science and Technology, Abu Dhabi, United Arab Emirates
| | - Habiba S. Alsafar
- Khalifa University Center of Biotechnology, Abu Dhabi, United Arab Emirates
- Biomedical Engineering Department, Khalifa University of Science and Technology, Abu Dhabi, United Arab Emirates
- College of Medicine and Health Sciences, Khalifa University of Science and Technology, Abu Dhabi, United Arab Emirates
| |
Collapse
|
5
|
Influence of GSTM1, GSTT1, and GSTP1 Polymorphisms on Type 2 Diabetes Mellitus and Diabetic Sensorimotor Peripheral Neuropathy Risk. DISEASE MARKERS 2015; 2015:638693. [PMID: 26435566 PMCID: PMC4578743 DOI: 10.1155/2015/638693] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Subscribe] [Scholar Register] [Received: 07/19/2015] [Accepted: 08/26/2015] [Indexed: 12/29/2022]
Abstract
BACKGROUND AND AIMS Diabetic neuropathy is a frequent complication of type 2 diabetes mellitus (T2DM). Genetic susceptibility and oxidative stress may play a role in the appearance of T2DM and diabetic neuropathy. We investigated the relation between polymorphism in genes related to oxidative stress such as GSTM1, GSTT1, and GSTP1 and the presence of T2DM and diabetic neuropathy (DN). METHODS Samples were collected from 84 patients with T2DM (42 patients with DN and 42 patients without DN) and 98 healthy controls and genotyped by using polymerase chain reaction and restriction fragment length polymorphism method. RESULTS GSTP1 Ile105Val polymorphism was associated with the risk of developing T2DM (p = 0.05) but not with the risk of developing DN in diabetic cases. GSTM1 and GSTT1 gene polymorphisms were associated with neither the risk of developing T2DM nor the risk of DN occurrence in diabetic patients. No association was observed between the patients with T2DM and DSPN (diabetic sensorimotor peripheral neuropathy) and T2DM without DSPN regarding investigated polymorphism. CONCLUSION Our data suggest that GSTP1 gene polymorphisms may contribute to the development of T2DM in Romanian population. GSTM1, GSTT1, and GSTP1 gene polymorphisms are not associated with susceptibility of developing diabetic neuropathy in T2DM patients.
Collapse
|
6
|
Witzel II, Jelinek HF, Khalaf K, Lee S, Khandoker AH, Alsafar H. Identifying Common Genetic Risk Factors of Diabetic Neuropathies. Front Endocrinol (Lausanne) 2015; 6:88. [PMID: 26074879 PMCID: PMC4447004 DOI: 10.3389/fendo.2015.00088] [Citation(s) in RCA: 45] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/10/2015] [Accepted: 05/13/2015] [Indexed: 12/13/2022] Open
Abstract
Type 2 diabetes mellitus (T2DM) is a global public health problem of epidemic proportions, with 60-70% of affected individuals suffering from associated neurovascular complications that act on multiple organ systems. The most common and clinically significant neuropathies of T2DM include uremic neuropathy, peripheral neuropathy, and cardiac autonomic neuropathy. These conditions seriously impact an individual's quality of life and significantly increase the risk of morbidity and mortality. Although advances in gene sequencing technologies have identified several genetic variants that may regulate the development and progression of T2DM, little is known about whether or not the variants are involved in disease progression and how these genetic variants are associated with diabetic neuropathy specifically. Significant missing heritability data and complex disease etiologies remain to be explained. This article is the first to provide a review of the genetic risk variants implicated in the diabetic neuropathies and to highlight potential commonalities. We thereby aim to contribute to the creation of a genetic-metabolic model that will help to elucidate the cause of diabetic neuropathies, evaluate a patient's risk profile, and ultimately facilitate preventative and targeted treatment for the individual.
Collapse
Affiliation(s)
- Ini-Isabée Witzel
- Biomedical Engineering Department, Khalifa University of Science, Technology and Research, Abu Dhabi, United Arab Emirates
| | - Herbert F. Jelinek
- Australian School of Advanced Medicine, Macquarie University, Sydney, NSW, Australia
- Centre for Research in Complex Systems, School of Community Health, Charles Sturt University, Albury, NSW, Australia
| | - Kinda Khalaf
- Biomedical Engineering Department, Khalifa University of Science, Technology and Research, Abu Dhabi, United Arab Emirates
| | - Sungmun Lee
- Biomedical Engineering Department, Khalifa University of Science, Technology and Research, Abu Dhabi, United Arab Emirates
| | - Ahsan H. Khandoker
- Biomedical Engineering Department, Khalifa University of Science, Technology and Research, Abu Dhabi, United Arab Emirates
- Electrical and Electronic Engineering Department, The University of Melbourne, Parkville, VIC, Australia
| | - Habiba Alsafar
- Biomedical Engineering Department, Khalifa University of Science, Technology and Research, Abu Dhabi, United Arab Emirates
| |
Collapse
|